
WA MALI MALTA MAMA WA MA TA TERTIAN DAN LATIH US 20180103103A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0103103 A1

Dhuse et al . (43) Pub . Date : Apr . 12 , 2018

(54) EFFICIENT RESOURCE RECLAMATION
AFTER DELETION OF SLICE FROM
COMMON FILE

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US)

(72) Inventors : Greg R . Dhuse , Chicago , IL (US) ; Ilya
Volvovski , Chicago , IL (US) ; Joseph
M . Kaczmarek , Chicago , IL (US) ;
Trevor J . Vossberg , Chicago , IL (US)

(21) Appl . No . : 15 / 838 , 725

Publication Classification
(51) Int . Ci .

H04L 29 / 08 (2006 . 01)
HO3M 13 / 37 (2006 . 01)
HO3M 13 / 09 (2006 . 01)
HO3M 13 / 15 (2006 . 01)

) U . S . Ci .
CPC . . . H04L 67 / 1097 (2013 . 01) ; HO3M 13 / 1515

(2013 . 01) ; HO3M 13 / 09 (2013 . 01) ; HO3M
13 / 3761 (2013 . 01)

(57) ABSTRACT
A distributed storage network (DSN) employs one or more
distributed storage task execution (DST EX) units for dis
persed storage of encoded data slices . A delete - slice request
associated with a first encoded data slice is received at a
DST EX unit , the encoded data slice is packed into a
common file with other encoded data slices , and the com
mon file is stored in a distributed storage (DS) memory
included in the DST EX unit . Each encoded data slice
packed into the common file is associated with a file offset
within the common file . The DST EX unit identifies a file
offset of the first encoded data slice within the common file .
The DST EX unit releases the portion of the DS memory
associated with the particular file offset within the common
file to a file system maintained by the DST EX unit .

(22) Filed : Dec . 12 , 2017

(63)
Related U . S . Application Data

Continuation - in - part of application No . 15 / 812 , 706 ,
filed on Nov . 14 , 2017 , which is a continuation of
application No . 14 / 956 , 818 , filed on Dec . 2 , 2015 ,
now Pat . No . 9 , 826 , 038 .
Provisional application No . 62 / 109 , 712 , filed on Jan .
30 , 2015 .

(60)

computing device 12 computing device 16

computing core 26 computing core 26 data 40
DS client
module 34 DS client

module 34 computing
core 26

interface 32 interface 32 interface 30 interface 30
computing device 14

interface 33 network 24

computing
core 26

managing
unit 18

interface 33 - - - - - + - - - - + - - - - -
-

-

- storage unit (SU)
36 computing

core 26
storage unit 36

integrity processing
unit 20

distributed , or dispersed , storage
network (DSN) 10 DSN memory 22

computing device 12

computing device 16

computing core 26

Patent Application Publication

computing core 26

data 40

DS client module 34

DS client module 34

computing core 26

interface 32

interface 32

interface 30

interface 30 computing device 14

Apr . 12 , 2018 Sheet 1 of 7

network 24

interface 33 computing core 26 managing unit 18

-

-

+

-

-

interface 33

-

. -

7 .

storage unit (SU)
36

computing core 26

storage unit (su)

storage unit 36 storage unit 36

integrity processing unit 20

FIG . 1 distributed , or dispersed , storage network (DSN) 10

_ DSN memory 22

US 2018 / 0103103 A1

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- - - - - - - - I computing core 26

Patent Application Publication

- -

video graphics processing unit 55

— - - - —

processing module 50

memory controller

main memory man gerne

-

54

- -

sement commentar norte -

- - -

person

10

10

-

10 device interface module 62

interface 60

controller 56

-

Apr . 12 , 2018 Sheet 2 of 7

- - -

ROMA

-

ROM BIOS 64

Patinere PCI interface 58

-

si

-

-

-

-

-

- -

USB interface module 66

HBA interface module 68

network interface module 70

flash

HD interface
interface module 72 | module 74

DSN interface module 76

-

-

-

-

—

—

US 2018 / 0103103 A1

FIG . 2

computing device 12 or 16

SU # 1 36

| | SU # 2 36

| |

SU # 3 36

| |

SU # 4 36

SN 1 _ 1 EDS 1 _ 1

data segment 1

SN 2 _ 1 EDS 2 1

SN 31 EDS 3 _ 1

| | SU # 5 36

SN5 _ 1 EDS 5 _ 1

SN 4 _ 1 EDS 4 _ 1

Patent Application Publication

segmenting

error

data object 40

encoding , slicing , & naming

data segment Y

SN 1 _ Y EDS 1 _ Y

SN 2 Y EDS 2 Y

SN 3 Y EDS 3 _ Y

SN 4 _ Y EDS 4 _ Y

SN 5 Y EDS 5 _ Y

FIG . 3

- D -

SN = slice name EDS = encoded data slice

T

FIG . 4

encoding matrix (EM)

| *

data matrix (DM)

=

coded matrix (CM)
(C)

1121 : 231 - t = 31
013 - 03 - 03 -

Apr . 12 , 2018 Sheet 3 of 7

a b C

D1
* D5

a h i | * lng

09

i k

mn 0

D2 D6 010

D3 D7 011

D4
D8 =

012

X11 X12 X13X14 | X21 X22 23 24
X31X32X33 X34 X41X42X43 X44 X51X52X53 X54

set of EDS
EDS 1 _ 1 EDS 2 1 EDS 3 _ 1 EDS 4 _ 1 EDS 5 _ 1

FIG . 5

slice name 80

vault ID data object ID

pillar #

data segment #

rev . info

US 2018 / 0103103 A1

FIG . 6

Computing device 12 or 16

Patent Application Publication

SU # 136

| SU # 2 36

SU # 3 36

SU4 36

| SU 5 36

data segment 1

SN 11 EDS 11

SN 21 EDS21

SN 31 EDS 31

SN 4 . 1 EDS 4 . 11

SN511 EDS 51

combine
…
…

data object 40

deslicing & error decoding
data segment Y

SN 1Y EDS1 _ Y

SN2 _ Y EDS2Y
SN3Y EDS 3Y

SN4 _ Y . EDS A _ Y

SN5Y EDS 5 . Y

FIG . 7

Apr . 12 , 2018 Sheet 4 of 7

-

-

decoding matrix (E)

IL - J - | - ?

* | coded matix | ID = | data matrix (DM) | | D

(CM)

US 2018 / 0103103 A1

FIG . 8

DST EX unit set 630

-

Patent Application Publication

-

DST EX unit 1

DST EX unit 2

DST EX unit n

-

-

RRRRRRRRRRRRRRRRRRR

. . .

. . .

. .

. .

