PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © :

GOG6F 17/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/09238

5 March 1998 (05.03.98)

(21) International Application Number: PCT/US97/14660

(22) International Filing Date: 19 August 1997 (19.08.97)

(30) Priority Data:
60/024,635
08/895,024

us
us

27 August 1996 (27.08.96)
16 July 1997 (16.07.97)

(71) Applicant: AT & T CORP. [US/US}; 32 Avenue of the
Americas, New York, 10013-2412 (US).

(72) Inventors: DAR, Shaul; Apartment 23, Menora Street 13,
Neot Afeka, 69416 Tel Aviv (IL). JAGADISH, Hosagrahar,
Visvesvaraya; 16 Beecch Avenue, Berkeley Heights, NJ
07922 (US). LEVY, Alon, Yitzchak; 621 Mountain Avenue,
Berkeley Heights, NJ 07922 (US). SRIVASTAVA, Divesh;
9 Springfloral Drive, New Providence, NJ 07974 (US).

(74) Agent: DWORETSKY, Samuel, H.; AT & T Corp., P.O. Box
4110, Middletown, NJ 07748 (US).

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD AND SYSTEM FOR USING MATERIALIZED VIEWS TO EVALUATE QUERIES INVOLVING AGGREGA-

TION

(57) Abstract

The present invention is a method and system for using
materialized views to compute answers to SQL queries with
grouping and aggregation. A query is evaluated by using
a materialized view. The materialized view is semantically
analyzed to determine whether the materialized view is usable
in evaluating an input query. The semantic analysis includes
determining that the materialized view does not project
out any columns needed to evaluate the input query and
determining that the view does not discard any tuple that
satisfies a condition enforced in the input query. If the view
is usable, the input query is rewritten to produce an output
query that is multi-set equivalent to the input query and that
specifies one or more occurrences of the materialized view as
a source of information to be returned by the output query.
The output query is then evaluated. The semantic analysis
an rewritting may be iterated, with the output query of each
iteration being the input query of the next iteration. The
output query is evaluated after the last iteration.

104 106 108
RAM ROM w
100
N I
L]
102
CPU
e R
a9
Storage Device
12
U Daisbase 14
Table [X N Table
prk)
SQL Engine
u7
Query Definitions
1182
Table LN] Tuuglle
1S
1162 Materialized Views 16z
Materislized View eoe MuwrhliudD

\

AL

AT
AU
AZ
BA
BB
BE
BF
BG

BR
BY
CA
CF
CG
CH
C1

M
CN
Cu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Beigium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzertand
Cote d’lvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People's
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

S1
SK
SN
Sz
™
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/09238 PCT/US97/14660

METHOD AND SYSTEM FOR USING MATERIALIZED VIEWS TO
EVALUATE QUERIES INVOLVING AGGREGATION

Related Applications

This application claims the benefit of U.S. Provisional Application No.
60/024,635, filed August 27, 1996.

5 Field of the Invention

The present invention relates to a method and system for using

materialized views to compute answers to (evaluate) SQL queries with grouping

and aggregation.

10 Background of the Invention

Databases are compilations of information. Useful operations that can be
performed on a database include the selection of specific data from the database,
and the computation of summary information on all or part of the data in the
database. One well-known way of specifying operations to be performed on a

15 database is Structured Query Language (SQL). An SQL statement that performs
an operation on a database is known as a query.

In large database applications, such as data warehouses and very large
transaction recording systems, the size of the database and the volume of
incoming data may be very large. Operations on very large databases are time

20 consuming, due to the large amount of data to be processed, and expensive, due to
the large quantity of system resources that must be utilized. One solution to this
problem is to materialize and maintain appropriately defined aggregation views

(summary tables), which are much smaller than the underlying database and can

be cached in fast memory.

10

15

20

25

WO 98/09238 PCT/US97/14660

In globally distributed information systems, the relations may be
distributed or replicated, and locating as well as accessing them may be expensive
and sometimes not even possible. In mobile computing applications, the relations
may be stored on a server and be accessible only via low bandwidth wireless
communication, which may additionally become unavailable. Locally cached
materialized views of the data, such as results of previous queries, may
considerably improve the performance of such applications.

A need arises for an automated technique by which a time consuming and
expensive query can be converted or rewritten to form an equivalent query that
uses materialized views to compute the answers.

There has been previous work on using views to answer queries (e.g., H. Z.
Yang and P. A. Larson, “Query transformation for PSJ-queries,” In Proc. VLDB,
1987; M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “On rules,
procedures, caching and views in database systems”, In Proc. ACM SIGMOD,
1990; O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis, “The GMAP: A
versatile tool for physical data independence”, In Proc. VLDB, 1994; C. M. Chen

and N. Roussopoulos, “The implementation and performance evaluation of the
ADMS query optimizer: Integrating query result caching and matching”, In Proc.
EDBT, 1994; S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and

K. Shim, “Optimizing queries with materialized views”, In. Proc. ICDE, 1995; A.
Y. Levy, A.O. Mendelzon,, Y. Sagiv,, and D. Srivastava, “Answering queries
using views”, In Proc. ACM PODS, 1995], but the problem of finding the

equivalent rewritings for SQL queries with multiset semantics, grouping and
aggregation, have received little attention.

Caching of previous query results was explored in T. Sellis, “Intelligent
caching and indexing techniques for relational database systems”, Information

Systems, pp. 175-188, 1988, as a means of supporting stored procedures. This

2.

10

15

20

25

WO 98/09238 PCT/US97/14660

corresponds to using materialized views when they match syntactically a sub-
expression of the query. In the ADMS optimizer, subquery expressions
corresponding to nodes in the query execution (operator) tree were also cached. A
cached result was matched against a new query by using common expression
analysis. Grouping and aggregation issued were not addressed.

View usability has been studied for conjunctive queries with set semantics
and without grouping and aggregation. Levy et al. showed a close condition
between the problem of usability of a view in evaluating a query and the problem
of query containment. However, this connection does not carry over to the
multiset case. Yang et al also presented a simple technique for generating a
rewriting of a query Q using view V, under set semantics. Essentially the
technique consists of first conjoining V to the FROM clause of Q, and then
(independently) minimizing the resulting query to eliminate redundant tables. In
the case of SQL queries, however, because of the multiset semantics, the query
will not be equivalent after conjoining V to the FROM clause, even if it may be
equivalent after removing other tables. Therefore, we need to find a priori which
tables in the FROM clause will be replaced by V.

Optimization of conjunctive SQL queries using conjunctive views has been
studied in Chaudhuri et al. In addition to considering when such views are usable
in evaluating a query, they suggest how to perform this optimization in a cost-
based fashion. However, they did not consider the possibility of rewritings that
are UNION ALLS of single-block queries.

Recently, the problem of using materialized aggregation views to answer
aggregation queries using a purely transformational approach has been considered
in A. Gupta, V. Harinarayan, and D. Quass, "Aggregate-query processing in data
warehousing environments”, Proc. VLDB, 1995. They perform syntactic

transformations on the operator tree representation of the query such that the

3.

10

15

20

25

WO 98/09238 PCT/US97/14660

definition of the view would be identical to a sub-part of the definition of the
query. Additional information of queries involving aggregation have been
proposed. The transformational approach is more restrictive than our semantic
approach. For example, these techniques would neither determine the usability of
view V in evaluating query Q1 in Example 1.1, nor the usability of view V, in
evaluating Q] in the same example. Also, no formal guarantees of completeness
are provided.

A related problem is studied in A. Gupta, I.S. Mumick, and K.A. Ross.
“Adapting materialized views after redefinitions”, In Proc. ACM SIGMOD, 1995.

They assume that a materialized view may be redefined, and investigate how to
adapt the materialization of the view to reflect the redefinition. This problem is
clearly a special case of the one we study., with the additional assumptions that
the system knows the type of modification that took place, that the new view
definition is “close” to the old definition, and that the view materialization may be

modified.

Summary of the Invention

The present invention is a method and system for using materialized views
to compute answers to SQL queries with grouping and aggregation.

A query is evaluated using a materialized view. The materialized view is
semantically analyzed to determine whether the materialized view is usable in
evaluating an input query. The semantic analysis includes determining that the
materialized view does not project out any columns needed to evaluate the input
query and determining that the view does not discard any tuple that satisfies a
condition enforced in the input query. If the view is usable, the input query is
rewritten to produce an output query that is multi-set equivalent to the input query

and that specifies one or more occurrences of the materialized view as a source of

-4-

10

15

20

25

WO 98/09238 PCT/US97/14660

information to be returned by the output query. The output query is then
evaluated.

The semantic analysis and rewriting may be iterated, with the output query
of each iteration being the input query of the next iteration. The output query is
evaluated after the last iteration.

