US012032471B2

a2 United States Patent

Sidis et al.

US 12,032,471 B2
*Jul. 9, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

SYSTEM AND METHOD FOR GENERATING
MACHINE CODE FROM A MOCK
APPLICATION

Applicant: Bionic Stork Ltd., Tel Aviv (IL)

Inventors: Amir Sidis, Tel Aviv (IL); Saar Mano,
Givatayim (IL); Eyal Mamo, Tel Aviv
(IL)

Assignee: Bionic Stork Ltd., Tel Aviv (IL)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 232 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 17/804,059
Filed: May 25, 2022

Prior Publication Data

US 2023/0385179 Al Nov. 30, 2023

Int. CL.

GO6F 11/36 (2006.01)

GO6F 9/44 (2018.01)

GO6F 9/445 (2018.01)

U.S. CL

CPC ... GO6F 11/3636 (2013.01); GO6F 9/44589

(2013.01); GO6F 11/3624 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,549,144 B2* 6/2009 Jubran ... GOGF 9/44589
717/124
9,110,737 Bl 8/2015 Tibble et al.
9,323,644 B1* 4/2016 Haleccccouvevnnen GOGF 8/22
9,645,804 B2 5/2017 Tibble et al.
9,672,355 B2 6/2017 Titonis et al.
9,678,747 B2* 6/2017 Beckettcccceen. GOGF 8/447
10,133,870 B2 11/2018 Tripp
10,216,608 B1 2/2019 Arguelles
10,353,678 B1 7/2019 Wagner
10,482,262 B2 11/2019 Sharma et al.
10,831,898 B1* 11/2020 Wagner GOGF 9/547
2009/0293049 Al 112009 Gorelkina
2011/0078507 Al 3/2011 Choi et al.
2017/0046399 Al 2/2017 Sankaranarasimhan et al.
2019/0018657 Al* 12019 Landowski GOG6F 8/60
2019/0068640 Al* 2/2019 Araujo GOG6F 21/53
2020/0174909 Al* 6/2020 Craggs GOGF 11/3636
(Continued)

FOREIGN PATENT DOCUMENTS

EP 3506100 Al * 7/2019
Primary Examiner — Philip Wang
Assistant Examiner — Rongfa P Wang
(74) Attorney, Agent, or Firm — Womble Bond Dickinson
(US) LLP

(57) ABSTRACT

A system and method for generating a set of instructions for
static analysis, for application code utilizing an external
initialization engine. The method includes receiving a result
from a code hook, the code hook inserted into an application
code at an anchor point, the application code deployed in a
cloud computing environment, wherein the application code
requires an external initialization framework; and generating
a set of instructions based on the received result and the
anchor point of the application code, in response to emu-
lating execution of the application code.

19 Claims, 6 Drawing Sheets

.............. GO6F 11/28

(START

)

|

210

RECEIVE APPLICATION CODE FOR STATIC ‘

‘ ANALYSIS

|

200

S

$220

SIMULATING ENVIRONMENT FOR CODE

‘ EXECUTION

|

$230

EMULATING CODE IN SIMULATED ENVIRONMENT

l

$240

INITIALIZATION

‘ STORE ACTIONS PERFORMED BY CODE

|

5250

GENERATE ISA BASED ON STORED ACTIONS

|

5260

‘ PROVIDE ISA AND APPLICATION CODE FOR ‘

STATIC ANALYSIS

l

(END

)

US 12,032,471 B2
Page 2

(56)

U.S. PATENT DOCUMENTS

2020/0210153 Al*
2020/0394299 Al*
2022/0365866 Al*
2023/0385057 Al*
2023/0385089 Al*
2024/0004624 Al*

* cited by examiner

References Cited

7/2020 Alabes

12/2020 Urias ...
11/2022 Mishra ..
11/2023 Sidis
11/2023 Sidis ..

1/2024 Sidis

GO06Q 10/067

... GO6F 21/566
. HO4L 41/0853
. GO6F 11/3457
. GO6F 9/45508
.......... GOGF 8/433

US 12,032,471 B2

Sheet 1 of 6

Jul. 9, 2024

U.S. Patent

L "Old

HOLVINING
A Nouvzrviun
\ YIZATYNY DILYLS >
o \ Z51
ot ININNOMIANT XOIANYS
WILSAS ONIMOLINOW 13SSY
vl
m\: N\: m\:
1] i
LINI LINI LINI
21 —+3000 ddv 91—+ 13000 ddv p1|—35—] 300D ddV
WHOMLIN ANIHOVYIN d4dON NOILONNA
\ TYALYIA \ YINIVLNOD ' SSTTHINYTS
\ el il Ty
odt Ml ININNOMIANT ONILAdINOD dNOTO

oor.\

U.S. Patent Jul. 9, 2024 Sheet 2 of 6 US 12,032,471 B2

(START >

, $210

RECEIVE APPLICATION CODE FOR STATIC
ANALYSIS

200

! $220 «///

SIMULATING ENVIRONMENT FOR CODE
EXECUTION

Y S230

EMULATING CODE IN SIMULATED ENVIRONMENT

‘ S240
STORE ACTIONS PERFORMED BY CODE
INITIALIZATION
, S250

GENERATE ISA BASED ON STORED ACTIONS

, $260

PROVIDE ISA AND APPLICATION CODE FOR
STATIC ANALYSIS

(END)

