
US 20210157554A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0157554 A1

MINASYAN et al . (43) Pub . Date : May 27 , 2021

(54) GENERATING HIGHER - LEVEL SEMANTICS
DATA FOR DEVELOPMENT OF VISUAL
CONTENT

(71) Applicant : TENWEB , INC . , Newark , DE (US)

GO6F 9451 (2006.01)
GO6F 8/20 (2006.01)
GOON 20/00 (2006.01)
GOON 700 (2006.01)

(52) U.S. CI .
CPC G06F 8/38 (2013.01) ; G06F 16/285

(2019.01) ; G06N 77005 (2013.01) ; G06F 8/24
(2013.01) ; G06N 20/00 (2019.01) ; G06F

9/451 (2018.02)

(72) Inventors : ARTAVAZD MINASYAN , YEREVAN
(AM) ; TIGRAN NAZARYAN ,
YEREVAN (AM) ; AVETIK
ARAKELYAN , YEREVAN (AM) ;
SERGEY POGHOSYAN , YEREVAN
(AM) ; MHER VEZIRYAN ,
YEREVAN (AM) ; HAYK
POGHOSYAN , YEREVAN (AM) (57) ABSTRACT

(73) Assignee : TENWEB , INC . , Shanghai (CN)
(21) Appl . No .: 17 / 100,831

(22) Filed : Nov. 21 , 2020

Related U.S. Application Data
(60) Provisional application No. 62 / 938,954 , filed on Nov.

22 , 2019 .

Techniques are described for generating HLSD for a textual
format source code , which , when rendered , causes a display
of visual content . The rendering of the source code generates
a tree hierarchy of visual source elements , which logically is
possible to map to any graph tree . In an embodiment , visual
source elements of the source code are classified to higher
level semantic data (HLSD) labels based on their property (s)
and / or the property (s) of neighbor visual source element (s)
in the tree hierarchy (context) . The HLSD labels indicate the
type of HLSD widget mapped to the visual source elements .
Techniques further include determining features and a layout
arrangement for HLSD widgets and generating a template
thereof for the visual content .

Publication Classification

(51) Int . Cl .
G06F 8/38 (2006.01)
G06F 16/28 (2006.01)

Retrieve visual source
elements

110

Retrieve media items
170

Perform pre - processing
on visual source elements

120 Generate HLSD
template

180

Characterize visual
source elements

125 Generate HLSD format
output
160

Classify visual source
elements

130
Normalize HLSD
widget styling

155

Perform feature extraction
from classified visual source

elements
140

Generate layout
150

Patent Application Publication May 27 , 2021 Sheet 1 of 9 US 2021/0157554 A1

FIG . 1

Retrieve visual source
elements

110

Retrieve media items
170

Perform pre - processing
on visual source elements

120 Generate HLSD
template

180

Characterize visual
source elements

125 Generate HLSD format
output
160

Classify visual source
elements

130
Normalize HLSD
widget styling

155

Perform feature extraction
from classified visual source

elements
140

Generate layout
150

Patent Application Publication May 27 , 2021 Sheet 2 of 9 US 2021/0157554 A1

FIG . 2
210 220

225

WS

245

230 240

Patent Application Publication May 27 , 2021 Sheet 3 of 9 US 2021/0157554 A1

FIG . 3
Identify web sites to for

training ML
301

Download web pages from
web sites

302

Simplify tree of nodes for web
pages
303

Classify simplified nodes with
HLSD labels

304

Store HLSD labels
305

Patent Application Publication May 27 , 2021 Sheet 4 of 9 US 2021/0157554 A1

FIG . 4
Retrieve simplified element

arrangement
401

Filter simplified elements by
feature vector restrictions and / or

HLSD classification
402

Perform data augmentation for ML
training
403

Scale and encode
404

Proceed to single node classifier
training (DNN , SVM , RF)

405

Perform tree binarization
406

Proceed to RNN training
407

Patent Application Publication May 27 , 2021 Sheet 5 of 9 US 2021/0157554 A1

FIG . 5

Select representative visual
source element from simplified

source code tree
510

Identify HLSD widget for
visual source element

520

Generate geometry based
layout
530

Match layout with
simplified source layout

560

No Merge ?
540

Simplify HLSD layout
570

Yes

Merge row / column
545

FIG . 6A

Patent Application Publication

Logo 610

Menu Item 620A

Menu Item 620B

Menu Item 620C

Button 630

Menu 600

May 27 , 2021 Sheet 6 of 9

FIG . 6B

Logo 610

Menu Item 620A

Menu Item 620B

Menu Item 620C

Button 630

Menu 660

US 2021/0157554 A1

Patent Application Publication May 27 , 2021 Sheet 7 of 9 US 2021/0157554 A1

???

FIG . 7 Vid " : " 68OlHNN2 settings " , (" layout " :
MEU Othbackground colored 146 ,
1499background background Classic " padding ' : { ' unit : * px ; " top " :
100 % , * night 0.0 bottom : 116,22 left : 0,99 $ linked " :
false } i * elements Wid , pavyze5 settings ' : (_column Size :
106 , inline_size " : 299 , " content position " : Stop background_color " .
MAN SInnery Caseeltype " COJUMA elements " : [{ " id " :
MAREGESK " // eltype " // widgety settings " : { " title " :
" Hello11 , " header size " : " 3 " , " title_color " : rgb (255 , 255 , 255) size " :
larger aligncenter " typography typography :
custom " , " typography font size " : { " unit " : " px " size " : 8 , " sizes " :
WX " typography font family : " RUBIK'typography text transform " :
" none " typography_font_style : normal typography text_decoration :
" none " , " typography font weight " : 99909 typography line height " :
(" unit " : " em " Size " 10 , " sizes " 03. " background Background "
classic background colon " Treba 9 , , 0) elements " :

11 WidgetType " : " heading (918xY?R " , " eltype 3
" widgety settings " : l'editor " What would you like to make
todayi text_color rgb (255 , 255 , 255) " , " align :
" center typography typography , Custom typography font_size " :
(" unit " , " X " , " size " : 8 , " sizes " : " typography font family's
BUD S " typography text transform " : none typography font style " :

" normal " , " typography , text_decoration : none ; " typography font . weight " :
" sad " , " typography_line_height " : { " unit " ER " size " : " sizes " :
03 " _margin " : [" unit " : " % " , " top " : " @ " ; " right " : " 0 " , " bottom " :

gert slaked yet 4 background background
classic , " background color " : " rgba (, 6 , 8 , 0'elements " :
I) , " widgetType " : " text - editor ' } , { " id " : " Sesiogne " , " elType " :
" widget " , " settings " : { " text " ; " Brokse all projects , button text_color " :
rgb (34 , 34 , 34) " , " background color reh (252 , 246 ,
127) " , " border radius " : { " unit " : " px " top " : 5 , " right " : " SD " bottom " :
9 $?, " left " : " $ " , " islinked " : true } " border border
" solid , " border_color " : " rgb (252 , 296 , 127) " border width " : { " unit " :
* px " , " top " : " 3 " " right " : " 3 " , " bottom " . 1999 : " left " 3 " islinked " :
true } , " typography typography " ; " custa , typography , font_size ' (' unit "
" px " , " size " : 28 , " sizes " : 0] } , " typography , font family " :
* Rutak , typography text transform : none's typography font style "
" normal " , " typography text_decoration : none typography font weight " :
" 500 " , " typography_line_height " : { " unit " : " en " " size " : 233 , " sizes "
(1) , " size " : " X $ " , " text_padding " : { " unit " : " px " " top " : 9.5 " " right " :
23.0 " , " bottom " : " 9.5 " , " left " ; 23.0 , " islinked " : false } link " : { " url "

" https://projects.raspberrypt.org/en/projects " " is external " .
" nofollow " ; " ") " margin " : [" unit " " top " : " 8 " " right " :

S @ " , " bottom " : " @ " , " left " : " 48 " , " islinked " : false } } , " elements " :
() , ' widgetType " : " button " }] }] , " isInner " : false , " elType " :
" section " " col str " }

800

802A

802B

802C

802N

Patent Application Publication

APPLICATION PROGRAM 1

APPLICATION PROGRAM 2

APPLICATION PROGRAM 3

[...]

