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HARDWARE ENHANCEMENTS TO RADAL 
BASIS FUNCTION WITH RESTRICTED 

COULOMB ENERGY LEARNING AND/OR 
K-NEAREST NEIGHBOR BASED NEURAL 

NETWORK CLASSIFIERS 

TECHNICAL FIELD 

0001. This disclosure relates to hardware embodiments 
that improve the utility and performance of neural network 
algorithms such as Radial Basis Function (RBF) with 
Restricted Coulomb Energy (RCE) learning and/ork-Nearest 
Neighbor (kNN) in a digital data processing environment. 
These improvements may include modifications that expand 
RBF/RCE, kNN based neural networks to include, for 
example, Support for probabilistic computations, additional 
neural network algorithms such as K-Means, and recom 
mender algorithm features, all of which may be embedded on 
chip. These improvements may also include hardware Sup 
port for filing systems, Swapping in and out meta data or 
vectors of data to improve use in a multi-purpose/multi-user 
environment. 

BACKGROUND 

0002 Machine learning and recognition is a field of study 
and applications whereby machines, in the form of dedicated 
hardware, computing software or combinations thereof, learn 
the key features and characteristics of objects. The objects 
may be physical in nature, examples of which are digitized 
images of automobiles or human faces. The objects may also 
be non-physical in nature, examples of which are sets of 
digital information representing the shopping information of 
customers. The characteristics of the objects are provided to 
the machine in the form of digital arrays of data that are 
known as feature vectors, or simply “vectors'. Individual 
elements of the feature vectors are known as components. The 
machine is capable of holding many such feature vectors, and 
may use one of many algorithms from the field of neural 
networks during learning to assign the feature vectors to a 
class of objects. The machine may be capable of holding and 
analyzing un-related sets of data, with the data sets known as 
a “context'. For example, it may contain a group, or context 
of feature vectors related to automobiles and another context 
containing feature vectors related to consumer spending hab 
its. The Machine could direct new feature vectors requiring 
analysis to the appropriate context. A context may be further 
Sub-divided into categories. 
0003. Once the machine has learned an appropriate num 
ber of features, the characteristics of new objects are given to 
the machine in the form of vectors for classification; that is, to 
determine if the new object belongs to a class of previously 
learned objects. The machine may use one or more algorithms 
from the field of neural networks to determine the closeness 
(conversely, distance) of a new feature vector to the learned 
feature vectors. The distance between a learned vector and a 
new observed vector is often performed using a form of 
Euclidian or Manhattan distance calculation and results 
aggregation. One example distance calculation is the Man 
hattan L1 norm distance, also known as the “taxi cab' dis 
tance. Another distance calculation is the Euclidian L2 norm. 
A third example is Limax or LOO. A machine performing this 
analysis may be known as a classifier. 
0004 For machine learning to be increasingly practical in 
today's digital environment it needs to be conducive to Vari 
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ous data widths and resolutions, Support averaging and proba 
bilistic calculations, as well as have the capability to Swap in 
and out “files' (or classes of learned data) to support mul 
tiuser and/or multipurpose application scenarios. The 
machine may also be required to perform these tasks at very 
high rates of speed. 
0005 Hardware implementations of neural network algo 
rithms saw significant interest in the 1980s but predomi 
nantly took the approach of weights in a multi-layer percep 
tron. Many of these solutions were analog in nature. Recent 
efforts in this space have rekindled an interest in analog and 
'spiking neurons' that try to conform very closely to biologi 
cal brain cells. These approaches—using weights in a multi 
layer perceptron and spiking neurons—are a different 
approach from that of the 1980s, may also be digital in nature, 
but are different than the Radial Basis Function (RBF) and 
Restricted Coulomb Energy (RCE) algorithms approaches. 
IBM Subsequently patented and pursued early generations of 
a hardware implementation for the base RBF/RCE/kNN 
architecture. The more practical approach disclosed herein 
may be well Suited for heterogeneous environments, or in 
Some cases, standalone environments. 
0006 Disclosed herein are circuits and functions that will 
enhance an RBF/RCE/kNN based architecture. Their useful 
ness in a general computing environment performing digital 
memory based “fuzzy” operations in a hardware implemen 
tation offers significant performance improvements made by 
emulating the important computational attributes of neural 
networks without the issues of trying to emulate unnecessary 
biological functions. Software simulations that use von Neu 
mann compatible data types and techniques may more readily 
transition to parallel memory based and Scalable computa 
tional approaches with these RBF/RCE, kNN embodiments. 
Embodiments of multiple performance embodiments are also 
set forth herein. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0007 Some embodiments are illustrated by way of 
example and not as a limitation in the figures of the accom 
panying drawings, wherein the same components in the vari 
ous figures bear the same reference numerals. 
0008 FIG. 1 is a diagram of an integrated circuit, accord 
ing to an embodiment. 
0009 FIG. 2 is a diagram of the integrated circuit of FIG. 
1 that provides a feature wherein any of the components in the 
input vector, stored vectors, or both, have Zero (0) value are 
excluded from the calculation in the neuron array, according 
to an embodiment. 
0010 FIG. 2A is a diagram showing an example of exclud 
ing components or parts of the components from the distance 
calculation in FIG. 2, according to an embodiment. 
0011 FIG. 3 is a diagram of the integrated circuit of FIG. 
1 showing an externally accessible configuration table that 
may be included on hardware based nonlinear classifier that 
gives fixed (read only) information about the chip configura 
tion and capabilities. Also shown is an externally accessible 
status register that provides variable (rewritten in real time) 
information about the chip status, according to an embodi 
ment. 

