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METHOD FOR OPTIMIZING PROGRAM
USING REINFORCEMENT LEARNING

CROSS-REFERENCE TO RELATED
APPLICATION

The present application is a continuation of International
Patent Application No. PCT/KR2020/019345, filed on Dec.
29, 2020, which is based upon and claims the benefit of
priority to Korean Patent Application No. 10-2019-0177761,
filed on Dec. 30, 2019 and Korean Patent Application No.
10-2020-0176308, filed on Dec. 16, 2020. The disclosures of
the above-listed applications are hereby incorporated by
reference herein in their entirety.

TECHNICAL FIELD

The present disclosure relates to a method for optimizing
aprogram based on reinforcement learning. Specifically, one
or more examples of the disclosure relate to a method for
automatically optimizing a program based on reinforcement
learning which continuously enhances program perfor-
mance, and a computer program.

BACKGROUND

It may be important to optimize a computer program to
perform various program executions or tasks with limited
assets, energy, resources, and the like. Optimization of a
program herein may refer to a series of processes of chang-
ing a given program such that the program outputs the same
result with higher performance for a given input.

In general, the optimization of a program can be per-
formed by modifying, compiling, and executing the program
several times by an experienced programmer who under-
stands both the hardware system and the structure of the
program. However, such a series of processes requires a cost
for hiring an experienced programmer and may also take a
long time.

SUMMARY

In order to solve one or more problems (e.g., the problems
described above and/or other problems not explicitly
described herein), the present disclosure provides a method
for automatically optimizing a program based on reinforce-
ment learning and a non-transitory computer-readable
recording medium storing instructions.

The present disclosure may be implemented in a variety
of ways, including a method, a system, an apparatus, a
non-transitory computer-readable recording medium storing
instructions, or a computer program.

A method for automatically optimizing a program based
on reinforcement learning may include (a) receiving an input
for a source program, which may include a fixed parameter
and variable parameter, (b) generating the source program
based on the received input, (c) converting the source
program into an object program, (d) executing the converted
object program to measure a performance of the executed
object program, (e) inputting the variable parameter and the
measured performance into a machine learning model, and
outputting a variation of the variable parameter, and (f)
regenerating a source program reflecting the variation of the
variable parameter.

The step (f) may include applying the variation of the
variable parameter to the variable parameter, and outputting
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the regenerated source program by using the variable param-
eter applied with the variation of the variable parameter and
the fixed parameter.

After the step (f), the method may further include (g)
setting the regenerated source program as the source pro-
gram, and performing the steps (c¢) to (f) again.

The method may further include training the machine
learning model by repeatedly performing the step (g) until a
predetermined batch size is reached.

The method may further include performing the steps (c)
to (f), while repeatedly performing at least some of the steps
(c) to (f) until a target performance is reached, and deter-
mining a source program corresponding to a best perfor-
mance to be an optimized source program when the target
performance is reached.

The step (d) may include inputting the variable parameter,
the measured performance, and the source program to the
machine learning model and outputting the variation of the
variable parameter.

The machine learning model may include a deep learning
model. The step of inputting the variable parameter, the
measured performance, and the source program to the
machine learning model and outputting the variation of the
variable parameter includes generating an input vector rep-
resenting the variable parameter, the measured performance,
and the source program, and inputting the generated input
vector to the deep learning model to generate an output
vector representing the variation of the variable parameter
through the deep learning model.

The step (d) may include measuring time taken to output
a result value through the object program when the object
program is executed, and determining the measured time to
be an index of the performance.

The step of measuring time taken to output a result value
through the object program when the object program is
executed may include inputting a test set for the object
program, and determining time taken for a result value
corresponding to the test set to be output through the object
program to be an index of the performance.

There is provided a non-transitory computer-readable
recording medium storing instructions for executing, on a
computer, a method for automatically optimizing a program
based on reinforcement learning described above.

According to some examples of the present disclosure, the
processor may automatically change the variable parameter
to generate an optimized source program from a given
source program, without requiring a programmer of the
program to change or modity the variable parameter directly
each time the optimization of the performance of the pro-
gram is performed.

According to some examples of the present disclosure,
since the processor can play a role of the experienced
programmer, compared to the direct optimization by the
programmer, program optimization can be completed in a
shorter time, or a larger number of search ranges can be
efficiently explored in a given amount of time.

According to some examples of the present disclosure, if
program optimization is performed, the amount of input of
human resources required for the program optimization can
be minimized, thus producing profits, and a program with
enhanced performance can be used to enhance service
quality.

According to some examples of the present disclosure, it
may be possible to automatically generate an optimized
program by repeatedly performing the performance mea-
surement until the processor reaches the target performance,
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without requiring a program developer to optimize the
program by directly changing variable parameters.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of
the present disclosure will become more apparent to those of
ordinary skill in the art by describing in detail exemplary
embodiments thereof with reference to the accompanying
drawings, in which:

FIG. 1 is a diagram illustrating an example in which a
processor generates an optimized source program;

FIG. 2 is a block diagram illustrating an internal configu-
ration of the processor;

FIG. 3 is a flowchart illustrating an example of a method
for automatically optimizing a program based on reinforce-
ment learning;

FIG. 4 is a block diagram illustrating an example in which
a process for determining an optimized program is repeat-
edly performed;

FIG. 5 is a diagram illustrating an example of a machine
learning model that outputs a variation of the variable
parameter based on reinforcement learning;

FIG. 6 is a diagram illustrating an example of a machine
learning model that outputs a variation of the variable
parameter based on reinforcement learning;

FIG. 7 is a flowchart illustrating an example of a method
for training a machine learning model based on reinforce-
ment learning;

FIG. 8 is a flowchart illustrating an example of a method
for inferring through a machine learning model; and

FIG. 9 is a diagram illustrating an example of performing
reinforcement learning on a machine learning model.