-

-

- - - -

memory 88 file 1 offset 0 SLC A1 offset 1 SLC B1 offset 2 SLC C1 offset 3 SLC D1

memory 88 file 1 offset 0 SLC A2 offset 1 SLC B2 offset 2 SLC C2 offset 3 SLC D2

memory 88 file 1 offset 0 SLC An offset 1 SLC Bn offset 2 SLC Cn offset 3 SLC Dn

- - - -

. .

- -

.

-

-

shaded : identified for deletion

-

-

-

-

. . .

-

-

-

-

-

- - -

Apr . 12 , 2018 Sheet 5 of 7

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

access requests 2

access requests n

access requests 1

network 24
access requests 1 - n Birl : a DST processing unit 616

US 2018 / 0103103 A1

FIG . 9

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

DST EX unit set 630

- -

-

-

Patent Application Publication

-

-

DST EX unit 1

DST EX unit 2

DST EX unit n

-

-

-

-

-

-

-

-

memory 88

-

-

-

-

-

-

-

-

-

-

-

-

memory 88 file 1 offset 0 SLC A2 offset 1 SLC C2 offset 2 SLC D2 |

offset 3

-

memory 88 file 1 offset 0 SLC An offset 1 SLC Cn offset 2 SLC Dn
offset 3

-

file 1 offset 0 SLC A1 offset 1 SLC C1 offset 2 SLC D1
offset 3

-

-

.

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

.

1111 . 1111

.

- -

-

-

- -

- -

Apr . 12 , 2018 Sheet 6 of 7

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

network 24 DST processing unit 16

US 2018 / 0103103 A1

FIG . 10

636

receive a delete slice request for an encoded data slice , where a plurality of encoded data
slices are packed into a common file at a corresponding plurality of file offsets , where the

common file is stored in a memory , and where the plurality of encoded data slices includes encoded data slice

Patent Application Publication

638

identify a file offset of the plurality of offsets , where the file offset corresponds to the encoded data slice in accordance with a slice mapping

640 640

facilitate releasing a portion of the memory to a
file system , where the portion of the memory is associated with the identified file offset

642

Apr . 12 , 2018 Sheet 7 of 7

facilitate modifying the slice mapping based on the releasing of the portion of the memory

644

store / pack a new encoded data slice into the common file at an offset associated with the released portion of the memory

US 2018 / 0103103 A1

FIG . 11

US 2018 / 0103103 A1 Apr . 12 , 2018

EFFICIENT RESOURCE RECLAMATION
AFTER DELETION OF SLICE FROM

COMMON FILE

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] The present U . S . Utility Patent Application claims
priority pursuant to 35 U . S . C . $ 120 as a continuation - in - part
of U . S . Utility application Ser . No . 15 / 812 , 706 entitled
“ SELECTING A DATA STORAGE RESOURCE OF A
DISPERSED STORAGE NETWORK ” filed Nov . 14 , 2017 ,
which claims priority pursuant to 35 U . S . C . $ 120 as a
continuation of U . S . Utility application Ser . No . 14 / 956 , 818
entitled “ SELECTING A DATA STORAGE RESOURCE
OF A DISPERSED STORAGE NETWORK ” filed Dec . 2 ,
2015 , now U . S . Pat . No . 9 , 826 , 038 issued on Nov . 21 , 2017 ,
which claims priority pursuant to 35 U . S . C . $ 119 (e) to U . S .
Provisional Application No . 62 / 109 , 712 , entitled “ UTILIZ
ING ALTERNATE STORAGE RESOURCES WITHIN A
DISPERSED STORAGE NETWORK , ” filed Jan . 30 , 2015 ,
all of which are hereby incorporated herein by reference in
their entirety and made part of the present U . S . Utility Patent
Application for all purposes .

[0006] In modern file systems , sparse files are files whose
total logical size may be greater than the actual physical
utilization of the file . For example , a sparse file may be
initialized as 1 GB , even though only a few bytes , at one
offset within that file , have been written . Reads from posi
tions in the file which have not been written to may return
some pre - defined value such as all zeros . While the file
system only allocates and uses blocks for those positions in
the file where data has been written . Once every position in
the file has been written to at least once , the file is no longer
sparse and its logical size is equal to its physical utilization .
[0007] Some storage systems may store multiple pieces of
data within a single file , to reduce file system overhead , to
make locating data more efficient , or to make writing more
local and faster . But in the context of non - sparse files , in
cases where one of the pieces of data must be deleted from
within the file , there are a few approaches that can be used .
As a first option , the piece of data within the file can be left
in - place , and marked as deleted . But this technique does not
allow deletes do not recover storage . A second option is to
rewrite the remaining data to a new file , and then delete the
old file , but this can cause an excessive number of input /
output (I / O) operations in response to a delete .

BACKGROUND

Technical Field
[0002] This invention relates generally to computer net
works and more particularly to dispersing error encoded
data .

DESCRIPTION OF RELATED ART
[0003] Computing devices are known to communicate
data , process data , and / or store data . Such computing
devices range from wireless smart phones , laptops , tablets ,
personal computers (PC) , work stations , and video game
devices , to data centers that support millions of web
searches , stock trades , or on - line purchases every day . In
general , a computing device includes a central processing
unit (CPU) , a memory system , user input / output interfaces ,
peripheral device interfaces , and an interconnecting bus
structure .
[0004] As is further known , a computer may effectively
extend its CPU by using “ cloud computing ” to perform one
or more computing functions (e . g . , a service , an application ,
an algorithm , an arithmetic logic function , etc .) on behalf of
the computer . Further , for large services , applications , and / or
functions , cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service ,
application , and / or function . For example , Hadoop is an
open source software framework that supports distributed
applications enabling application execution by thousands of
computers .
10005] In addition to cloud computing , a computer may
use “ cloud storage ” as part of its memory system . As is
known , cloud storage enables a user , via its computer , to
store files , applications , etc . on an Internet storage system .
The Internet storage system may include a RAID (redundant
array of independent disks) system and / or a dispersed stor
age system that uses an error correction scheme to encode
data for storage .

BRIEF DESCRIPTION OF THE DRAWINGS
10008] FIG . 1 is a schematic block diagram of an embodi
ment of a dispersed or distributed storage network (DSN) in
accordance with the present invention ;
[0009] FIG . 2 is a schematic block diagram of an embodi
ment of a computing core in accordance with the present
invention ;
[0010] FIG . 3 is a schematic block diagram of an example
of dispersed storage error encoding of data in accordance
with the present invention ;
[0011] FIG . 4 is a schematic block diagram of a generic
example of an error encoding function in accordance with
the present invention ;
[0012] FIG . 5 is a schematic block diagram of a specific
example of an error encoding function in accordance with
the present invention ;
[0013] . FIG . 6 is a schematic block diagram of an example
of a slice name of an encoded data slice (EDS) in accordance
with the present invention ;
[0014] FIG . 7 is a schematic block diagram of an example
of dispersed storage error decoding of data in accordance
with the present invention ;
[0015] FIG . 8 is a schematic block diagram of a generic
example of an error decoding function in accordance with
the present invention ;
0016] FIG . 9 - 10 are schematic block diagrams of
embodiments of a dispersed storage network (DSN) in
accordance with the present invention ; and
[0017] FIG . 11 is a flowchart illustrating an example of
efficiently storing encoded data slices in accordance with the
present invention .