0012 FIG. 4 is a diagram of the integrated circuit of FIG. 
1 depicting neurons, which may be contiguous or non-con 
tiguous, that may be associated with a particular context and 
Subset categories that may be able to be cleared and reused as 
a partial clearing of the chip, according to an embodiment. 
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0013 FIG. 5 is a diagram of the integrated circuit of FIG. 
1 illustrating individual neurons comprising a set of two 
registers that stores the distance results, according to an 
embodiment. 
0014 FIG. 6 is a diagram of the integrated circuit of FIG. 
1 illustrating preprocessing and/or post processing logic 
blocks either on the input vector prior to being submitted to 
the neuron array for calculations or storage or output results 
after the neuron array calculations or retrieval, according to 
an embodiment. 
0015 FIG. 7 is a diagram of the integrated circuit of FIG. 
1 illustrating the pipelining of results to the output when 
multiple matches or neuron results may be read out from one 
operation, according to an embodiment. 
0016 FIG. 8 is a diagram of the integrated circuit of FIG. 
1 illustrating search and sort logic using the neuron array 
distance calculations, according to an embodiment. 
0017 FIG. 8A is a diagram illustrating an enhanced search 
and sort technique, according to an embodiment. 
0018 FIG. 9 is a diagram of the integrated circuit of FIG. 
1 depicting a global masking register that may be applied to 
components, sets of components and/or bits of components 
for exclusion from calculations, according to an embodiment. 
0019 FIG. 10 is a diagram of the integrated circuit of FIG. 
1 depicting the integrated circuit having a NAND, DMA, 
PCIe, DRAM, Phase Change Memory (PCM) MRAM or 
SRAM compatible interface, according to an embodiment. 
0020 FIGS. 11 and 11A are diagrams illustrating a back 
side bus which may be used to connect chips covered by this 
disclosure together for inter-chip communications, according 
to an embodiment. 