In one embodiment of the present invention there are a plurality of
materialized views. The steps of semantically analyzing and rewriting are iterated
at least once for each of the materialized views, with the output query of each
iteration being the input query of the next iteration. The evaluating step is
performed after the last iteration.

In one embodiment of the present invention, each one of the plurality of
materialized views is similar. In another embodiment of the present invention, at
least one of the plurality of materialized views is different. In another
embodiment of the present invention, each one of the plurality of materialized
views is different.

In one embodiment of the present invention, the materialized view does not
have aggregation. In another embodiment of the present invention, the

materialized view has aggregation.

Brief Description of the Drawings

The details of the present invention, both as to its structure and operation,
can best be understood by referring to the accompanying drawings, in which like
reference numbers and designations refer to like elements.

Fig. la is a block diagram of an exemplary database system with
materialized views.

Fig. 1b is a block diagram of relationship among tables, queries and views.

Fig. Ic is an exemplary format of a database table.

-5.

10

15

20

25

WO 98/09238 PCT/US97/14660

Fig. 1d is an exemplary format of another database table.

Fig. 2 is a flow diagram of a process for rewriting a query, according to the
present invention, implemented in the system of Fig. la.

Fig. 3 is a diagram of usability conditions for a single-block aggregation
query without a HAVING clause, a single-block conjunctive view, with a single-
block rewritten query.

Fig. 4 is a flow diagram of a rewriting process for a single-block
aggregation query without a HAVING Clause, a single-block conjunctive view,
with a single-block rewritten query.

Fig. 5 is a diagram of a modification of condition C4 of Fig. 3, when multi-
block rewritten queries are permitted.

Fig. 6 is a flow diagram of a rewriting process for a single-block
aggregation query without a HAVING clause, a single-block conjunctive view,
with a muiti-block rewritten query.

Fig. 7 is a diagram of a modification of condition C3 of Fig. 3, for a single-
block aggregation query with a HAVING clause.

Fig. 8 is a flow diagram of a rewriting process for a single-block
aggregation query with a HAVING clause, a single-block conjunctive view, with
a single-block rewritten query.

Fig. 9 is a diagram of usability conditions for a single-block aggregation
query without a HAVING clause, a single-block aggregation view without a
HAVING clause, with a single-block rewritten query.

Fig. 10 is a flow diagram of a rewriting process for a single-block
aggregation query without a HAVING clause, a single-block aggregation view
without a HAVING clause, with a single-block rewritten query.

10

15

20

25

WO 98/09238 PCT/US97/14660

Detailed Description of the Invention

The present invention uses materialized views to compute answers to SQL
queries with grouping and aggregation, in the presence of multiset tables. In
addition to its obvious potential in query optimization, this problem is important
in many applications, such as data warehousing, very large transaction recording
systems, global information systems and mobile computing, where access to local
or cached materialized views may be cheaper than access to the underlying
database. Several conclusions result: First, we show that in the case where the
query has grouping and aggregation but the views do not, a view is usable in
answering a query only if there is an isomorphism between the view and a portion
of the query. Second, when the views also have grouping and aggregation we
identify conditions under which the aggregation information present in a view is
sufficient to perform the aggregation computations required in the query.

The described procedures for rewriting a query also consider the case in
which the rewritten query may be a union of single-block queries. The approach
is a semantic one, in that it detects when the information existing in a view is
sufficient to answer a query. In contrast, previous work performed syntactic
transformations on the query such that the definition of the view would be a sub-
part of the definition of the query. Consequently, these prior methods can only
detect usages of views in limited cases.

The problem of using materialized SQL views to answer SQL queries is
formalized as finding a rewriting of a query Q where the views occur in the
FROM clause, and the rewritten query is multiset-equivalent to Q. The technical
challenges arise from the multiset semantics of SQL, in conjunction with the use
of grouping and aggregation.

We focus on queries and views of the form “SELECT-FROM-WHERE-
GROUPBY-HAVING”, i.e., single-block queries, where the SELECT and

-7-

10

15

20

25

WO 98/09238 PCT/US97/14660

HAVING clauses may contain the SQL éggregate functions MIN, MAX, SUM
and COUNT. The SQL aggregate functions SUM, COUNT and AVG are related
in that, given values for two of them over some column, the third can be
computed. Dealing with AVG is consequently straightforward, but complicates
the presentation. Hence, AVG is not considered. The availability of any meta-
information about the schema, such as keys or functional dependencies, is not
assumed.

An exemplary database system 100 is shown in Fig. la. System 100
includes central processing unit (CPU) 102, which is connected to random access
memory (RAM) 104, read-only memory (ROM) 106, input/output devices (I/0)
108 and storage device 110. CPU 102 may comprise a microprocessor, for
example, an INTEL PENTIUM processor, or CPU 102 may comprise a mini-
computer or mainframe processor. RAM 104 and ROM 106 store program
instructions that are executed by CPU 102 and data that is used during program
execution. I/O devices 108 may include any devices used to input data to system
100, such as a keyboard, mouse, trackpad, trackball and graphics tablet, to output
data from system 100, such as a display and a printer, and to both input and output
data, such as a modem and a network adapter. Storage device 110, which stores
data that is used by the present invention, may comprise, for example, a magnetic
disk and/or optical disk and may also comprise a magnetic tape.

Storage device 110 includes database 112, which is typically stored as one
or more files. Database 112 includes one or more tables 114a-z, which are
compilations of information. Generally, tables are conceptualized as being
organized in rows and columns, although the storage format may be different.
Query definitions 117 includes one or more queries 118a-z, which are
specifications of operations that are to be performed on one or more tables 114 in

database 112 or on one or more materialized views 116. Queries are typically

-8-

10

15

20

25

WO 98/09238 PCT/US97/14660

written using SQL. Materialized views 115 includes one or more materialized
views 116a-z, each of which is the result of a query that has been performed.
Each view is a compilation of information, similar in structure to a table. A view
that has been stored is usable, like a table, as an input to a query. Such a view is
termed a materialized view. A query may therefore be performed on one or more
materialized views, or on a combination of materialized views and tables. SQL
Engine 113 is a software module that performs the operations specified by the
queries and generates the views.

The relationship among tables, queries and views is shown in Fig. 1b.
Query 118a is a specification of an operation that selects data from one or more
tables, such as 114a and 114b, and/or views, such as 116a and 116b, and of
operations to be performed on the selected data, such as finding the largest value
(MAX), the smallest value (MIN), the sum of the selected data (SUM), the
average of the selected data (AVG), etc. The query 118a and the tables 114a and
114b and views 116a and 116b that are specified by the query are input to SQL
engine 113, which evaluates the query to generate the resulting view 119. The
result of a query represents a-particular way of looking at the data in the input
tables and/or views, thus, the result of a query is termed a view 119.

An example of a database having two tables, and several queries and their
resulting views, is described below. This example is illustrative only; the present
invention is in no way limited to the described example.

EXAMPLE 1

Consider a data warehouse that holds information useful to a telephone

company. The database maintains the following tables:
Customer(Phone_Number, Cust_Name) table 120, shown in Fig. lc,
maintains information about individual customers of the telephone company.

Customer table 120 includes a plurality of rows, such as rows 123a-b. Each row

-9.

10

15

20

25

WO 98/09238 PCT/US97/14660

corresponds to one data record, including one or more data fields. The data fields
are organized into two columns, Phone_Number column 121 and Cust Name
column 122. Each column corresponds to a particular piece of data that is
included in each data record. Thus, each row in Customer table 120 has, in its
Phone_Number column 121, the phone number corresponding to the customer
named in the Cust Name column 122.

Likewise, Calls(From, To, Time, Day, Month, Year, Duration, Plan_ld,
Charge) table 130, shown in Fig. 1d, which maintains information about each
individual call includes a plurality of rows, such as rows 140a-b and nine columns
131-139. Column 131, From, contains the phone number from which the call was
placed. Column 132, To, contains the phone number to which the call was placed.
Column 133, Time, contains the time at which the call was placed. Column 134,
Day, contains the day on which the call was placed. Column 135, Month,
contains the month in which the call was placed. Column 136, Year, contains the
year in which the call was placed. Column 137, Duration, contains the duration
of the call. Column 138, Plan_Id, contains an identifier of the calling plan
applicable to the call. Column 139, Charge, contains the charge for the call.