APPLICATION PROGRAM N

802

OPERATING SYSTEM (e.g. , WINDOWS , UNIX , LINUX , MAC OS , IOS , ANDROID , OR LIKE)

GRAPHICAL USER INTERFACE (GUI)

May 27 , 2021 Sheet 8 of 9

815

810

WWW WWV N N N N N N N N N N N N VRIENT

CUNNITT

V V V V V V V V VW WWWWWWWWWW .

VIRTUAL MACHINE MONITOR (VMM)

1

830

BARE HARDWARE (e.g. , COMPUTER SYSTEM 500)

US 2021/0157554 A1

FIG . 8

820

FIG . 9

ROM

SERVER 930

MAIN MEMORY
906

DISPLAY

STORAGE DEVICE
910

Patent Application Publication

928

912

908

INTERNET ISP

INPUT DEVICE

BUS

914

902

926

May 27 , 2021 Sheet 9 of 9

CURSOR CONTROL
916

PROCESSOR
904

COMMUNICATION INTERFACE
918

NETWORK LINK

LOCAL NETWORK 922

900

920

HOST

US 2021/0157554 A1

924

US 2021/0157554 A1 May 27 , 2021
1

GENERATING HIGHER - LEVEL SEMANTICS
DATA FOR DEVELOPMENT OF VISUAL

CONTENT

modifying / creating web pages . However , these software
platforms typically maintain the same complexity of the
source code even when the web page source code is con
verted to the platform's proprietary format . Therefore , while
having features for editing / modifying existing visual con
tent , these platforms fail to provide any simplification of the
original source code .

BENEFIT CLAIM

[0001] This application claims the benefit under 35 U.S.C.
$ 119 (e) of provisional application 62 / 938,954 , filed Nov. 22 ,
2019 , the entire contents of which is hereby incorporated by
reference for all purposes as if fully set forth herein . BRIEF DESCRIPTION OF THE DRAWINGS

FIELD OF THE TECHNOLOGY
[0002] The present invention relates to the field of com
puter programming development technology , in particular to
generating higher - level semantics data for the development
of visual content such as web pages , mobile or desktop user
interfaces .

BACKGROUND

[0008] In the drawings of certain embodiments in which
like reference numerals refer to corresponding parts
throughout the figures :
[0009] FIG . 1 is a flowchart that depicts a process to
convert visual source elements (such as that of HTML
and / or vector graphics) to higher - level semantics data
(HLSD) , in an embodiment .
[0010] FIG . 2 is a block diagram that depicts rendered
overlapping image - like HTML nodes , in an embodiment .
[0011] FIG . 3 is a flowchart that depicts a process for
collecting HTML - based data to train machine learning (ML)
algorithms , which converts HTML into HLSD , in an
embodiment .
[0012] FIG . 4 is a flowchart that depicts a process for data
augmentation and training of machine learning (ML) algo
rithms for HLSD classification , in an embodiment .
[0013] FIG . 5 is a flowchart that depicts a process to create
a content layout based on classified visual source elements
and extracted features , in an embodiment .
[0014] FIGS . 6A and 6B are block diagrams that depict
HLSD widgets , in an embodiment .
[0015] FIG . 7 is an example of HLSD content (in JSON
format) for a web - page builder application , in an embodi
ment .
[0016] FIG . 8 is a block diagram of a basic software
system , in one or more embodiments ;
[0017] FIG . 9 is a block diagram that illustrates a com
puter system upon which an embodiment of the invention
may be implemented .

DETAILED DESCRIPTION

[0003] The approaches described in this section are
approaches that could be pursued , but not necessarily
approaches that have been previously conceived or pursued .
Therefore , unless otherwise indicated , it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section .
[0004] Web page content contains HTML trees of source
element nodes , which are difficult to manually edit due to
complexity , verbosity , specialized vocabulary , and many
other factors . Moreover , HTML trees are not suitable for
easy identification of correspondence between the portions
of the source code of the HTML node of the tree and the
rendered components visible to users . While a user appre
ciates the simplicity and the beauty of the rendered web page
and may describe its content in higher - level semantics , these
elements fail to relate to the underlying HTML source code
(low - level semantics or no semantics) . For example , a user
may describe visual components of a web page in terms of
a “ menu block , ” “ social links block , ” “ image box block , ” “ a
section with three equal columns containing other blocks . "
However , HTML subtrees of nodes corresponding to each of
the above - mentioned blocks may contain hundreds or more
elements (having “ div ” , “ span ” , “ a ” , “ p ” , and other tags) of
source code with lower - level semantics or no semantics at
all .
[0005] This problem is particular to any kind of source
code which lower - level semantics are complex compared to
its visual representation . For example , vector graphics , like
HTML , may contain complex content in low - level seman
tics , such as numerous geometric shapes and texts , which
visually form a simpler representation .
[0006] Such complexity of the source (HTML or vector
graphics) creates a barrier for the creation of templates from
the existing lower - level source codes (e.g. , HTML or vector
graphics) for auto - generating customizable UI , web page , or
other visual content (e.g. , images) from templates generated
from one or multiple different and same source codes (e.g. ,
vector graphics to HTML page conversion and vice versa) ,
and for simplifying the modification to existing visual
content .
[0007] One approach to solve this problem is to import the
source code for visual component (s) into a software plat
form for visual content development or image editing . For
example , many such software platforms exist for importing

[0018] In the following description , for the purposes of
explanation , numerous specific details are set forth in order
to provide a thorough understanding of the present inven
tion . It will be apparent , however , that the present invention
may be practiced without these specific details . In other
instances , structures and devices are shown in block diagram
form in order to avoid unne necessarily obscuring the present
invention .

General Overview

[0019] Techniques are described to generate higher - level
semantics data (HLSD) that corresponds to the visual ren
dering of low - level source code . The term “ source code ” or
“ visual content source code ” refers herein to structured or
semi - structured textual data that includes data structures /
markup / commands / directives for a computer system to ren
der visual content . The source code may be in the format of
HTML , XML , markdown , JSON , or vector graphics , as
non - limiting examples .
[0020] The “ higher - level semantics data ” (HLSD) term
refers herein to data defining user interface component (s) as
visually perceived when displayed . Accordingly , HLSD
contains less detail about the user interface component (s)

US 2021/0157554 A1 May 27 , 2021
2

partially , if not fully , automated . From the modified HLSD
template , new visual content may be generated by generat
ing the corresponding source codes to render the new visual
content .

HLSD Conversion

than the source code of the user interface component based
on which the HLSD is generated . The HLSD may aggregate
numerous source code elements into a single HLSD ele
ment . These HLSD elements may be arranged as structured
and semi - structured data describing the corresponding
visual component (s) as visually perceived and , in some
cases , may include directives to properly render such com
ponents in visual content editing software or other rendering
environments while leaving many less important details of
rendering to the software or UI styling convention scheme .
[0021] The approaches herein describe generating HLSD
from source code of visual components (e.g. , HTML tree of
nodes) and simplifying modification / creation of visual con
tent using the HLSD . In an embodiment , HLSD features a
tree - like structure of widgets (blocks) with attributes and
layout arranging widgets (container blocks) in horizontal
and vertical structures (rows and columns) . The techniques
may be used to generate semantic HLSD content in various
formats , to be used as the desired input for available
state - of - the - art UI builder or image editing programs . The
techniques may be used to extract the layout and content of
UI , web page , or vector image , thus creating templates to
develop other visual content .
[0022] In an embodiment , original visual content (UI , web
page , or vector image) source code is loaded and rendered .
The rendering may yield visual source elements that were
not part of the original visual content source code . The
rendered visual source is arranged in a tree - like graph
structure , each visual source element having a close neigh
bor visual source element (direct parent , direct child , or
sibling) or more distant neighbor elements (e.g. , parent of
the parent , child of a child , or more distant sibling) .
[0023] The rendered visual source elements are pre - pro
cessed to determine their visual perception for a user , in an
embodiment . As part of pre - processing , the visual and
positional attributes of the visual source elements are deter
mined , if not already known . Based on the visual and
positional attributes of the visual source elements , the ele
ments are classified , and a layout of a template may be
generated .
[0024] In an embodiment , using visual and / or positional
attributes of visual source elements , the visual source ele
ments are classified as certain types of HLSD elements .
Multiple visual source elements may be aggregated into an
HLSD element using the respective visual and / or positional
attributes . In some embodiments , a visual source element
may not be mapped to any HLSD widget because of the lack
of its visual perception .
[0025] The set of the generated HLSD elements may form
an HLSD template for visual content (UI / web page / vector
graphic) . A mobile app user interface or even a complete
website may be generated from such an HLSD template .
[0026] Similarly , the source code of visual content (e.g. ,
web page / mobile UI) may be classified into HLSD elements
using the techniques described herein . Using the visual
content representation in HLSD , the HLSD template is used
for user - friendly modifications to the visual content . With
HLSD , drag - and - drop visual content editor software solu
tions provide a simpler user interface for creating and
customizing visual content , thereby lowering barriers of
entry into web development . More importantly , because
HLSD may be generated from one or multiple Uls , and an
HLSD may be used to generate one or multiple instances of
visual content , visual content development may be at least