FIG. 2

U.S. Patent Jul. 9, 2024 Sheet 3 of 6 US 12,032,471 B2

C START)

, $232

DETECT A CONNECTION REQUEST TO AN
EXTERNAL RESOURCE

S230

Y S234

EMULATE A SUCESSFUL CONNECTION
RESPONSE

YES S236
ANOTHER CONNECTION REQUEST?

NO

C END)

FIG. 3

U.S. Patent Jul. 9, 2024 Sheet 4 of 6 US 12,032,471 B2

(START >

| $242
RECEIVE APPLICATION CODE
$240
: S244
DETECT AN ANCHOR POINT
$246

INSERT AHOOK INTO CODE BASED ON
DETECTED ANCHOR POINT

5248
ANOTHER ANCHOR POINT?

NO

(END)

FIG. 4

U.S. Patent Jul. 9, 2024 Sheet 5 of 6 US 12,032,471 B2

(START)

S252

y

RECEIVE RESULT FROM CODE HOOK

S250

y S254

GENERATE ISA BASED ON ANCHOR POINT AND
RESULT FROM CODE HOOK

y S256

PROVIDE ISATO STATIC ANALYZER

(END)

FIG. 5

US 12,032,471 B2

Sheet 6 of 6

Jul. 9, 2024

U.S. Patent

0] 4%

JOV4H3LNI
MHOMLAN

9 OId

0€9

39Vd0LS

vl

0¢9

AHON3IN

059

| aunowd

019

ONISS3IO00dd

US 12,032,471 B2

1
SYSTEM AND METHOD FOR GENERATING
MACHINE CODE FROM A MOCK
APPLICATION

TECHNICAL FIELD

The present disclosure relates generally to techniques for
performing static analysis, and specifically to techniques for
performing static analysis on applications deployed using a
backend framework.

BACKGROUND

Application frameworks are a popular field of computer
software development, which provides a standardization in
structure of software development. Application frameworks
became popular in response to computer interfaces transi-
tioning to graphical user interfaces (GUIs). For example,
applications developed for Microsoft® Windows operating
system may use libraries which allow utilization of network
protocols, memory, and the like resources, in a manner
which is optimized for the operating system. One such
software framework is the NET framework.

Similarly, web frameworks are software frameworks
which support standardization of web applications, such as
Jakarta® Enterprise Edition, Microsoft® ASP.NET,
VMware® Spring®, Google® Guice, and the like. Certain
frameworks operate on a principal which is known in the art
as Inversion of Control (IoC). While in traditional software
a custom code calls in reusable libraries from a framework,
an JoC framework calls into the custom code.

Dependency injection is a technique utilized by IoC
frameworks. This refers to supplying a client software object
other objects (called service objects) that the client software
object depends on. The client therefore does not generate or
lookup the service, but rather is provided it. This allows to
use a thinner client, which does not need the information of
how to build a service, since it is injected the service as
needed. Spring® Boot for example allows building stand-
alone applications which integrate proprietary libraries and
third party libraries, which means a user may author custom
code which is deployed into a cloud computing environment
(such as Google® Cloud Platform (GCP)), and upon run
time, the application is loaded through the Spring® Frame-
work which performs all the required connections, injec-
tions, and the like, required by the custom code. For
example, a custom code may indicate a connection to a
database, and the IoC framework connects the object calling
the database, to the database, at runtime.

Applications deployed using IoC frameworks pose a
challenge for static analysis techniques. By definition, the
code which utilizes an IoC framework is not complete in the
sense that all parameters are contained within the code. This
code incompleteness is prevalent in other code deployments
as well, where as part of the code initialization process calls
are made to external resources such as databases, libraries,
configuration files, environment variables, and the like.
There are potentially many calls and connections, for
example, which are only available at runtime, and are
therefore not exposed to static analysis techniques.

It would therefore be advantageous to provide a solution
that would overcome the challenges noted above.

SUMMARY

A summary of several example embodiments of the
disclosure follows. This summary is provided for the con-

10

15

20

25

30

35

40

45

50

55

60

65

2

venience of the reader to provide a basic understanding of
such embodiments and does not wholly define the breadth of
the disclosure. This summary is not an extensive overview
of all contemplated embodiments, and is intended to neither
identify key or critical elements of all embodiments nor to
delineate the scope of any or all aspects. Its sole purpose is
to present some concepts of one or more embodiments in a
simplified form as a prelude to the more detailed description
that is presented later. For convenience, the term “some
embodiments” or “certain embodiments” may be used
herein to refer to a single embodiment or multiple embodi-
ments of the disclosure.