DETAILED DESCRIPTION

Hereinafter, example details for the practice of the present
disclosure will be described in detail with reference to the
accompanying drawings. However, in the following descrip-
tion, detailed descriptions of well-known functions or con-
figurations will be omitted when it may make the subject
matter of the present disclosure rather unclear.

In the accompanying drawings, the same or correspond-
ing components are assigned the same reference numerals.
In addition, in the following description of various
examples, duplicate descriptions of the same or correspond-
ing components may be omitted. However, even if descrip-
tions of components are omitted, it is not intended that such
components are not included in any embodiment.

Advantages and features of the disclosed examples and
methods of accomplishing the same will be apparent by
referring to examples described below in connection with
the accompanying drawings. However, the present disclo-
sure is not limited to the examples disclosed below, and may
be implemented in various forms different from each other,
and the examples are merely provided to make the present
disclosure complete, and to fully disclose the scope of the
invention to those skilled in the art to which the present
disclosure pertains.

The terms used herein will be briefly described prior to
describing the disclosed embodiment(s) in detail. The terms
used herein have been selected as general terms which are
widely used at present in consideration of the functions of
the present disclosure, and this may be altered according to
the intent of an operator skilled in the art, conventional
practice, or introduction of new technology. In addition, in
specific cases, certain terms may be arbitrarily selected by
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the applicant, and the meaning of the terms will be described
in detail in a corresponding description of the embodiment
(s). Therefore, the terms used in the present disclosure
should be defined based on the meaning of the terms and the
overall content of the present disclosure rather than a simple
name of each of the terms.

As used herein, the singular forms “a,” “an,” and “the” are
intended to include the plural forms as well, unless the
context clearly indicates the singular forms. Further, the
plural forms are intended to include the singular forms as
well, unless the context clearly indicates the plural forms.
Further, throughout the description, when a portion is stated
as “comprising (including)” a component, it intends to mean
that the portion may additionally comprise (or include or
have) another component, rather than excluding the same,
unless specified to the contrary.

Further, the term “module” or “unit” used herein refers to
a software or hardware component, and “module” or “unit”
performs certain roles. However, the meaning of the “mod-
ule” or “unit” is not limited to software or hardware. The
“module” or “unit” may be configured to be in an address-
able storage medium or configured to reproduce one or more
processors. Accordingly, as an example, the “module” or
“unit” may include components such as software compo-
nents, object-oriented software components, class compo-
nents, and task components, and at least one of processes,
functions, attributes, procedures, subroutines, program code
segments, drivers, firmware, micro-codes, circuits, data,
database, data structures, tables, arrays, and variables. Fur-
thermore, functions provided in the components and the
“modules” or “units” may be combined into a smaller
number of components and “modules” or “units”, or further
divided into additional components and “modules” or
“units.”

The “module” or “unit” may be implemented as a pro-
cessor and a memory. The “processor” should be interpreted
broadly to encompass a general-purpose processor, a central
processing unit (CPU), a microprocessor, a digital signal
processor (DSP), a controller, a microcontroller, a state
machine, and so forth. Under some circumstances, the
“processor” may refer to an application-specific integrated
circuit (ASIC), a programmable logic device (PLD), a
field-programmable gate array (FPGA), and so on. The
“processor” may refer to a combination of processing
devices, e.g., a combination of a DSP and a microprocessor,
a combination of a plurality of microprocessors, a combi-
nation of one or more microprocessors in conjunction with
a DSP core, or any other combination of such configurations.
In addition, the “memory” should be interpreted broadly to
encompass any electronic component that is capable of
storing electronic information. The “memory” may refer to
various types of processor-readable media such as random
access memory (RAM), read-only memory (ROM), non-
volatile random access memory (NVRAM), programmable
read-only memory (PROM), erasable programmable read-
only memory (EPROM), electrically erasable PROM (EE-
PROM), flash memory, magnetic or optical data storage,
registers, and so on. The memory is said to be in electronic
communication with a processor if the processor can read
information from and/or write information to the memory.
The memory integrated with the processor is in electronic
communication with the processor.

In the present disclosure, “automatically optimizing a
program” or “optimization of a program” may refer to a
series of processes of changing a given program such that
the program outputs the same result with higher perfor-
mance for a given input.

29 <
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In the present disclosure, the “performance” may be
defined variously according to types and execution environ-
ments of the programs, using for example, execution time,
energy consumption, amount of resource usage, and the like
as an index for determining the performance of the program.
For example, the performance may be determined based on
time taken to output a result value corresponding to a test
input through a given program in response to the test input
to that program.

In the present disclosure, the “program” may refer to a
program executed in CPU (e.g., C program, Java program,
Python program, and the like), a program executed in GPU
(e.g., Open CL, CUDA, and the like), and/or all software
executed in hardware other than the CPU and GPU.