[0027] As described above , at least one purpose of source
code to HLSD conversion techniques is to generate visual
content representation data in higher - level semantics , which
is easier to customize visually using visual content builder
software .
[0028] FIG . 1 is a flowchart that depicts a process to
convert visual source elements (that are formatted according
to HTML , XML , JSON , and / or vector graphics) to HLSD ,
in an embodiment . One or more of the steps described below
may be omitted , repeated , and / or performed in a different
order . Accordingly , the specific arrangement of steps shown
in FIG . 1 should not be construed as limiting the scope of the
invention . Further , the steps shown below may be modified
based on the data structure used to store the data .
[0029] The process analyses the visual content source
code , such as HTML page content , similar to the user's
visual experiences , and determines HLSD elements that
make up the visual content . The conversion may be based on
the classification of visual source elements in terms of
HLSD labels . The term “ HLSD label ” or “ label ” refers
herein to the type of an HLSD element . Various machine
learning classification algorithms may be used for modeling
the classification . The visual source elements may be first
simplified and then classified according to the given set of
labels , in an embodiment .
[0030] At step 110 , the visual content for which an HLSD
is to be generated is identified , and the process retrieves
visual source elements of the visual content . The visual
source elements may be retrieved directly from the source
code . For example , if the source code is raw HTML that
describes a tree of HTML nodes , each HTML node may be
directly retrieved as a visual source element . Additionally or
alternatively , the process requests the rendering of the source
code , which , when executed by a computer system proces
sor , causes the visual content to be rendered on the display
for the visual perception of a user . Accordingly , the execu
tion generates the final set of visual source elements for the
visual content . For example , the HTML source code for a
web page may be loaded and rendered in an HTML parser
such as a web browser controlled by a software component
(Selenium driver) . The retrieval of the source HTML ele
ments may include waiting for the page loading , scrolling to
the bottom of the page , so that media content with delayed
load and animations may complete their loading , and closing
alerts and hiding some popups . Alternatively , the retrieval of
the source HTML elements may be triggered by the loading
of the source HTML elements to generate rendered HTML
code . The process retrieves the HTML elements that are
generated by the rendered HTML code .

Simplifying Visual Content
[0031] At step 120 , the retrieved visual source elements
are pre - processed . In an embodiment , visual source elements
that are not visible are removed . The process may remove
some nodes in an HTML tree , which are not visual , such as
those containing script (s) , style tag (s) , and hidden node (s) .

US 2021/0157554 A1 May 27 , 2021
3

[0032] Additionally or alternatively , each visual source
element is given a depth index . The term “ depth index ” or
" z - index ” refers herein to a numerical value that indicates
the order of overlap in the arrangement of visual source
elements in visual content . For example , the visual source
element that is on top of all other visual source elements in
the visual content may be assigned the highest depth index
(and vice versa) . When the visual source elements are fully
rendered for displaying on a display , the process may
determine the relative overlap of the visual source elements
for the visual content . Based on the relative order that the
visual source element is rendered compared to other one or
more overlapping visual source elements , the process
assigns a depth index to the visual source element . In an
embodiment , a visual source element that has no overlap
with any other visual source element , may be assigned to a
default depth index .
[0033] The process , at step 120 , may additionally deter
mine if a visual source element has animation , i.e. dynami
cally changes its one or more display properties . For
example , a visual source element may change its position or
size based on an action by a user (e.g. , scrolling) . In one
embodiment , the process determines the optimal value for
the changing display property and assigns such value to the
visual source element . Thereby , a dynamic visual source
element is converted into a static visual source element to
up - level and simplify the element representation for HLSD .
[0034] In another embodiment , the process determines
that the visual source element has an animation aspect and
based on such determination , generates one or more prop
erties that describe the animation at a higher - level for
HLSD . For example , the newly generated animation prop
erty (s) may describe the type of animation (e.g. , size
increase , movement , color change) and the animation itself
(e.g. , minimum and maximum size , motion coordinates , set
of colors , respectively) .
[0035] Additionally or alternatively , the process may dis
tinguish foreground image from a background image based
on the visual rendering of visual source element (s) . A visual
source element may be an image but have another visual
source element overlapping the image and thus make the
image look like a background image rather than a fore
ground image . Similarly , a visual source element may have
an image as a background but the element itself be trans
parent and thus , when rendered , be visually as a foreground
image . Thus , a visual source element , which is rendered as
an image thus perceived as one , may be assigned a property
indicating a foreground image . And similarly , an image
based visual source element , which is rendered overlapped
or in a background of another visual source element , may be
assigned a property indicating a background .
[0036] FIG . 2 is a block diagram that depicts rendered
overlapping image - like HTML nodes , in an embodiment .
Nodes 210 and 220 are image nodes , however node 225 is
rendered to overlap node 220. Because node 210 is unob
structed when rendered , node 210 is assigned a property to
indicate that a foreground image . On the other hand , node
220 , having node 225 overlapping , is assigned a property
indicating a background . Node 230 is a node having an
image as its background . However , node 230's image , when
rendered , is fully visible and unobstructed , and therefore a
property indicating a foreground image is assigned to node
230. Node 240 similarly has an image as its background but
is further overlapped by another HTML node 245. Because

of the HTML node 240 being rendered in the background of
HTML node 245 , node 240 is assigned a property indicating
a background .
[0037] At step 125 , the visual source elements are char
acterized using higher level properties . The term “ higher
level property ” refers to a property of a visual source
element that is visually readily perceived (dominant) when
the visual source element is rendered on a display . In an
embodiment , the process may use a predefined set of dif
ferent properties that are extracted for each visual source
element type . The set may depend on the type of the visual
source element . The set may include the generated proper
ties during the pre - processing such as the depth index and / or
animation property .
[0038] For example , the process may obtain a subset of
properties from a visual source element , such as geometry
(size and / or location within a rendered visual content) and
certain style attributes from among existing attributes of the
visual source element . A column visual source element may
be a rectangle with a rounded angles , with a particular
shading of a particular color . The process may only extract
the color and rectangular shape as part of the characteriza
tion attributes of the column visual source element . The
other attributes may be ignored , thus reducing the number of
attributes per visual source element and keeping only visu
ally the most important ones . The reduced information per
node lessens the dimensionality of the feature vector used in
machine learning (ML) algorithm for classification .
[0039] For further reduction of the data , the process may
eliminate some visual source element (s) that do not provide
any useful information , such as same - size wrappers and
zero - size visual source elements . The process may also
generate additional set of features from source code to be
used in the ML algorithm for classification . These features
include one or more of : number of images , videos , links and
iframes in node subtree , relative area occupied by text , total
length of visible text content , number of background images
which are not covered by other nodes , the depth of the node
in the simplified tree , number of siblings and subtree nodes
etc.