DETAILED DESCRIPTION 

0021 Numerous hardware embodiments are disclosed 
herein to be included in part in, in all of, or as part of other 
additional hardware embodiments to make an RBF/RCE and/ 
or kNN non-linear classifier more amenable for heteroge 
neous inclusion to existing computing environments for 
broader algorithm Support, Support for multiple data types 
and improved performance. For example, when recognizing 
an object in an image, it may be desirable on one hand to be 
able to encompass a vector of image data that has 24bit color 
field information per pixel (component resolution) with a 
vector length of 2048 components for high definition images 
for comparison to other images, while also being useful for 
Gray scale (8bits), sound files or other various data files in 
data mining. Hash functions of 32 bytes (32 components with 
8 bits per component such as SHA-32 for example) are 
another example of Supporting multiple data types for gener 
ality on a single scalable architecture. 
0022. Numerous improvements are made to speed pre 
and post-processing of data and results. In prior embodi 
ments, these pre- and post-processing functions are per 
formed by the host computerina Software algorithm. Signifi 
cant performance improvements are made through the 
addition of pre-processing hardware, in the form of either 
dedicated hardware or a programmable controller, which may 
perform a number of functions on an incoming vector. As an 
example, this pre-processing hardware may improve the per 
formance of the system by filtering the data to perform feature 
extraction before comparison to the stored vectors. 
0023 Post-processing hardware, in the form of either 
dedicated hardware or a programmable controller, are 
included to improve system performance. An example is the 
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Bayesian probabilistic statistical analysis on the results prior 
to presenting the information to the system. 
0024. The system interface may be enhanced to allow ease 
of communication to standard memory interfaces or DMA 
Support logic to local memory for fast transfers to various 
standard memory types. 
0025. An integrated status table may enable faster system 
performance by providing consolidated information of the 
chip's status to the operating system. For example dynamic 
status information of the number of neurons committed to 
different contexts, and the number of contexts that are on the 
chip are examples of system performance enhancements for 
using the chip in a multipurpose environment. 
0026. An integrated configuration table may also allow the 
operating system to configure the various parameters of the 
device, including but not limited to the algorithm to be used 
during learning and recognition, the length and depth of the 
neurons, and the masking mode and mask to apply to incom 
ing vector data. The configuration table may also store factory 
device configuration information, for example, how many 
neurons are on the chip, a manufacturer's ID, and device 
performance information. 
0027. Improvements to supported algorithms or additional 
algorithms may also be included. An example is Support for 
K-Means clustering wherein cluster points are chosen for 
comparison to a set of data points. One such use of this 
improvement is that these un-clustered data points are stored 
in the neuron array with the intent of finding the nearest 
cluster point of N cluster points being submitted. These N 
cluster points are submitted to the chip to determine which 
cluster point the stored data point is closest to. An historical 
association is kept as each new cluster point presents itself. 
The neuron then updates the cluster data point that it is asso 
ciated with the new cluster point if the new cluster point is 
closer than a previously observed cluster point. Another use 
of the logic block for post processing in this example appli 
cation may be to calculate new N-prime cluster points with 
the sorted data in the neuron array through averaging. 
0028. Another algorithm embodiment is integration of a 
recommendation engine where it is desirable to compare 
relevant information between two “customers' or clients to 
determine if one's buying patterns is applicable to another's 
for recommendation by excluding in the calculations com 
parisons of fields (components) where there is no common 
experience (represented as a “0” in the component field). 
0029 Support for system performance embodiments may 
be incorporated in many ways. One such embodiment is 
previously patented search and sort method U.S. Pat. No. 
5,740.326 entitled “Circuit for Searching/Sorting Data in 
Neural Networks, which is incorporated herein by reference 
in its entirety, and comparing individual bits from highest 
order to lowest with all distances participating in a “wired 
OR fashion. To enhance this approach for subsequent closest 
matches, such as a k-Next Neighbor (“k-NN') algorithm 
where k is greater than one), it is desirable to keep track of 
when the neuron dropped out of the wired OR comparisons. 
A modified binary search may be performed as discussed 
below, allowing a reduced comparison of lower order bits to 
determine the next closest vector. 