In the present disclosure, a “fixed parameter” and a
“variable parameter” may include some or all information
necessary to configure one program, and may be embodied
in various forms according to a method of generating or
implementing a program. According to an embodiment, the
fixed parameter may refer to a predefined basic (skeleton)
code required to construct a given program, and the variable
parameter may represent a numerical value of a part of a
source program that can be implemented differently. For
example, a skeleton code using a large number of C macro
variables may be defined as the fixed parameter, and a set of
C macro variable declarations may be defined as the variable
parameter. As another example, the variable parameter may
be defined for each operation in a program, and in the case
of'a deep learning program, the variable parameter may refer
to a parameter determined according to how to implement it
when defining a kernel. As another example, the variable
parameter may refer to a numerical value indicating how
many input values (e.g., pixels) are calculated per one thread
of the GPU, how many input values are calculated at one
time in a loop, and the like.

FIG. 1 is a diagram illustrating an example in which a
processor 100 generates an optimized source program 120.
As illustrated, the processor 100 may generate the optimized
source program 120 by using a source program 110. In this
example, the source program 110 may refer to a source code
of a program (e.g., a GPU program) operable in multi-core
CPU, GPU, FPGA, or the like. In addition, the optimized
source program 120 may refer to a source program (e.g., a
program having the best performance) having better perfor-
mance than the other source programs.

The processor 100 may receive an input for a source
program including a fixed parameter and a variable param-
eter. For example, the fixed parameter may indicate a
parameter that is predetermined with fixed in numbers,
types, and the like of the parameter, and the variable
parameter may indicate a parameter that can be variably
changed in numbers, types, and the like of the parameter. If
an input to the source program 110 is received, the processor
100 may generate the source program 110 based on the
received input.

The processor 100 may convert the source program 110
into an object program. For example, the processor 100 may
convert the source program 110 into the object program by
using a translator such as a compiler, an interpreter, an
assembler, a preprocessor, or the like. In this example, the
object program is a form of language that can be immedi-
ately executed by a computer, and may refer to a program
(e.g., binary code, and the like) generated by translating the
source program 110.

The processor 100 may execute the converted object
program to measure the performance of the executed object
program. For example, the performance of the object pro-
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gram may be measured based on, but is not limited to, an
execution time, an amount of energy consumed, an amount
of resource usage, and the like required to output the same
result, and any performance index that can measure the
performance of the program may be used.

The processor 100 may input the variable parameter and
the measured performance to the machine learning model,
and output a variation of the variable parameter. In this
example, the machine learning model may refer to an agent
of reinforcement learning that has been or is being trained by
reinforcement learning, and for example, may include a deep
learning model such as a deep neural network. That is, the
processor 100 may output the variation of the variable
parameter for the given program from the machine learning
model trained to output the variation of the variable param-
eter that can enhance the performance of the object program.

If the variation of the variable parameter is output, the
processor 100 may regenerate the source program reflecting
the variation of the variable parameter. That is, the processor
100 may reflect the variation of the variable parameter in the
received variable parameter to change the number, type, and
the like of the variable parameter. The processor 100 may
generate a new source program by using the changed
variable parameter and the fixed parameter. In addition, the
processor 100 may repeatedly perform the process of con-
verting a new source program into an object program,
measuring the performance of the object program, and
outputting the variation of the variable parameter based on
the changed variable parameter and the measured perfor-
mance.

As described above, the processor 100 may repeatedly
perform the process of measuring the performance of the
program, outputting the variation of the variable parameter,
and changing the variable parameter according to the output
variation of the variable parameter, thereby generating and/
or determining the optimized source program 120 having
better performance than the other source programs. With
such a configuration, the processor 100 may automatically
change the variable parameter without requiring a program-
mer of the program to directly change or modify the variable
parameter each time the optimization of the performance of
the program is performed, thereby generating the optimized
source program 120 from the given source program 110.

FIG. 2 is a block diagram illustrating an internal configu-
ration of the processor 100. As illustrated, the processor 100
may include a program generation unit 210, a translator 220,
a program execution unit 230, a performance measurer 240,
a machine learning processing unit 250, and the like. In
addition, the processor 100 may exchange information and/
or data necessary for optimization of the program perfor-
mance while communicating with a database 260.

As described above, the processor 100 may receive an
input for source program including a fixed parameter and a
variable parameter. For example, the fixed parameter and the
variable parameter may include all information necessary to
generate one program. The processor 100 may receive the
fixed parameter and the variable parameter from a developer
or user of the program, or may extract the fixed parameter
and the variable parameter corresponding to a specific
program from the database 260.

The program generation unit 210 may generate a source
program by using the received or extracted fixed parameter
and variable parameter. In this case, the fixed parameter and
the variable parameter may be numerical values and/or
codes expressed or implemented in a form for the program
generation unit 210 to generate a source program. That is,
the fixed parameter and the variable parameter may be



US 12,026,487 B2

7

embodied in various forms according to the implementation
method of the program generation unit 210.

The source program generated by the program generation
unit 210 may be transmitted to the translator 220. As
described above, the translator 220 may include a compiler,
an interpreter, an assembler, a preprocessor, and the like, but
is not limited thereto. Such a translator 220 may convert a
source program into an object program that can be executed
in a computer.

The object program converted or generated by the trans-
lator 220 may be provided to the program execution unit
230. The program execution unit 230 may receive the object
program and a test set for executing the object program. For
example, the test set may include a test input and a test
output (result data) corresponding to the test input. That is,
the program execution unit 230 may be configured to input
the test input to the object program and output a result value.
In addition, the program execution unit 230 may compare
the output result value with the test output to determine
whether or not the output result value corresponds to a
correct answer (that is, test output).

According to the execution result of the object program,
the performance measurer 240 may measure the perfor-
mance of the object program. For example, if the result of
the object program corresponds to the correct answer, the
performance measurer 240 may measure the performance of
the object program. In another example, if the result of the
object program is output, the performance measurer 240
may measure the performance of the object program. In this
case, the performance may be measured based on the
execution time, the amount of energy consumed, the amount
of resource usage, and the like of the object program, but is
not limited thereto.