[0040] At step 125 , the arrangement of the visual source
elements is modified to simplify the arrangement . The
“ simplified element arrangement ” term refers herein to
arrangement of lesser visual source elements than in the
original source code while preserving the visible layout for
the original visual content generated by the original source
code . For example , simplified tree is a simplified arrange
ment for HTML or vector graphics . Simplified tree of the
original HTML tree or vector graphics includes the subset of
nodes and attributes that reflect the visible layout . For
example , for HTML , tree of nodes , the hierarchy of nodes is
simplified by restructuring of the nodes . Tree restructuring
includes techniques for restructuring tree nodes in such a
way that larger elements are always placed above (higher in
the tree hierarchy) overlapping smaller ones . After restruc
turing , the parent - child relationship between nodes is sim
plified to reflect the respective visual and semantic appear
ance on the web page , which may not match the original
HTML source code .
[0041] High level properties of visual source elements are
further simplified , in an embodiment . The values for a
particular type of a higher level property for a particular type
of visual source element may be normalized based on the
other values for the same high level property . The normal

US 2021/0157554 A1 May 27 , 2021
4

ized value is then used as a higher level property of the
visual source element . For example , the font size for the
textual content of visual source elements may be indicative
whether a particular visual source element should have large
font size as the value , normal , or small for the higher level
property . At least based in part on this higher level property ,
the visual source element may be classified as a large
heading , small heading , normal text .
[0042] To determine the normalized value , statistical func
tions (e.g. , mean , median , standard deviation) are applied to
the font size higher level property values to determine which
property values are relatively greater , smaller , or normal . If
the average font size for the visual source elements is 20
pixels , then a visual source element with 24 pixels may not
be assigned to have a large font size . However , if for the
same example , the average font size is 12 pixels , then the
visual source element may be assigned a normalized higher
level property for the font size with value indicating large
font size .

Feature Extraction

[0043] Continuing with FIG . 1 , at step 140 , the process
proceeds to perform feature extraction from the classified
visual source element (s) . (FIG . 1 , at step 130 , see below in
the Classifying Visual Content section .) Feature extraction is
a recursive and rule - based process and is tuned for each
label , in an embodiment . Feature extraction may generate
backgrounds , borders , shapes , titles , text descriptions ,
images layout , and other data of classified visual source
elements .
[0044] The extracted features from the elements are pro
cessed to output the HLSD format of the visual source
element (s) , HLSD widget . Given the label of the node , a
feature extraction process determines common features of
labels , such as border (s) , background - color (s) , background
image (s) , background - like video (s) , their size (s) and align
ment (s) , also taking into account that the element may be
just a wrapper , and the real meaningful content may be in its
subtree . The label - specific extraction may vary in different
embodiments . Using these techniques , the most important
and required content parts corresponding to the given clas
sified label are considered for the final look as a widget .
[0045] For example , a pricing list widget may have a large
text with price , a heading , a list of features of a product , a
button , and other descriptive texts . In such an example , the
process searches for the numerical values accompanied by
some currency characters , chooses the largest among them
as the price value , extracts its typography styles , such as font
size , color , boldness , line height , font . For the remaining
content of the HTML subtree , the process seeks the largest
heading (as classified by the ML algorithm) , which is
identified to be product title and extracts its styles . In the
same way , a button or list may be searched for and identified .
The remaining text content is extracted as a text description
feature of the widget .
[0046] Feature extraction of some widgets includes find
ing its layout by inspecting the mutual alignment of its parts ,
in an embodiment . Layout extraction of a widget may be
performed by segmentation process , similar to the layout
extraction of containers , rows , and columns , as described
below (see FIG . 5 , step 530) . In an embodiment , extraction
of text content is improved by eliminating hidden texts , texts
overflowed across the borders of parent elements , minor size

texts and other textual content which are not visible when
rendering visual content , but exists for non - visual purposes .
[0047] For each label , the feature extraction process may
detect misidentification of a label when the labeled
element's feature does not satisfy certain criteria . For
example , the menu element is misidentified , if an element is
classified as a menu with a list element in the subtree , but
there is a button outside of the list . As another example , if
an element classified as call - to - action does not have any
button inside , or image box does not have any big enough
image inside , then these HLSD elements are misidentified
by the extraction process . The HLSD elements with failed
identifications are treated as containers when constructing
the layout , in an embodiment . However , the subtree ele
ments of the misidentified elements may be selected as
actual widgets during the recursive process in the next step .
[0048] Continuing with FIG . 1 , at step 150 , the process
generates a layout for HLSD representation . In an embodi
ment , the layout generation may contain several steps . FIG .
5 is a flowchart that depicts a process to create a content
layout based on classified visual source element and
extracted features , in an embodiment . One or more of the
steps described below may be omitted , repeated , and / or
performed in a different order . Accordingly , the specific
arrangement of steps shown in FIG . 5 should not be con
strued as limiting the scope of the invention . Further , the
steps shown below may be modified based on the data
structure used to store the data .
[0049] A subset of classified visual source elements and
the extracted features thereof are selected as widgets for the
HLSD representation . The visual layout of the visual content
is constructed based on the original layout or geometry of
the widget (s) . The generated layout is matched to the
original simplified layout to generate matching HLSD con
tainers , which are rows and columns , and their background
styles are matched . The HLSD containers may contain one
or more widgets . Accordingly , the resulting output tree is
further simplified .
[0050] At step 510 , the process selects each visual source
element of the simplified source code (rendered tree) which
has been classified and extracted (or failed extraction) . The
process may determine which visual source element reflects
visual content the best way as perceived by the user . Based
on the label for the selected visual source element , an HLSD
widget is selected for the visual source element . Addition
ally , the HLSD widget may satisfy the following criteria :
there should be no other widget , which is located on the
same branch (ancestors - descendant pair) of the simplified
tree .

[0051] At step 520 , the process identifies an HLSD widget
for a visual source element . When selecting the widgets , the
priority matrix may be used , which defines priorities
between any parent - child pair of labels , including of the
same label , in an embodiment . For an HTML , tree of nodes ,
a recursive process traverses through the tree nodes , e.g. ,
from a parent node to child node (s) , and determines whether
a successfully extracted node is a representative widget and ,
if not , whether such node is to be skipped in favor of its
children nodes (which are further down the tree) . Priority
matrix is tuned to achieve the best balance between small but
detailed widgets and large but not effectively representative
widgets , with the best HLSD output semantics in view .
When selecting representative widgets , visual source ele
ments classified as containers as well as nodes with failed

US 2021/0157554 A1 May 27 , 2021
5

feature extraction are passed and not selected , and the nodes
classified as having “ ignore ” labels are not selected along
with their whole subtree , in an embodiment .
[0052] In an embodiment , based on the classification
process , a widget may include sub - elements . The sub
elements may be separated from the HLSD widget into their
own respective widgets . The process may then determine
whether the new sub - element widgets would stay separate or
merged back within their own HLSD containers . FIG . 6A is
a block diagram that depicts a mis - identified HLSD widget ,
in an embodiment . Widget 600 is misidentified as a “ menu ”
because it contains widget 610 , “ logo ” and button 630
besides menu item list 620A - C . Based on detecting multiple
sub - widgets , the process may split widget 600 into multiple
widgets , as depicted in FIG . 6B . After splitting , Logo 610
and button 630 are separate , while widget 660 contains
menu items 620A - C . Each of these widget may be included
in separate containers , one or many of them may be merged
together .
(0053] At step 530 , the layout construction process takes
representative widgets as an input and returns the HLSD
layout tree . In some embodiments , a layout tree is made of
nested HLSD containers (rows and columns) with the HLSD
widgets nested inside . Algorithms for creating layout may be
purely based on geometry , and layout may be generated by
a recursive segmentation process . Additionally or alterna
tively , the algorithm for creating the layout may be purely
source tree - based or a combination of geometry - based and
tree based . In the latter case , in an embodiment , the first
layout approximation is based on geometry of the source ,
which is then adjusted based on the original tree layout . As
an example of layout adjustment , using the depth index , the
process may detect that representative widgets overlap . The
process may assign a separate HLSD container to each
widget and then , may shift the containers apart to remove the
overlap .
[0054] Sequential rows and columns are generated , each
cell fully containing widgets . HLSD representation - specific
properties are a) the maximal depth of the layout tree , b) the
maximum number of columns in a row , and / or other con
straints on the sizes of containers . These properties may vary
based on the HLSD model .
[0055] At step 540 , when generating rows and / or columns ,
the process determines whether to merge two adjacent rows
(including widgets) . In an embodiment , the process deter
mines the merging based on a simple binary classifier ,
pre - trained ML algorithm , which makes decisions based on
geometry , tree ancestry , backgrounds , and other parameters
of adjacently placed widgets . In some embodiments , this is
a logistic regression function . At step 545 , if determined to
be merged , the process merges the row / column container .
[0056] Matching of the constructed HLSD layout tree to
the original simplified layout is performed at step 560 to
obtain backgrounds and other styles of layout tree contain
ers , in an embodiment . Flexible tree matching or other
rule - based tree - matching algorithms are used in some
embodiments . For example , HLSD layout tree containers are
matched to the simplified layout based on the background
color , background image , background video , and geometry .
One to one , one to many , and many to one tree - to - tree
matching algorithms may be performed .
[0057] In an embodiment , based on the separation of
corresponding visual source elements , the respective HLSD
layout block may have inner and outer spacings which may