Assuming that the telephone company is interested in determining calling
plans that have earned more than a million dollars in one of the years between

1990 and 1995. The following SQL query Q1 may be used for this purpose:

Q1: SELECT Year, Plan_Name, SUM(Charge)
FROM Calls, Calling Plans
WHERE Calls.Plan_Id = Calling_Plans.Plan_Id
AND Year 21990 AND Year <1995
GROUPBY Year, Plan_Name
HAVING SUM(Charge)> 1,000,000

-10-

10

15

20

25

WO 98/09238 PCT/US97/14660

The telephone company also maintains materialized views that summarize
the performance of each of their calling plans on a periodical basis. In particular

assume that the following materialized view V;(Plan_Id Month, Year, Earnings) is

available:

Vi: SELECT Plan-ID, Month, Year, SUM(Charge)
FROM Calls
GROUPBY Plan_Id, Month, Year

View V1 can be used to evaluate the query Q by joining V| with the table
Calling_Plans, collapsing multiple groups corresponding to the monthly plan
earnings into annual plan earnings, and enforcing the additional conditions to get

the summaries of plans earning more than a million dollars in one of the years

between 1990 and 1995. The rewritten query Q, that uses V7 is:

Q, SELECT Year, Plan_Name, SUM(Earnings)
FROM V1, Calling Plans
WHERE V1.Plan_Id = Calling_Plans.Plan_Id
AND Year > 1990 AND Year <1995
GROUPBY Year, Plan Name
HAVING SUM(Earnings) > 1,000,000

The Calls table may be huge, and the materialized view V7 is likely to be
orders of magnitude smaller than the Calls table. Hence, evaluating Q, will be

much faster than evaluating Q1, emphasizing the importance of recognizing that

Q1 can be rewritten to use the materialized view V7.

-11-

10

15

20

25

WO 98/09238

PCT/US97/14660

Consider now the case where, instead of V|, the telephone company

maintains

the materialized view V,(Plan-Id Month, Year, Earnings),

summarizing the performance of their calling plans only since 1991:

V,:

SELECT
FROM

WHERE

Plan-ID, Month, Year, SUM(Charge)
Calls

Year > 1991

GROUPBY Plan_Id, Month, Year

View V, can still be used to evaluate query Q). However, not all the

tuples in Q] can be computed using V,: the summary information computation

for 1990 would have to access the Calls table, and the rewritten query Q:
involves a UNION ALL.

Q:

SELECT
FROM
WHERE

GROUPBY
HAVING

SELECT
FROM
WHERE

Year, Plan_Name, SUM(Earnings)
V/, Calling_Plans

V! .Plan_Id = Calling_Plans.Plan_Id
AND Year <1995

Year, Plan_Name

SUM(Earnings) > 1,000,000

UNION ALL

Year, Plan_Name, SUM(Charge)

Calls, Calling_Plans

Calis.Plan_Id = Calling_Plans.Plan_Id
AND Year = 1990

GROUPBY Year, Plan_Name

-12-

WO 98/09238 PCT/US97/14660

10

15

20

25

HAVING SUM(Charge) > 1,000,000

Evaluating Q, will still be faster than evaluating Qj, even though it
involves accessing the Calls table.

A process for rewriting a query is shown in Fig. 2. The process begins
with step 202, in which the original query, which is to be rewritten, and the views
that are to be used, are provided. One view is selected to be analyzed first. In
step 204, the view is semantically analyzed to determine whether it is usable in
evaluating the original query. The semantic analysis involves two parts. First, the
view is analyzed to determine whether the view projects out any needed columns.
Second, the view is analyzed to determine whether the view discards any tuples
that satisfy a condition enforced in the original query. If a view V is usable in
evaluating a query Q, then V must “replace” some of the tables and conditions
enforced in Q: other tables and conditions from Q must remain in the rewritten
query Q'. The rewritten query Q' can be a single-block query, or a multi-block
query that is a UNION ALL of single-block queries. For view V to be usable in
answering query Q, such that Q' is a single-block query, it must be the case that:

V does not project out any columns needed by Q.

A column A is needed by Q if it appears in the result of Q or if Q needs to
enforce a condition involving A that has not been enforced in the computation of
V.

V does not discard any fuples needed by Q.

A tuple is needed by Q if it satisfies the conditions enforced in Q.

When Q' can be a multi-block query, the second requirement can be

somewhat relaxed to require that V not discard any tuples needed for some of the

groups in Q.

-13-

10

15

20

25

WO 98/09238 PCT/US97/14660

In step 206, it is determined whether the view is usable, based on the
results of step 204. If the view is not usable, then in step 214, the next view from
among those provided is selected to be analyzed. If the view is usable, then in
step 208, the query is rewritten to form a multi-set equivalent query that uses the
view. In step 210, it is determined whether the iteration of the selected view is
complete. If it is not, then the process loops back to step 204, in which the
rewritten query is semantically analyzed. As long as the view remains usable, a
rewritten query is generated for each iteration. If the iteration is complete, then in
step 212, it is determined whether all provided views have been analyzed. If not,
then in step 214, the next provided view is selected. The process then loops back
to step 204 and the newly selected view is iteratively analyzed using the current
rewritten query. If, in step 212, all provided views have been analyzed, then in

step 216, the final rewritten query that results from the process is evaluated.

NOTATION AND DEFINITIONS

We consider SQL queries and views with grouping and aggregation.
Queries can either be single-block queries (described below) or union multi-block
queries that are the UNION ALL (i.e., additive multiset union) of single-block
queries. A view is defined by a query, and the name of the view is associated
with the result of the query. In this document, we consider only views defined by
single-block queries. We give the form as well as a simple example of a single-

block query below:

Q: SELECT Sel(Q)
FROM R (4)...R(4,)
WHERE Conds(Q)

-14-

WO 98/09238 PCT/US97/14660

10

15

20

25

GROUPBY Groups(Q)
HAVING GConds(Q)

Qe: SELECT A, MAX(D), SUM(E)
FROM R(A,B), S(C.D,E)
WHERE B=C
GROUPBY A,B
HAVING SUM(D) > 1000

For notational convenience, we modify the naming convention of standard
SQL to guarantee unique column names for each of the columns in a single-block
query. For example, let Ry and Ry be two tables each with a single column
named A. If a single-block query Q has both R} and R» in its FROM clause, our
notation would replace them by Rj(A}) and R2(A)). Every reference to R.A in
Q is replaced by Aj, and every reference to Rp.A in Q is replaced by Ap
Similarly, if a single-block query Q has two range variables R and R) ranging
over table R in its FROM clause, our notation would replace them by R(A{) and
R(A3). Every reference to Ry.A in Q is replaced by A] , and every reference to
R».A in Q is replaced by Aj.

We use Tables(Q) to denote the set of tables (along with their columns)
{R,(4)),...,R,(4,)} in the FROM clause of a single-block query Q, and Cols(Q) to
denote 4,U...U4,, i.e., the set of columns of tables in Tables(Q). In the example
of query Qe, Tables(Qe) is {R(A,B),S(C,D,E)} and Cols(Qe) is {A,B,C,D,E}.

The set of columns in the SELECT clause of Q, denoted by Sel(Q),
consists of: (a) non-aggregation columns: this is a subset of the columns in
Cols(Q): and is denoted by ColSel(Q); and (b) aggregation columns: these are of
the form AGG(Y), where Y is in Cols(Q) and AGG is one of the aggregate

-15-

WO 98/09238 PCT/US97/14660

10

15

20

25

functions MIN, MAX, SUM and COUNT. The set of columns that are
aggregated upon, such as Y above, is a subset of Cols(Q), and is denoted by
AggSel(Q). In the example of query Q, Sel(Qe) is {A,MAX(D),SUM(E)},
ColSel(Qe) is {A} and AggSel(Qe) is {D,E}.

The grouping columns of query Q, denoted by Groups(Q), consists of a
subset of the columns in Cols(Q). SQL requires that if Groups(Q) is not empty,
then ColSe/(Q) must be a subset of Groups(Q). In the example of query Q,
Groups(Qe) is {A,B} and ColSel(Qg) is a proper subset of Groups(Qe).

We consider built-in predicates that are arithmetic predicates of the form o
op B, where op is one of the comparison predicates {<.<,=,2,>}, and a and B are
terms formed from columns of tables, aggregation columns, and constants using
the arithmetic operations +, - and *.

The conditions in the WHERE clause of query Q, denoted by Conds(Q),
consists of a Boolean combination of built-in predicates formed using columns in
Cols(Q) and constants. The conditions in the HAVING clause of query Q,
denoted by GConds(Q), consists of a Boolean combination of built-in predicates
formed using columns in Groups(Q), aggregation columns of the form AGG(Y)
where Y is in Cols(Q), and constants. In the example of query Qe, Conds(Qe) is
B = C, and GConds(Qe) is SUM(D)>1000.

Given a single-block query Q, if Groups(Q), AggSel(Q) and GConds(Q)
are non-empty (Note that each of Groups(Q), AggSel(Q) and GConds(Q) can be
empty without the other two being empty.), then Q is referred to as an
aggregation query.