Certain embodiments disclosed herein include a method
for generating a set of instructions for static analysis. The
method comprises: receiving a result from a code hook, the
code hook inserted into an application code at an anchor
point, the application code deployed in a cloud computing
environment, wherein the application code requires an exter-
nal initialization framework; generating a set of instructions
based on the received result and the anchor point of the
application code, in response to emulating execution of the
application code.

Certain embodiments disclosed herein also include a
non-transitory computer readable medium having stored
thereon causing a processing circuitry to execute a process,
the process comprising: receiving a result from a code hook,
the code hook inserted into an application code at an anchor
point, the application code deployed in a cloud computing
environment, wherein the application code requires an exter-
nal initialization framework; generating a set of instructions
based on the received result and the anchor point of the
application code, in response to emulating execution of the
application code.

Certain embodiments disclosed herein also include a
system for generating a set of instructions for static analysis.
The system comprises: a processing circuitry; and a
memory, the memory containing instructions that, when
executed by the processing circuitry, configure the system
to: receiving a result from a code hook, the code hook
inserted into an application code at an anchor point, the
application code deployed in a cloud computing environ-
ment, wherein the application code requires an external
initialization framework; generating a set of instructions
based on the received result and the anchor point of the
application code, in response to emulating execution of the
application code.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter disclosed herein is particularly pointed
out and distinctly claimed in the claims at the conclusion of
the specification. The foregoing and other objects, features,
and advantages of the disclosed embodiments will be appar-
ent from the following detailed description taken in con-
junction with the accompanying drawings.

FIG. 1 is a schematic illustration of an asset monitoring
environment implemented in accordance with an embodi-
ment.

FIG. 2 is a flowchart of a method for performing static
analysis on application code having external initialization.

FIG. 3 is a flowchart of a method for emulating applica-
tion code in a simulated environment, implemented accord-
ing to an embodiment.

FIG. 4 is a flowchart of a method for detecting and storing
code initialization actions, implemented in accordance with
an embodiment.

US 12,032,471 B2

3

FIG. 5 is a flowchart of a method for providing a
generated set of instructions to a static analyzer, imple-
mented in accordance with an embodiment.

FIG. 6 is a schematic diagram of an initialization emula-
tor, according to an embodiment.

DETAILED DESCRIPTION

It is important to note that the embodiments disclosed
herein are only examples of the many advantageous uses of
the innovative teachings herein. In general, statements made
in the specification of the present application do not neces-
sarily limit any of the various claimed embodiments. More-
over, some statements may apply to some inventive features
but not to others. In general, unless otherwise indicated,
singular elements may be in plural and vice versa with no
loss of generality. In the drawings, like numerals refer to like
parts through several views.

The various disclosed embodiments include a method and
system for generating a set of instructions from emulating an
application code having an external initialization, for per-
forming static analysis on the application code. An external
initialization engine may be, for example, an inversion of
control (IoC) engine. The external initialization engine is
allows application code to perform various calls and con-
nections to other resources, without specifically declaring
such in the application code. As such, static analysis tech-
niques fail to analyze such application code since various
calls, functions, and the like, cannot be traced due to the
external initialization which does not occur in the applica-
tion code. The technique disclosed provides a method for
generating a set of instructions based on emulating the
application code, and specifically emulating the external
initialization. A code hook is inserted into the application
code at detected anchor points, which is used to record
actions performed by the executed application code. The set
of instructions may include machine code, such as bytecode,
which is generated based on recorded actions, and together
with the application code is provided to a static analyzer.
Static analysis is possible using the results of the simulated
external initialization and the application code together, as
traceability can be achieved.

FIG. 1 is an example of a schematic illustration of an asset
monitoring environment 100 implemented in accordance
with an embodiment. A computing environment 110
includes a plurality of workloads. In an embodiment the
computing environment may be a cloud computing envi-
ronment. The computing environment 110 may be imple-
mented, for example, as a virtual private cloud (VPC) over
a cloud computing infrastructure. Cloud computing infra-
structure may be, for example, Amazon® Web Services
(AWS), Google® Cloud Platform (GCP), Microsoft®
Azure, Oracle® Cloud Infrastructure (OCI), and the like. In
certain embodiments, the cloud computing environment 110
may include a plurality of VPCs, each implemented on a
cloud computing infrastructure. While this example dis-
cusses a cloud computing environment, the teachings herein
may equally apply to other computing environments.