The performance of the object program measured in this
way may be provided to the machine learning processing
unit 250. The machine learning processing unit 250 may
output a variation of the variable parameter using the
machine learning model. The machine learning processing
unit 250 may extract from the database 260 a machine
learning model corresponding to the object program, and
input the variable parameter and the measured performance
to the extracted machine learning model to output the
variation of the variable parameter. That is, the machine
learning processing unit 250 may output the variation of the
variable parameter such that the performance of the object
program can be enhanced. The processor 100 may regener-
ate the source program reflecting the output variation of the
variable parameter.

The processor 100 may repeatedly perform the process of
generating a source program, converting the source program
into an object program, measuring the performance of the
object program, outputting a variation of the variable param-
eter, and regenerating the source program, thereby progres-
sively enhancing the performance of the corresponding
program. This can be regarded as a program optimization
process based on reinforcement learning. If the performance
of the program reaches the target performance, among a
plurality of programs generated until the target performance
is reached, the source program corresponding to the best
performance may be determined to be the optimized source
program.

The database 260 may be included in one device and
directly connected to the processor 100. According to
another example, the database 260 may be arranged for
communication by the processor 100 (e.g., a cloud system).

Although the components of the processor 100 have been
described separately for each function in FIG. 2, it does not
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necessarily mean that they are physically separated. For
example, the program execution unit 230 may be configured
to include the translator 220 and/or the performance mea-
surer 240. In addition, although FIG. 2 illustrates that there
is one database 260, embodiments are not limited thereto,
and for example, there may be a database in which fixed
parameters and/or variable parameters are stored and a
database in which one or more machine learning models are
stored. With such a configuration, since the processor 100
can play a role of an experienced programmer, compared to
the direct optimization by the programmer, the program
optimization can be completed in a shorter time, or a larger
number of search ranges (that is, part or all of which is
included in the program) can be efficiently explored in a
given amount of time.

FIG. 3 is a flowchart illustrating an example of a method
300 for automatically optimizing a program based on rein-
forcement learning. The method 300 for optimizing a pro-
gram based on reinforcement learning may be performed by
at least one processor (e.g., the processor 100) for perform-
ing program optimization. The method 300 for automati-
cally optimizing a program based on reinforcement learning
may be initiated by the processor receiving an input for a
source program including a fixed parameter and a variable
parameter (S310). For example, the source program may
refer to a program written in a source language.

The processor may generate the source program based on
the received input (S320). In addition, the processor may
convert the source program into an object program (S330).
For example, the object program may refer to a program
written in an object language or a target language, and
written such that it can be executed by a computer. For
example, the processor may generate the object program
using a translator corresponding to the source program.

The processor may execute the converted object program
to measure the performance of the executed object program
(S340). The processor may measure time taken to output a
result value through the object program when the object
program is executed, and determine the measured time as an
index of performance. In this case, the processor may input
a test set for the object program, and determine time taken
for a result value corresponding to the test set to be output
through the object program as an index of performance of
the object program.

The processor may input the variable parameter and the
measured performance to the machine learning model, and
output a variation of the variable parameter (S350). Addi-
tionally or alternatively, the processor may input the variable
parameter, the measured performance, and the source pro-
gram to the machine learning model, and output the varia-
tion of the variable parameter. The machine learning model
may include a deep learning model such as a deep neural
network and the like. If the machine learning model is a deep
learning model, the processor may generate an input vector
representing the variable parameter, the performance, and
the source program, and input the generated input vector to
the deep learning model to generate an output vector rep-
resenting a variation of the variable parameter through the
deep learning model.

The processor may regenerate the source program reflect-
ing the variation of the variable parameter (S360). That is,
the processor may apply the variation of the variable param-
eter to the variable parameter and output the regenerated
source program by using the variable parameter applied with
the variation of the variable parameter and the fixed param-
eter.
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FIG. 4 is a block diagram illustrating an example in which
a process for determining an optimized program is repeat-
edly performed. As illustrated, the program generation unit
210 may generate a source program by using the fixed
parameter and the variable parameter. For example, the fixed
parameter and the variable parameter may include at least
some information necessary to generate one program.

The translator 220 may convert the source program gen-
erated by the program generation unit 210 into an object
program. As described above, the object program converted
by the translator 220 may be provided to the program
execution unit 230. In this case, the program execution unit
230 may execute the object program to check the output
result. In addition, the performance measurer 240 may
measure the performance of the object program according to
the execution of the object program. In addition, the
machine learning processing unit 250 may input the variable
parameter and the measured performance to the machine
learning model, and output the variation of the variable
parameter. As described above, the process and method of
generating the source program, converting the source pro-
gram into the object program, executing the object program,
measuring the performance of the object program, and
outputting the variation of the variable parameter may be
performed in a manner same as/similar to those described
above.

In terms of learning the machine learning model, the
process described above may be repeatedly performed until
a predetermined batch size is reached. In this case, the
predetermined batch size may indicate the size or number of
data sets required to train the entire machine learning model.
That is, a plurality of variations of the variable parameter, a
plurality of performances, a plurality of source codes of the
program, and the like generated as the process described
above is repeated may be stored in a specific memory and/or
database, and the like, and when the stored data, such as the
plurality of variations of the variable parameter, the plurality
of performances, the plurality of source codes of the pro-
gram, and the like reach a predetermined batch size, the
stored data and/or information may be used as training data
for training the machine learning model. That is, the result
obtained by inferring the machine learning model may be
used to train the machine learning model again. For
example, a result obtained by inferring a machine learning
model may be generated in a plurality of local inference
environments and transmitted to a global machine learning
model (e.g., a DNN model) to be used for reinforcement
learning.