DETAILED DESCRIPTION

[0018] FIG . 1 is a schematic block diagram of an embodi
ment of a dispersed , or distributed , storage network (DSN)
10 that includes a plurality of computing devices 12 - 16 , a
managing unit 18 , an integrity processing unit 20 , and a
DSN memory 22 . The components of the DSN 10 are
coupled to a network 24 , which may include one or more

US 2018 / 0103103 A1 Apr . 12 , 2018

wireless and / or wire lined communication systems ; one or
more non - public intranet systems and / or public internet
systems ; and / or one or more local area networks (LAN)
and / or wide area networks (WAN) .
[0019] The DSN memory 22 includes a plurality of stor
age units 36 that may be located at geographically different
sites (e . g . , one in Chicago , one in Milwaukee , etc .) , at a
common site , or a combination thereof . For example , if the
DSN memory 22 includes eight storage units 36 , each
storage unit is located at a different site . As another example ,
if the DSN memory 22 includes eight storage units 36 , all
eight storage units are located at the same site . As yet
another example , if the DSN memory 22 includes eight
storage units 36 , a first pair of storage units are at a first
common site , a second pair of storage units are at a second
common site , a third pair of storage units are at a third
common site , and a fourth pair of storage units are at a fourth
common site . Note that a DSN memory 22 may include
more or less than eight storage units 36 . Further note that
each storage unit 36 includes a computing core (as shown in
FIG . 2 , or components thereof) and a plurality of memory
devices for storing dispersed error encoded data .
[0020] Each of the computing devices 12 - 16 , the manag
ing unit 18 , and the integrity processing unit 20 include a
computing core 26 , which includes network interfaces
30 - 33 . Computing devices 12 - 16 may each be a portable
computing device and / or a fixed computing device . A por
table computing device may be a social networking device ,
a gaming device , a cell phone , a smart phone , a digital
assistant , a digital music player , a digital video player , a
laptop computer , a handheld computer , a tablet , a video
game controller , and / or any other portable device that
includes a computing core . A fixed computing device may be
a computer (PC) , a computer server , a cable set - top box , a
satellite receiver , a television set , a printer , a fax machine ,
home entertainment equipment , a video game console , and /
or any type of home or office computing equipment . Note
that each of the managing unit 18 and the integrity process
ing unit 20 may be separate computing devices , may be a
common computing device , and / or may be integrated into
one or more of the computing devices 12 - 16 and / or into one
or more of the storage units 36 .
[0021] Each interface 30 , 32 , and 33 includes software and
hardware to support one or more communication links via
the network 24 indirectly and / or directly . For example ,
interface 30 supports a communication link (e . g . , wired ,
wireless , direct , via a LAN , via the network 24 , etc .)
between computing devices 14 and 16 . As another example ,
interface 32 supports communication links (e . g . , a wired
connection , a wireless connection , a LAN connection , and /
or any other type of connection to / from the network 24)
between computing devices 12 and 16 and the DSN memory
22 . As yet another example , interface 33 supports a com
munication link for each of the managing unit 18 and the
integrity processing unit 20 to the network 24 .
[0022] Computing devices 12 and 16 include a dispersed
storage (DS) client module 34 , which enables the computing
device to dispersed storage error encode and decode data
(e . g . , data 40) as subsequently described with reference to
one or more of FIGS . 3 - 8 . In this example embodiment ,
computing device 16 functions as a dispersed storage pro
cessing agent for computing device 14 . In this role , com
puting device 16 dispersed storage error encodes and
decodes data on behalf of computing device 14 . With the use

of dispersed storage error encoding and decoding , the DSN
10 is tolerant of a significant number of storage unit failures
(the number of failures is based on parameters of the
dispersed storage error encoding function) without loss of
data and without the need for a redundant or backup copies
of the data . Further , the DSN 10 stores data for an indefinite
period of time without data loss and in a secure manner (e . g . ,
the system is very resistant to unauthorized attempts at
accessing the data) .
[0023] In operation , the managing unit 18 performs DS
management services . For example , the managing unit 18
establishes distributed data storage parameters (e . g . , vault
creation , distributed storage parameters , security param
eters , billing information , user profile information , etc .) for
computing devices 12 - 14 individually or as part of a group
of user devices . As a specific example , the managing unit 18
coordinates creation of a vault (e . g . , a virtual memory block
associated with a portion of an overall namespace of the
DSN) within the DSN memory 22 for a user device , a group
of devices , or for public access and establishes per vault
dispersed storage (DS) error encoding parameters for a
vault . The managing unit 18 facilitates storage of DS error
encoding parameters for each vault by updating registry
information of the DSN 10 , where the registry information
may be stored in the DSN memory 22 , a computing device
12 - 16 , the managing unit 18 , and / or the integrity processing
unit 20 .
[0024] The managing unit 18 creates and stores user
profile information (e . g . , an access control list (ACL)) in
local memory and / or within memory of the DSN memory
22 . The user profile information includes authentication
information , permissions , and / or the security parameters .
The security parameters may include encryption / decryption
scheme , one or more encryption keys , key generation
scheme , and / or data encoding / decoding scheme .
[0025] The managing unit 18 creates billing information
for a particular user , a user group , a vault access , public vault
access , etc . For instance , the managing unit 18 tracks the
number of times a user accesses a non - public vault and / or
public vaults , which can be used to generate a per - access
billing information . In another instance , the managing unit
18 tracks the amount of data stored and / or retrieved by a user
device and / or a user group , which can be used to generate a
per - data - amount billing information .
[0026] As another example , the managing unit 18 per
forms network operations , network administration , and / or
network maintenance . Network operations includes authen
ticating user data allocation requests (e . g . , read and / or write
requests) , managing creation of vaults , establishing authen
tication credentials for user devices , adding / deleting com
ponents (e . g . , user devices , storage units , and / or computing
devices with a DS client module 34) to / from the DSN 10 ,
and / or establishing authentication credentials for the storage
units 36 . Network administration includes monitoring
devices and / or units for failures , maintaining vault informa
tion , determining device and / or unit activation status , deter
mining device and / or unit loading , and / or determining any
other system level operation that affects the performance
level of the DSN 10 . Network maintenance includes facili
tating replacing , upgrading , repairing , and / or expanding a
device and / or unit of the DSN 10 .
[0027] The integrity processing unit 20 performs rebuild
ing of ' bad ' or missing encoded data slices . At a high level ,
the integrity processing unit 20 performs rebuilding by