The cloud computing environment 110 includes a plural-
ity of workloads. A workload may be a serverless function,
such as serverless function 111, a container engine running
container nodes, such as container node 112, and a hyper-
visor running a virtual machine (VM), such as VM 113. A
serverless function may be deployed utilizing Amazon®
Lambda. A container node may be deployed on a container
engine such as Docker®, Kubernetes®, and the like. A VM
may deployed on a hypervisor such as Oracle® Virtual-

40

45

55

4

Box®. In certain embodiments the cloud computing envi-
ronment 110 may further include a code repository (not
shown). A code repository is a system for managing code
versions, also known as version control software, written by
multiple collaborators (users). A version control software
may be, for example, Git™, AWS CodeCommit™, and the
like.

Certain workloads in the cloud computing environment
110 include computer code, which when executed by a
processing circuitry perform a predetermined action in the
cloud computing environment 110. For example, the VM
113 includes an application code 118. In an embodiment,
application code 118 may be implemented utilizing, for
example Java™, JavaScript™, and the like. Application
code, may be, for example, source code, object code, byte-
code, and the like.

When executed, for example by a processing circuitry,
application code begins a process of initialization. In an
embodiment, initialization is performed by executing ini-
tialization code (init), such as init 119, which is the initial-
ization code of application code 118. Initialization may
include, for example, assigning an initial value to a data
object, assigning an initial value to a variable, calling a
library, and the like. In certain embodiments, a library
includes any of one of: configuration data, preprogrammed
code, a subroutine, a class, a system call, and the like. In
some embodiments, the init 119 includes dependency injec-
tion code, for example as used by an inversion of control
(IoC) framework.

The cloud computing environment 110 is connected to a
network 120. The network 120 may be, but is not limited to,
a wireless, cellular or wired network, a local area network
(LAN), a wide area network (WAN), a metro area network
(MAN), the Internet, the worldwide web (WWW), similar
networks, and any combination thereof. In an embodiment,
the network 120 provides connectivity between an asset
monitoring system (AMS) 140 and the cloud computing
environment 110. In certain embodiments, the AMS 140
may be deployed on a cloud computing infrastructure, for
example the same cloud computing infrastructure of the
cloud computing environment 110.

The AMS 140 is configured to receive data from compute
environments, analyzing the data, and discovering applica-
tions and communications between such applications. In an
embodiment the AMS 140 may cause a collector (also
known as a collection application, not shown) to install for
a predefined duration on a workload. The collector is con-
figured to collect application data. Application data may be
collected from multiple sources, utilized to execute,
develop, or otherwise deploy in the compute environment.
The collected data may include, but is not limited to, the
binary code of each application, software libraries, error
logs, script code, configuration files (environment variables,
command line, etc.), credentials, and the like. Binary code,
or any code, may be collected by collectors executed on a
server hosting an application. For example the VM 113 may
be a server hosting an application having application code
118. The data is collected per each application and may
include binary code and configurations. The collection of
such data can be triggered at predefined time intervals, or
upon receiving an event from a software deployment tool
(e.g., a CI/CD tool). In an embodiment, the duration of a
collector’s presence on a workload may be determined by a
fixed amount of time, a predefined set of actions, and any
combination thereof.

The AMS 140 includes a sandbox environment 144. A
sandbox environment 144 is an isolated computing environ-

US 12,032,471 B2

5

ment in which software code can be deployed, for example
for testing purposes. A sandbox environment may be imple-
mented, for example, as a virtual machine, a container node
in a container, and the like. The sandbox environment 144
includes an initialization emulator 142 (also referred to as
emulator 142), discussed in more detail below. In an
embodiment the initialization emulator 142 is configured to
receive application code, execute the application code, and
emulate initialization conditions as required by an init
section of the application code.

The AMS 140 further includes a static analyzer 146. In an
embodiment the static analyzer 146 is configured to receive
a set of instructions, and perform static analysis on the set of
instructions. A set of instructions may be generated by the
emulator 142. In certain embodiments the static analyzer
146 may receive the set of instructions, and other data
collected from the computing environment 110, in order to
perform static analysis of the set of instructions. For
example, the static analyzer 146 may receive runtime data
generated by an application, as well as a set of instructions
generated based on the application’s code.

FIG. 2 is an example flowchart 200 of a method for
performing static analysis on application code having exter-
nal initialization. In an embodiment, external initialization
refers to an initialization (init) part of an application code,
which when executed by a processing circuitry configure a
system to request resources which are external to the appli-
cation code. For example, auto configuration of applications,
dependency management software, and the like, provide
external initialization. For example, Spring® Boot is a
framework which provides external initialization, for
example by performing dependency injection.

This allows an application to be coded in a way where
services which are required by the application do not need
to be hard coded into the application code, but rather the
framework (also called an injector) supplies these services.
For example, the injector may connect to an existing service,
or construct a service on-demand for the application. This is
advantageous, for example, when coding microservice
applications, as the time required to deploy an application is
reduced, due to benefits provided by the injector. However,
when performing static analysis of such code a problem
arises as dependencies cannot be traced, due to dependencies
not existing in the code until it is actually initialized.