Determining that a single-block view V is usable in evaluating a single-
block query requires (as we show later in the paper) that we consider mappings

from V to Q. These are specified by column mappings, defined below.

-16-

5

10

15

20

25

WO 98/09238 PCT/US97/14660

Column Mapping

A column mapping from a single-block query Q to a single-block query
Qp is a mapping ¢ from Cols(Qy) to Cols(Qp) such that if R(A},...,Ap) is a table
in Tables(Qy), then: (1) there exists a table R(By,....Bp) in T ables(Qp), and (2)
B, =¢(A)l<i<n.

A 1-1 column mapping ¢ is a column mapping from Q, to Qp such that
distinct columns in Cols(Qa) are mapped to distinct columns in Cols(Qp).
Otherwise, the column mapping is a many-to-1 column mapping.

As a shorthand, if R is a table in Tables(Qy), we use ¢(R(A1,....Ap)) to
denote R(¢(A1),..., $(Ap)), where Aj,....,Ap are columns in Cols(Qg). We use
similar shorthand notation for mapping query results, sets and lists of columns,
sets of tables, and conditions.

We formalize the intuitive notation of “usability” of view V in evaluating
query Q as finding a rewriting of Q, defined below. In this paper, we consider
only rewritings that are either single-block queries or multi-block queries that are
UNION ALLS of single-block queries. For example, rewriting Q, in Example
1.1 is a single block query, whereas rewriting Q, in the same example is a multi-
block query that is a UNION ALL of single-block queries.

Rewriting of a Query

A queryQ' is a rewriting of query Q that uses view V if: (1) Q and Q' are
multiset-equivalent, i.e., they compute the same multiset of answers for any given
database, and (2) Q' contains one or more occurrences of V in the FROM clause

of one of its blocks.

In the sequel, we say that view V is usable in evaluating query Q, if there
exists a single-block or a union multi-block query Q' such that Q' is a rewriting of

Q that uses V.

-17-

10

15

20

25

WO 98/09238 PCT/US97/14660

When the rewritten query can be a multi-block query, there is a certain
trivial sense in which any view V is usable in evaluating a given query Q — the
rewritten query can be the UNION ALL of Q itself and a single-block query in
which V occurs in the FROM clause and which has an unsatisfiable conjunction
of built-in predicates in the WHERE clause. Further, when Q is unsatisfiable, any
rewriting of Q would also have to be unsatisfiable. Dealing with these and other
such possibilities would complicate our presentation without aiding our
understanding of the problem. Hence, we consider satisfiable queries and views,

and do not permit multi-block rewritings where any block is unsatisfiable.

AGGREGATION QUERY AND CONJUNCTIVE VIEWS

In this section we consider the problem of using single-block conjunctive
views to evaluate a single-block query with grouping and aggregation. Using a
single-block view to evaluate a multi-block query can be achieved by
independently testing usability of the view in evaluating each block of the multi-
block query separately.

We formalize these intuitions below, show that they yield both necessary
and sufficient conditions for certain kinds of queries, and present an algorithm to
rewrite Q using V. We first examine the case when the query does not have a
HAVING clause, and then describe the effect of the HAVING clause on the

conditions for usability and the rewriting algorithm.

Aggregation Query Without A HAVING Clause

Single-block Rewritten Query
The conditions for usability of a single-block view V in evaluating a
single-block query Q, such that the rewritten query Q' is a single-block query, are

presented formally in Fig. 3 in terms of column mappings. Note that the

-18-

WO 98/09238 PCT/US97/14660

10

15

20

25

conditions apply also to the restricted case when both the view and the query are
conjunctive.

Condition Cy 302 and the first part of condition C4 308 essentially
guarantee that the view is multiset equivalent to its image under ¢: these are a
reformulation of the conditions presented in S. Chaudhuri and M. Y. Vardi,

“Optimization of real conjunctive queries”, In Proc. ACM PODS, 1993 for testing

equivalence of conjunctive queries under the multiset semantics. Note that the 1-
1 mapping is necessary because of the multiset semantics, whereas a many-to-1
mapping would suffice in the case of sets. Condition C4 308 ensures that
constraints not enforced in the view can still be enforced in the query when the
view is used, since they do not refer to columns that are projected out in the view
and hence are no longer available. Conditions Co 304 and C3 306 ensure that the
view does not project out any columns that are required in the SELECT clause of
the query.

If conditions C]-C4 302-308 are satisfied, the rewritten query Q' is
obtained from Q by applying process ConjViewSingleBlock 400, shown in Fig.
4. Process 400 begins with step S| 402, in which all the tables in ¢(Tables(V))
are replaced by ¢(V). In step Sy 404, each column A in Groups(Q) M} ColSel(Q)
Ny AggSel(Q) are replaced by ¢(Ba), where B satisfies conditions C> 304 and
C3 306, part 1. In step Sp 404-406, a Boolean combination of built-in predicates
Conds' satisfying condition C4 308 is determined. Conds(Q) in Q is then replaced
by Conds'. In step S4 408, COUNT(A) is replaced by COUNT(B), where B is
any column in ¢(V). COUNT(A) is an aggregation column in Se/(Q) such that A

is in ¢(Cols(V)), but not in ¢(Sel(V)).

-19-

10

15

20

25

WO 98/09238 PCT/US97/14660

Theorem 3.1

Let Q be a single-block aggregation query without a HAVING Clause, and
let V be a single-block conjunctive view.

If conditions C-Cy are satisfied, V is usable in evaluating Q . In that case
Q', obtained by applying algorithm ConjViewSingleBlock is a rewriting of Q
using V.

If Conds(Q) and Conds(V) contain only equality predicates of the Jorm
A=B, where A and B are column names or constants, and the rewritten query is
required to be a single-block query, V is usable in evaluating Q only if conditions
C)-Cy are satisfied.

The following example illustrates conditions C1-C4 302-308 and process

ConjViewSingleBlock 400 for obtaining a single-block rewritten query.

EXAMPLE 2

Consider the telephone company database from Example 1. The following

query Q2 can be used to determine the total earnings of each calling plan as well
as the total number of calls charged under each calling plan in December 1995.
Q2: SELECT PNy, SUM(C;) ,COUNT(Cy)

FROM Calls(F;, Ty, T1}, Dy, M}, Y}, DUy, Py, Cy),

Calling_Plans(Plj, PN)

WHERE Pj =PI AND Y] = 1995 AND M; = 12

GROUPBY PN;

Assume that the telephone company maintains call data for December 1995
as the view V7 below:
Va: SELECT F) T), TIp Dy My, Yy, DUy, P), C)

FROM Calls (F), T, TIp, D), M, Yy, DU, P), C)

WHERE Y=1995and My = 12

-20-

10

15

20

25

WO 98/09238 PCT/US97/14660

View V) can be used to evaluate query Q7 since conditions C-C4 are
satisfied: (C1) The 1I-1 column mapping & from V3 to Q7 is
{F2>F1,T2>T), Tl —-Tl;,D -»D1.My ->M;.Y> —-Y],DUy —DU|.Py
—P1,C2 =Cy}. (C2) Trivially satisfied. (C3) For column Cy, B, is the
column C3 in Sel(V7). (C4) Conds' is given by Py = PI;.

The single-block rewriting of Q7 that uses V> is:

Q, SELECT PN, SUM(C}), COUNT(Cy)
FROM Vo(F;, Ty, Tly, Dy, My, Y, DUy, Py, Cy),
Calling Plans(Pl], PN})
WHERE P; =Pl
GROUPBY PN;

Multi-Block Rewritten Query

When the rewritten query is not required to be a single-block query, but
can be a multi-block query that is a UNION ALL of single-block queries,
additional usage of views in evaluating queries are possible.

The conditions for usébility of a single-block view V in evaluating a
single-block query Q, when Q' can be a multi-block rewritten query, are similar to
the conditions for usability when Q' has to be a single-block query. In particular
conditions C1-C3 302-306 are ﬁnchanged. Condition C4 308 has to be modified
to reflect the possibility that V can be used to compute only some of the tuples of
Q. The modified condition C} 500 is formally presented in Fig. 5.

Intuitively, given a view V that satisfied condition C] 302 query Q can
always be reformulated as a UNION ALL of 2 single-block queries Q, and Qp,
that differ from Q (and from each other) only in their WHERE clauses such that

21-

10

15

20

25

WO 98/09238 PCT/US97/14660

(1) Conds(Qy) is equivalent to Conds(Q) & ¢(Conds(V)). and (2) Conds(Qp) is
equivalent to Conds(Q) & —¢(Conds(V)).