be calculated and adjusted to match the original layout
spacings , as rendered , with the best approximation .
[0058] Additionally , if the visual source element has fixed
position (e.g. , rendered on top of display and stays there
even when scrolling) , the HLSD container that contains the
corresponding HLSD widget is assigned the same property
to keep it static .
[0059] HLSD tree simplification is performed at step 570
by removing unnecessary complexity of nested containers ,
taking into account whether the HLSD container contains
specific styling such as non - transparent background . The
containers with styling may be maintained after the simpli
fication .
[0060] Continuing with FIG . 1 , the layout of HLSD gen
erated at step 155 may be further improved . For example , the
process may examine the variety of colors , font sizes , and
fonts used throughout the HLSD widgets for the visual
content . Based on the diversity of values for one or more of
these properties , the process may determine to standardize
values for these properties . The process may select a set of
possible property values to adjust with for multiple HLSD
widgets a certain property (e.g. , font , font size , color) . These
adjustments provide aesthetic improvement , accessibility
and / or optimization for the resulting visual content . The set
of property values may be pre - defined and may not include
any of the property values .
[0061] The output HLSD data format depends on the
application used to edit visual content , for example , may
depend on a particular visual content editor . At step 160 , the
process performs the format conversion of the generated
HLSD . In some embodiments , HLSD is generated for mul
tiple instances of visual content (e.g. , a whole website
template with multiple pages is created) . Additionally , the
process may analyze original source code to separate dif
ferent portions of the source code and generate separate
templates corresponding to the portions , such as headers or
footers . In case of several input sources , a common template
for each portion (e.g. , header and footer) may be generated .
FIG . 7 is an example of HLSD content (in JSON format) for
a web - page builder application , in an embodiment .
[0062] Continuing with FIG . 1 , at step 170 , the process
may download , optimize and or modify media used by the
visual content and generate instructions to import the media
with HLSD . Different widgets may require third - party soft
ware , such as plugins to install , e.g. , slider , gallery , form , etc.
Accordingly , instructions that include external links to such
software , may also be included with HLSD . Additionally or
alternatively , the process may download additional media
items to replace the existing one . For example , the process
may download original fonts or replace the original fonts
with others because the original font may be proprietary . At
step 180 , the process generates a template that includes the
generated HLSD content and may further include the down
loaded media and any additional directives necessary for
visual content editing software platforms .

Classifying Visual Content
[0063] Continuing with FIG . 1 , at step 130 , the process
proceeds to classifying visual content into HLSD elements .
In one embodiment a visual content may be classified
without generating a simplified element arrangement and / or
simplified visual source elements , while in another embodi
ment the simplified source elements are input to the classi
fication . Although the techniques described herein refer to

US 2021/0157554 A1 May 27 , 2021
6

the simplified visual source elements , the techniques are
similarly applicable to the non - simplified visual source
elements . With the non - simplified source elements , the
techniques only use the original property (s) of the elements
rather than additionally leveraging the higher - level proper
ties of the corresponding simplified visual source element as
described herein .
[0064] In one embodiment , machine learning techniques
are used for classifying the visual source elements of the
visual content . Using a simplified arrangement , data popu
lation and processing algorithm runs before training
machine learning model . Alternatively , an already trained
model to make classification predictions is used . For the
training set , a statistical analysis of textual values of visual
source element attributes (e.g. “ class ” , “ id ” , “ tag " of element
or its subtree in case of HTML source) may be performed .
Additional features vector components (scores) may be
calculated , which indicate the similarity between the test /
prediction set and the train set labels , based on the similarity
determined for these attributes values .
[0065] Additionally or alternatively , a sibling similarity
index is calculated for each visual source element based at
least in part on geometry (sizes and position) and / or subtree
similarities between a given visual source element and its
siblings and other nodes with the same depth in the simpli
fied arrangement . Normalization of depth in the arrangement
is performed based on simple tree models , in an embodi
ment . Categorical feature vector components extracted from
properties of visual source elements are converted into
numerical data using an encoding , such as One Hot Encod
ing . To reduce the dimensions for performing One Hot
Encoding , simplification or pre - grouping of categorical fea
ture vector components may be performed , especially in the
case when the number of categories is large .
[0066] FIG . 3 is a flowchart that depicts a process for
collecting HTML - based data to train machine learning (ML)
algorithms , which converts HTML into HLSD , in an
embodiment . One or more of the steps described below may
be omitted , repeated , and / or performed in a different order .
Accordingly , the specific arrangement of steps shown in
FIG . 3 should not be construed as limiting the scope of the
invention . Further , the steps shown below may be modified
based on the data structure used to store the data .
[0067] To collect HTML data with the purpose of training
machine learning ML algorithms , a set of websites are
identified at step 301 , for example , a subsample of Alexa top
million sites is selected .
[0068] In an embodiment , to have the full data set to train
an ML model , web pages of the identified web sites are
downloaded , at step 302. These cached web pages may be
used to have more isolated and static content . Having
unchanged / static data , such as cached web pages , enables
running the algorithms over and over on the same data to
produce a consistent model . During downloading , the
resources of a web page , such as the images , fonts , and
external styles and scripts , are being retrieved and down
loaded , and their links are modified to point to the down
loaded content . After web pages are cached , the web pages
are simplified by using the simplifying techniques described
herein on the cached data , at step 303. The resulting sim
plified trees of nodes may be stored in the database .
[0069] Using an application , such as an extension of a
browser , classification data is collected for the simplified
tree nodes , based on the user input to the application , at step

304. The application retrieves simplified tree nodes (e.g. , via
API) and renders them as boxes over the actual web page
from which it was extracted . A user may browse the sim
plified trees using the application to check the features of
each node and request the node to be classified as an HLSD
label . After the classification , the classification data may be
stored in the database at step 305. The number of different
HLSD labels may range from 20 to 40 and vary according
to some embodiments for different page builder application
inputs . As an example , a classification model may be gen
erated based on 20,000 classified nodes of HTML tree from
about 2,000 different web pages .
[0070] The amount of classified data (visual source ele
ments and their corresponding HLSD labels) may not be
sufficient for training of data - intensive algorithms , such as
Deep Neural Networks (DNN) and in particular , recurrent
neural networks (RNNs) .
[0071] FIG . 4 is a flowchart that depicts a process for data
augmentation and training of machine learning (ML) algo
rithms for HLSD classification , in an embodiment . One or
more of the steps described below may be omitted , repeated ,
and / or performed in a different order . Accordingly , the
specific arrangement of steps shown in FIG . 4 should not be
construed as limiting the scope of the invention . Further , the
steps shown below may be modified based on the data
structure used to store the data .
[0072] At step 401 , the simplified visual source element
are retrieved . At step 402 , simplified visual source elements
are filtered based on feature vector restriction which may be
configured to avoid outliers . The filtering may eliminate
human errors derived from manual classification for the
training set . In an embodiment , the retrieved simplified
visual source elements may not correspond to the feature
vector for which training data is to be augmented .
[0073] At step 403 , several augmentation techniques are
implemented for various labels to generate more artificial
data based on the existing subsets . For example , swapping of
properties of visual source elements may be used for data
augmentation
[0074] In an embodiment , such techniques are semi - su
pervised learning , augmentation based on feature vector
components probability density function , and swapping of
components . The artificial data may be generated based on
correlated properties of the feature vector and the restric
tions placed upon them by augmenting the data within
configured constraints . These restrictions are placed on a
training / test / production data set and are used for reclassifi
cation as well .
[0075] At step 404 , the process proceeds to conforming
the generated augmented data to the feature vector to be used
as input for training an ML algorithm to yield an ML model
for HLSD classification .
[0076] In an embodiment , the process proceeds to gener
ate a classification ML model using recursive or recurrent
(RNN) algorithms , such as LSTM , at step 407. Such algo
rithms may take into account the context of visual source
elements and may perform better than single node classifi
cation algorithms on large data , as performed in another
embodiment at step 405. Tree binarization may be per
formed before feeding the data to RNN at step 406. The
memory of the LSTM network learns the context of each
visual source element , i.e. , its relation to nearby elements ,
similar to Natural Language Processing techniques . More
data may be generated for RNN training , pre - classification