At S210, application code is received. In an embodiment,
application code may be received from a collector applica-
tion installed on a workload. The collector application may
be installed by an asset monitoring system (ASM), such as
ASM 140 of FIG. 1 above. In an embodiment, application
code includes machine code, bytecode, interpreted script
language, and the like. The received application code is code
which includes external initialization, for example, as
explained above. The external initialization portion of the
application code is also referred to throughout as the init.

At S220, an environment is simulated for code execution.
In an embodiment, simulating an environment may include
initializing a sandbox environment. For example, a sandbox
environment may be a virtual workload, such as a virtual
machine, a container node, and the like. The simulated
environment is a computing environment. In certain
embodiments, the simulated environment includes an oper-
ating system (OS), a library, a binary file, and the like. An
OS may be, for example, Microsoft® Windows®, Linux®,
and the like. A library may include configuration data,
preprogrammed code, a subroutine, a class, a system call,
and the like. A binary file may be a computer readable file,
which is not a text file.

10

15

20

25

30

35

40

45

50

55

60

65

6

At S230, the received application code is emulated in the
simulated environment. In an embodiment emulating the
received application code in the simulated environment
includes execution of the application code. The application
code includes an init portion, for receiving services from an
injector. In certain embodiments, S230 further includes
emulating an injector. In an embodiment, emulating an
injector includes generating a response to a call from the
application code. For example, the ‘init’ may call a database
(i.e., request a connection to a database).

The emulator may generate a response back to the appli-
cation code to indicate that the database connection was
successful. The response may include, for example, a name,
a network address, and the like identifiers, for the database.
Generating a response to such calls for external resources
allows the application to initialize completely and enter a
state where the application is operative. If an attempt is
made to initialize the application without responses to such
calls from the init, then the application will likely fail to
initialize, which impedes the ability to perform static analy-
sis on the application. In certain embodiments, emulating the
received application code may further include monitoring
and storing actions performed by the application when
initializing. An example of a method for emulating appli-
cation code in a simulated environment is discussed in more
detail in FIG. 3 below.

At S240, a code initialization action is stored. In some
embodiments, the emulator may record and store actions
performed by code initialization. A code initialization action
may be, for example, a response generated based on a
request from the application code to connect to an external
service. For example, a code initialization action may be to
generate a response that connection to a database was
successful, the database having a network address which is
provided back to the application code. An example of a
method for detecting and storing code initialization actions
is discussed in more detail in FIG. 4 below.

At S250, a set of instructions is generated. In an embodi-
ment, the set of instructions is generated according to the
application code, the stored initialization action(s), and a
combination thereof. In some embodiments, the set of
instructions includes machine code, bytecode, or interpreted
script language, and the like. For example, Java® bytecode
can be generated according to the application code and at
least one stored initialization action. In an embodiment, the
generated set of instructions includes an instruction which
describes the initialization portion of an application code.

At S260, the generated set of instructions and application
code are provided to a static analyzer. In an embodiment, the
static analyzer 146 of FIG. 1, is provided with the generated
set of instructions and application code. In an embodiment,
the static analyzer is configured to perform static analysis for
application discovery. A method for performing application
discovery utilizing static analysis is discussed in more detail
in U.S. patent application Ser. No. 17/655,653, the entire
contents of which are incorporated by reference herein. An
example of a method for providing a generated set of
instructions to a static analyzer is discussed in more detail in
FIG. 5 below.

FIG. 3 is an example flowchart S230 of a method for
emulating application code in a simulated environment,
implemented according to an embodiment.

At S232, a connection request is detected. In an embodi-
ment, the connection request is detected in an initialization
portion of an application code. A connection request may
include a call to an external resource. In some embodiments,
the connection request includes a request to connect to an

US 12,032,471 B2

7

external resource. The external resource may be, for
example, a database, a software library, a software class, and
the like.

At S234, a connection response is emulated. In an
embodiment, the connection response results in successful
execution of the initialization code portion which includes
therein the connection request. The connection response
may be, for example: injecting an emulated value, injecting
an emulated object, and the like. In some embodiments, a
second emulated value (or emulated object, as the case may
be) is injected in response to detecting that the application
code was not initialized.

At S236, a check is performed to determine if another
connection request requires a response. In an embodiment,
the check includes detecting another connection request. In
some embodiments, a plurality of connection requests are
detected. In an embodiment, if additional connection
requests exist for which a connection response has not been
emulated execution continues at S232, otherwise execution
terminates.

FIG. 4 is an example flowchart S240 of a method for
detecting and storing code initialization actions, imple-
mented in accordance with an embodiment. In an embodi-
ment, storing code initialization actions may also be referred
to as recording initialization of an application. In certain
embodiments, the method may be performed by an emulator
of an asset monitoring system.