US 2018 / 0103103 A1 Apr . 12 , 2018

periodically attempting to retrieve / list encoded data slices ,
and / or slice names of the encoded data slices , from the DSN
memory 22 . For retrieved encoded slices , they are checked
for errors due to data corruption , outdated version , etc . If a
slice includes an error , it is flagged as a ' bad ' slice . For
encoded data slices that were not received and / or not listed ,
they are flagged as missing slices . Bad and / or missing slices
are subsequently rebuilt using other retrieved encoded data
slices that are deemed to be good slices to produce rebuilt
slices . The rebuilt slices are stored in the DSN memory 22 .
[0028] FIG . 2 is a schematic block diagram of an embodi
ment of a computing core 26 that includes a processing
module 50 , a memory controller 52 , main memory 54 , a
video graphics processing unit 55 , an input / output (10)
controller 56 , a peripheral component interconnect (PCI)
interface 58 , an IO interface module 60 , at least one IO
device interface module 62 , a read only memory (ROM)
basic input output system (BIOS) 64 , and one or more
memory interface modules . The one or more memory inter
face module (s) includes one or more of a universal serial bus
(USB) interface module 66 , a host bus adapter (HBA)
interface module 68 , a network interface module 70 , a flash
interface module 72 , a hard drive interface module 74 , and
a DSN interface module 76 .
[0029] The DSN interface module 76 functions to mimic
a conventional operating system (OS) file system interface
(e . g . , network file system (NFS) , flash file system (FFS) ,
disk file system (DFS) , file transfer protocol (FTP) , web
based distributed authoring and versioning (WebDAV) , etc .)
and / or a block memory interface (e . g . , small computer
system interface (SCSI) , internet small computer system
interface (iSCSI) , etc .) . The DSN interface module 76 and / or
the network interface module 70 may function as one or
more of the interface 30 - 33 of FIG . 1 . Note that the IO
device interface module 62 and / or the memory interface
modules 66 - 76 may be collectively or individually referred
to as IO ports .
[0030] FIG . 3 is a schematic block diagram of an example
of dispersed storage error encoding of data . When a com
puting device 12 or 16 has data to store it disperse storage
error encodes the data in accordance with a dispersed
storage error encoding process based on dispersed storage
error encoding parameters . The dispersed storage error
encoding parameters include an encoding function (e . g . ,
information dispersal algorithm , Reed - Solomon , Cauchy
Reed - Solomon , systematic encoding , non - systematic encod
ing , on - line codes , etc .) , a data segmenting protocol (e . g . ,
data segment size , fixed , variable , etc .) , and per data seg
ment encoding values . The per data segment encoding
values include a total , or pillar width , number (T) of encoded
data slices per encoding of a data segment (i . e . , in a set of
encoded data slices) ; a decode threshold number (D) of
encoded data slices of a set of encoded data slices that are
needed to recover the data segment ; a read threshold number
(R) of encoded data slices to indicate a number of encoded
data slices per set to be read from storage for decoding of the
data segment ; and / or a write threshold number (W) to
indicate a number of encoded data slices per set that must be
accurately stored before the encoded data segment is
deemed to have been properly stored . The dispersed storage
error encoding parameters may further include slicing infor
mation (e . g . , the number of encoded data slices that will be
created for each data segment) and / or slice security infor

mation (e . g . , per encoded data slice encryption , compres
sion , integrity checksum , etc .) .
[0031] In the present example , Cauchy Reed - Solomon has
been selected as the encoding function (a generic example is
shown in FIG . 4 and a specific example is shown in FIG . 5) ;
the data segmenting protocol is to divide the data object into
fixed sized data segments ; and the per data segment encod
ing values include : a pillar width of 5 , a decode threshold of
3 , a read threshold of 4 , and a write threshold of 4 . In
accordance with the data segmenting protocol , the comput
ing device 12 or 16 divides the data (e . g . , a file (e . g . , text ,
video , audio , etc .) , a data object , or other data arrangement)
into a plurality of fixed sized data segments (e . g . , 1 through
Y of a fixed size in range of Kilo - bytes to Tera - bytes or
more) . The number of data segments created is dependent of
the size of the data and the data segmenting protocol .
[0032] The computing device 12 or 16 then disperse
storage error encodes a data segment using the selected
encoding function (e . g . , Cauchy Reed - Solomon) to produce
a set of encoded data slices . FIG . 4 illustrates a generic
Cauchy Reed - Solomon encoding function , which includes
an encoding matrix (EM) , a data matrix (DM) , and a coded
matrix (CM) . The size of the encoding matrix (EM) is
dependent on the pillar width number (T) and the decode
threshold number (D) of selected per data segment encoding
values . To produce the data matrix (DM) , the data segment
is divided into a plurality of data blocks and the data blocks
are arranged into D number of rows with Z data blocks per
row . Note that Z is a function of the number of data blocks
created from the data segment and the decode threshold
number (D) . The coded matrix is produced by matrix
multiplying the data matrix by the encoding matrix .
[0033] FIG . 5 illustrates a specific example of Cauchy
Reed - Solomon encoding with a pillar number (T) of five and
decode threshold number of three . In this example , a first
data segment is divided into twelve data blocks (D1 - D12) .
The coded matrix includes five rows of coded data blocks ,
where the first row of X11 - X14 corresponds to a first
encoded data slice (EDS 1 _ 1) , the second row of X21 - X24
corresponds to a second encoded data slice (EDS 2 _ 1) , the
third row of X31 - X34 corresponds to a third encoded data
slice (EDS 3 _ 1) , the fourth row of X41 - X44 corresponds to
a fourth encoded data slice (EDS 4 _ 1) , and the fifth row of
X51 - X54 corresponds to a fifth encoded data slice (EDS
5 _ 1) . Note that the second number of the EDS designation
corresponds to the data segment number .
[0034] Returning to the discussion of FIG . 3 , the comput
ing device also creates a slice name (SN) for each encoded
data slice (EDS) in the set of encoded data slices . A typical
format for a slice name 80 is shown in FIG . 6 . As shown , the
slice name (SN) 80 includes a pillar number of the encoded
data slice (e . g . , one of 1 - T) , a data segment number (e . g . , one
of 1 - Y) , a vault identifier (ID) , a data object identifier (ID) ,
and may further include revision level information of the
encoded data slices . The slice name functions as , at least part
of , a DSN address for the encoded data slice for storage and
retrieval from the DSN memory 22 .
[0035] As a result of encoding , the computing device 12 or
16 produces a plurality of sets of encoded data slices , which
are provided with their respective slice names to the storage
units for storage . As shown , the first set of encoded data
slices includes EDS 1 _ 1 through EDS 5 _ 1 and the first set
of slice names includes SN1 _ 1 through SN 5 1 and the last