View V can be potentially used to evaluate Q,, but clearly not Qp.
Conditions Cy-C3, 302-306 and parts 1, 2(a) and 2(b) of condition Cy 500
essentially check whether view V can be used to evaluate Q; The reformulation
of Q as the UNION ALL of Qa and Qp, however, does not always preserve the
semantics of Q. To preserve the semantics, it must be guaranteed that Qa and Qp

do not compute tuples for the same group of Q - part 2(c) of condition Cy 500

embodies this requirement. If conditions C1-C3 302-306 and C" 500 are
satisfied, the multi-block rewritten query Q' is obtained, using process
ConjViewMultiBlock 600, shown in Fig. 6.

Process 600 begins with step 602, in which $(Conds(V)) is used to split Q
into Q4 and Qp, such that Conds(Qj) is equivalent to Conds(Q) & ¢(Conds(V)),
and Conds(Qp) is equivalent to Conds(Q) and —~¢(Conds(V)). In step 604, process

ConjViewSingleBlock is used to rewrite Qg to make use of view V, resulting in
the single-block query Q,. In step 606, if Qp is satisfiable, the multi-block query
Q' that is the rewriting of Q using V is the UNION ALL of Q, and Qp. Else Q'

is the same as Q, .

Theorem 3.2
Let Q be a single-block aggregation query without a HAVING clause, and
let V be a single-block conjunctive view.
If conditions Cj-C3 and C} are satisfied, V is usable in evaluating Q. In
that case Q', obtained by applying algorithm ConjViewMultiBlock, is a multi-

block rewriting of Q using V.

22

10

15

20

25

WO 98/09238 PCT/US97/14660

Multiple Uses of Views

Often a query can make use of multiple views, or the same view
times. The multiple rewriting algorithms ConjViewSingleBlock and
ConjViewMultiBlock presented above can be used to incorporate multiple uses

of views. To obtain rewritings with multiple views we create successive
rewritings Q,,...,Q, , where each rewriting is obtained from the previous one by

testing conditions C1-C3 302-306 and either C4 308 or C7 500 (depending on
the form of the rewriting desired), and applying the corresponding rewriting
algorithm. At each successive rewriting, the views incorporated in previous
rewritings are treated as database tables rather than being expanded using their

view definitions.

Theorem 3.3

Let O be a single-block aggregation query without a HAVING clause, and
let Vg,...Vy, be single-block conjunctive views. Then the following hold.:

1. An iterative application of algorithm ConjViewSingleBlock is
sound, i.e., each successive rewriting is multiset-equivalent to Q.

2. An iterative application of algorithm ConjViewMultiBlock is sound,
i.e., each successive rewriting is multiset-equivalent to Q.

3. The rewriting algorithm ConjViewSingleBlock is order-
independent. That is, if there is a single-block rewriting of Q that uses each of
Va...Vyy then the result of rewriting Q to incorporate views V...V, would be
the same regardless of the order in which the views are considered. |

4. If Conds(Q), Conds(Vy),...Conds(Vy,) contain only equality
predicates of the form A = B, where A and B are column names, or constants, and

the rewritten query is required to be a single-block query, then the iterative

223.

10

15

20

25

WO 98/09238 PCT/US97/14660

application of algorithm ConjViewSingleBlock is complete. That is, any
rewriting of Q that uses one or more of V,,...,Vy,, can be obtained by iteratively
applying algorithm ConjViewSingleBlock.

It is important to note that, for the case of equality predicates, the iterative
application of ConjViewSingleBlock guarantees that we find a// ways of using
the views to answer a query, provided the rewritten query is required to be a

single-block query.

AGGREGATION QUERY WITH A HAVING CLAUSE

We now describe how to extend the previous algorithms to the case in
which the queries may contain a HAVING clause. We only consider the case
when the rewritten query is required to be a single-block query. The case when
the rewritten query can be a multi-block query is a straightforward extension,
along the lines described for aggregation queries without HAVING clauses. We
first describe how to extend our usability conditions to accommodate the
HAVING clause, and then show how we can use various transformations on the
query that can cause the conditions to be satisfied in a larger number of cases.

Intuitively, when the single-block query Q has a HAVING clause, the
conditions for usability of a conjunctive view V in evaluating Q and the rewriting
algorithm ConjViewSingleBlock need to be extended to account for:

Conditions in GConds(Q) that must be satisfied by the query, in addition to
conditions in Conds(Q), and

Aggregation columns of the form AGG(Y), that occur in GConds(Q), but
not in Sel(Q).

To accommodate such conditions we modify C3 306 to also consider
arguments that appear in GConds(Q). The extended condition, C! 700, is
formally presented in Fig. 7. If Q and V satisfy conditions C 302, C5 304, C!

-24-

10

I5

20

WO 98/09238 PCT/US97/14660

700 and C4 308, the single-block rewritten query Q' is obtained using the
algorithm HavingConjViewSingleBlock, comprising steps 802, 804 and 806,

presented in Fig. 8.

Theorem 3.4
Let Q be a single-block aggregation query with a HAVING clause, and let
V be a single-block conjunctive view.
If conditions Cj, C3, C} and C4 are satisfied, V is usable in
evaluating Q. In that case Q', obtained by applying algorithm
HavingConjViewSingleBlock, is a rewriting of Q using V.

Strengthening the Conditions in the Query
When query Q has a HAVING clause, the conditions in its HAVING

clause may enable us to strengthen the conditions in the WHERE clause, without
affecting the result of the query. Strengthening the conditions in the WHERE
clause may allow us to detect usability of views that would otherwise not be
determined to be usable, because it makes it more likely that condition C4 308
will be satisfied.

Several authors have considered the problem of inferring conditions that
can be conjoined to Conds(Q) given the conditions in GConds(Q), and removing
redundant conditions in GConds(Q). These techniques can be applied to rewrite
the query Q as a pre-processing step, yielding possibly modified conditions

Conds(Q) and GConds(Q). The modified Conds(Q) and GConds(Q) are then used
in checking conditions Cp 304, C% 700, and C4 308.

-25-

10

15

20

25

WO 98/09238 PCT/US97/14660

EXAMPLE 3

Consider again the telephone company database from Example 1.1. The
following query Q3 can be used to determine, for each customer, the maximum
charge for a single call under the calling plan “TrueUniverse” in December 1995,

provided the charge exceeds $10.

Q3: SELECT F;MAX(Cy)

FROM Calls(F1,T), 711D M}, Y.DU;,P;,Cy),
Calling_Plans(Pl;,PNy)

WHERE Pj; =PljAND PN = “TrueUniverse”
AND Y; = 1995 AND M} = 12

GROUPBY Fy

HAVING MAX(C;)> 10

Assume that the telephone company maintains detailed call data for 1995,

for calls whose charge exceeds $1, as the view V3 below:

V3: SELECT F3,T7),TI3,D),M3 Y5, DU3, P> C>

FROM Calls(F3,T5,TI5, D3 M), Y>,DU>, P>,C>)

WHERE Yp=1995AND C) >]

Although the WHERE clause of Q3 does not enforce any conditions on the
Charge column, while the WHERE clause of V3 does, V3 can still be used to
evaluate Q3. This is because the condition MAX(C1) > 10 in the HAVING
clause of Q3 is equivalent to having the condition C{ >10 in the WHERE clause
of Q3. Strengthening Conds(Q3) by conjoining C; >10 (and subsequently
removing the redundant HAVING clause) allows the detection of usability of V3

in evaluating Q3. The rewriting of Q3 that uses V3 is:

-26-

10

15

20

25

WO 98/09238 PCT/US97/14660

Q,: SELECT F;MAX(Cy)
FROM V3 (F1.T;,T1;,D;, M}, Y .DU P, Cy),
Calling_Plans(Pl],PN;)
WHERE P =Pl; AND PN = “TrueUniverse "
AND M} =12 ANDC; > 10
GROUPBY F;
Note that view V3 cannot be used to answer query Q7 (from Example 3.1)
since conditions C4 308 and C 500 are violated — in particular V3 enforces the

condition C 304 >1, which results in the discarding of Calls tuples needed by

Q2.

AGGREGATION QUERY AND VIEWS

In this section we consider the problem of using single-block views in

evaluating single-block queries when both the view and the query have grouping
and aggregation. We only consider the case when the rewritten query is required
to be a single-block query.

Recall that the two intuitive requirements for the usability of a conjunctive
view V in answering a single-block aggregation query Q are that V not project oubt
columns needed in Q, and that V not discard tuples needed in Q. In the presence
of grouping and aggregation in the view, these requirements become more subtle:

An aggregation over a column in V can be thought of as though that
column was partially projected out, since V contains just aggregate values over
that column, not the original column values themselves.

A GROUPBY in V results in the multiplicities of the tuples being lost.