In terms of generation (inference) of the optimized source
program, the process described above may be repeatedly
executed until the target performance is reached. The target
performance may refer to the performance measured when
the enhanced performance is no longer measured by repeat-
ing the process described above. For example, after a
performance-related numerical value is output as 1.6 sec-
onds, if only the performance values of 1.6 seconds or less
are output a predetermined number of times (e.g., once or
multiple times) in the repeated process), the processor may
determine that the target performance is reached. If it is
determined that the target performance is reached, the pro-
cessor may determine a source program corresponding to the
best performance to be an optimized source program. In the
example described above, a source program generated based
on the variable parameter and the fixed parameter when the
performance value is 1.6 seconds may be determined to be
the optimized source program. With the program optimiza-
tion performed by the configuration as described above, the

10

15

20

25

30

35

40

45

50

55

60

65

10

amount of human resources required for the program opti-
mization can be minimized, thus producing profits, and a
program with enhanced performance can be used to enhance
service quality.

FIG. 5 is a diagram illustrating an example of a machine
learning model 500 that outputs a variation of the variable
parameter based on reinforcement learning. The machine
learning model 500 may correspond to an artificial neural
network. For example, the artificial neural network may be
configured as a deep neural network (DNN). In the machine
learning technology and cognitive science, the artificial
neural network herein may refer to a statistical training
algorithm implemented based on the structure of a biological
neural network, or to a structure that executes such algo-
rithm. That is, the artificial neural network represents the
machine learning model 500 that acquires a problem solving
ability by repeatedly adjusting the weights of synapses by
the nodes that are artificial neurons forming the network
through synaptic combinations as in the biological neural
networks, thus training to reduce errors between a correct
output corresponding to a specific input and an inferred
output.

In general, the artificial neural network is implemented as
a multilayer perceptron (MLP) formed of multiple nodes and
connections between them. The artificial neural network
may be implemented using one of various artificial neural
network structures including the MLP. The artificial neural
network may include an input layer that receives an input
signal or data from the outside, an output layer that outputs
output signal or data corresponding to the input data, and n
hidden layers that are located between the input layer and the
output layer to receive a signal from the input layer, and
extract and deliver features to the output layer. In this case,
the output layer receives a signal from the hidden layer and
outputs it to the outside.

The processor may input the variable parameters and the
performance of the program to the machine learning model
500 and output the variation of the variable parameter. The
processor may generate an input vector representing the
variable parameter and the measured performance, and input
the generated input vector to the machine learning model
500, and generate an output vector representing the variation
of the variable parameter through the machine learning
model 500. In this case, the variation of the variable param-
eter may be any value output to enhance the performance of
a given program. That is, the processor may apply the
variation of the variable parameter to the existing variable
parameter, and output a new source program by using the
variable parameter applied with the variation of the variable
parameter and the fixed parameter.

FIG. 6 is a diagram illustrating an example of a machine
learning model 600 that outputs a variation of the variable
parameter based on reinforcement learning. The machine
learning model 600 may correspond to an artificial neural
network. For example, the machine learning model 600 may
include an input layer, a hidden layer, an output layer, and
the like implemented as a multi-layer perceptron, and may
include a deep neural network (DNN) and the like, for
example.

The machine learning model 600 may be a model trained
(e.g., with reinforcement learning) to output a variation of
the variable parameter using a variable parameter, a program
performance, a source program, and the like. In this case, the
variation of the variable parameter output by the machine
learning model 600 from the variable parameter, program
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performance, source program, and the like may be used as
new training data for training the machine learning model
600.

The processor may input the variable parameter, the
performance of the program, and the source program to the
machine learning model 600, and output the variation of the
variable parameter. For example, the processor may generate
an input vector representing the variable parameter and the
measured performance, and the source program, and input
the generated input vector to the machine learning model
600, and generate an output vector representing the variation
of the variable parameter through the machine learning
model 600. That is, the processor may apply the output
vector indicating the variation of the variable parameter to
the existing variable parameter, and output a new source
program by using the variable parameter applied with the
output vector indicating the variation of the variable param-
eter and the fixed parameter.

FIG. 7 is a flowchart illustrating an example of a method
700 for training a machine learning model based on rein-
forcement learning. The method 700 for training a machine
learning model based on reinforcement learning may be
performed by at least one processor (e.g., the processor 100)
for performing program optimization or generating training
data. The method 700 may be initiated by the processor
converting a source program into an object program (S710).
The source program may be generated using fixed parameter
and variable parameter including all information necessary
for generating the corresponding program. In this case, the
variable parameter may be received from a programmer or
a database. Alternatively, the variable parameter may refer to
an existing variable parameter applied with the variation of
the variable parameter.

The processor may execute the converted object program
to measure the performance of the executed object program
(8720). The processor may receive a predefined test set (test
input and test output) according to an object program. The
processor may input the test input to the object program and
check the output result value. That is, the processor may
check whether or not the output result value and the test
output are the same as each other, and measure the perfor-
mance of the object program. For example, if the output
result value and the test output are not the same as each other
(e.g., since it means that the modified source program is
different from the existing source program), the processor
may initialize the variable parameter to a default value.