US 2018 / 0103103 A1 Apr . 12 , 2018

se set of encoded data slices includes EDS 1 _ Y through EDS
5 _ Y and the last set of slice names includes SN1 _ Y through
SN 5 _ Y .
[00361 FIG . 7 is a schematic block diagram of an example
of dispersed storage error decoding of a data object that was
dispersed storage error encoded and stored in the example of
FIG . 4 . In this example , the computing device 12 or 16
retrieves from the storage units at least the decode threshold
number of encoded data slices per data segment . As a
specific example , the computing device retrieves a read
threshold number of encoded data slices .
[0037] To recover a data segment from a decode threshold
number of encoded data slices , the computing device uses a
decoding function as shown in FIG . 8 . As shown , the
decoding function is essentially an inverse of the encoding
function of FIG . 4 . The coded matrix includes a decode
threshold number of rows (e . g . , three in this example) and
the decoding matrix in an inversion of the encoding matrix
that includes the corresponding rows of the coded matrix .
For example , if the coded matrix includes rows 1 , 2 , and 4 ,
the encoding matrix is reduced to rows 1 , 2 , and 4 , and then
inverted to produce the decoding matrix .
[0038] Referring next to FIGS . 9 - 11 , various embodiments
that provide efficient resource reclamation after deletion of
one or more encoded slices , where the deleted slices that
have been packed together with other encoded data slices in
a common file , will be discussed . In some such embodi
ments , “ hole - punching ” is used . Hole punching allows a
non - sparse file , from which an internal data element has
been deleted , to be made sparse again .
[0039] For example , consider a file containing 10 slices ,
each 100 KB in size , at offsets within the file from 0 to
99 , 999 ; 100 , 000 to 199 , 999 , 200 , 000 to 299 , 999 ; 300 , 000 to
399 , 999 ; 400 , 000 to 499 , 999 ; 500 , 000 to 599 , 999 ; 600 , 000
to 699 , 999 ; 700 , 000 to 799 , 999 ; 800 , 000 to 899 , 999 and
900 , 000 to 999 , 999 , resulting in a 1 MB file . Hole - punching
the file can be performed at any range within the file , which
will have the effect of freeing the underlying blocks used for
the file back to the file system , such that they can be re - used
by the file system for the storage of other data .
[0040] Thus , if the third slice is deleted , then the range
200 , 000 to 299 , 999 can be hole - punched , thus freeing 100
KB worth of data back to the file system and making the file
sparse again , i . e . , as if the file had never received any writes
within that range . Attempted reads to that range may return
pre - defined data such as all zeros . If another slice is written
in the future , it may be written to the end of the file , or if it
fits within that hole - punched segment , may be written within
the area where the third slice used to exist (in the offset range
of 200 , 000 to 299 , 999 within that file) . Using hole punching
to handle deletion of encoded data slices packed into a
common file can permit immediate reclamation of storage
resources , unlike techniques that simply mark a portion of
the file as deleted . Hole punching can also avoid an exces
sive number of input / output (I / O) operations , which can
result from having to re - write undeleted data to another file .
[0041] Various embodiments can also employ a technique
referred to herein as “ range collapse , ” which is similar to
hole - punching , but instead of leaving an empty gap shifts the
offsets of everything after the hole punched file . For
example , hole punching a packed common file could pro
duce the following result if encoded data slice C , originally
stored in the range of 200 , 000 to 299 , 999 , was deleted from
within the file :

10042] 000 , 000 to 099 , 999 : Slice A
f00431 100 , 000 to 199 , 999 : Slice B
10044] 200 , 000 to 299 , 999 :
10045) 300 , 000 to 399 , 999 : Slice D
10046 400 , 000 to 499 , 999 : Slice E
[0047] 500 , 000 to 599 , 999 : Slice F
[0048] 600 , 000 to 699 , 999 : Slice G
[0049] 700 , 000 to 799 , 999 : Slice H
10050) 800 , 000 to 899 , 999 : Slice I
[0051] 900 , 000 to 999 , 999 : Slice J
[0052] By contrast , using " range - collapsing ” after dele
tion of the encoded data slice C , originally stored in the
common file at the range 200 , 000 to 299 , 999 , would result
in shrinking the file size of the common file from 1 MB to
900 KB , as follows :
[0053] 000 , 000 to 099 , 999 : Slice A
[0054] 100 , 000 to 199 , 999 : Slice B
[0055] 200 , 000 to 299 , 999 : Slice D
10056 300 , 000 to 399 , 999 : Slice E
[0057] 400 , 000 to 499 , 999 : Slice F
0058] 500 , 000 to 599 , 999 : Slice G
[0059] 600 , 000 to 699 , 999 : Slice H
[0060] 700 , 000 to 799 , 999 : Slice I
[0061] 800 , 000 to 899 , 999 : Slice J
[0062] Note that in the above example , the range occupied
by slice C is freed back to the file system , and then the range
is collapsed , such that the next offset after slice B will be the
next slice following the end of the collapsed range .
[0063] FIG . 9 - 10 are schematic block diagrams of another
embodiment of a dispersed storage network (DSN) that
includes a distributed storage and task (DST) execution
(EX) unit set 630 , the network 24 of FIG . 1 , and the DST
processing unit 616 , which can of be implemented using one
of the computing devices 12 , 14 , or 16 of FIG . 1 . The DST
execution unit set 630 includes a set of DST execution units
1 - n . Each DST execution unit includes at least one memory
88 , configured to store encoded data slices . Each DST
execution unit may be implemented utilizing the storage unit
36 of FIG . 1 . The DSN functions to efficiently store encoded
data slices , where data is dispersed storage error encoded
utilizing an information dispersal algorithm (IDA) function
to produce a plurality of sets of encoded data slices for
storage in the DST execution unit set .
10064] FIG . 9 illustrates an example of operation of the
efficient storage of the encoded data slices where the DST
processing unit 616 sends , via the network 24 , access
requests that includes each set of the plurality of sets of
encoded data slices to the set of DST execution units 1 - n for
storage of the plurality of sets of encoded data slices . In at
least one embodiment , an access request can include a
read - slice request or a write - slice request . Each DST execu
tion unit may store an encoded data slice (e . g . , associated
with a common pillar) of two or more sets of encoded data
slices as a group of encoded data slices in a common file
within a file system of the DST execution unit .
10065) The DST execution unit stores each encoded data
slice of the group of encoded data slices at a unique file
offset within the common file in the memory 88 of the DST
execution unit and produces local slice mapping information
within the file system of the DST execution unit to associate
each encoded data slice with a corresponding unique file
offset . For example , the set of DST execution units 1 - n
stores a set of encoded data slices A1 , A2 , through An at a
file offset of 0 within a file 1 in the memory 88 of each of