However, as the following examples illustrate. in some cases it is possible

to overcome the difficulties introduced by grouping and aggregation in the view.

227-

10

15

20

25

WO 98/09238 PCT/US97/14660

EXAMPLE 4 (Coalescing Subgroups)

The following example illustrates that the aggregate information in a view
may be sufficient to compute the aggregate information needed in the query.

Consider the telephone company database from Example 1. The following
query Q4 can be used to determine the total earnings of various calling plans as
well as the maximum charge under each calling plan in 1995.

Q4: SELECT P;.PN; SUM(C}), MAX(C})
FROM Calls(F;,T1,T1;,D;,M},Y1,DU,P;,Cy),
Calling Plans(P1},PN})

WHERE P;j=PljANDY; = 1995

GROUPBY Py, PN;

Assume that the telephone company also maintains information giving the
total earnings as well as the maximum charge of each calling plan in each month
in the form of view V4 below:

V4: SELECT P2, M2,Y2 SUM(C)), MAX(C))

FROM Calls(F),T7,TI3, Dy, M», Y2, DU, P),Cy),

GROUPBY Py M), 1>

View V4 groups the table Calls by the Plan_Id Month, and Year columns,
and computes aggregate information on each such group. Query Qq, on the other
hand, groups the table Calls only on the Plan_Id column, resulting in more coarse
groups than those computed in V4. However, the aggregate information of the
Plan_Id groups in Q4 can be computed by further aggregating the aggregate
information computed for the (Plan-Id, Month, Year) groups in V4, as illustrated
in the following rewritten query:

Q, SELECT P;PN; SUMME}), MAX(MC})

28-

5

10

15

20

25

WO 98/09238 PCT/US97/14660

FROM Va (P MY .ME | MC)),
Calling_Plans(Pl;,PN)
WHERE Pp =Pl AND Y| = 1995
GROUPBY Py, PNy
The following example illustrates that the existence of other columns in the

view may enable us to recover the tuple multiplicities lost because of grouping in

the view.

EXAMPLE 5 (Recovery of Lost Multiplicities)

Consider again the telephone company database from Example 1. The
following query Qs can be used to determine the total number of calls under each
calling plan in 1995:

Qs5: SELECT P;,COUNT(CNy;)
FROM Calls(F; T1,T1; D} M,Y;, DU P; Cp)
Customer(PN,CN})

WHERE F;j=PNjAND Y = 1995

GROUPBY Py

View V5, below maintains the total annual revenue for each customer,
plan, and year:

Vsa: SELECT Fp,P) Y2, SUM(C))

FROM Calls(F),T5,TI3, D3 M3,Y2,DU3,P3,C2)

WHERE Fo,PyY)>

V54 cannot be used to evaluate Q5. This is because the multiplicity of the
From column of Calls is needed in order to compute COUNT(CN{), but that
multiplicity is lost in the view V5,. However, consider view V5, below.

Vsp: SELECT F.P)Y) SUM(C)), COUNT(Cy)

FROM Calls(F3,T),TI3, D), M), Y2,DU3,P3,C2)

-20.

10

15

20

25

WO 98/09238 PCT/US97/14660

GROUPBY Fp,PyY>

Although the multiplicities of the From column are not explicit in Vg,
they can be computed using the available information, Vs, can be used to
evaluate Q5 as follows:
Q, SELECT P;,SUM(GCy)

FROM Vsp(F1.P1.Y,YE| CGY),

Customer(PN,CN;)

WHERE Fj=PNjANDY; = 1995

GROUPBY Py

As the examples illustrate, to use views that involve aggregations, we need
to verify that (a) the aggregate information in the view is sufficient to compute the
aggregates needed in the query, and that (b) the correct multiplicities exist or can
be computed. We formalize these intuitions below, present conditions for

usability, and provide an algorithm to rewrite Q using V.

WITHOUT HAVING CLAUSES

To specify conditions for usability for single-block aggregation views, we

need to slightly modify conditions Co 304 and C4 308 and to substantially modify
condition C3 306 to deal with the different cases of aggregates appearing in the
SELECT clause of the query. (Condition Cy 302 is unchanged.) The modified
conditions are formally presented in Fig. 9.

Since ColSel(Q) must be a subset of Groups(Q), condition C3 904 is a
generalization of condition Cp 304. Intuitively, condition C3 906 guarantees that
the columns in the view contain enough information to compute the aggregates
required in the query. In particular, condition C; 906 parts 1(b), 1(c) and 2

guarantee that we can recover the multiplicities in the view in order to perform an

-30-

10

15

20

25

WO 98/09238 PCT/US97/14660

aggregation that depends on such multiplicities (i.e., either SUM or COUNT).
The two parts of the condition cover the cases when the aggregation is on a
column mapped by the view, and not mapped by the view, respectively. Note that
the second part of condition C; 908 does not allow Conds' to constrain any of the
columns in @g(AggSel(V)). Intuitively, this is because the columns in AggSel(V)
are aggregated upon in view V, and hence are not available for imposition of
additional constraints in the rewritten query Q'.

If conditions C}-C; 902-908 are satisfied, the rewritten query Q' is
obtained from Q by applying algorithm AggViewSingleBlock, presented in Fig.
10. Steps S} 1002,S3 ,,,,571006 are similar to steps S 402, Sy 404 and S3 406 of
algorithm ConjViewSingleBlock. Steps S? 1008 and S 1010 deal with the

various kinds of aggregation that may occur in the view and the query.

Theorem 4.1
Let Q and V be single-block aggregation queries without HAVING clauses.
If conditions Ci -C} are satisfied, V is usable in evaluating Q. In that
case, Q', obtained by applying algorithm AggViewSingleBlock, is a rewriting of
Q using V.
EXAMPLE 6
Consider again the query Q4 and view V4 from Example 4.1. View V4

can be used to evaluate Q, since conditions C? - C? are satisfied.

Condition C;:

The 1-1 column mapping ¢ from V4 to Qq is { Fr— F;, Ty — 7,17l -
T1;D2 5D M2 > M Yy - Y,DUy - DU Py = P},C) —Cy).

ConditionC;:

-31-

WO 98/09238 PCT/US97/14660

10

15

20

25

For column P in Groups(Q4), B, 1s the column Py in ColSel(Vy).

ConditionCj:

For column SUM(Cy) in Sel(Qy), Sel(V4) contains column SUM(C)), and
for column MAX(Cy) in Sel(Qy4), Sel(V4) contains column MAX(C).

ConditionCj :

Conds' is the same as Conds(Qq), i.e., P} = P[j&Y| = 1995 since no
conditions are enforced in V4.

The rewritten query Q, resulting from applying steps S} -Si is given in

Example 4.1.

EXAMPLE 7 (Constraining ¢(4ggSel(V)))

Consider again the telephone database from Example 1.1. The following
Qg can be used to determine the total earnings of various calling plans in 1995,

considering only calls whose charge exceeds $1.

Qe6: SELECT P.SUM(Cy)
FROM Calls(F,T1,T1; D1,M1,Y1,DUP},C)),
WHERE Y =19954AND C; > |
GROUPBY Py

Let the view Vg be the same as view V4 (from Example 4.1):
Ve: SELECT Py, M), Y),SUM(C), MAX(Cy)

FROM Calls(F3,T2,TI, D3, M3,Y5,DU,P> Cp)
GROUPBY Py M) Y

-32-

WO 98/09238 PCT/US97/14660

10

15

20

25

View Vg cannot be used to evaluate Qg above, although in the absence of
the condition “C] > 1” in the WHERE clause in Qg, Vg could be used to evaluate
Qg- Intuitively, this is because the built-in predicates in the query constrain the
possible values of C] and Cp is aggregated upon in the view Vg, no condition on

the result of the SUM or the MAX in V¢ can capture the effect of the condition on
C1 in Qg-

With HAVING Clauses

Essentially, the additional subtleties that must be considered involve the

relationships between the GROUPBY and HAVING clauses in the view V and the

query Q. Intuitively, the HAVING clause in V may eliminate certain groups in V
(i.e., those that do not satisfy GConds(V)). If any of these eliminated groups in V
is “needed” to compute an aggregate function over a group in Q, by coalescing
multiple groups in V, then V cannot be used to evaluate Q. Hence, condition
C: 908 must be extended to test whether there exists GConds' such that GConds
(Q) is equivalent to the combination of GConds(V) and GConds’, taking the
grouping columns Groups(V) and Groups(Q) into account.

Before checking any of the conditions for usability, the query Q and view
V can be independently preprocessed to “move” maximum sets of conditions from
the HAVING clause to the WHERE clause, as discussed in Section 3.3; the
resulting normal form allows independent comparison of Conds(Q) and Conds(V)
, 6n the one hand, and of GConds(Q) and GConds(V), on the other.