0030 To facilitate increased performance and capacity, in 
one embodiment a separate bus, or “backside bus.” may be 
used wherein a dedicated inter-chip communication bus is 
used to coordinate the functions of the integrated chips on this 
bus. One chip may be designated as the master with the 
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remaining as slaves to this chip. Parallel operations and coor 
dination of results happens via this dedicated backside bus 
that each chip is connected to. 
0031. An embodiment may include multi-stage pipelining 
of intra-chip operations to improve system performance. In 
prior embodiments, the loading of vectors is serially followed 
by vector recognition and calculation, which is in turn fol 
lowed by output of results. An embodiment may perform 
these operations in parallel; for example, the loading of the 
next vector set occurs while at the same time the current 
vector set is undergoing recognition, and further the results 
from the previous vector set are output to the system. 
0032. The embodiment may also pipeline multiple fuzzy 
or exact match results to the output when more than one 
neuron fires, similar to finding multiple exact matches in data 
de-duplication comparing hash function tags. Fuzzy matches 
are determined via an influence field associated with each 
neuron that specifies the maximum and/or minimum differ 
ence in distance between the input vector and the stored 
neuron vector allowed. For the neuron to fire, or signal it is a 
fuzzy match, the distance result needs to be within the influ 
ence field of that neuron. These distance or firing neuron 
results may be read out all at once or sequentially, one after 
the other, providing greater throughput for the system user. 
0033. An embodiment of a chip that includes some orall of 
the above techniques now will be described more fully here 
after with reference to the accompanying drawings. Indeed, 
these may be represented in many different forms and should 
not be construed as limited to the embodiments set forth 
herein; rather, these embodiments are provided by way of 
example. 
0034 FIG. 1 is a diagram of an integrated circuit, accord 
ing to an embodiment. The circuit contains a system bus 
interface 104A, 104B, for inputs and outputs, a neuron array 
101 for calculating distances, search and sort hardware 107 
for finding closest or exact match, logic 105,106 for prepro 
cessing and post processing of the input or stored data, a 
configuration table 103A for configuring the device, and a 
status table 103B that stores status information for an external 
CPU such as a host processor. The neuron 102 in one embodi 
ment may handle vectors of any length from 32 to 2048 
components, with 1 to 64 bits per component. Interfaces 
104A, 104B to the external and support logic broadcast a 
vector that is of variable length and depth to a compatible 
neuron array of similar breadth and depth-per-neuron. 
0035. The system bus interface for inputs and outputs 
104A, 104B, may be the same bidirectional bus or separate 
buses. Information flows from this bus interface to an optional 
preprocessor at logic block 105 and then broadcast in parallel 
to an RBF/RCE-based neuron array 101 for calculating dis 
tances between input vectors and learned vectors. 
0036 FIG. 2 is a diagram of the integrated circuit of FIG. 
1 that provides a feature wherein any of the components in the 
input vector 100, stored vectors or both have Zero (0) value, 
according to an embodiment. In one embodiment, this com 
ponent is not used in calculating the distance between the 
input and stored vectors. It is desirable in Some applications to 
remove Zero value data from consideration, as the Zero indi 
cates a null value which if considered would considerably 
skew the distance calculation results. 
0037 FIG. 2A is a diagram showing an example of exclud 
ing components from the distance calculation in FIG. 2, 
according to an embodiment. In FIG. 2 input vector 100 may 
be scanned for any OOH component as it comes in on the 
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input and before it is broadcast to the neuron array. Alterna 
tively, neurons of the neuron array 101 may check the input 
vector for any OOH component after it has been broadcast to 
the array. Likewise any stored vector (or prototype) in the 
neuronarray101 may be also scanned for OOH. The scanning 
may be done using well known comparator hardware logic 
and may be done serially, or in parallel with circuitry that 
looks at all bits concurrently. If either the input vector 100, the 
stored vector in neuron array 101 or both has a OH (“Zero 
hex) component, it and its counterpart component may be 
ignored in the distance calculation. The width of the compo 
nent may vary from 1 binary bit to 64 binary bits. Any com 
ponent where all of the component bits are Zero will be 
excluded from the calculation, as will the corresponding input 
or stored component. The distance calculation will be the sum 
of all components distances, minus the components where an 
all Zeroes condition was found. In the example shown, the 
distance calculation is the sum of components Zero through 
31, with components one, 28, and 31 excluded from the 
calculation. 