US 2021/0157554 A1 May 27 , 2021
7

of visual content tree by DNN is used and may be further
manually adjusted misclassification cases before feeding to
RNN .
[0077] An example feed - forward DNN may include an
input layer corresponding to feature vector components , two
dense inner layers with 20-40 units , and an output softmax
layer with classification vector components . L2 regulariza
tion , batch normalization , and ReLU activation function and
dropout in inner layers may be used , and Adam optimization
algorithm has been used for training .
[0078] To avoid outliers in classification , one or more
rules are applied to ensure that the machine learning model
output satisfies label condition . There may be a configured
number of attempts at classifying a label based on vector
restrictions . For example , if the result of the classification
performed based on feature vector restrictions violates a
label condition , the rule may specify that the next label may
be given a priority for the classification because the next
label's probabilities are within the threshold of the originally
classified label . In such an example , if the classified label
does not satisfy feature vector restrictions , the second most
probable classification label is chosen . If it also fails , the
third one is chosen . If the third one also fails , the visual
source element is classified as a container , as an example of
three classification attempt label condition rule .
[0079] Additionally or alternatively , if , as a result of
classification , the label with the highest probability does not
satisfy feature restrictions , a reclassification rule is applied
based on the context of the classified visual source element ,
specifically properties of its close or distant neighbors . In
particular , the reclassification retrieves the HLSD labels
and / or properties of the neighboring visual source element .
Based on the retrieved information , the process makes a
determination with which label to classify the visual source
element . Accordingly , the label is classified for the visual
source element based on the surrounding context .

tion of computing system 900 of FIG . 9. Software system
800 and its components , including their connections , rela
tionships , and functions , are meant to be exemplary only ,
and not meant to limit implementations of the example
embodiment (s) . Other software systems suitable for imple
menting the example embodiment (s) may have different
components , including components with different connec
tions , relationships , and functions .
[0083] Software system 800 is provided for directing the
operation of computing system 900. Software system 800 ,
which may be stored in system memory (RAM) 906 and on
fixed storage (e.g. , hard disk or flash memory) 910 , includes
a kernel or operating system (OS) 810 .
[0084] The OS 810 manages low - level aspects of com
puter operation , including managing execution of processes ,
memory allocation , file input and output (I / O) , and device
I / O . One or more application programs represented as 802A ,
802B , 802C 802N , may be “ loaded ” (e.g. , transferred
from fixed storage 910 into memory 906) for execution by
the system 800. The applications or other software intended
for use on computer system 900 may also be stored as a set
of downloadable computer - executable instructions , for
example , for downloading and installation from an Internet
location (e.g. , a Web server , an app store , or another online
service)
[0085] Software system 800 includes a graphical user
interface (UI) 815 , for receiving user commands and data in
a graphical (e.g. , " point - and - click " or " touch gesture ") fash
ion . These inputs , in turn , may be acted upon by the system
800 in accordance with instructions from operating system
810 and / or application (s) 802. The UI 815 also serves to
display the results of operation from the OS 810 and
application (s) 802 , whereupon the user may supply addi
tional inputs or terminate the session (e.g. , log off) .
[0086] OS 810 can execute directly on the bare hardware
820 (e.g. , processor (s) 904) of computer system 900. Alter
natively , a hypervisor or virtual machine monitor (VMM)
830 may be interposed between the bare hardware 820 and
the OS 810. In this configuration , VMM 830 acts as a
software " cushion ” or virtualization layer between the OS
810 and the bare hardware 820 of the computer system 900 .
[0087] VMM 830 instantiates and runs one or more virtual
machine instances (“ guest machines ”) . Each guest machine
comprises a “ guest ” operating system , such as OS 810 , and
one or more applications , such as application (s) 802 ,
designed to execute on the guest operating system . The
VMM 830 presents the guest operating systems with a
virtual operating platform and manages the execution of the
guest operating systems .
[0088] In some instances , the VMM 830 may allow a
guest operating system to run as if it is running on the bare
hardware 820 of computer system 900 directly . In these
instances , the same version of the guest operating system
configured to execute on the bare hardware 820 directly may
also execute on VMM 830 without modification or recon
figuration . In other words , VMM 830 may provide full
hardware and CPU virtualization to a guest operating system
in some instances .
[0089] In other instances , a guest operating system may be
specially designed or configured to execute on VMM 830 for
efficiency . In these instances , the guest operating system is
“ aware ” that it executes on a virtual machine monitor . In
other words , VMM 830 may provide para - virtualization to a
guest operating system in some instances .

Vector Graphics to HLSD Conversion
[0080] The vector - graphics - to - HLSD conversion gener
ates data of higher - level semantics , which is easier to
customize visually using a visual content builder application
than directly exported HTML . Similar steps as described
herein are used to analyze vector graphics and generate
HLSD for vector graphics . Vector graphics are primitive
shape - based and typically have a much lesser depth of tree
(grouping) than HTML trees . The difference in steps may
include an additional step of vector graphics conversion to
HTML . In another embodiment , vector graphics are parsed ,
with its elements and their attributes and global attributes by
a custom parser . As a result , a simplified tree is generated for
the input to the algorithm .
[0081] In an embodiment , ML algorithms utilize super
vised learning training based on the parsed data from vector
graphics . Data labeling may be performed using an add - on
of the vector graphics processing application . In an embodi
ment , labels are saved inside the vector graphics files , not in
a database , as in the case of HTML input . In some embodi
ments , user - generated labels are used for creating HLSD
content from vector graphics , thus skipping the ML classi
fication step .

Software Overview

[0082] FIG . 8 is a block diagram of a basic software
system 800 that may be employed for controlling the opera

US 2021/0157554 A1 May 27 , 2021
8

for

or

[0090] A computer system process comprises an allotment
of hardware processor time , and an allotment of memory
(physical and / or virtual) , the allotment of memory being for
storing instructions executed by the hardware processor ,
storing data generated by the hardware processor executing
the instructions , and / or for storing the hardware processor
state (e.g. content of registers) between allotments of the
hardware processor time when the computer system process
is not running . Computer system processes run under the
control of an operating system and may run under the control
of other programs being executed on the computer system .
[0091] Multiple threads may run within a process . Each
thread also comprises an allotment of hardware processing
time but share access to the memory allotted to the process .
The memory is used to store the content of processors
between the allotments when the thread is not running . The
term thread may also be used to refer to a computer system
process in multiple threads that are not running .