The rewriting algorithm takes these additional refinements of the
conditions of usability into account. Specifically, step S;1006 determines a

GConds' in addition to Conds’, using GConds(V) and GConds(Q) (resulting

from the preprocessing step). Steps S; 1008 and S; 1010 are augmented to

-33-

10

15

20

25

WO 98/09238 PCT/US97/14660

compute aggregation columns appearing in GConds((Q) in addition to those

appearing in Sel(Q).

Conjunctive Query and Aggregation Views

Consider the case when the query Q is a conjunctive query (i.e., no
grouping and aggregation), but the view V has grouping and aggregation. In this
case the GROUPBY clause in the view results in losing information about the
multiplicities of tuples, and view V cannot be used to evaluate Q if the multiset

semantics is desired.

Theorem 5.1
Let Q be a conjunctive query, and V be a single-block aggregation view.
Then, there is no single-block rewriting of Q using V.
The following example illustrates the problem with conjunctive queries

and aggregation views:

EXAMPLE 8

Consider the telephone company database from Example 1.1. The query

Q7 below is used to obtain information about calls exceeding an hour in duration:

Q7: SELECT Fip.Dj, MY
FROM Calls(F),T},TI;, DM ,Y;,DU},P;,C))
WHERE DU; >3600
The view V7 below counts the number of calls exceeding an hour in

duration made by each caller on a daily basis:

V7. SELECT FD M) Y COUNT (T3)

-34-

10

WO 98/09238 PCT/US97/14660

FROM Calls(F2, 12,113, D3, M.Y2, DU, P> Cy)

WHERE DU »>3600

GROUPBY F),DyM),Y>

There is a 1-1 column mapping from V7 to Q7, Se/(V7) contains all the
columns required in Se/(Q7), and the conditions enforced by the WHERE clauses
are identical. Even through COUNT(T2) has the required multiplicity
information, this information cannot be used in an SQL query to “replicate” the
tuples in V7 the appropriate number of times. Thus there is no rewriting of Q7
that uses view V7.

Although a specific embodiment of the present invention has been described,
it will be understood by those of skill in the art that there are other embodiments
which are equivalent to the described embodiment. Accordingly, it is to be
understood that the invention is not to be limited by the specific illustrated

embodiment, but only by the scope of the appended claims.

-35.

WO 98/09238 PCT/US97/14660

S W s WwWN L =B R e L7, T -G UV B G T

HOWwN

CLAIMS
What is claimed is:
1. A method of evaluating a query having aggregation using a materialized
view, comprising the steps of:

semantically analyzing the materialized view to determine whether the
materialized view is usable in evaluating an input query;

if the view is usable, rewriting the input query to produce an output query
that is multi-set equivalent to the input query and that specifies one or more
occurrences of the materialized view as a source of information to be returned by
the output query; and

evaluating the output query.

2. The method of claim 1, wherein the semantically analyzing step comprises
the steps of:

determining that the materialized view does not project out any columns
needed to evaluate the input query; and

determining that the view does not discard any tuple that satisfies a

condition enforced in the input query.

3. The method of claim 2, wherein:
the steps of semantically analyzing and rewriting are iterated, with the
output query of each iteration being the input query of the next iteration; and

the evaluating step is performed after the last iteration.

4, The method of ciaim 2, wherein:

there are a plurality of materialized views;

-36-

(= Y L)

[0S}

WO 98/09238 PCT/US97/14660

the steps of semantically analyzing and rewriting are iterated at least once
for each of the materialized views, with the output query of each iteration being
the input query of the next iteration; and

the evaluating step is performed after the last iteration.

5. The method of claim 4, wherein:
the steps of semantically analyzing and rewriting are further iterated for a

given one of the materialized views.

6. The method of claim 4, wherein each one of the plurality of materialized

views is similar.

7. The method of claim 4, wherein at least one of the plurality of materialized

views is different.

8. The method of claim 4, wherein each one of the plurality of materialized

views is different.

9. The method of claim 1, wherein the materialized view does not have

aggregation.

10. The method of claim 1, wherein the materialized view has aggregation.

11. A system for evaluating a query using a materialized view, comprising:
a semantic analyzer analyzing the materialized view to determine whether

the materialized view is usable in evaluating an input query;

-37-

WO 98/09238 PCT/US97/14660

0 3 N Wi N

Y— L T O Y S (Y N - S S]

S B WwWN

a query rewriting device rewriting the input query to produce an output
query that is multi-set equivalent to the input query and that specifies one or more
occurrences of the materialized view as a source of information to be returned by
the output query, if the view is usable; and

a query evaluator evaluating the output query.

12. The system of claim 11, wherein the semantic analyzer comprises:

a first analysis unit determining that the materialized view does not project
out any columns needed to evaluate the input query; and

a second analysis unit determining that the view does not discard any tuple

that satisfies a condition enforced in the input query.

13. The system of claim 12, wherein:

the semantic analyzer and query rewriting device are further iteratively
operable, with the output query of each iteration coupled to the input query of the
next iteration; and

the query evaluator is coupled to the output query of the last iteration.

14. The system of claim 12, wherein:

there are a plurality of materialized views;

the semantic analyzer and query rewriting device are further iteratively
operable at least once for each of the materialized views, with the output query of
each iteration coupled to the input query of the next iteration; and

the query evaluator is coupled to the output query of the last iteration.

15. The system of claim 14, wherein:

-38-

(o]

[§]

O 00 3 O W b WO e

[
<o

WO 98/09238 PCT/US97/14660

the semantic analyzer and query rewriting device are further iteratively

operable for a given one of the materialized views.

16. The system of claim 14, wherein each one of the plurality of materialized

views is similar.

17. The system of claim 14, wherein at least one of the plurality of

materialized views is different.

18. The system of claim 14, wherein each one of the plurality of materialized

views is different.

19. The system of claim 11, wherein the materialized view does not have

aggregation.

20. The system of claim 11, wherein the materialized view has aggregation.

21. A computer program storage device, comprising:

a computer readable medium embodying computer program instructions
for evaluating a query using a materialized view, including:

computer program instruction means for semantically analyzing the
materialized view to determine whether the materialized view is usable in
evaluating an input query;

computer program instruction means for rewriting the input query to
produce an output query that is multi-set equivalent to the input query and that
specifies one or more occurrences of the materialized view as a source of

information to be returned by the output query, if the view is usable; and

-39

11

— ~N N N kR W N

0 9 N ke WwW N

00 ~1 &N W A W N

WO 98/09238 PCT/US97/14660

computer program instruction means for evaluating the output query.

22. The computer program storage device of claim 21, wherein the computer
program instruction means for semantically analyzing the materialized view
comprises:
computer program instruction means for determining that the materialized
view does not project out any columns needed to evaluate the input query; and
computer program instruction means for determining that the view does not

discard any tuple that satisfies a condition enforced in the input query.

23. The computer program storage device of claim 22, further comprising:
computer program instruction means for iteratively operating the computer
program instruction means for semantically analyzing the materialized view and
the computer program instruction means for rewriting the input query, with the
output query of each iteration being the input query of the next iteration; and
wherein
the computer program instruction means for evaluating the output query

operates after the last iteration.

24. The computer program storage device of claim 22, wherein there are a
plurality of materialized views and the computer program storage device further
comprises:

computer program instruction means for iteratively operating the computer
program instruction means for semantically analyzing the materialized view and
the computer program instruction means for rewriting the input query at least once
for each of the materialized views, with the output query of each iteration being

the input query of the next iteration; and wherein

-40-

10

[, N S VS B o]

o

WO 98/09238 PCT/US97/14660

the computer program instruction means for evaluating the output query

operates after the last iteration.

25. The computer program storage device of claim 24, wherein:

the computer program instruction means for iteratively operating the
computer program instruction means for semantically analyzing the materialized
view and the computer program instruction means for rewriting the input query

are operable to iterate for a given one of the materialized views.

26. The computer program storage device of claim 24, wherein each one of the

plurality of materialized views is similar.

27. The computer program storage device of claim 24, wherein at least one of

the plurality of materialized views is different.

28. The computer program storage device of claim 24, wherein each one of the

plurality of materialized views is different.

29. The computer program storage device of claim 21, wherein the

materialized view does not have aggregation.

30. The computer program storage device of claim 21, wherein the

materialized view has aggregation.