US 2018 / 0103103 A1 Apr . 12 , 2018

the DST execution units , stores another set of encoded data
slices B1 , B2 , through Bn at a file offset of 1 within the file
1 in the memory 88 of each of the DST execution units ,
stores yet another set of encoded data slices C1 , C2 , through
Cn at a file offset of 2 within the file 1 in the memory 88 of
each of the DST execution units , and stores a further set of
encoded data slices D1 , D2 , through Dn at a file offset of 3
within the file 1 in the memory 88 of each of the DST
execution units .
[0066] Having stored the encoded data slices in the set of
DST execution units 1 - n , each DST execution unit receives
another access request that includes a delete slice request ,
where the delete slice request includes a slice name corre
sponding to a stored encoded data slice for deletion . The
receiving includes receiving the delete slice request and
interpreting the delete slice request to extract the slice name .
For the example , the DST execution unit 1 receives another
access request 1 that includes a delete slice request for
encoded data slice B1 .
[0067] Having received the delete slice request , the DST
execution unit identifies a corresponding file identifier and
file offset based on the slice name and the local slice
mapping information . For example , the DST execution unit
1 identifies the file 1 and offset 1 corresponding to the
encoded data slice B1 based on the local slice mapping
information .
[0068] FIG . 10 illustrates further steps of the example of
operation of the efficient storage of the encoded data slices
where the DST execution unit facilitates releasing a portion
of memory corresponding to storage of the encoded data
slice of the delete slice request based on the file identifier
and the file offset . The facilitating includes identifying the
portion of the memory based on the file identifier and the file
offset . For example , the DST execution unit 1 utilizes the file
identifier 1 and the file offset 1 to access a file system table
to retrieve an identifier for the portion of the memory (e . g . ,
a physical memory designator for the memory 88 , a block
identifier , a track identifier , etc .) and issues a memory
release request to a file system , where the memory release
request includes the identifier of the portion of the memory .
As such , a memory usage efficiency improvement may be
provided by freeing up the portion of the memory for
subsequent utilization (e . g . , utilization for storage of a
subsequently received encoded data slice for storage) .
[0069] Having facilitated the releasing of the portion of
the memory corresponding to the storage of the encoded
data slice , the DST execution unit facilitates modifying the
local slice mapping information based on the releasing of the
portion of the memory to produce updated local slice
mapping information in accordance with a modification
approach . The modification approach includes one of hole
punching and range collapsing . The modifying may include
selecting the modification approach (e . g . , interpreting a
request , interpreting a predetermination) . As a specific
example , when the range collapsing approach is utilized , the
DST execution unit reassigns the file offset to a next encoded
data slice of the common file (e . g . , associate a physical
memory location of a next portion of the memory corre
sponding to the next encoded data slice over to the file offset ;
i . e . , encoded data slice C1 is associated with file offset 1) and
reassigns each subsequent file offset to a corresponding next
encoded data slice through a last utilized of said associated
with a last encoded data slice (i . e . , encoded data slice D1 is
associated with file offset 2) . The modifying may further

include indicating that a new last offset is available (e . g . , file
offset 3) . As another specific example , when the hole punch
ing approach is utilized , the DST execution unit indicates
that the portion of the memory associated with the file offset
1 is available for subsequent reassignment .
[0070] FIG . 11 is a flowchart illustrating an example of
efficiently storing encoded data slices . The method includes
step 636 where a processing module of a storage unit (e . g . ,
of a distributed storage and task (DST) execution unit)
receives a delete slice request for encoded data slice , where
a plurality of encoded data slices are packed into a common
file at a corresponding plurality of file offsets , where the
common file is stored in a memory , and where the plurality
of encoded data slices includes the encoded data slice . The
receiving includes interpreting the delete slice request to
extract a slice name of the encoded data slice .
10071] The method continues at step 638 where the pro
cessing module identifies a file offset of the plurality of
offsets , where the file offset corresponds to the encoded data
slice in accordance with a slice mapping . For example , the
processing module performs a lookup within the slice map
ping utilizing the slice name to identify one or more of a
filename of the common file and the file offset corresponding
to the slice name .
[0072] The method continues at step 640 where the pro
cessing module facilitates releasing a portion of the memory
to a file system , where the portion of the memory is
associated with the identified file offset . For example , the
processing module issues a release memory request to the
file system , where the release memory request includes one
or more of a filename of the common file , the file offset , and
an identified portion of the memory that corresponds to
storage of encoded data slice .
[0073] The method continues at step 642 where the pro
cessing module facilitates modifying the slice mapping
based on the releasing of the portion of the memory . The
facilitating may include selecting a modification approach
(e . g . , hole punching , range collapsing) based on one or more
of the request , interpreting a portion of system registry
information , a storage efficiency indicator , and a storage
efficiency goal . The facilitating further includes implement
ing the selected modification approach . As a specific
example , when the selected approach includes the hole
punching approach , the processing module implements the
modification approach by indicating that the portion of the
memory associated with the file offset is available for new
use . As another specific example , when the selected
approach includes the range collapsing approach , the pro
cessing module implements the modification approach by
re - associating each subsequent sequential encoded data slice
with a decremented file offset value .
[0074] As illustrated at step 644 , in response to receiving
a write - slice request indicating a new encoded data slice is
to be stored by the DST EX unit , the new encoded data slice
can be written into the common file at a file offset associated
with the portion of the DS memory that was released . In
various embodiments , this can be ant the end of the file ,
where range collapsing is used , or at an empty range within
the file where hole punching is used .
[0075] It is noted that terminologies as may be used herein
such as bit stream , stream , signal sequence , etc . (or their
equivalents) have been used interchangeably to describe
digital information whose content corresponds to any of a