At 8242, application code is received. The application
code includes an initialization code portion. In an embodi-
ment application code may be received from a collector
application installed on a workload. The collector applica-
tion may be installed by an asset monitoring system (ASM),
such as ASM 140 of FIG. 1 above. In an embodiment,
application code includes machine code, bytecode, or inter-
preted script language, and the like. The received application
code is code which includes external initialization, for
example, as explained above. The external initialization
portion of the application code is also referred to throughout
as the init.

At S244, an anchor point is detected. In certain embodi-
ments, detecting an anchor point may be achieved by
providing the application code to a static analyzer, such as
the static analyzer 146 of FIG. 1, and receiving from the
static analyzer the detected anchor point. In an embodiment
detecting an anchor point includes detecting a plurality of
objects and relationships in the application code. For
example, a plurality of code objects may be detected in the
application code. A data object may, for example, a function.
A first function may call a second function, for example, a
function from a library. Thus, the first function and the
second function share a ‘call’ relationship, which in this
example is directional (i.e., the first function calls the second
function, but the second function does not call the first
function).

In an embodiment, an anchor point includes an indicator
of a function name (such as parentheses), tags (such as in
hypertext markup language—HTML), and the like. Anchor
points may be detected according to a set of heuristics,
which are used to determine for example which code objects
are of interest. For example, an anchor point may be a
function that calls a database, a REST (REpresentational
State Transfer) API (application programming interface)
call, service request, and the like. These code objects are of
interest as they indicate how an application communicates
and with what other resources and principals it communi-
cates with.

10

15

20

25

30

35

40

45

50

55

60

65

8

At 8246, a hook is inserted into the application code. In
an embodiment, the hook is inserted based on the detected
anchor point. A hook is an instruction inserted into the
application code in order to send information about a state
relating to the application code to another software, such as
the emulator. For example, the hook may cause the appli-
cation to store a state of the application in a predetermined
location. The emulator may record such information. In an
embodiment, information received from the inserted hook
includes any of: a value, a function name, a uniform resource
locator (URL), a library, and the like.

At S248, a check is performed to determine if another
anchor point is to be detected. If ‘yes’, execution continues
at S244. Otherwise, execution may terminate. In an embodi-
ment, a plurality of anchor points may be detected, and a list
of anchor points is generated. In such embodiments, the
check may be used to advance to the next anchor point,
thereby detecting the next anchor point in the application
code, inserting a hook based on the next anchor point, and
O on.

FIG. 5 is an example flowchart S250 of a method for
providing a generated set of instructions to a static analyzer,
implemented in accordance with an embodiment. In an
embodiment, the static analyzer receives the generated set of
instructions and application code, and performs static analy-
sis on the set of instructions and application code. The
application code, together with the generated set of instruc-
tions provide the static analyzer with a complete state
machine for the application, meaning that all calls, for
example, can be resolved. In an embodiment resolving code
includes tracing code objects through the application code.
In certain embodiments, resolving a call includes determin-
ing an exact value, function, and the like, the application is
calling.

At 8252, a result is received from a code hook. A method
of inserting code hooks into the application code is dis-
cussed in more detail with regards to FIG. 4 above. In certain
embodiments, the result may include any of: a value, a
function name, a URL, a library, and the like. In some
embodiments, results from the code hook may be stored in
a memory or storage of the emulator, and read from there as
part of the receiving step.

At 8254, an set of instructions is generated. In an embodi-
ment, the set of instructions includes at least a computer
readable code, which is generated based on at least one
received result, and corresponding anchor point. The corre-
sponding anchor point is the anchor point based on which
the code hook, from which the result was received, was
inserted in the application code. In an embodiment, the set
of instructions may be generated based on: the application
code, a stored initialization action (i.e., result received from
a code hook), and a combination thereof. In some embodi-
ments, the set of instructions is: machine code, bytecode,
interpreted script language, and the like. For example, Java®
bytecode may be generated based on the application code
and at least one stored initialization action.

At 5256, the generated set of instructions is provided to
a static analyzer. In an embodiment, the generated set of
instructions may be stored in a memory or storage, from
which a static analyzer, such as the static analyzer 146 of
FIG. 1 above, is configured to read the stored set of
instructions. In an embodiment, the generated set of instruc-
tions is different from the application code. For example,
since the set of instructions is generated based on runtime
emulation of executing the application code, the set of

US 12,032,471 B2

9

instructions includes data and code objects which may not
be present in the application code, for example due to
external initializations.

FIG. 6 is an example schematic diagram of an initializa-
tion emulator (emulator) 142, according to an embodiment.
The emulator 142 includes a processing circuitry 610
coupled to a memory 620, a storage 630, and a network
interface 640. In an embodiment, the components of the
emulator 142 may be communicatively connected via a bus
650.

The processing circuitry 610 may be realized as one or
more hardware logic components and circuits. For example,
and without limitation, illustrative types of hardware logic
components that can be used include field programmable
gate arrays (FPGAs), application-specific integrated circuits
(ASICs), Application-specific standard products (ASSPs),
system-on-a-chip systems (SOCs), graphics processing units
(GPUs), tensor processing units (TPUs), general-purpose
microprocessors, microcontrollers, digital signal processors
(DSPs), and the like, or any other hardware logic compo-
nents that can perform calculations or other manipulations of
information.