0038 FIG. 3 is a diagram of the integrated circuit of FIG. 
1 showing additional detail of an externally accessible con 
figuration table 103A that may be included on a hardware 
based nonlinear classifier that gives fixed (read only) infor 
mation. This configuration table may be RAM, ROM and/or 
flash based. If it is RAM based, the fixed information may be 
updated at initialization time from an external non-volatile 
source. Status table 103B may be included on a hardware 
based nonlinear classifier that provides variable (rewritten 
real time) information about the chip status, according to an 
embodiment. Real time updates as to the status of the neurons, 
Such as number of categories, neurons per category, number 
of contexts and neurons per context, for example, are pro 
vided to the host through the status table. 
0039 FIG. 4 is a diagram of the integrated circuit of FIG. 
1 depicting neurons in neuron array 101, contiguous or non 
contiguous, that may be associated with a particular context. 
It may be desired that the neurons consumed by a context be 
able to be cleared and reused. The neurons comprising a 
context may reside within one chip or be distributed across 
multiple chips in an array of chips on a board. That is, the 
neurons to be cleared may be on one or multiple chips. This 
operation may be done in parallel or serially. When com 
pleted, these neurons may then be available for storing vec 
tors of a different context which may or may not require all the 
neurons that were cleared. Multiple contexts may also be 
requested for clearing, and handled in sequence or concur 
rently. 
0040 FIG. 5 is a diagram of the integrated circuit of FIG. 
1 illustrating individual neurons comprising a set of two 
registers 501, 502 that store distance results, according to an 
embodiment. One may be used for storing the current results 
from the distance calculations. The distance between a 
learned vector and a new observed vector is often performed 
using a form of Euclidian or Manhattan distance calculation 
and results aggregation. One example distance calculation is 
the Manhattan L1 norm distance, also known as the “taxi cab' 
distance. In this calculation, the value of each component in 
the incoming vector is subtracted from the corresponding 
stored, or learned, vector in the neuron. The absolute values of 
these calculations are aggregated to form a sum of all com 
ponent distances. This resulting value, which provides an 
effective “distance' of the incoming vector from the stored 
vector, is stored in register 501 along with a vector identifi 
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cation value that identifies the results as belonging to this 
particular vector. The second register may be kept for each 
neuron of variable length and depth, and may store the dis 
tance of the previous closest result and an identifier for the 
vector that created the previous closest results. This closest 
vector may represent a cluster point. Through the keeping of 
the previous closest results and vector identifier, new cluster 
points may be presented and a determination made as to 
whether this new cluster point is closer than previous points, 
in which case the register will be updated with the new dis 
tance and vector identifier. If the new cluster point is found 
not to be closer than previous cluster points, the register may 
be left unchanged. 
0041 FIG. 6 is a diagram of the integrated circuit of FIG. 
1 illustrating preprocessing and/or post processing in logic 
blocks 105, 106 either on the input vector prior to being 
broadcast to the neuron array 101 for calculations, or prior to 
the output for post processing of the neuron array results. The 
processing on the input vector could be used to pre-filter the 
data, do feature extraction or format the data. The processing 
on the neuron output results may be for the purpose of imple 
menting a Bayesian statistical classifier in conjunction with 
the RBF/RCE or kNN operation, or PRCE probabilistic 
RCE analysis—as examples. 
0042 FIG. 7 is a diagram of the integrated circuit of FIG. 
1 illustrating pipelining of results to the output. Pipelining of 
the results allows concurrent analysis of the next vector to 
begin while the system collects the results from the previous 
vector analysis. Further, multiple matches or neuron results 
may need to be read out from one operation. Pipelining may 
also be done on the chip where overlap of operations may be 
done. Such as broadcasting a new vector while the closest 
match of a current vector may be being determined, and 
further while the results of a previous vector calculation may 
be being output to the system. 
0043 FIG. 8 is a diagram of the integrated circuit of FIG. 
1 illustrating search and sort logic 107 using the neuron array 
distance calculations, according to an embodiment. After the 
neurons have completed the distance calculations, it may be 
necessary to locate the neuron with the Smallest (closest) 
distance. The search and sort logic performs a binary search 
algorithm to find the Smallest distance. Once found, the neu 
ron with the Smallest distance is removed from consideration, 
and the binary search is repeated to find the neuron with the 
next Smallest distance. This search algorithm is described in 
detail in the above U.S. Pat. No. 5,740,326. 
0044 FIG. 8A is a diagram illustrating an enhanced search 
and sort technique, according to an embodiment. In the ref 
erenced search algorithm, the search for the lowest distance 
value is performed using a binary search method that begins 
its search with the Most Significant Bit (MSB), and then 
proceeds to each next significant bit. As individual bits are 
presented to the neurons, those with a “1” (High or H) in the 
specified bit remove themselves from consideration, while 
those with a “0” (Low or L) remain in contention for the 
lowest value. All neuron distances are compared in parallel 
using this binary search algorithm. 
0045. In an improvement upon the referenced technique, 
in the first step of the binary search if there are neurons that 
have a “1” in the MSB of their distance result and at least one 
neuron has a “0” in its MSB, then a flag is set representing that 
this is the bit location from which neurons removed them 
selves from consideration. The binary search then continues 
to the next significant bit, repeating the aforementioned pro 
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cess, and again setting a flag when neurons remove them 
selves from consideration. Thus after the first lowest distance 
is found, the next larger distance may then be found by “back 
tracking the binary search to the last known digit that pre 
sented a “0” result. A binary search between this “back 
tracked' bit position and the smallest value bit position is then 
performed. By using this modified binary search, the time to 
locate each subsequent lowest value is effectively reduced by 
one half on average. 
0046 FIG. 9 is a diagram of the integrated circuit of FIG. 
1 depicting a global masking register 902 that may be applied 
to components or sets of components for exclusion from 
calculations, according to an embodiment. This may also 
include masking of individual bits within a component by 
making the bits and/or the components a “don’t care field in 
the neuron operations. 
0047 FIG. 10 is a diagram of the integrated circuit of FIG. 
1 depicting the integrated circuits 104A, 104B having a 
NAND, DMA, PCIe, DRAM, Phase Change Memory (PCM) 
MRAM or SRAM compatible interface, according to an 
embodiment. These standard interfaces may be specified by 
committees such as ONFi (for non-volatile memory) and/or 
Jedec memory standardization committees. A combination of 
the use of a neuron memory heterogeneously in a Von Neu 
mann processing environment under the same buses as stan 
dard memory may be used to accomplish simple integration 
into existing systems. System design-in time may be greatly 
reduced through the use of industry-standard memory inter 
faces. The input/output interfaces 104A, 104B may be on one 
set of pins or two separate sets of pins. Neuron memory, 
which is an associative memory by nature, does not naturally 
fit into von-Neumann memory interfaces. The additional 
memory interface logic will help ease usage of the neuron 
memory in existing system design and memory interface 
controllers. By combining the attributes of an associative 
memory with the physical direct addressability of a von Neu 
mann memory, which can be random, block or sequentially 
accessible, a new capability is provided that provides high 
speed memory access as well as content associative access to 
the neuron memories. 

