US 20150112910A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0112910 A1
McCormick et al. 43) Pub. Date: Apr. 23, 2015

(54) HARDWARE ENHANCEMENTS TO RADIAL (22) Filed: Oct. 22, 2013
BASIS FUNCTION WITH RESTRICTED
COULOMB ENERGY LEARNING AND/OR

K-NEAREST NEIGHBOR BASED NEURAL Publication Classification

NETWORK CLASSIFIERS (51) Int.CL
Lo GO6N 3/04 (2006.01)
(71) Applicant: in2H2, Folsom, CA (US) (52) US.CL
(72) Taventors: Bruce K. McCormick, FOLSOM, CA CPC ..ot GO6N 3/0481 (2013.01)
(US); BILL H. NAGEL, FOLSOM, CA
(US); CHRIS J. MCCORMICK, 7 ABSTRACT
SANTA BARBARA, CA (US); MICK
FANDRICH, FOLSOM, CA (US) This disclosure describes embodiments for a hardware based
neural network integrated circuit classifier incorporating
(73) Assignee: in2H2, Folsom, CA (US) natively implemented Radial Basis functions, Restricted
Coulomb Energy function, and/or kNN to make it more prac-
21) Appl. No.: 14/060,426 tical for handling a broader group of parallel algorithms
pp 2 group ol p 2
NEURON ARRAY ,
S 46
STATUS TABLE :‘) /1»1.
CONFRGURATION
TABLE ™
Ty
&
U - @
x . 7
E " LOGIC A A § i =
o BLOCK ; LQGIC [<Y]
@ ] v 2 5L0CK 7
m - —
g &
[o2] ™
LENGTH 32-2048 COMPONENTS
1),
[({
/ SEFTH T | g
| 1817 = -+ N -
/ B4 BIT @ *c
f % ' \
f A 02 N ‘\
/ o N
b ANY COMPONENT ON INFUT VECTOR 1S "0" IN VALUE CR jF ANY \ \
COMPONENT IN LEARNED, STORED NEURON ARRAY 1S °0" IN VALUE ‘\
THESE COMPONENTS DO NOT PARTICIPATE IN THE CALCULATIONS 4
PERFORMED BY THE NEURON ARRAY ASANQPTION 777




Patent Application Publication  Apr. 23,2015 Sheet 1 of 14 US 2015/0112910 A1

o0
<
<
N
~ SYSTEM BUS INTERFACE
o
3 o X
\ o
. (&
- S
20
I~
3
!
- LNOS GNY HOBYES
% # -
2
< o
& g
&
o
=\
o
<
D)
W s
13)
Q? R
Z
i
P
Wy b
g i .
2 3 9 ¥ g ™
S 5 g8 S 3
L o z = E
‘ &
[ o
Z 5 $
o 2 e s s &
—d ~ %
E 8 E =
” % FAVAEIINISNE WS1SAS 5m 0
) S




US 2015/0112910 A1

Apr. 23,2015 Sheet 2 of 14

Patent Application Publication

Z bi4

SYSTEM BUS INTERFACE

A2078
Dot

1808 GNY HOdvdS

NOHLJO NY SY AvddY NOWNIN FHL AB 3NE0443d
N SNOILYINOTYD FHL N LVEI0NNY 4 LON OQ SININOJWNCD 383HL
A FOTYA NI L0, S AVEEY NOENIN QFE0LE /GINYYIT NI ININOLNOD

/ // ANV H YO FTWA N O S H0LO3A INdNE NG ININGENOD ANY 4l —

\ /
LN zot /
VN N {
w " \
" L v {
T ny ~ -1g f
N HLd0 /
)
W
SINZNOWOD 570276 HIENTT

)

/ =<

W

Svnm

. i

=

£

. &

~ W0 e

=3 Py =

S901 . =

1R8]

0

>

&

M

i}
t

AVddY NOWNEN

418vi
NOILVENDIINGD

ATYLSNLYLS




US 2015/0112910 A1

Apr. 23,2015 Sheet 3 of 14

Patent Application Publication

ve b4

FONVISIT 3HL NTILVdITILEYd LON OF 18 ONV 82 '} SLNINCINOD Sd3HM

NOLEYIROTYO

O=U
(6} INFNOSNOD GINHYTT SO TIHOIS — (U} INIFNCIHOD LNINI # W
Lo

1

{
OMIZ-NON | ONZZ-NON Hoo  lowgzNoNiowazNoNl  HOo
.
1] A 14 314 0t e
SLgs
¥
ouIzNON]  HOo OuEZ-NON|OMIZNON | OHIzNON]L HOo
#
h SININODNOD 26 -

HOLFA
GINYYITHO
USRS

# LNINOSWOO

HOL03A
AN

HOVE 8414 8 'SINANODINOD 28 HIDNTT BOLOHA T 1divXa




Patent Application Publication  Apr. 23,2015 Sheet 4 of 14 US 2015/0112910 A1

SYSTEM BUS INTERFACE
-
%20
o
a3
0
B JH0S ONY HOYY3S
-
2
\ §
g ] ' oy
o
= Ry
pat L
(@]
[
]
]
Z )}
W
o2 3
= f X
L
Z.
o
0.
1 = S = &
fos)
N
\ N
Rarl
A e z
2 = s s s . o
N o g Z )
@ = W L)
\J £ 5 =
(%] =2 ﬁl
= [ T
ot o o el
s Z Py
2 = JOVSUIINI SN WHLSAS el