US 2018 / 0103103 A1 Apr . 12 , 2018

number of desired types (e . g . , data , video , speech , audio , etc .
any of which may generally be referred to as “ data ”) .
[0076] As may be used herein , the terms " substantially ”
and “ approximately ” provides an industry - accepted toler
ance for its corresponding term and / or relativity between
items . Such an industry - accepted tolerance ranges from less
than one percent to fifty percent and corresponds to , but is
not limited to , component values , integrated circuit process
variations , temperature variations , rise and fall times , and / or
thermal noise . Such relativity between items ranges from a
difference of a few percent to magnitude differences . As may
also be used herein , the term (s) " configured to " , " operably
coupled to ” , " coupled to ” , and / or " coupling ” includes direct
coupling between items and / or indirect coupling between
items via an intervening item (e . g . , an item includes , but is
not limited to , a component , an element , a circuit , and / or a
module) where , for an example of indirect coupling , the
intervening item does not modify the information of a signal
but may adjust its current level , voltage level , and / or power
level . As may further be used herein , inferred coupling (i . e . ,
where one element is coupled to another element by infer
ence) includes direct and indirect coupling between two
items in the same manner as " coupled to ” . As may even
further be used herein , the term " configured to " , " operable
to ” , “ coupled to " , or “ operably coupled to ” indicates that an
item includes one or more of power connections , input (s) ,
output (s) , etc . , to perform , when activated , one or more its
corresponding functions and may further include inferred
coupling to one or more other items . As may still further be
used herein , the term “ associated with ” , includes direct
and / or indirect coupling of separate items and / or one item
being embedded within another item .
[0077] As may be used herein , the term " compares favor
ably ” , indicates that a comparison between two or more
items , signals , etc . , provides a desired relationship . For
example , when the desired relationship is that signal 1 has
a greater magnitude than signal 2 , a favorable comparison
may be achieved when the magnitude of signal 1 is greater
than that of signal 2 or when the magnitude of signal 2 is less
than that of signal 1 . As may be used herein , the term
" compares unfavorably ” , indicates that a comparison
between two or more items , signals , etc . , fails to provide the
desired relationship .
[0078] As may also be used herein , the terms “ processing
module ” , “ processing circuit ” , “ processor ” , and / or " process
ing unit ” may be a single processing device or a plurality of
processing devices . Such a processing device may be a
microprocessor , micro - controller , digital signal processor ,
microcomputer , central processing unit , field programmable
gate array , programmable logic device , state machine , logic
circuitry , analog circuitry , digital circuitry , and / or any device
that manipulates signals (analog and / or digital) based on
hard coding of the circuitry and / or operational instructions .
The processing module , module , processing circuit , and / or
processing unit may be , or further include , memory and / or
an integrated memory element , which may be a single
memory device , a plurality of memory devices , and / or
embedded circuitry of another processing module , module ,
processing circuit , and / or processing unit . Such a memory
device may be a read - only memory , random access memory ,
volatile memory , non - volatile memory , static memory ,
dynamic memory , flash memory , cache memory , and / or any
device that stores digital information . Note that if the
processing module , module , processing circuit , and / or pro

cessing unit includes more than one processing device , the
processing devices may be centrally located (e . g . , directly
coupled together via a wired and / or wireless bus structure)
or may be distributedly located (e . g . , cloud computing via
indirect coupling via a local area network and / or a wide area
network) . Further note that if the processing module , mod
ule , processing circuit , and / or processing unit implements
one or more of its functions via a state machine , analog
circuitry , digital circuitry , and / or logic circuitry , the memory
and / or memory element storing the corresponding opera
tional instructions may be embedded within , or external to ,
the circuitry comprising the state machine , analog circuitry ,
digital circuitry , and / or logic circuitry . Still further note that ,
the memory element may store , and the processing module ,
module , processing circuit , and / or processing unit executes ,
hard coded and / or operational instructions corresponding to
at least some of the steps and / or functions illustrated in one
or more of the Figures . Such a memory device or memory
element can be included in an article of manufacture .
[0079] One or more embodiments have been described
above with the aid of method steps illustrating the perfor
mance of specified functions and relationships thereof . The
boundaries and sequence of these functional building blocks
and method steps have been arbitrarily defined herein for
convenience of description . Alternate boundaries and
sequences can be defined so long as the specified functions
and relationships are appropriately performed . Any such
alternate boundaries or sequences are thus within the scope
and spirit of the claims . Further , the boundaries of these
functional building blocks have been arbitrarily defined for
convenience of description . Alternate boundaries could be
defined as long as the certain significant functions are
appropriately performed . Similarly , flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality .
[0080] To the extent used , the flow diagram block bound
aries and sequence could have been defined otherwise and
still perform the certain significant functionality . Such alter
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claims . One of average skill in the art will also
recognize that the functional building blocks , and other
illustrative blocks , modules and components herein , can be
implemented as illustrated or by discrete components , appli
cation specific integrated circuits , processors executing
appropriate software and the like or any combination
thereof .
[0081] In addition , a flow diagram may include a “ start ”
and / or " continue ” indication . The “ start ” and “ continue "
indications reflect that the steps presented can optionally be
incorporated in or otherwise used in conjunction with other
routines . In this context , " start " indicates the beginning of
the first step presented and may be preceded by other
activities not specifically shown . Further , the " continue "
indication reflects that the steps presented may be performed
multiple times and / or may be succeeded by other activities
not specifically shown . Further , while a flow diagram indi
cates a particular ordering of steps , other orderings are
likewise possible provided that the principles of causality
are maintained .
[0082] The one or more embodiments are used herein to
illustrate one or more aspects , one or more features , one or
more concepts , and / or one or more examples . A physical
embodiment of an apparatus , an article of manufacture , a

US 2018 / 0103103 A1 Apr . 12 , 2018

machine , and / or of a process may include one or more of the
aspects , features , concepts , examples , etc . described with
reference to one or more of the embodiments discussed
herein . Further , from figure to figure , the embodiments may
incorporate the same or similarly named functions , steps ,
modules , etc . that may use the same or different reference
numbers and , as such , the functions , steps , modules , etc .
may be the same or similar functions , steps , modules , etc . or
different ones .
[0083] Unless specifically stated to the contra , signals to ,
from , and / or between elements in a figure of any of the
figures presented herein may be analog or digital , continu
ous time or discrete time , and single - ended or differential .
For instance , if a signal path is shown as a single - ended path ,
it also represents a differential signal path . Similarly , if a
signal path is shown as a differential path , it also represents
a single - ended signal path . While one or more particular
architectures are described herein , other architectures can
likewise be implemented that use one or more data buses not
expressly shown , direct connectivity between elements , and /
or indirect coupling between other elements as recognized
by one of average skill in the art .
[0084] The term “ module ” is used in the description of one
or more of the embodiments . A module implements one or
more functions via a device such as a processor or other
processing device or other hardware that may include or
operate in association with a memory that stores operational
instructions . A module may operate independently and / or in
conjunction with software and / or firmware . As also used
herein , a module may contain one or more sub - modules ,
each of which may be one or more modules .
10085] As may further be used herein , a computer readable
memory includes one or more memory elements . A memory
element may be a separate memory device , multiple
memory devices , or a set of memory locations within a
memory device . Such a memory device may be a read - only
memory , random access memory , volatile memory , non
volatile memory , static memory , dynamic memory , flash
memory , cache memory , and / or any device that stores digital
information . The memory device may be in a form a solid
state memory , a hard drive memory , cloud memory , thumb
drive , server memory , computing device memory , and / or
other physical medium for storing digital information .
[0086] While particular combinations of various functions
and features of the one or more embodiments have been
expressly described herein , other combinations of these
features and functions are likewise possible . The present
disclosure is not limited by the particular examples disclosed
herein and expressly incorporates these other combinations .
What is claimed is :
1 . A method for use in a distributed storage network

(DSN) employing one or more distributed storage task
execution (DST EX) units for dispersed storage of encoded
data slices , the method comprising :

receiving , at a DST EX unit , a delete - slice request asso
ciated with a first encoded data slice packed into a
common file with other encoded data slices , wherein :
the common file being stored in a distributed storage

(DS) memory included in the DST EX unit , and
each encoded data slice packed into the common file is

associated with a file offset within the common file ;
identifying , by the DST EX unit , a particular file offset
within the common file , the particular file offset asso
ciated with the first encoded data slice ; and

facilitating , by the DST EX unit , releasing a portion of the
DS memory to a file system maintained by the DST EX
unit , wherein the portion of the DS memory is associ
ated with the particular file offset within the common
file is available .