The processor may input the variable parameter and the
measured performance to the machine learning model and
output the variation of the variable parameter (S730). In
addition, the processor may regenerate the source program
reflecting the variation of the variable parameter (S740). For
example, the processor may output the variation of the
variable parameter so that the performance of the program
can be enhanced in consideration of a degree of influence of
the variable parameter on the performance of the program,
and the like. It may regenerate a source program by using the
variable parameter reflecting the variation of the variable
parameter and the fixed parameter.

The processor may set the regenerated source program as
the source program and perform the process/step described
above again (S750). The processor may repeatedly perform
the steps described above until the accumulated size of the
data used for learning or the number of executions reaches
a predetermined batch size (S760). That is, the machine
learning model for outputting the variation of the variable
parameter can be continuously trained, and the training data
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required for training may be generated or updated by repeat-
edly performing the steps described above until a predeter-
mined batch size is reached.

Some or all intermediate results and data generated as the
processes described above are repeatedly performed may be
stored in any memory or any external storage device. In
other words, the variation of the variable parameter, the
variable parameter, the fixed parameter, the source program,
the object program (e.g., binary code), the test input, the test
output, the result value and/or the performance, which is
generated as the processes described above are repeatedly
performed until a predetermined batch size is reached, may
be stored in any memory or external storage device. The data
and/or information stored or collected in this way may be
used as training data for reinforcement learning (e.g., global
DNN) of other machine learning models.

FIG. 8 is a flowchart illustrating an example of a method
800 for inferring through a machine learning model. The
method 800 for inferring the machine learning model may
be performed by at least one processor (e.g., the processor
100) for performing program optimization. The method 800
for inferring the machine learning model may be initiated by
the processor receiving an input for a source program
including a variable parameter and a fixed parameter (S810).
For example, the variable parameter and the fixed parameter
may be directly received from a program developer, or may
be extracted from a database storing the variable parameters
and the fixed parameters.

The processor may generate the source program based on
the received input (S820). In addition, the processor may
convert the source program into an object program (S830).
In this case, the process of generating the source program
based on the fixed parameter and the variable parameter or
converting the generated source program into the object
program may be performed in the manner same as/similar to
that described above.

The processor may execute the converted object program
to measure the performance of the executed object program
(S840). For example, an execution time required for the
object program to output a result value from the input, an
amount of energy consumed, and/or an amount of resource
usage may be used as a performance index for measuring the
performance of the program. That is, a program with a
shorter execution time, less amount of energy consumed,
and/or less amount of resource usage may be determined to
have a better performance.

The processor may determine whether or not the mea-
sured performance of the program is higher than the previ-
ous best performance (S850). In other words, the processor
may determine whether or not the performance of the
program reaches a target performance. For example, if the
program performances measured while repeatedly perform-
ing at least some of the processes described above are no
longer enhanced, the processor may determine that the
performance of the corresponding program reaches the
target performance.

If it is determined that the measured performance is
higher than the previous best performance, the processor
may input the variable parameter and the measured perfor-
mance to the machine learning model, and output the
variation of the variable parameter (S860). In addition, the
processor may regenerate the source program reflecting the
variation of the variable parameter (S870). That is, the
processor may continuously change the variable parameter
and measure the change in the program performance accord-
ing to the change of the variable parameter.
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If the performance of the program reaches the target
performance, the processor may determine a source program
corresponding to the best performance to be an optimized
source program (S880). That is, if the performance of the
program is no longer enhanced from the previous best
performance while repeatedly performing all or some of the
processes described above, the processor may determine the
source program corresponding to the best performance (pro-
gram with a variable parameter corresponding to the best
performance) better than the other performances obtained so
far to be the optimized source program. With such a con-
figuration, it is possible to automatically generate an opti-
mized program by repeatedly performing the performance
measurement until the processor reaches the target perfor-
mance, without requiring a program developer to optimize
the program by directly changing variable parameters.
While FIG. 8 illustrates that the program corresponding to
the previous best performance is generated to be the opti-
mized program if the operation at S850 does not have one
time of enhancement of performance of the program from
the previous best performance (but aspects of the present
disclosure are not limited thereto), and if all of the perfor-
mances of the program measured while repeatedly perform-
ing the processes S830 to S850 a plurality of predetermined
times do not exceed the previous best performance, the
program corresponding to the previous best performance
may be determined to be the optimized program.

FIG. 9 is a diagram illustrating an example of performing
reinforcement learning on machine learning models 910_1
and 910_2. For example, FIG. 9 may illustrate a structure for
training a global DNN 940 and the machine learning models
910_1 and 910_2 by using the reinforcement learning tech-
nique of the Asynchronous Advantage Actor-Critic (A3C)
structure. In this case, the reinforcement learning may refer
to a technique in which an agent based on DNN applies an
action to an external environment and receives result (state)
and reward, and repeatedly executes the processes of train-
ing the DNN with the state and reward again. There may be
one or more machine learning models 910_1 and 910_2 that
measure the program performance and output a variation of
the variable parameter.

As described above, the machine learning models 910_1
and 910_2 may store the variation of the variable parameter,
the variable parameter, the fixed parameter, the source
program, the object program (e.g., program binary), the test
input, the test output, the result value and/or the perfor-
mance, and the like, which is generated while repeatedly
performing the processes until a predetermined batch size is
reached, in any memory or external storage device. As
described above, data and/or information stored in any
memory or external storage device may be provided to a
global DNN manager 930 as inference results 920_1 and
920_2. For example, the inference results 920_1 and 920_2
may be asynchronously provided to the global DNN man-
ager 930.