US 2015/0112910 A1

Apr. 23,2015 Sheet 5 of 14

Patent Application Publication

t DI

SYSTEM BUS INTERFACE

LY

D

M

>

5

o

= Wu =
b jalonts] m
21001 & /

o) {

3 /

f
T \ \ ‘ S
/ \ 104

\ \\ AVHNY NOHOIN

/

¥O4 G3ZNLN SNEE8 SEUXKELINOD f
AVHL NBHA LYo EYd AND) j
IXFANQD HYINDUNYd W HLM

A31VID0OGSY Iuv LVHL SROENEN

(LNSNI QL NOSRIVANOD \

&
v 183
= = “iia
. Hid30
B
J— * e
SLININOIWOD §r02-2¢ HEOND
(42}
/ &
. 5
M
=
[ey]
) &
%2018 =
01310} N ﬂ
o]
-
: )
m
hgvl
NOILYENDILANOD
VEDT
378YL SNLYIS
/
geor 7




US 2015/0112910 A1

Apr. 23,2015 Sheet 6 of 14

Patent Application Publication

S b4

SYSTEM BUS INTERFACE

¥3078
50T

SINIZNOINOD §Y02-2¢ HLIDNDY
PO

Lava

-Ligk =

H1430Q

209
Lo5—"

-
&

1405 ONY HOYEVAS

p)

W

3}
{

3

)]
s
b
&

W

S

});
i

SLNINODIWOD §702-28 HLONT

b))
t

peloyi
D001

£
/

so—"

S AVHEY NOYN3N

s

™

HOVHHZINI SNG WHLSAS

3EVL
ROULYHURDIENOD

A7EYL SNAVLS




US 2015/0112910 A1

Apr. 23,2015 Sheet 7 of 14

Patent Application Publication

9 bi4

MO0
81510

90T~

SYSTEM BUS INTERFACE

{g1ne3y

ROYNIN H0 SHOLOIA) YLYI 3HL
A0 ONISS300¥d d3HLENA ¥0d
SNOUNEN AS GIS83D0Ud J314Y
O "SNONNEN OL ONILSYIAVORE
OL ¥0d INdNEIHLOL
CGZLINENT ONIZE VLIYC ¥aHLE
NEH3HM 3R VYAGHYH GI1v2IC3a
H0 {3LN0AXT 36030

HO LS VY TEYARYED Ot

]

35

LHOS GNY HOWY

i
t

Nt

07 !
Ay NOHNIN

&
1ig ¥9
A £ | um
H1d43Q
33
- * el
SANINOQINGD §H02-28 HLDNTD
=, 2
~_ |2
03
) &
pretat =
21907 - ﬂ
=
sor—-" & - \ =
- (4]
\u Tt
3avi

v 38 NV EVHL 8MD078 JIsoT

NOUVIIOHENGD

3L SNIYLS




£ bid

US 2015/0112910 A1

SYSTEM BUS INTERFACE

e

o

HOS GNY HI

7

y

Apr. 23,2015 Sheet 8 of 14

' /
Vo
/\h...m_)"mwm NG
NYHL RIOW SFSHEHLNIHM
INdLAC SNE WILSAS FHLOL
J3aNT3did 39 0L I8V Iy
AD0T1E IS0 3HL O/ONY
A0S GNY HOUY3S 3HL 20
PD&%DO FHLWOHI SLINSIY
700~

~

]

3

Vi

W

3
e o —p
SINANOAIOD §502-28 HIONTT

MO0
2007 .

-
23]
W

LA

e

Xz
1l
D

FOVAHIINI SNT NIISAS

107

S AVHYY NOWNEN Y

«/
~ 4
/ . v
~ gy

SNONTEd NG L4035 GNY HOUYES

HLIM INGNENO SNOUYINOTYO
NOYNIN SY HOMS 335530004
ONEdaYTH3A0 INSHHNORCS
m<m_200 28 NVO SNINH G
4

104

Figvi

NOLVUNOIANGD

YL SNIVYiS

Patent Application Publication




US 2015/0112910 A1

Apr. 23,2015 Sheet 9 of 14

Patent Application Publication

g b4

A58 L AHVYNIE 3CE3AEY

W OLH3d ORY "LN0 SI0HA U 8V

JONYLSH0 HOV3 D14 XX INTLVd

SNIATY H3LAV -HONYLISIA

LSITTYAS ZHL ONIANID ¥04
NOINHOZL HOS ONY HOHYIS \

N
N

\
\

%207d
21801

SYSTEM BUS INTERFACE

1HOS CNY HOWVESR

3

1y
)]
¢

197
AVEHY NOYMMIN

3
158

UG ye
-Lid
H1d30

1LY

e

SINANGINOD 8F02-¢8 HLONAT

3
@

A0
21007

i

JOVAHIINI SNE WALSAS

avl
NOHLYHNSLNGD

VL SNLYLS




US 2015/0112910 A1

Apr. 23,2015 Sheet 10 of 14

Patent Application Publication

vg bi4

(Z-LG NO NS
NOSIEVAROD 118 FHE NO FWNSTY ONY ¥ GNY | STONVLSI HIM SNOYNTN THE O 0O NFH1L THM WHLMOOTY FHL -
ASFMOTIXIN IHL HOA DYT4 & JONVISIT HUN NOSNIN IHL O NMNRLZY THA WHLIMOSTY 3ML -
SNIA ONY L55MOT IHL 51 IONYLEIG HLIM NONNIN FHL -
OV ONY A00 JOHT THA £ SONVLSIC HLMA NCUNIN FHL (SN0 8 MLV T-H8) NOSISVANCD 2:8 FHING -
OV 100 dOHT THAM £ NV | STONGLSIO HUM SNOYTIN 3L 1843070 ¢ M3V S LA) NOSIHYAN0D nid FHANO -
FIdWVXT FA0GY FHL NI