Hardware Overview

[0092] According to one embodiment , the techniques
described herein are implemented by one or more special
purpose computing devices . The special - purpose computing
devices may be hard - wired to perform the techniques , or
may include digital electronic devices such as one or more
application - specific integrated circuits (ASICs) or field
programmable gate arrays (FPGAs) that are persistently
programmed to perform the techniques , or may include one
or more general - purpose hardware processors programmed
to perform the techniques pursuant to program instructions
in firmware , memory , other storage , or a combination . Such
special - purpose computing devices may also combine cus
tom hard - wired logic , ASICs , or FPGAs with custom pro
gramming to accomplish the techniques . The special - pur
pose computing devices may be desktop computer systems ,
portable computer systems , handheld devices , networking
devices , or any other device that incorporates hard - wired
and / or program logic to implement the techniques .
[0093] For example , FIG . 9 is a block diagram that illus
trates a computer system 900 upon which an embodiment of
the invention may be implemented . Computer system 900
includes a bus 902 or other communication mechanism for
communicating information , and a hardware processor 904
coupled with bus 902 for processing information . Hardware
processor 904 may be , for example , a general - purpose
microprocessor .
[0094) Computer system 900 also includes a main
memory 906 , such as a random access memory (RAM) or
another dynamic storage device , coupled to bus 902 for
storing information and instructions to be executed by
processor 904. Main memory 906 also may be used for
storing temporary variables or other intermediate informa
tion during execution of instructions to be executed by
processor 904. Such instructions , when stored in non - tran
sitory storage media accessible to processor 904 , render
computer system 900 into a special - purpose machine that is
customized to perform the operations specified in the
instructions .
[0095] Computer system 900 further includes a read - only
memory (ROM) 908 or other static storage device coupled
to bus 902 for storing static information and instructions for
processor 904. A storage device 910 , such as a magnetic disk
or optical disk , is provided and coupled to bus 902 for
storing information and instructions .

[0096] Computer system 900 may be coupled via bus 902
to a display 912 , such as a cathode ray tube (CRT) , for
displaying information to a computer user . An input device
914 , including alphanumeric and other keys , is coupled to
bus 902 for communicating information and command
selections to processor 904. Another type of user input
device is cursor control 916 , such as a mouse , a trackball ,
cursor direction keys for communicating direction informa
tion and command selections to processor 904 and for
controlling cursor movement on display 912. This input
device typically has two degrees of freedom in two axes , a
first axis (e.g. , x) and a second axis (e.g. , y) , that allows the
device to specify positions in a plane .
[0097] Computer system 900 may implement the tech
niques described herein using customized hard - wired logic ,
one or more ASICs or FPGAs , firmware and / or program
logic which in combination with the computer system causes
or programs computer system 900 to be a special - purpose
machine . According to one embodiment , the techniques
herein are performed by computer system 900 in response to
processor 904 executing one or more sequences of one or
more instructions contained in main memory 906. Such
instructions may be read into main memory 906 from
another storage medium , such as storage device 910. Execu
tion of the sequences of instructions contained in main
memory 906 causes processor 904 to perform the process
steps described herein . In alternative embodiments , hard
wired circuitry may be used in place of or in combination
with software instructions .
[0098] The term “ storage media ” as used herein refers to
any non - transitory media that store data and / or instructions
that cause a machine to operation in a specific fashion . Such
storage media may comprise non - volatile media and / or
volatile media . Non - volatile media includes , for example ,
optical or magnetic disks , such as storage device 910 .
Volatile media includes dynamic memory , such as main
memory 906. Common forms of storage media include , for
example , a floppy disk , a flexible disk , hard disk , solid - state
drive , magnetic tape , or any other magnetic data storage
medium , a CD - ROM , any other optical data storage
medium , any physical medium with patterns of holes , a
RAM , a PROM , an EPROM , a FLASH - EPROM , NVRAM ,
any other memory chip or cartridge .
[0099] Storage media is distinct from but may be used in
conjunction with transmission media . Transmission media
participates in transferring information between storage
media . For example , transmission media includes coaxial
cables , copper wire , and fiber optics , including the wires that
comprise bus 902. Transmission media can also take the
form of acoustic or light waves , such as those generated
during radio - wave and infra - red data communications .
[0100] Various forms of media may be involved in carry
ing one or more sequences of one or more instructions to
processor 904 for execution . For example , the instructions
may initially be carried on a magnetic disk or solid - state
drive of a remote computer . The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem . A modem
local to computer system 900 can receive the data on the
telephone line and use an infra - red transmitter to convert the
data to an infra - red signal . An infra - red detector can receive
the data carried in the infra - red signal , and appropriate
circuitry can place the data on bus 902. Bus 902 carries the
data to main memory 906 , from which processor 904

US 2021/0157554 A1 May 27 , 2021
9

retrieves and executes the instructions . The instructions
received by main memory 906 may optionally be stored on
storage device 910 either before or after execution by
processor 904 .
[0101] Computer system 900 also includes a communica
tion interface 918 coupled to bus 902. Communication
interface 918 provides a two - way data communication cou
pling to a network link 920 that is connected to a local
network 922. For example , communication interface 918
may be an integrated services digital network (ISDN) card ,
cable modem , satellite modem , or a modem to provide a data
communication connection to a corresponding type of tele
phone line . As another example , communication interface
918 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN . Wire
less links may also be implemented . In any such implemen
tation , communication interface 918 sends and receives
electrical , electromagnetic , or optical signals that carry
digital data streams representing various types of informa
tion .
[0102] Network link 920 typically provides data commu
nication through one or more networks to other data devices .
For example , network link 920 may provide a connection
through local network 922 to a host computer 924 or to data
equipment operated by an Internet Service Provider (ISP)
926. ISP 926 , in turn , provides data communication services
through the world wide packet data communication network
now commonly referred to as the “ Internet ” 928. Local
network 922 and Internet 928 both use electrical , electro
magnetic , or optical signals that carry digital data streams .
The signals through the various networks and the signals on
network link 920 and through communication interface 918 ,
which carry the digital data to and from computer system
900 , are example forms of transmission media .
[0103] Computer system 900 can send messages and
receive data , including program code , through the network
(s) , network link 920 and communication interface 918. In
the Internet example , a server 930 might transmit a
requested code for an application program through Internet
928 , ISP 926 , local network 922 and communication inter
face 918 .
[0104] The received code may be executed by processor
904 as it is received , and / or stored in storage device 910 or
other non - volatile storage for later execution .

coupled to connect to a scratchpad memory that cannot be
accessed by any other core processor of the multiple core
processors .
[0107] A cluster comprises computing nodes that each
communicate with each other via a network . Each node in a
cluster may be coupled to a network card or a network
integrated circuit on the same board of the computing node .
Network communication between any two nodes occurs via
the network card or network integrated circuit on one of the
nodes and a network card or network integrated circuit of
another of the nodes . The network may be configured to
support remote direct memory access .
[0108] In the foregoing specification , embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple
mentation . The specification and drawings are , accordingly ,
to be regarded in an illustrative rather than a restrictive
sense . The sole and exclusive indicator of the scope of the
invention , and what is intended by the applicants to be the
scope of the invention , is the literal and equivalent scope of
the set of claims that issue from this application , in the
specific form in which such claims issue , including any
subsequent correction .
What is claimed is :
1. A computer - implemented method comprising :
retrieving source code , which , when rendered , causes

display of visual content , the source code comprising a
plurality of visual source elements in a textual format ,
which when rendered generate a tree hierarchy of
visual source elements ;

classifying a particular visual source element of the
source code to a particular label of higher - level seman
tic data (HLSD) based at least in part on one or more
neighbor properties of a neighbor visual source element
of the particular visual source element ;

wherein the particular label indicates a type of HLSD
widget assigned to the visual source element ;

determining features and a layout arrangement , for a
particular HLSD widget corresponding to the particular
HLSD label , based at least in part on one or more
particular properties of the particular visual source
element and the one or more neighbor properties of the
neighbor visual source element ;

generating a template for the visual content that at least
includes the HLSD widget .

2. The method of claim 1 , further comprising :
from the one or more particular properties of the particu

lar visual source element , determining a first set of
properties of the particular visual source element that
are identified as visually and semantically significant ;

generating a second set of properties , different from the
one or more properties , of the particular visual source
element that represent visual , positional or semantic
attributes based on rendering the particular visual
source element ;

classifying the particular visual source element to the
particular HLSD label based at least in part on the first
set of properties and the second set of properties .

3. The method of claim 1 , further comprising :
determining that an original visual source element of the

source code when rendered has no effect on the ren
dered visual content ;

excluding the original visual source element from the
generating the template for the visual content .