The global DNN manager 930 receiving the inference
results 920_1 and 920_2 may generate training data for
training the global DNN by using the inference results
920_1 and 920_2. The global DNN manager 930 may
transmit the generated training data to the global DNN 940.
That is, the global DNN 940 may perform reinforcement
learning by using all of the inference results 920_1 and
920_2 generated by the one or more machine learning
models 910_1 and 910_2.

The global DNN 940 may perform reinforcement learning
by using the training data and generate DNN parameters
950_1 and 950_2 as a result of reinforcement learning. As
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described above, the generated DNN parameters 950_1 and
950_2 may be provided to the one or more machine learning
models 910_1 and 910_2. In this case, parameters of the
machine learning models 910_1 and 910_2 may be substi-
tuted with the received DNN parameters 950_1 and 950_2,
and accordingly, reinforcement learning of the machine
learning models 910_1 and 910_2 may be performed.

Although FIG. 9 illustrates that there are two machine
learning models 910_1 and 910_2, aspects are not limited
thereto, and there may be three or more machine learning
models. In addition, although it is described that reinforce-
ment learning is performed by using the A3C model with
reference to FIG. 9, aspects are not limited thereto, and any
Actor-Critic model, Deep Q Networks (DQN) model, or the
like may be used.

The method described above may be provided as a
computer program stored in a computer-readable recording
medium for execution on a computer. The medium may be
a type of medium that continuously stores a program execut-
able by a computer, or temporarily stores the program for
execution or download. In addition, the medium may be a
variety of recording means or storage means having a single
piece of hardware or a combination of several pieces of
hardware, and is not limited to a medium that is directly
connected to any computer system, and accordingly, may be
present on a network in a distributed manner. An example of
the medium includes a medium configured to store program
instructions, including a magnetic medium such as a hard
disk, a floppy disk, and a magnetic tape, an optical medium
such as a CD-ROM and a DVD, a magnetic-optical medium
such as a floptical disk, and a ROM, a RAM, a flash memory,
and so on. In addition, other examples of the medium may
include an app store that distributes applications, a site that
supplies or distributes various software, and a recording
medium or a storage medium managed by a server.

The methods, operations, or techniques of the present
disclosure may be implemented by various means. For
example, these techniques may be implemented in hardware,
firmware, software, or a combination thereof. Those skilled
in the art will further appreciate that various illustrative
logical blocks, modules, circuits, and algorithm steps
described in connection with the disclosure herein may be
implemented in electronic hardware, computer software, or
combinations of both. To clearly illustrate this interchange-
ability of hardware and software, various illustrative com-
ponents, blocks, modules, circuits, and steps have been
described above generally in terms of their functionality.
Whether such a function is implemented as hardware or
software varies according to design requirements imposed
on the particular application and the overall system. Those
skilled in the art may implement the described functions in
varying ways for each particular application, but such imple-
mentation should not be interpreted as causing a departure
from the scope of the present disclosure.

In a hardware implementation, processing units used to
perform the techniques may be implemented in one or more
ASICs, DSPs, digital signal processing devices (DSPDs),
programmable logic devices (PLDs), field programmable
gate arrays (FPGAs), processors, controllers, microcon-
trollers, microprocessors, electronic devices, other elec-
tronic units designed to perform the functions described in
the present disclosure, computer, or a combination thereof.

Accordingly, various example logic blocks, modules, and
circuits described in connection with the present disclosure
may be implemented or performed with general purpose
processors, DSPs, ASICs, FPGAs or other programmable
logic devices, discrete gate or transistor logic, discrete
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hardware components, or any combination of those designed
to perform the functions described herein. The general
purpose processor may be a microprocessor, but in the
alternative, the processor may be any related processor,
controller, microcontroller, or state machine. The processor
may also be implemented as a combination of computing
devices, for example, a DSP and microprocessor, a plurality
of microprocessors, one or more microprocessors associated
with a DSP core, or any other combination of the configu-
rations.

In the implementation using firmware and/or software, the
techniques may be implemented with instructions stored on
a computer-readable medium, such as random access
memory (RAM), read-only memory (ROM), non-volatile
random access memory (NVRAM), programmable read-
only memory (PROM), erasable programmable read-only
memory (EPROM), electrically erasable PROM (EE-
PROM), flash memory, compact disc (CD), magnetic or
optical data storage devices, and the like. The instructions
may be executable by one or more processors, and may
cause the processor(s) to perform certain aspects of the
functions described in the present disclosure.

Although the examples described above have been
described as utilizing aspects of the currently disclosed
subject matter in one or more standalone computer systems,
the present disclosure is not limited thereto, and may be
implemented in conjunction with any computing environ-
ment, such as a network or distributed computing environ-
ment. Furthermore, the aspects of the subject matter in the
present disclosure may be implemented in multiple process-
ing chips or devices, and storage may be similarly influenced
across a plurality of devices. Such devices may include PCs,
network servers, and portable devices.

Although the present disclosure has been described in
connection with some examples herein, various modifica-
tions and changes can be made without departing from the
scope of the present disclosure, which can be understood by
those skilled in the art to which the present disclosure
pertains. In addition, such modifications and changes should
be considered within the scope of the claims appended
herein.

The invention claimed is:
1. A method for automatically optimizing a program
based on reinforcement learning, the method comprising:

receiving, by a computing device, an input for a source
program, wherein the input includes a fixed parameter
and a variable parameter;

generating, based on the received input, the source pro-
gram;

converting the source program into an object program;

executing the converted object program;

measuring a performance of the executed converted
object program;

determining an input vector representing at least the
variable parameter and the measured performance;

inputting the input vector into a machine learning model;

outputting, based on the inputting, a variation of the
variable parameter; and

regenerating, based on the fixed parameter and the varia-
tion of the variable parameter, a modified source pro-
gram reflecting the variation of the variable parameter.