D43 GHHL L3800 ONOOFS FHL GNIZ 0L 18 ¥3GHC L3IHOH 3HL 80ud 1uVIS3¥
0L GI3N FH1 ONLYNINGTTE "3 3HL N0 HOYY3S LEN 3HL 1415 ONY LND 344060 SFONY L8
MO MO INO FH3HM INIC FHL OL NSNS SONYLISIT ISAM0T 3HL ONIONIS 5314V € 4318

NO LNO 03408 L 19 HOIHA 40 MDVHE d33% "LN0 dONG (SINCUNIN HIAINTHAM Y2 4315

(LSTTIVING) SNV NTY FONYLSIC O 1D3A ZNO THINA Z GNY L SI315 HUM ANNLNGD ‘NOSIHYI RGO
FHL N FLYASMYE OL INNLENGD 0. 9 HUA () 3N0O 3HE MY TNSSIC Y SLIE 41 Z 4318

Hisl T
A (NAVOHS S L 0L) NS 3HL NO UG 3ONYISHT ¥I0H0 LSTHOIH S1I 330V Td ROUNAN HOWI "1 4318

¥ IONVLSIT

& AONVLSKD

Z3ONYLSIT

L JONVLSIT

SNOHNIN (149 M3 QN0 LSIHOM NOY 1VIS SNOSIVENGD)
{118 ¥3Q40 LS3HOM S 6-11g)
SNOILLISOd 418

(GH0 FYIM) SHOLOIA TV PioHd GIuvd 00 SUE8 FidNvXE




Patent Application Publication  Apr. 23,2015 Sheet 11 of 14 US 2015/0112910 A1

SYSTEM BUS INTERFACE
O X
]
3%
oy}
1A08 CNY HOEYIS
)
T
3
> T
i
= (&)
=2 e P
ST A A=
> L,
i
= )
{{ Z .
© ]
= 5
&
a5 ")
] o A
§ b= S
i = ¢ /d §§§
@ 2 T S E
= x / z
2] 5@ d_!l )
3 o< )
91 el
et . . R B B
» § AOVAHEINI SNE W21SAS
£
b2
o3 <«




US 2015/0112910 A1

Apr. 23,2015 Sheet 12 of 14

Patent Application Publication

or bi4

8i0d
WS
NVHE
Wod
YNNG
ONYN

M BUS INTERFACE

-

SY 8T

AS018
21501

N GO0

L1408 GNY HOYY3S

b);

A

)]
4

b

Hom\\

3
«

ATHEY NOHNIN

o7
Ny
EY
¢ 1HEv9
= =3 -8t
Hid3a
AN
4
P N
SININGWOD §502°28 HLONTT
AN 2
AN <4
e
. s | 90d
HOOE & | WA
= 507 ) m WS
o wd
- nudm YNNG
M ONWN
e yp0L
IEvL
NOULYHIOIHNGD
378YL SNLYLS




Patent Application Publication  Apr. 23,2015 Sheet 13 of 14 US 2015/0112910 A1

©
o
=
‘\\.
N BACKSIDE BUS INTERFACE SYSTEM BUSINTERFACE
& R
& O
g
~ o0
108 OGNV HOMY3S
-
e
4 1
>.\ t® Yoot
5 o
%
= = = 5 ’@
& L,
]
% 3
LAY P N\

1

=

2

LOGIC
BLOCK

{ \\10

1
{t
3

LENGTH 32-2048 COMPONENTS

< TH
SEAd

TATUS TABL
CONFIGURATION
TABLE

.
\\

FOVAUTINI SR8 WFISAS

DEPTH
1BIT
84 B




US 2015/0112910 A1

Apr. 23,2015 Sheet 14 of 14

Patent Application Publication

vIT bi4

hﬁ e <
Sl sty wchiher
FOVHHTILN ADVAHILN JOVANIING FOVAHILN
SNE IASH0VE SNd 3ICISHOVE SN IASHOVE SN 3CISHVE
FOVAEELNI Efel-EEIRN] JAOVAEILNE

SNg WALSAS

NG WALEAS

88 WALSAS

ﬁ

= 80}

e

!
L

aroi
L4401



US 2015/0112910 Al

HARDWARE ENHANCEMENTS TO RADIAL
BASIS FUNCTION WITH RESTRICTED
COULOMB ENERGY LEARNING AND/OR
K-NEAREST NEIGHBOR BASED NEURAL
NETWORK CLASSIFIERS

TECHNICAL FIELD

[0001] This disclosure relates to hardware embodiments
that improve the utility and performance of neural network
algorithms such as Radial Basis Function (RBF) with
Restricted Coulomb Energy (RCE) learning and/or k-Nearest
Neighbor (kNN) in a digital data processing environment.
These improvements may include modifications that expand
RBF/RCE, kNN based neural networks to include, for
example, support for probabilistic computations, additional
neural network algorithms such as K-Means, and recom-
mender algorithm features, all of which may be embedded on
chip. These improvements may also include hardware sup-
port for filing systems, swapping in and out meta data or
vectors of data to improve use in a multi-purpose/multi-user
environment.