The memory 620 may be volatile (e.g., random access
memory, etc.), non-volatile (e.g., read only memory, flash
memory, etc.), or a combination thereof.

In one configuration, software for implementing one or
more embodiments disclosed herein may be stored in the
storage 630. In another configuration, the memory 620 is
configured to store such software. Software shall be con-
strued broadly to mean any type of instructions, whether
referred to as software, firmware, middleware, microcode,
hardware description language, or otherwise. Instructions
may include code (e.g., in source code format, binary code
format, executable code format, or any other suitable format
of code). The instructions, when executed by the processing
circuitry 610, cause the processing circuitry 610 to perform
the various processes described herein.

The storage 630 may be magnetic storage, optical storage,
and the like, and may be realized, for example, as flash
memory or other memory technology, or any other medium
which can be used to store the desired information.

The network interface 640 allows the emulator 142 to
communicate with, for example, the static analyzer 146 of
FIG. 1, a collector from which application code is received,
and the like.

It should be understood that the embodiments described
herein are not limited to the specific architecture illustrated
in FIG. 6, and other architectures may be equally used
without departing from the scope of the disclosed embodi-
ments. In some embodiments, the asset monitoring system
140, and the static analyzer 146 may be implemented using
an architecture such as the one illustrated in FIG. 6, or other
equal architectures.

An example application code may be:

// Main.java
public static class Main {
public static void main() {
Spring.init();

The application code includes a call to Spring® Boot,
which is an external initialization framework. When
executed, for example in a production cloud computing

10

20

40

45

55

60

65

10

environment, the initialization framework scans all classes,
and initializes code having an “@Component” annotation.
Example classes may be:

// ConnectionManager.java
@Component
public class ConnectionManager {
@Value(“connectionmanager.url”)
private String url;
public String getUrl() {
return this.url;

}

// DataQueryService.java
@Component
public class DataQueryService {
@Autowire
private ConnectionManager connectionManager;
@PostConstruct
public void run() {
RestUtil.post(connectionManager.getUrl(), “test-
data™);
¥
¥

When ConnectionManager is initialized, connectionman-
ager.url is injected with the value from an “application.prop-
erties” configuration file, according to the @Value annota-
tion. The “application.properties” configuration file may be,
for example:

//application.properties
connectionmanager.url=https://google.com/api/vl

In an embodiment, the “application.properties” configu-
ration file may be simulated, and generated with a predefined
URL (or other, appropriate value). When DataQueryService
is initialized, DataQueryService.connectionManager is
injected with the previously generated object (i.e., Connec-
tionManager) which is maintained by the initialization
framework.

Once the initialization framework has resolved all of the
dependencies, the framework searches for @PostConstruct
annotated methods in order to execute the application code.
In this example, DataQueryService::run is executed.

The application code may be inserted with a code hook to
record actions performed by the application and initializa-
tion framework when objects are initialized. This code may
be, for example:

// ByteCodeEmulationOutput.java
public class EmulationResult {
public static void bytecode() {
ConnectionManager x = new ConnectionManager();
x.url = “https://google.com/api/v1”;
DataQueryService y = new DataQueryService();
y.connectionManager = x;

The emulator may prevent DataQueryService::run from
being executed. The code hook execution further results in
bytecode being generated.

EmulationResult::bytecode is generated, for example by
the emulator. The bytecode is provided to a static analyzer
when “RestUtil.post” (in DataQueryService::run) is traced
(i.e., on which static analysis is performed) for its first
argument (i.e., URL resolving). This allows the static ana-
lyzer to trace through DataQueryService.connectionMan-

US 12,032,471 B2

11

ager and ConnectionManager.url (via EmulationResult:
bytecode) which are otherwise unassigned when observed
statically.

The various embodiments disclosed herein can be imple-
mented as hardware, firmware, software, or any combination
thereof. Moreover, the software is preferably implemented
as an application program tangibly embodied on a program
storage unit or computer readable medium consisting of
parts, or of certain devices and/or a combination of devices.
The application program may be uploaded to, and executed
by, a machine comprising any suitable architecture. Prefer-
ably, the machine is implemented on a computer platform
having hardware such as one or more central processing
units (“CPUs”), a memory, and input/output interfaces. The
computer platform may also include an operating system
and microinstruction code. The various processes and func-
tions described herein may be either part of the microin-
struction code or part of the application program, or any
combination thereof, which may be executed by a CPU,
whether or not such a computer or processor is explicitly
shown. In addition, various other peripheral units may be
connected to the computer platform such as an additional
data storage unit and a printing unit. Furthermore, a non-
transitory computer readable medium is any computer read-
able medium except for a transitory propagating signal.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in
understanding the principles of the disclosed embodiment
and the concepts contributed by the inventor to furthering
the art, and are to be construed as being without limitation
to such specifically recited examples and conditions. More-
over, all statements herein reciting principles, aspects, and
embodiments of the disclosed embodiments, as well as
specific examples thereof, are intended to encompass both
structural and functional equivalents thereof. Additionally, it
is intended that such equivalents include both currently
known equivalents as well as equivalents developed in the
future, i.e., any elements developed that perform the same
function, regardless of structure.