0048 FIGS. 11 and 11A are diagrams illustrating a back 
side bus which may be used to connect chips covered by this 
disclosure together for inter-chip communications, according 
to an embodiment. FIG. 11 illustrates a backside bus 1108 
which may be used to connect chips such as those discussed 
above together for intercommunications between chips. This 
extra bus interface may be its own proprietary bus or a repur 
posed input/output bus. One purpose of this bus may be to 
provide a means for communication between chips to Support 
intermediate calculations, coordination of neuron operations, 
and analysis of results. It may be serial or parallel. FIG. 11A 
illustrates multiple chips connected to system bus 104A, 
104B for communication to a host controller. The chips are 
also connected by the aforementioned backside bus 1108 for 
inter-chip communication that may be independent from the 
communication occurring on the system bus. 
0049. Although an embodiment has been described with 
reference to specific example embodiments, it will be evident 
that various modifications and changes may be made to these 
embodiments without departing from the broader spirit and 
Scope of the invention. Accordingly, the specification and 
drawings are to be regarded in an illustrative rather than a 
restrictive sense. The accompanying drawings that form a 
parthereof, show by way of illustration, and not of limitation, 
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specific embodiments in which the subject matter may be 
practiced. The embodiments illustrated are described in suf 
ficient detail to enable those skilled in the art to practice the 
teachings disclosed herein. Other embodiments may be uti 
lized and derived therefrom, such that structural and logical 
Substitutions and changes may be made without departing 
from the scope of this disclosure. This detailed description, 
therefore, is not to be taken in a limiting sense, and the scope 
of various embodiments is defined only by the appended 
claims, along with the full range of equivalents to which Such 
claims are entitled. 
0050. Such embodiments of the inventive subject matter 
may be referred to herein, individually and/or collectively, by 
the term “invention' merely for convenience and without 
intending to Voluntarily limit the scope of this application to 
any single invention or inventive concept if more than one is 
in fact disclosed. Thus, although specific embodiments have 
been illustrated and described herein, it should be appreciated 
that any arrangement calculated to achieve the same purpose 
may be substituted for the specific embodiments shown. This 
disclosure is intended to cover any and all adaptations or 
variations of various embodiments. Combinations of the 
above embodiments, and other embodiments not specifically 
described herein, will be apparent to those of skill in the art 
upon reviewing the above description. 
What is claimed is: 
1. A nonlinear neuron classifier comprising a neuron array 