BACKGROUND

[0002] Machine learning and recognition is a field of study
and applications whereby machines, in the form of dedicated
hardware, computing software or combinations thereof, learn
the key features and characteristics of objects. The objects
may be physical in nature, examples of which are digitized
images of automobiles or human faces. The objects may also
be non-physical in nature, examples of which are sets of
digital information representing the shopping information of
customers. The characteristics of the objects are provided to
the machine in the form of digital arrays of data that are
known as feature vectors, or simply “vectors”. Individual
elements of the feature vectors are known as components. The
machine is capable of holding many such feature vectors, and
may use one of many algorithms from the field of neural
networks during learning to assign the feature vectors to a
class of objects. The machine may be capable of holding and
analyzing un-related sets of data, with the data sets known as
a “context”. For example, it may contain a group, or context
of feature vectors related to automobiles and another context
containing feature vectors related to consumer spending hab-
its. The Machine could direct new feature vectors requiring
analysis to the appropriate context. A context may be further
sub-divided into categories.

[0003] Once the machine has learned an appropriate num-
ber of features, the characteristics of new objects are given to
the machine in the form of vectors for classification; that is, to
determine if the new object belongs to a class of previously
learned objects. The machine may use one or more algorithms
from the field of neural networks to determine the closeness
(conversely, distance) of a new feature vector to the learned
feature vectors. The distance between a learned vector and a
new observed vector is often performed using a form of
Euclidian or Manhattan distance calculation and results
aggregation. One example distance calculation is the Man-
hattan L1 norm distance, also known as the “taxi cab” dis-
tance. Another distance calculation is the Euclidian .2 norm.
A third example is L max or Leo. A machine performing this
analysis may be known as a classifier.

[0004] For machine learning to be increasingly practical in
today’s digital environment it needs to be conducive to vari-
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ous data widths and resolutions, support averaging and proba-
bilistic calculations, as well as have the capability to swap in
and out “files” (or classes of learned data) to support mul-
tiuser and/or multipurpose application scenarios. The
machine may also be required to perform these tasks at very
high rates of speed.

[0005] Hardware implementations of neural network algo-
rithms saw significant interest in the 1980’s but predomi-
nantly took the approach of weights in a multi-layer percep-
tron. Many of these solutions were analog in nature. Recent
efforts in this space have rekindled an interest in analog and
“spiking neurons” that try to conform very closely to biologi-
cal brain cells. These approaches—using weights in a multi-
layer perceptron and spiking neurons—are a different
approach from that of the 1980s, may also be digital in nature,
but are different than the Radial Basis Function (RBF) and
Restricted Coulomb Energy (RCE) algorithms approaches.
IBM subsequently patented and pursued early generations of
a hardware implementation for the base RBF/RCE/KNN
architecture. The more practical approach disclosed herein
may be well suited for heterogeneous environments, or in
some cases, standalone environments.

[0006] Disclosed herein are circuits and functions that will
enhance an RBF/RCE/KNN based architecture. Their useful-
ness in a general computing environment performing digital
memory based “fuzzy” operations in a hardware implemen-
tation offers significant performance improvements made by
emulating the important computational attributes of neural
networks without the issues of trying to emulate unnecessary
biological functions. Software simulations that use von Neu-
mann compatible data types and techniques may more readily
transition to parallel memory based and scalable computa-
tional approaches with these RBF/RCE, kNN embodiments.
Embodiments of multiple performance embodiments are also
set forth herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Some embodiments are illustrated by way of
example and not as a limitation in the figures of the accom-
panying drawings, wherein the same components in the vari-
ous figures bear the same reference numerals.

[0008] FIG. 1 1is a diagram of an integrated circuit, accord-
ing to an embodiment.

[0009] FIG. 2 is a diagram of the integrated circuit of FIG.
1 that provides a feature wherein any ofthe components in the
input vector, stored vectors, or both, have zero (0) value are
excluded from the calculation in the neuron array, according
to an embodiment.

[0010] FIG.2A is adiagram showing an example of exclud-
ing components or parts of the components from the distance
calculation in FIG. 2, according to an embodiment.

[0011] FIG. 3 is a diagram of the integrated circuit of FIG.
1 showing an externally accessible configuration table that
may be included on hardware based nonlinear classifier that
gives fixed (read only) information about the chip configura-
tion and capabilities. Also shown is an externally accessible
status register that provides variable (rewritten in real time)
information about the chip status, according to an embodi-
ment.

[0012] FIG. 4 is a diagram of the integrated circuit of FIG.
1 depicting neurons, which may be contiguous or non-con-
tiguous, that may be associated with a particular context and
subset categories that may be able to be cleared and reused as
a partial clearing of the chip, according to an embodiment.
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[0013] FIG. 5is a diagram of the integrated circuit of FIG.
1 illustrating individual neurons comprising a set of two
registers that stores the distance results, according to an
embodiment.

[0014] FIG. 6 is a diagram of the integrated circuit of FIG.
1 illustrating preprocessing and/or post processing logic
blocks either on the input vector prior to being submitted to
the neuron array for calculations or storage or output results
after the neuron array calculations or retrieval, according to
an embodiment.

[0015] FIG. 7 is a diagram of the integrated circuit of FIG.
1 illustrating the pipelining of results to the output when
multiple matches or neuron results may be read out from one
operation, according to an embodiment.

[0016] FIG. 8is a diagram of the integrated circuit of FIG.
1 illustrating search and sort logic using the neuron array
distance calculations, according to an embodiment.

[0017] FIG.8Aisadiagram illustrating an enhanced search
and sort technique, according to an embodiment.