2 . The method of claim 1 , wherein facilitating includes :
passing an indication to the file system that the portion of

the DS memory associated with the particular file offset
within the common file is available .

3 . The method of claim 1 , wherein facilitating includes :
re - associating file offsets associated with subsequent

encoded data slices , the subsequent encoded data slices
associated with file offsets , within the common file ,
subsequent to the particular file offset ; and

wherein re - associating the file offsets includes associating
the subsequent encoded data slices with a decremented
file offset .

4 . The method of claim 1 , wherein facilitating includes :
issuing a release - memory request to the file system ,
wherein the release - memory request includes one or
more of : a file name of the common file , a file offset , or
an identified portion of the DS memory that corre
sponds to a storage location of the encoded data slice .

5 . The method of claim 1 , wherein identifying the par
ticular file offset includes :

performing a lookup within a slice mapping table using a
slice name to identify at least one of a filename of the
common file , or the particular file offset corresponding
to the slice name .

6 . The method of claim 1 , further comprising :
interpreting the delete - slice request to extract a slice name
of the first encoded data slice .

7 . The method of claim 1 , further comprising :
receiving a write - slice request indicating a new encoded

data slice is to be stored by the DST EX unit ; and
writing the new encoded data slice into the common file

at a file offset associated with the portion of the DS
memory that was released .

8 . A distributed storage task execution (DST EX) unit
comprising :

a processor and associated memory ;
a distributed storage (DS) memory coupled to the pro

cessor and associated memory , the DS memory con
figured to store encoded data slices ;

a network interface coupled to the processor and associ
ated memory , the network interface configured to
receive , from a distributed storage network (DSN) , a
delete - slice request associated with a first encoded data
slice packed into a common file with other encoded
data slices , wherein :
the common file is stored in the DS memory , and
each encoded data slice packed into the common file is

associated with a file offset within the common file ;
the processor and associated memory configured to :

identify a particular file offset within the common file ,
the particular file offset associated with the first
encoded data slice ; and

facilitate releasing a portion of the DS memory to a file
system maintained by the DST EX unit , wherein the
portion of the DS memory is associated with the
particular file offset within the common file is avail
able .

US 2018 / 0103103 A1 Apr . 12 , 2018

9 . The distributed storage task execution (DST EX) unit
of claim 8 , the processor and associated memory configured
to facilitate releasing a portion of the DS memory to a file
system by :

facilitate releasing a portion of the DS memory to a file
system by passing an indication to the file system that
the portion of the DS memory associated with the
particular file offset within the common file is available .

10 . The distributed storage task execution (DST EX) unit
of claim 8 , the processor and associated memory further
configured to :

re - associate file offsets associated with subsequent
encoded data slices , the subsequent encoded data slices
associated with file offsets , within the common file ,
subsequent to the particular file offset ; and

wherein re - associating the file offsets includes associating
the subsequent encoded data slices with a decremented
file offset .

11 . The distributed storage task execution (DST EX) unit
of claim 8 , the processor and associated memory further
configured to :

issue a release - memory request to the file system , wherein
the release - memory request includes one or more of : a
file name of the common file , a file offset , or an
identified portion of the DS memory that corresponds
to a storage location of the encoded data slice .

12 . The distributed storage task execution (DST EX) unit
of claim 8 , wherein the processor and associated memory
further configured to :

perform a lookup within a slice mapping table using a
slice name to identify at least one of a filename of the
common file , or the particular file offset corresponding
to the slice name .

13 . The distributed storage task execution (DST EX) unit
of claim 8 , the processor and associated memory further
configured to :

interpret the delete - slice request to extract a slice name of
the first encoded data slice .

14 . The distributed storage task execution (DST EX) unit
of claim 8 , wherein :

the network interface is further configured to receive a
write - slice request indicating a new encoded data slice
is to be stored by the DST EX unit ; and

the processor and associated memory are further config
ured to write the new encoded data slice into the
common file at a file offset associated with the portion
of the DS memory that was released .

15 . A distributed storage network (DSN) comprising :
a distributed storage task (DST) processing unit ;
a DSN memory coupled to the DST processing unit , the
DSN memory including a set of distributed storage task

execution (DST EX) units used for dispersed storage of
encoded data slices , at least one DST EX unit config
ured to :
receive , from the DST processing unit , a delete - slice

request associated with a first encoded data slice
packed into a common file with other encoded data
slices , wherein :
the common file is stored in a distributed storage

(DS) memory included in the at least one DST EX
unit , and

each encoded data slice packed into the common file
is associated with a file offset within the common
file ;

identify a particular file offset within the common file ,
the particular file offset associated with the first
encoded data slice ; and

facilitate releasing a portion of the DS memory to a file
system maintained by the at least one DST EX unit ,
wherein the portion of the DS memory is associated
with the particular file offset within the common file
is available .

16 . The distributed storage network (DSN) of claim 15 ,
wherein the at least one DST EX unit is configured to :

pass an indication to the file system that the portion of the
DS memory associated with the particular file offset
within the common file is available .

17 . The distributed storage network (DSN) of claim 15 ,
wherein the at least one DST EX unit is configured to :

re - associate file offsets associated with subsequent
encoded data slices , the subsequent encoded data slices
associated with file offsets , within the common file ,
subsequent to the particular file offset ; and

wherein re - associating the file offsets includes associating
the subsequent encoded data slices with a decremented
file offset .

18 . The distributed storage network (DSN) of claim 15 ,
wherein the at least one DST EX unit is configured to :

issue a release - memory request to the file system , wherein
the release - memory request includes one or more of : a
file name of the common file , a file offset , or an
identified portion of the DS memory that corresponds
to a storage location of the encoded data slice .

19 . The distributed storage network (DSN) of claim 15 ,
wherein the at least one DST EX unit is configured to :

perform a lookup within a slice mapping table using a
slice name to identify at least one of a filename of the
common file , or the particular file offset corresponding
to the slice name .

20 . The distributed storage network (DSN) of claim 15 ,
wherein the at least one DST EX unit is configured to :

interpret the delete - slice request to extract a slice name of
the first encoded data slice .

* * * * *