Computing Nodes and Clusters
[0105] A computing node is a combination of one or more
hardware processors that each share access to a byte - ad
dressable memory . Each hardware processor is electroni
cally coupled to registers on the same chip of the hardware
processor and is capable of executing an instruction that
references a memory address in the addressable memory ,
and that causes the hardware processor to load data at that
memory address into any of the registers . In addition , a
hardware processor may have access to its separate exclu
sive memory that is not accessible to other processors . The
one or more hardware processors may be running under the
control of the same operating system
[0106] A hardware processor may comprise multiple core
processors on the same chip , each core processor (“ core ”)
being capable of separately executing a machine code
instruction within the same clock cycles as another of the
multiple cores . Each core processor may be electronically

US 2021/0157554 A1 May 27 , 2021
10

4. The method of claim 1 , further comprising :
identifying a particular plurality of properties from the

particular visual source element and a neighbor plural
ity of properties from the neighbor visual source ele
ment ;

generating a feature vector for the particular visual source
element that includes values based on values of the
particular plurality of properties and values of the
neighbor plurality of properties ;

based at least in part on the feature vector , generating a set
of probabilities for a set of corresponding labels of
HLSD to map to the particular visual source element ;

classifying the particular visual source element to the
particular HLSD label from the set of corresponding
labels of HLSD based at least in part on the set of probabilities .

5. The method of claim 1 , further comprising :
downloading one or more web pages from one or more
web sites ;

retrieving downloaded source code from the one or more
web pages ;

generating a training data set from the downloaded source
code , which identifies a training set of feature vectors
and an output set of labels of HLSD ;

performing a training of a machine learning algorithm
using at least in part the training data set thereby
generating a machine learning model for determining
labels of HLSD for the plurality of visual source
elements .

6. The method of claim 1 , wherein classifying the par
ticular visual source element of the source code to the
particular HLSD label comprises :

determining a different HLSD label has the highest prob
ability to map to the particular visual source element ;

applying a reclassification rule to the particular visual
source element ;

based on the one or more neighbor properties of the
neighbor visual source element , determining that the
reclassification rule is satisfied thereby reclassifying
the particular visual source element from the different
HLSD label to the particular HLSD label .

7. The method of claim 1 , further comprising :
identifying a child visual source element of the particular

visual source element ;
based on priority configuration data , comparing one or
more properties of the particular widget with one or
more properties of a child widget of the child visual
source element ;

based on comparing the one or more properties of the
particular widget with the one or more properties of the
child widget of the child visual source element , deter
mining that the particular widget is a representative
widget ;

excluding the child widget from the template .
8. The method of claim 1 , further comprising :
generating the layout arrangement of widgets for the

template that includes the particular widget and a
neighbor widget of the particular widget by :
arranging , within the layout arrangement , the particular

widget with the neighbor widget based on a geo
metrical relationship between the particular widget
and the neighbor widget , and

adjusting the layout arrangement based on a geometry
of visual source elements located higher in the tree

hierarchy with respect to the particular visual source
elements corresponding to the particular widget .

9. The method of claim 1 , further comprising :
generating the layout arrangement of widgets for the

template that includes the particular widget arranged
with another widget on adjacent rows or adjacent
columns ;

determining whether to merge the adjacent columns or the
adjacent rows by applying a classifier algorithm to
geometry - based , hierarchical , or background properties
of the particular widget and the other widget , or

determining whether to split one column / row into the
adjacent columns or the adjacent rows by applying a
classifier algorithm to geometry - based , hierarchical , or
background properties of the particular widget and the
other widget .

10. The method of claim 1 , further comprising :
based on configuration data , modifying a value of a

particular property of the particular widget , wherein the
particular property is one or more of : font type , font
size , color , and style .

11. The method of claim 1 , wherein the textual format is
based on HTML , markdown , vector graphics , JSON , or
XML .

12. A system , comprising :
a hardware processor , and
a memory , coupled to the hardware processor and com

prising a set of instructions stored thereon which , when
executed by the hardware processor , cause the hard
ware processor to perform :
retrieving source code , which , when rendered , causes

display of visual content , the source code comprising
a plurality of visual source elements in a textual
format , which when rendered generate a tree hierar
chy of visual source elements ;

classifying a particular visual source element of the
source code to a particular label of higher - level
semantic data (HLSD) based at least in part on one
or more neighbor properties of a neighbor visual
source element of the particular visual source ele
ment ;

wherein the particular label indicates a type of HLSD
widget assigned to the visual source element ;

determining features and a layout arrangement , for a
particular HLSD widget corresponding to the par
ticular HLSD label , based at least in part on one or
more particular properties of the particular visual
source element and the one or more neighbor prop
erties of the neighbor visual source element ;

generating a template for the visual content that at least
includes the HLSD widget .

13. The system of claim 12 , wherein the set of instructions
includes instructions , which , when executed by the hardware
processor , cause the hardware processor to further perform :

identifying a particular plurality of properties from the
particular visual source element and a neighbor plural
ity of properties from the neighbor visual source ele
ment ;

generating a feature vector for the particular visual source
element that includes values based on values of the
particular plurality of properties and values of the
neighbor plurality of properties ;

US 2021/0157554 A1 May 27 , 2021
11

based at least in part on the feature vector , generating a set
of probabilities for a set of corresponding labels of
HLSD to map to the particular visual source element ;

classifying the particular visual source element to the
particular HLSD label from the set of corresponding
labels of HLSD based at least in part on the set of
probabilities .

14. The system of claim 12 , wherein the set of instructions
includes instructions , which , when executed by the hardware
processor , cause the hardware processor to further perform :

downloading one or more web pages from one or more
web sites ;

retrieving downloaded source code from the one or more
web pages ;

generating a training data set from the downloaded source
code , which identifies a training set of feature vectors
and an output set of labels of HLSD ;

performing a training of a machine learning algorithm
using at least in part the training data set thereby
generating a machine learning model for determining
labels of HLSD for the plurality of visual source
elements .

15. The system of claim 12 , wherein the set of instructions
includes instructions , which , when executed by the hardware
processor , cause the hardware processor to further perform :

determining a different HLSD label has the highest prob
ability to map to the particular visual source element ;

applying a reclassification rule to the particular visual
source element ;

based on the one or more neighbor properties of the
neighbor visual source element , determining that the
reclassification rule is satisfied thereby reclassifying
the particular visual source element from the different
HLSD label to the particular HLSD label .

16. The system of claim 12 , wherein the set of instructions
includes instructions , which , when executed by the hardware
processor , cause the hardware processor to further perform :

identifying a child visual source element of the particular
visual source element ;

based on priority configuration data , comparing one or
more properties of the particular widget with one or
more properties of a child widget of the child visual
source element ;

based on comparing the one or more properties of the
particular widget with the one or more properties of the

child widget of the child visual source element , deter mining that the particular widget is a representative
widget ;

excluding the child widget from the template .
17. The system of claim 12 , wherein the set of instructions

includes instructions , which , when executed by the hardware
processor , cause the hardware processor to further perform :

generating the layout arrangement of widgets for the
template that includes the particular widget and a
neighbor widget of the particular widget by :
arranging , within the layout arrangement , the particular

widget with the neighbor widget based on a geo
metrical relationship between the particular widget
and the neighbor widget , and

adjusting the layout arrangement based on a geometry
of visual source elements located higher in the tree
hierarchy with respect to the particular visual source
elements corresponding to the particular widget .

18. The system of claim 12 , wherein the set of instructions
includes instructions , which , when executed by the hardware
processor , cause the hardware processor to further perform :

generating the layout arrangement of widgets for the
template that includes the particular widget arranged
with another widget on adjacent rows or adjacent
columns ;

determining whether to merge the adjacent columns or the
adjacent rows by applying a classifier algorithm to
geometry - based , hierarchical , or background properties
of the particular widget and the other widget , or

determining whether to split one column / row into the
adjacent columns or the adjacent rows by applying a
classifier algorithm to geometry - based , hierarchical , or
background properties of the particular widget and the
other widget .

19. The system of claim 12 , wherein the set of instructions
includes instructions , which , when executed by the hardware
processor , cause the hardware processor to further perform :

based on configuration data , modifying a value of a
particular property of the particular widget , wherein the
particular property is one or more of : font type , font
size , color , and style .

20. The system of claim 12 , wherein the textual format is
based on HTML , markdown , vector graphics , JSON , or
XML .