[0018] FIG. 9 is a diagram of the integrated circuit of FIG.
1 depicting a global masking register that may be applied to
components, sets of components and/or bits of components
for exclusion from calculations, according to an embodiment.
[0019] FIG.10 is a diagram of the integrated circuit of FIG.
1 depicting the integrated circuit having a NAND, DMA,
PCle, DRAM, Phase Change Memory (PCM) MRAM or
SRAM compatible interface, according to an embodiment.
[0020] FIGS. 11 and 11A are diagrams illustrating a back-
side bus which may be used to connect chips covered by this
disclosure together for inter-chip communications, according
to an embodiment.

DETAILED DESCRIPTION

[0021] Numerous hardware embodiments are disclosed
herein to be included in part in, in all of, or as part of other
additional hardware embodiments to make an RBF/RCE and/
or kNN non-linear classifier more amenable for heteroge-
neous inclusion to existing computing environments for
broader algorithm support, support for multiple data types
and improved performance. For example, when recognizing
an object in an image, it may be desirable on one hand to be
able to encompass a vector of image data that has 24 bit color
field information per pixel (component resolution) with a
vector length of 2048 components for high definition images
for comparison to other images, while also being useful for
Gray scale (8 bits), sound files or other various data files in
data mining. Hash functions of'32 bytes (32 components with
8 bits per component such as SHA-32 for example) are
another example of supporting multiple data types for gener-
ality on a single scalable architecture.

[0022] Numerous improvements are made to speed pre-
and post-processing of data and results. In prior embodi-
ments, these pre- and post-processing functions are per-
formed by the host computer in a software algorithm. Signifi-
cant performance improvements are made through the
addition of pre-processing hardware, in the form of either
dedicated hardware or a programmable controller, which may
perform a number of functions on an incoming vector. As an
example, this pre-processing hardware may improve the per-
formance of the system by filtering the data to perform feature
extraction before comparison to the stored vectors.

[0023] Post-processing hardware, in the form of either
dedicated hardware or a programmable controller, are
included to improve system performance. An example is the
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Bayesian probabilistic statistical analysis on the results prior
to presenting the information to the system.

[0024] The system interface may be enhanced to allow ease
of communication to standard memory interfaces or DMA
support logic to local memory for fast transfers to various
standard memory types.

[0025] An integrated status table may enable faster system
performance by providing consolidated information of the
chip’s status to the operating system. For example dynamic
status information of the number of neurons committed to
different contexts, and the number of contexts that are on the
chip are examples of system performance enhancements for
using the chip in a multipurpose environment.

[0026] Anintegrated configuration table may also allow the
operating system to configure the various parameters of the
device, including but not limited to the algorithm to be used
during learning and recognition, the length and depth of the
neurons, and the masking mode and mask to apply to incom-
ing vector data. The configuration table may also store factory
device configuration information, for example, how many
neurons are on the chip, a manufacturer’s ID, and device
performance information.

[0027] Improvements to supported algorithms or additional
algorithms may also be included. An example is support for
K-Means clustering wherein cluster points are chosen for
comparison to a set of data points. One such use of this
improvement is that these un-clustered data points are stored
in the neuron array with the intent of finding the nearest
cluster point of N cluster points being submitted. These N
cluster points are submitted to the chip to determine which
cluster point the stored data point is closest to. An historical
association is kept as each new cluster point presents itself.
The neuron then updates the cluster data point that it is asso-
ciated with the new cluster point if the new cluster point is
closer than a previously observed cluster point. Another use
of the logic block for post processing in this example appli-
cation may be to calculate new N-prime cluster points with
the sorted data in the neuron array through averaging.
[0028] Another algorithm embodiment is integration of a
recommendation engine where it is desirable to compare
relevant information between two “customers” or clients to
determine if one’s buying patterns is applicable to another’s
for recommendation by excluding in the calculations com-
parisons of fields (components) where there is no common
experience (represented as a “0” in the component field).
[0029] Support for system performance embodiments may
be incorporated in many ways. One such embodiment is
previously patented search and sort method U.S. Pat. No.
5,740,326 entitled “Circuit for Searching/Sorting Data in
Neural Networks,” which is incorporated herein by reference
in its entirety, and comparing individual bits from highest
order to lowest with all distances participating in a “wired
OR” fashion. To enhance this approach for subsequent closest
matches, such as a k-Next Neighbor (“k-NN”) algorithm
where k is greater than one), it is desirable to keep track of
when the neuron dropped out of the wired OR comparisons,.
A modified binary search may be performed as discussed
below, allowing a reduced comparison of lower order bits to
determine the next closest vector.

[0030] To facilitate increased performance and capacity, in
one embodiment a separate bus, or “backside bus,” may be
used wherein a dedicated inter-chip communication bus is
used to coordinate the functions of the integrated chips on this
bus. One chip may be designated as the master with the
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remaining as slaves to this chip. Parallel operations and coor-
dination of results happens via this dedicated backside bus
that each chip is connected to.

[0031] Anembodiment may include multi-stage pipelining
of intra-chip operations to improve system performance. In
prior embodiments, the loading of vectors is serially followed
by vector recognition and calculation, which is in turn fol-
lowed by output of results. An embodiment may perform
these operations in parallel; for example, the loading of the
next vector set occurs while at the same time the current
vector set is undergoing recognition, and further the results
from the previous vector set are output to the system.

[0032] The embodiment may also pipeline multiple fuzzy
or exact match results to the output when more than one
neuron fires, similar to finding multiple exact matches in data
de-duplication comparing hash function tags. Fuzzy matches
are determined via an influence field associated with each
neuron that specifies the maximum and/or minimum differ-
ence in distance between the input vector and the stored
neuron vector allowed. For the neuron to fire, or signal it is a
fuzzy match, the distance result needs to be within the influ-
ence field of that neuron. These distance or firing neuron
results may be read out all at once or sequentially, one after
the other, providing greater throughput for the system user.
[0033] Anembodiment ofachip thatincludes some orall of
the above techniques now will be described more fully here-
after with reference to the accompanying drawings. Indeed,
these may be represented in many difterent forms and should
not be construed as limited to the embodiments set forth
herein; rather, these embodiments are provided by way of
example.