that processes an input vector of variable component length 
with variable component depths to be input into the classifier 
for comparison against vectors already stored or learned in 
the classifier, a system bus interface for detecting and captur 
ing the input vector, and logic that is connected to individual 
neurons in parallel that broadcasts the input vector concur 
rently to vectors of similar length and depth stored in the 
classifier neurons, for calculation. 

2. The nonlinear neuron classifier of claim 1 wherein the 
classifier is based on RBF, RCE or kNN. 

3. The nonlinear neuron classifier of claim 1 including 
hardware to detect a component of the input vector or the 
stored (learned) vector having Zero value and excluding the 
component from being used in the vector distance calcula 
tions. 

4. The nonlinear classifier of claim 1 further comprising a 
mechanism for storing an internal configuration table that is 
accessible by hardware external to the classifier, the configu 
ration table including a combination of registers of varied 
length for storing one of the group consisting of the identity of 
the manufacturer of the classifier, the number, length and 
depth of neurons on the classifier, the masking mode and 
mask to apply to incoming data, performance parameters of 
the nonlinear classifier, and algorithm to be used during learn 
ing and recognition. 

5. The nonlinear classifier of claim 1 further comprising a 
mechanism for storing an internal status and results table that 
is accessible by hardware external to the classifier, the status 
and results table including a combination of registers of var 
ied length for storing one or more of but not limited to the 
identity of a neuron that met specific criteria, the number of 
neurons committed to different contexts, the number of con 
texts, the number of categories and the number of neurons per 
category. 

6. The nonlinear classifier of claim 1 wherein an external 
CPU can clear a first context of its learned/stored vectors and 
replace it with a new context. 
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7. The nonlinear classifier of claim 1 wherein a second 
distance register is associated with individual neurons to keep 
historical distance results and compare the historical results 
to current distance results to determine if the broadcasted 
input vector is closer than a previously broadcasted vector, 
wherein thes broadcasted vector may be the clustering point 
in a K-Means clustering algorithm. 

8. The nonlinear classifier of claim 7 wherein a closest 
historical clustering point or input vector may be identified in 
the neuron so that neuron vectors may be clustered around a 
closest input vector. 

9. The nonlinear classifier of claim 1 wherein one of a 
microcontroller core and a custom ALU/logic may be added 
to the input and/or output of the classifier for preprocessing or 
post-processing the data to be searched and pattern classified 
by the neural network. 

10. The nonlinear classifier of claim 9 wherein the classi 
fier performs mathematical operations on the results of the 
vector analysis by using one of a plurality of neurons firing in 
the classifier, the neuron distance, and the influence field 
associated with the one neuron. 

11. The nonlinear classifier of claim 9 wherein the math 
ematical operations are probabilistic operations. 

12. The nonlinear classifier of claim 1 whereink number of 
exact matches may be found and the neuron ID of the k exact 
matches may be read out on the output of the classifier. 

13. The nonlinear classifier of claim 1 further including 
search and sort logic to search and sort the calculated dis 
tances using an accelerated binary search to find Subsequent 
closest matches after a first closest match is determined. 

14. The nonlinear classifier of claim 1 wherein individual 
neurons perform one of a square operation by shifting bits in 
the distance calculator one location to the left, and a square 
root operation by shifting bits in the distance calculator one 
location to the right. 

15. The nonlinear classifier of claim 1 further comprising a 
global masking register the contents of which can be applied 
to individual categories or contexts to exclude components or 
Subsets of components from the comparison for distance cal 
culations. 

16. The nonlinear classifier of claim 15 wherein the con 
tents of the masking register can be applied to a selected bit 
within a component. 

17. The nonlinear classifier of claim 15 wherein the con 
tents of the masking register can be applied to selected groups 
of bits within a component. 

18. The nonlinear classifier of claim 1 further comprising a 
NAND flash compatible input/output interface. 

19. The nonlinear classifier of claim 1 further comprising a 
DMA controller interface where blocks of data can be trans 
ferred into the classifier or out of the classifier to external 
RAM comprising one of NOR, Flash, SRAM, PSRAM, 
MRAM, Phase Change Memory or memristors, and DRAM. 

20. The nonlinear classifier of claim 1 further comprising a 
PCIe compatible interface. 

21. The nonlinear classifier of claim 1 further comprising a 
DRAM compatible interface. 

22. The nonlinear classifier of claim 1 further comprising a 
Phase Change Memory interface. 

23. The nonlinear classifier of claim 1 further comprising a 
MRAM or SRAM compatible interface. 

24. The nonlinear classifier of claim 1 further comprising a 
backside bus for communicating between a plurality of neu 
ron circuits wherein one of the plurality of neuron circuits is 
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a master neuron circuit and others of the plurality of neuron 
circuits are slaves to the master neuron circuit, and the back 
side bus is electrical or optical, the master and slave being on 
one circuitboard or on a plurality of connected circuit boards. 

25. The nonlinear classifier of claim 1 further comprising 
Volatile or non-volatile memory technologies including one 
ofMRAM, DRAM, memristor, Phase Change Memory, NOR 
Flash and NAND for the storing of vectors in a neuron array. 
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