2. The method according to claim 1, wherein the regen-

erating comprises:

updating the variable parameter by applying the variation

of the variable parameter to the variable parameter; and
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outputting, by using the updated variable parameter and
the fixed parameter, the regenerated modified source
program.

3. The method according to claim 1, further comprising:

after the regenerating the modified source program, set-

ting the regenerated modified source program as the
source program, and reperforming the converting, the
executing, the measuring, the determining, the input-
ting, the outputting, and the regenerating.

4. The method according to claim 3, further comprising
training the machine learning model by repeating the setting
and the reperforming until a predetermined batch size is
reached.

5. The method according to claim 3, further comprising:

repeatedly performing, until a target performance is

reached, at least one of: the converting, the executing,
the measuring, the determining, the inputting, the out-
putting, or the regenerating; and

after the target performance is reached, determining a

regenerated source program corresponding to a best
performance to be an optimized source program.

6. The method according to claim 1, wherein the inputting
the input vector comprises inputting the variable parameter,
the measured performance, and the source program into the
machine learning model, and

wherein the input vector represents the variable param-

eter, the measured performance, and the source pro-
gram.

7. The method according to claim 6, wherein the machine
learning model comprises a deep learning model, and

the variation of the variable parameter comprise:

determining an output vector representing the variation of

the variable parameter through the deep learning
model.

8. The method according to claim 1, wherein the execut-
ing comprises:

measuring time taken to output a result value through the

object program while the object program is executed;
and

determining the measured time to be an index of the

performance.

9. The method according to claim 8, wherein the mea-
suring the time comprises:

inputting a test set for the object program; and

wherein the measured time is based on time taken for a

result value corresponding to the test set to be output
through the object program.

10. The method according to claim 1, wherein the variable
parameter comprises at least one of:

a parameter associated with a set of macro variable

declarations;

a parameter associated with a kernel definition; or

a parameter associated with a thread of a graphic pro-

cessing unit (GPU).

11. A non-transitory computer-readable recording
medium storing instructions that, when executed by one or
more processors, cause:

receiving an input for a source program, wherein the input

includes a fixed parameter and a variable parameter;
generating, based on the received input, the source pro-
gram;

converting the source program into an object program;

executing the converted object program;

measuring a performance of the executed converted

object program;

determining an input vector representing at least the

variable parameter and the measured performance;
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inputting the input vector into a machine learning model;

outputting, based on the inputting, a variation of the

variable parameter; and

regenerating, based on the fixed parameter and the varia-

tion of the variable parameter, a modified source pro-
gram reflecting the variation of the variable parameter.
12. The non-transitory computer-readable recording
medium according to claim 11, wherein the instructions,
when executed by the one or more processors, cause the
regenerating by:
updating the variable parameter by applying the variation
of the variable parameter to the variable parameter; and

outputting, by using the updated variable parameter and
the fixed parameter, the regenerated modified source
program.

13. The non-transitory computer-readable recording
medium according to claim 11, wherein the instructions,
when executed by the one or more processors, further cause:

after the regenerating the modified source program, set-

ting the regenerated modified source program as the
source program, and reperforming the converting, the
executing, the measuring, the determining, the input-
ting, the outputting, and the regenerating.

14. The non-transitory computer-readable recording
medium according to claim 13, wherein the instructions,
when executed by the one or more processors, further cause:

training the machine learning model by repeating the

setting and the reperforming until a predetermined
batch size is reached.

15. The non-transitory computer-readable recording
medium according to claim 13, wherein the instructions,
when executed by the one or more processors, further cause:

repeatedly performing, until a target performance is

reached, at least one of: the converting, the executing,
the measuring, the determining, the inputting, the out-
putting, or the regenerating; and

after the target performance is reached, determining a

regenerated source program corresponding to a best
performance to be an optimized source program.

16. The non-transitory computer-readable recording
medium according to claim 11, wherein the instructions,
when executed by the one or more processors, cause the
inputting the input vector by:
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inputting the variable parameter, the measured perfor-
mance, and the source program into the machine learn-
ing model, and

wherein the input vector represents the variable param-

eter, the measured performance, and the source pro-
gram.

17. The non-transitory computer-readable recording
medium according to claim 16, wherein the machine learn-
ing model comprises a deep learning model, and

wherein the instructions, when executed by the one or

more processors, cause the outputting the variation of
the variable parameter by:

determining an output vector representing the variation of

the variable parameter through the deep learning
model.

18. The non-transitory computer-readable recording
medium according to claim 11, wherein the instructions,
when executed by the one or more processors, cause the
executing by:

measuring time taken to output a result value through the

object program while the object program is executed;
and

determining the measured time to be an index of the

performance.

19. The non-transitory computer-readable recording
medium according to claim 18, wherein the instructions,
when executed by the one or more processors, cause the
measuring the time by:

inputting a test set for the object program; and

wherein the measured time is based on time taken for a

result value corresponding to the test set to be output
through the object program.

20. The non-transitory computer-readable recording
medium according to claim 11, wherein the variable param-
eter comprises at least one of:

a parameter associated with a set of macro variable

declarations;

a parameter associated with a kernel definition; or

a parameter associated with a thread of a graphic pro-

cessing unit (GPU).
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