[0034] FIG.1 is a diagram of an integrated circuit, accord-
ing to an embodiment. The circuit contains a system bus
interface 104 A, 104B, for inputs and outputs, a neuron array
101 for calculating distances, search and sort hardware 107
for finding closest or exact match, logic 105, 106 for prepro-
cessing and post processing of the input or stored data, a
configuration table 103A for configuring the device, and a
status table 103B that stores status information for an external
CPU such as a host processor. The neuron 102 in one embodi-
ment may handle vectors of any length from 32 to 2048
components, with 1 to 64 bits per component. Interfaces
104A, 104B to the external and support logic broadcast a
vector that is of variable length and depth to a compatible
neuron array of similar breadth and depth-per-neuron.
[0035] The system bus interface for inputs and outputs
104A, 104B, may be the same bidirectional bus or separate
buses. Information flows from this bus interface to an optional
preprocessor at logic block 105 and then broadcast in parallel
to an RBF/RCE-based neuron array 101 for calculating dis-
tances between input vectors and learned vectors.

[0036] FIG. 2 is a diagram of the integrated circuit of FIG.
1 that provides a feature wherein any ofthe components in the
input vector 100, stored vectors or both have zero (0) value,
according to an embodiment. In one embodiment, this com-
ponent is not used in calculating the distance between the
input and stored vectors. Itis desirable in some applications to
remove zero value data from consideration, as the zero indi-
cates a null value which if considered would considerably
skew the distance calculation results.

[0037] FIG.2A is adiagram showing an example of exclud-
ing components from the distance calculation in FIG. 2,
according to an embodiment. In FIG. 2 input vector 100 may
be scanned for any OOH component as it comes in on the
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input and before it is broadcast to the neuron array. Alterna-
tively, neurons of the neuron array 101 may check the input
vector for any OOH component after it has been broadcast to
the array. Likewise any stored vector (or prototype) in the
neuron array 101 may be also scanned for OOH. The scanning
may be done using well known comparator hardware logic
and may be done serially, or in parallel with circuitry that
looks at all bits concurrently. If either the input vector 100, the
stored vector in neuron array 101 or both has a OH (“zero
hex”) component, it and its counterpart component may be
ignored in the distance calculation. The width of the compo-
nent may vary from 1 binary bit to 64 binary bits. Any com-
ponent where all of the component bits are zero will be
excluded from the calculation, as will the corresponding input
or stored component. The distance calculation will be the sum
of'all components distances, minus the components where an
all zeroes condition was found. In the example shown, the
distance calculation is the sum of components zero through
31, with components one, 28, and 31 excluded from the
calculation.

[0038] FIG. 3 is a diagram of the integrated circuit of FIG.
1 showing additional detail of an externally accessible con-
figuration table 103 A that may be included on a hardware
based nonlinear classifier that gives fixed (read only) infor-
mation. This configuration table may be RAM, ROM and/or
flash based. If it is RAM based, the fixed information may be
updated at initialization time from an external non-volatile
source. Status table 103B may be included on a hardware-
based nonlinear classifier that provides variable (rewritten
real time) information about the chip status, according to an
embodiment. Real time updates as to the status of the neurons,
such as number of categories, neurons per category, number
of contexts and neurons per context, for example, are pro-
vided to the host through the status table.

[0039] FIG. 4 is a diagram of the integrated circuit of FIG.
1 depicting neurons in neuron array 101, contiguous or non-
contiguous, that may be associated with a particular context.
It may be desired that the neurons consumed by a context be
able to be cleared and reused. The neurons comprising a
context may reside within one chip or be distributed across
multiple chips in an array of chips on a board. That is, the
neurons to be cleared may be on one or multiple chips. This
operation may be done in parallel or serially. When com-
pleted, these neurons may then be available for storing vec-
tors of adifferent context which may or may not require all the
neurons that were cleared. Multiple contexts may also be
requested for clearing, and handled in sequence or concur-
rently.

[0040] FIG. 5 is a diagram of the integrated circuit of FIG.
1 illustrating individual neurons comprising a set of two
registers 501, 502 that store distance results, according to an
embodiment. One may be used for storing the current results
from the distance calculations. The distance between a
learned vector and a new observed vector is often performed
using a form of Euclidian or Manhattan distance calculation
and results aggregation. One example distance calculation is
the Manhattan L1 norm distance, also known as the “taxi cab”
distance. In this calculation, the value of each component in
the incoming vector is subtracted from the corresponding
stored, or learned, vector in the neuron. The absolute values of
these calculations are aggregated to form a sum of all com-
ponent distances. This resulting value, which provides an
effective “distance” of the incoming vector from the stored
vector, is stored in register 501 along with a vector identifi-
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cation value that identifies the results as belonging to this
particular vector. The second register may be kept for each
neuron of variable length and depth, and may store the dis-
tance of the previous closest result and an identifier for the
vector that created the previous closest results. This closest
vector may represent a cluster point. Through the keeping of
the previous closest results and vector identifier, new cluster
points may be presented and a determination made as to
whether this new cluster point is closer than previous points,
in which case the register will be updated with the new dis-
tance and vector identifier. If the new cluster point is found
not to be closer than previous cluster points, the register may
be left unchanged.