It should be understood that any reference to an element
herein using a designation such as “first,” “second,” and so
forth does not generally limit the quantity or order of those
elements. Rather, these designations are generally used
herein as a convenient method of distinguishing between
two or more elements or instances of an element. Thus, a
reference to first and second elements does not mean that
only two elements may be employed there or that the first
element must precede the second element in some manner.
Also, unless stated otherwise, a set of elements comprises
one or more elements.

As used herein, the phrase “at least one of” followed by
a listing of items means that any of the listed items can be
utilized individually, or any combination of two or more of
the listed items can be utilized. For example, if a system is
described as including “at least one of A, B, and C,” the
system can include A alone; B alone; C alone; 2A; 2B; 2C;
3A; A and B in combination; B and C in combination; A and
C in combination; A, B, and C in combination; 2A and C in
combination; A, 3B, and 2C in combination; and the like.

What is claimed is:

1. A method of generating a set of instructions for static
analysis, comprising:

receiving a result from a code hook, the code hook

inserted into an application code at an anchor point, the
application code deployed in a cloud computing envi-
ronment, wherein the application code requires an
external initialization framework; and

25

40

45

50

55

65

12

generating a set of instructions based on the result and the
anchor point of the application code, in response to
emulating execution of the application code on an
initialization emulator corresponding to the external
initialization framework.

2. The method of claim 1, further comprising:

tracing a code object through the application code, the

code object associated with the anchor point.

3. The method of claim 1, further comprising:

determining any one of a value that is called using the

external initialization framework or a function that is
called using the external initialization framework.

4. The method of claim 1, wherein the result from the code
hook is any one of a value, a function name, a uniform
resource locator (URL), or a software library.

5. The method of claim 1, further comprising:

storing the result from the code hook.

6. The method of claim 1, wherein the set of instructions
includes at least a computer readable code, which is gener-
ated based on at least one received result and a correspond-
ing anchor point.

7. The method of claim 1, wherein the set of instructions
includes any one of machine code, bytecode, source code, or
interpreted script language.

8. The method of claim 1, wherein the set of instructions
is different f rom the application code.

9. The method of claim 8, wherein the set of instructions
is based on a runtime emulation of executing the application
code.

10. A non-transitory computer readable medium having
instructions stored thereon which, when executed by a
processing circuitry, cause the processing circuitry to:

receive a result from a code hook, the code hook inserted

into an application code at an anchor point, the appli-
cation code deployed in a cloud computing environ-
ment, wherein the application code requires an external
initialization framework; and

generate a set of instructions based on the result and the

anchor point of the application code, in response to
emulating execution of the application code on an
initialization emulator corresponding to the external
initialization framework.

11. A system comprising:

a processing circuitry; and

a memory, the memory containing instructions that, when

executed by the processing circuitry, cause the process-

ing circuitry to:

receive a result from a code hook, the code hook
inserted into an application code at an anchor point,
the application code deployed in a cloud computing
environment, wherein the application code requires
an external initialization framework; and

generate a set of instructions based on the result and the
anchor point of the application code, in response to
emulating execution of the application code on an
initialization emulator corresponding to the external
initialization framework.

12. The system of claim 11, the memory containing
further instructions that, when executed by the processing
circuitry, further cause the processing circuitry to:

trace a code object through the application code, the code

object associated with the anchor point.

13. The system of claim 11, the memory containing
further instructions that, when executed by the processing
circuitry, further cause the processing circuitry to:

US 12,032,471 B2

13

determine any one of a value that is called using the
external initialization framework or a function that is
called using the external initialization framework.

14. The system of claim 11, wherein the result from the
code hook is any one of a value, a function name, a uniform
resource locator (URL), or a software library.

15. The system of claim 11, the memory containing
further instructions that, when executed by the processing
circuitry, further cause the processing circuitry to:

store the result from the code hook.

16. The system of claim 11, the memory containing
further instructions that, when executed by the processing
circuitry, further cause the processing circuitry to:

generate the set of instructions based on at least one

received result and a corresponding anchor point,
wherein the set of instructions includes at least a
computer readable code.

17. The system of claim 11, wherein the set of instructions
includes any one of machine code, bytecode, source code, or
interpreted script language.

18. The system of claim 11, wherein the set of instructions
is different from the application code.

19. The system of claim 18, wherein the set of instructions
is based on a runtime emulation of executing the application
code.

10

15

20

25

14