[0041] FIG. 6 is a diagram of the integrated circuit of FIG.
1 illustrating preprocessing and/or post processing in logic
blocks 105, 106 either on the input vector prior to being
broadcast to the neuron array 101 for calculations, or prior to
the output for post processing of the neuron array results. The
processing on the input vector could be used to pre-filter the
data, do feature extraction or format the data. The processing
on the neuron output results may be for the purpose of imple-
menting a Bayesian statistical classifier in conjunction with
the RBF/RCE or kNN operation, or PRCE—probabilistic
RCE analysis—as examples.

[0042] FIG. 7 is a diagram of the integrated circuit of FIG.
1 illustrating pipelining of results to the output. Pipelining of
the results allows concurrent analysis of the next vector to
begin while the system collects the results from the previous
vector analysis. Further, multiple matches or neuron results
may need to be read out from one operation. Pipelining may
also be done on the chip where overlap of operations may be
done, such as broadcasting a new vector while the closest
match of a current vector may be being determined, and
further while the results of a previous vector calculation may
be being output to the system.

[0043] FIG. 8 is a diagram of the integrated circuit of FIG.
1 illustrating search and sort logic 107 using the neuron array
distance calculations, according to an embodiment. After the
neurons have completed the distance calculations, it may be
necessary to locate the neuron with the smallest (closest)
distance. The search and sort logic performs a binary search
algorithm to find the smallest distance. Once found, the neu-
ron with the smallest distance is removed from consideration,
and the binary search is repeated to find the neuron with the
next smallest distance. This search algorithm is described in
detail in the above U.S. Pat. No. 5,740,326.

[0044] FIG.8Aisadiagram illustrating an enhanced search
and sort technique, according to an embodiment. In the ref-
erenced search algorithm, the search for the lowest distance
value is performed using a binary search method that begins
its search with the Most Significant Bit (MSB), and then
proceeds to each next significant bit. As individual bits are
presented to the neurons, those with a “1” (High or H) in the
specified bit remove themselves from consideration, while
those with a “0” (Low or L) remain in contention for the
lowest value. All neuron distances are compared in parallel
using this binary search algorithm.

[0045] In an improvement upon the referenced technique,
in the first step of the binary search if there are neurons that
have a “1” in the MSB of their distance result and at least one
neuron has a “0” in its MSB, then a flag is set representing that
this is the bit location from which neurons removed them-
selves from consideration. The binary search then continues
to the next significant bit, repeating the aforementioned pro-
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cess, and again setting a flag when neurons remove them-
selves from consideration. Thus after the first lowest distance
is found, the next larger distance may then be found by “back-
tracking” the binary search to the last known digit that pre-
sented a “0” result. A binary search between this “back-
tracked” bit position and the smallest value bit position is then
performed. By using this modified binary search, the time to
locate each subsequent lowest value is effectively reduced by
one half on average.

[0046] FIG. 9 is a diagram of the integrated circuit of FIG.
1 depicting a global masking register 902 that may be applied
to components or sets of components for exclusion from
calculations, according to an embodiment. This may also
include masking of individual bits within a component by
making the bits and/or the components a “don’t care” field in
the neuron operations.

[0047] FIG.10 is a diagram of the integrated circuit of FIG.
1 depicting the integrated circuits 104A, 104B having a
NAND, DMA, PCIe, DRAM, Phase Change Memory (PCM)
MRAM or SRAM compatible interface, according to an
embodiment. These standard interfaces may be specified by
committees such as ONFi (for non-volatile memory) and/or
Jedec memory standardization committees. A combination of
the use of a neuron memory heterogeneously in a von Neu-
mann processing environment under the same buses as stan-
dard memory may be used to accomplish simple integration
into existing systems. System design-in time may be greatly
reduced through the use of industry-standard memory inter-
faces. The input/output interfaces 104 A, 104B may be on one
set of pins or two separate sets of pins. Neuron memory,
which is an associative memory by nature, does not naturally
fit into von-Neumann memory interfaces. The additional
memory interface logic will help ease usage of the neuron
memory in existing system design and memory interface
controllers. By combining the attributes of an associative
memory with the physical direct addressability of a von Neu-
mann memory, which can be random, block or sequentially
accessible, a new capability is provided that provides high-
speed memory access as well as content associative access to
the neuron memories.

[0048] FIGS. 11 and 11A are diagrams illustrating a back-
side bus which may be used to connect chips covered by this
disclosure together for inter-chip communications, according
to an embodiment. FIG. 11 illustrates a backside bus 1108
which may be used to connect chips such as those discussed
above together for intercommunications between chips. This
extra bus interface may be its own proprietary bus or a repur-
posed input/output bus. One purpose of this bus may be to
provide a means for communication between chips to support
intermediate calculations, coordination of neuron operations,
and analysis of results. It may be serial or parallel. FIG. 11A
illustrates multiple chips connected to system bus 104A,
104B for communication to a host controller. The chips are
also connected by the aforementioned backside bus 1108 for
inter-chip communication that may be independent from the
communication occurring on the system bus.

[0049] Although an embodiment has been described with
reference to specific example embodiments, it will be evident
that various modifications and changes may be made to these
embodiments without departing from the broader spirit and
scope of the invention. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a
restrictive sense. The accompanying drawings that form a
part hereof, show by way of illustration, and not of limitation,
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specific embodiments in which the subject matter may be
practiced. The embodiments illustrated are described in suf-
ficient detail to enable those skilled in the art to practice the
teachings disclosed herein. Other embodiments may be uti-
lized and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. This detailed description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which such
claims are entitled.

[0050] Such embodiments of the inventive subject matter
may be referred to herein, individually and/or collectively, by
the term “invention” merely for convenience and without
intending to voluntarily limit the scope of this application to
any single invention or inventive concept if more than one is
in fact disclosed. Thus, although specific embodiments have
been illustrated and described herein, it should be appreciated
that any arrangement calculated to achieve the same purpose
may be substituted for the specific embodiments shown. This
disclosure is intended to cover any and all adaptations or
variations of various embodiments. Combinations of the
above embodiments, and other embodiments not specifically
described herein, will be apparent to those of skill in the art
upon reviewing the above description.

What is claimed is:

1. A nonlinear neuron classifier comprising a neuron array
that processes an input vector of variable component length
with variable component depths to be input into the classifier
for comparison against vectors already stored or learned in
the classifier, a system bus interface for detecting and captur-
ing the input vector, and logic that is connected to individual
neurons in parallel that broadcasts the input vector concur-
rently to vectors of similar length and depth stored in the
classifier neurons, for calculation.

2. The nonlinear neuron classifier of claim 1 wherein the
classifier is based on RBF, RCE or kNN.

3. The nonlinear neuron classifier of claim 1 including
hardware to detect a component of the input vector or the
stored (learned) vector having zero value and excluding the
component from being used in the vector distance calcula-
tions.

4. The nonlinear classifier of claim 1 further comprising a
mechanism for storing an internal configuration table that is
accessible by hardware external to the classifier, the configu-
ration table including a combination of registers of varied
length for storing one of the group consisting of the identity of
the manufacturer of the classifier, the number, length and
depth of neurons on the classifier, the masking mode and
mask to apply to incoming data, performance parameters of
the nonlinear classifier, and algorithm to be used during learn-
ing and recognition.

5. The nonlinear classifier of claim 1 further comprising a
mechanism for storing an internal status and results table that
is accessible by hardware external to the classifier, the status
and results table including a combination of registers of var-
ied length for storing one or more of but not limited to the
identity of a neuron that met specific criteria, the number of
neurons committed to different contexts, the number of con-
texts, the number of categories and the number of neurons per
category.

6. The nonlinear classifier of claim 1 wherein an external
CPU can clear a first context of its learned/stored vectors and
replace it with a new context.
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7. The nonlinear classifier of claim 1 wherein a second
distance register is associated with individual neurons to keep
historical distance results and compare the historical results
to current distance results to determine if the broadcasted
input vector is closer than a previously broadcasted vector,
wherein thes broadcasted vector may be the clustering point
in a K-Means clustering algorithm.

8. The nonlinear classifier of claim 7 wherein a closest
historical clustering point or input vector may be identified in
the neuron so that neuron vectors may be clustered around a
closest input vector.

9. The nonlinear classifier of claim 1 wherein one of a
microcontroller core and a custom ALLU/logic may be added
to the input and/or output of the classifier for preprocessing or
post-processing the data to be searched and pattern classified
by the neural network.

10. The nonlinear classifier of claim 9 wherein the classi-
fier performs mathematical operations on the results of the
vector analysis by using one of a plurality of neurons firing in
the classifier, the neuron distance, and the influence field
associated with the one neuron.

11. The nonlinear classifier of claim 9 wherein the math-
ematical operations are probabilistic operations.

12. The nonlinear classifier of claim 1 wherein k number of
exact matches may be found and the neuron ID of the k exact
matches may be read out on the output of the classifier.

13. The nonlinear classifier of claim 1 further including
search and sort logic to search and sort the calculated dis-
tances using an accelerated binary search to find subsequent
closest matches after a first closest match is determined.

14. The nonlinear classifier of claim 1 wherein individual
neurons perform one of a square operation by shifting bits in
the distance calculator one location to the left, and a square
root operation by shifting bits in the distance calculator one
location to the right.

15. The nonlinear classifier of claim 1 further comprising a
global masking register the contents of which can be applied
to individual categories or contexts to exclude components or
subsets of components from the comparison for distance cal-
culations.

16. The nonlinear classifier of claim 15 wherein the con-
tents of the masking register can be applied to a selected bit
within a component.

17. The nonlinear classifier of claim 15 wherein the con-
tents of the masking register can be applied to selected groups
of bits within a component.

18. The nonlinear classifier of claim 1 further comprising a
NAND flash compatible input/output interface.

19. The nonlinear classifier of claim 1 further comprising a
DMA controller interface where blocks of data can be trans-
ferred into the classifier or out of the classifier to external
RAM comprising one of NOR, Flash, SRAM, PSRAM,
MRAM, Phase Change Memory or memristors, and DRAM.

20. The nonlinear classifier of claim 1 further comprising a
PCle compatible interface.

21. The nonlinear classifier of claim 1 further comprising a
DRAM compatible interface.

22. The nonlinear classifier of claim 1 further comprising a
Phase Change Memory interface.

23. The nonlinear classifier of claim 1 further comprising a
MRAM or SRAM compatible interface.

24. The nonlinear classifier of claim 1 further comprising a
backside bus for communicating between a plurality of neu-
ron circuits wherein one of the plurality of neuron circuits is
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a master neuron circuit and others of the plurality of neuron
circuits are slaves to the master neuron circuit, and the back-
side bus is electrical or optical, the master and slave being on
one circuit board or on a plurality of connected circuit boards.

25. The nonlinear classifier of claim 1 further comprising
volatile or non-volatile memory technologies including one
of MRAM, DRAM, memristor, Phase Change Memory, NOR
Flash and NAND for the storing of vectors in a neuron array.

#* #* #* #* #*
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