41-

WO 98/09238

PCT/US97/14660
113
Fig. la
104 106 108
RAM ROM I/0
m\
102
CPU
110
Storage Device
112
114a Database 114z
Table 00 Table
113
SQL Engine
17
Query Definitions
118a 1182
Table | N N Table
1135
116a Materialized Views 116z
Materialized View 00 Materialized View

/

WO 98/09238 PCT/US97/14660
2/13
Fig. 1b
114a 114b 116a 116b
Table Table Materialized View Materialized View

113 118a
SQL Engine - Query
119

WO 98/09238

PCT/US97/14660
3/13
Fig. 1c
120
Customer
121 122
Phone Number Cust Name
L2_3_b\ 1-800-555-1111 John Doe
1-800-555-2222 Jane Doe
Fig. 1d
130
Calls
131 | 132 133 134 135 136 137 138 139
From| To | Time | Day | Month | Year | Duration| Plan 1d | Charge
8:14 23 1 93 5 1 1.25
19:02| 25 1 94 16 3, 1.60

WO 98/09238 PCT/US97/14660
4/13

Fig. 2

202
Provide original query, views.
Select view

\
204

Semantically analyze the selected
view

208
Rewrite query to form multi-set
equivalent query using view

Is view usable?

210
Iteration
complete?

12

All views
Y analyzed?

216
Evaluate final rewritten query

o
—
i S

Select next view

WO 98/09238 PCT/US97/14660

5/13

Fig. 3

302
Condition C;:

There is a 1-1 column mapping ¢ from V to Q

304

Condition C;:

If a column A in ColSel(Q) v Groups(Q) is a
column in ¢(Cols(V)), then Sel(V) must have a column B,
such that Conds(Q) implies (A = ¢(Ba)).

Note that this condition is satisfied if B is ¢ (A).

306

Condition Cs:
Suppose AGG(A) is in Sel(Q). If column A is in
&(Cols(V)), then
1. If AGG is MIN, MAX or SUM, then Sel(V) must
have a column B, such that Conds(Q) implies (A = (Ba)).

2 If AGG is COUNT, then Sel(V) must not be empty.

08

Condition C,:
There exists a Boolean combination of built-in
predicates, Conds’, such that:

1. Conds(Q) is equivalent to ¢(Cols(V)) & Conds’.
2. Conds’ involves only the columns in

&(Sel(V)) u (Cols(Q) - ¢(Cols(V))).

WO 98/09238 PCT/US97/14660

6/13

Fig. 4

400

/ ConjViewSingleBlock

402
Step S
Replace all the tables in ¢(Tables(V)) by o(V).

l

404
Step S,:
Replace each column A in Groups(Q) v ColSel(Q) u
AggSel(Q) by 6(B,), where B, satisfies conditions C; and
C,, part 1.

l

406
Step Si:
Determine a Boolean combination of built-in predicates
Conds' satisfying condition C4. Replace Conds(Q) in Q by
Conds'.

l

408
Step S4:
Replace COUNT(A) by COUNT(B), where B is any
column in (V).

WO 98/09238 PCT/US97/14660

7/13

Fig. 5

500

Condition C:

Let Conds, be Conds(Q) & ®(Conds(V)), and Conds; be
Conds(Q) & —§(Conds(V)). Then,
1. Conds; must be satisfiable.
2. There exists a Boolean combination of built-in
predicates, Conds’ such that:
(@) Conds, is equivalent to (Conds(V)) & Conds’,
(b) Conds’ involves only the columns in
®(Sel(V)) v (Cols(Q) - a(Cols(V))),
(c) nGroup(Q)(Condsl) &
U roupy(Condsy) is FALSE.

WO 98/09238 PCT/US97/14660

8/13.

Fig. 6

600
/ ConjViewMultiblock
602
Step ST:

Use ¢(Conds(V)) to split Q into Q, and Q,, such that
Conds(Q,) is equivalent to Conds(Q) & ¢(Conds(V)), and
Conds(Qy,) is equivalent to Conds(Q) and ~¢(Conds(V)).

l

604
Step ST
Use ConjViewSingleBlock to rewrite Q, to make
use of view V, resulting in Q, .

l

606
Step S7:
If Q, is satisfiable, the multi-block query Q' that is
the rewriting of Q using V is the UNION ALL of Q, and
Q,. Else Q is the same as Q, .

WO 98/09238 PCT/US97/14660

9/13

Fig. 7

700
Condition C}:
Suppose AGG(A) is in Sel(Q) or in GConds(Q). If
column A is in ¢Cols(V) then:

1. If AGG is MIN, MAX, or SUM, then Sel(V) must
have a column B, such that Conds(Q) implies (A = ¢(Ba))-
2. If AGG is COUNT, then Sel(V) must not be empty.

WO 98/09238 PCT/US97/14660

802
Step S
Apply steps S;, S,, and S5 using condition C3.

l

804
Step S;:
Replace each column A in GConds(Q) by ¢(Ba).
where A and B, satisfy conditions C, and Cj§, part 1.

806
Step S}
Consider an aggregation column COUNT(A) in
Sel(Q) or in GConds(Q), such that A is in ¢(Cols(V)), but
not in ¢(Se!(V)). Replace COUNT(A) by COUNT(B),
where B is any column of ¢(V).

WO 98/09238 ' PCT/US97/14660

11/13

Fig. 9

902
Condition C::
Same as condition C;.

904
Condition C3:
If column A in Groups(Q) is a column in
¢&(Cols(V)), then ColSel(V) must have a column B A such
that Conds(Q) implies (A = 6(B,)).

906
Condition C;:
Suppose AGG(A) is in Sel(Q).
1. If column A is in ¢(Cols(V)), then:

(a) If AGGis MIN or MAX, then there must
exist a column B, in Cols(V) such that Conds(Q) implies
(A = $(B4)), and Sel(V) contains either the non-aggregation
column B,, or an aggregation column of the form
AGG(B,).

(b) If AGG is COUNT, then Se/(V) must include
a column of the form COUNT(A,), where A, is a column
in Cols(V).

(c) If AGG is SUM, then there must exist a
column B, in Cols(V) such that Conds(Q) implies (A =
¢(B L)), and Sel(V) contains either B, and a column of the
form COUNT(A,), or an aggregation column of the form
AGG(B,).

2. If column A is not in ¢(Cols(V)), and AGG is either
SUM or COUNT, then Sel(V) must include a column of
the form COUNT(A), where A, is a column in Cols(V).

908
Condition C;:
There exists Conds’, such that:
1. Conds(Q) is equivalent to ¢(Conds(V)) & Conds'
2. Conds' involves only the columns ¢(ColSel(V)) and
the columns in Cols(Q) that are not in Cols(o(V)).

WO 98/09238 PCT/US97/14660

12/13

Fig. 10a

1000
Having

/ AggViewSingleBlock

1002
Step S;:

Replace all the tables in ¢(Tables(V)) by ¢(V), where o(V) is defined as
follows: for each non-aggregation column A in Sel(V), ¢(V) contains the
column ¢(A); for each aggregation column A in Sel(V), ¢(V) contains a new
column name.

l

1004
. Step S;:
Replace each column A in GROUPS(Q)uColSel(Q)uAggSel(Q) by ¢(Ba),
where B, satisfies the condition C; and Cj, part 1(a).

l

1006
Step S;:
Determine a Boolean combination of built-in predicates Conds' satisfying
condition C% as above. Replace Conds(Q) in Q by Conds’.

WO 98/09238 PCT/US97/14660

1313

Fig. 10b

1.

1008
Step S;:

Consider an aggregation column AGG(A) in Sel(Q) such that A is in

d(Cols(V)).

Let AGG be MIN, MAX, or SUM. By condition C; , part 1, there are

two cases to consider:

(a) Suppose Sel(V) contains the aggregation column AGG(B,). LetS
denote the corresponding column in ¢. Replace AGG(A) in Sel(Q)
by AGG(S).

(b) Suppose Sel(V) contains the non-aggregation column B,.

If AGG is either MIN or MAX, leave AGG(A) in Sel(Q)
unchanged.

If AGG is SUM, then by condition C;, part 1(c), Sel(V) must
include a column of the form COUNT(A,). Let N denote the
corresponding column in ¢(V). Replace SUM(A) in Sel(Q) by
SUM(A*N).
Let AGG be COUNT. By condition C; , part 1(b), Sel(V) must include
a column of the form COUNT(A,). Let N denote the corresponding
column in (V).
Replace COUNT(A) in Sel(Q) by SUM(N).

l

1010
Step S;:

1Consider an aggregation column AGG(A) in Sel(Q) such that column A is

not ¢(Cols(V)).

If AGG is MIN or MAX, leave AGG(A) unchanged

If AGG is SUM or COUNT, do the following: By condition C;, part 2,
Sel(V) must include a column of the form COUNT(Ayg). Let N denote
the column ¢(V) corresponding to that COUNT (A,) column.

1. If AGG is COUNT, replace COUNT(A) in Sel(Q) by SUM(N).

2. If AGG is SUM, replace SUM(A) in Sel(Q) by SUM (A*N).

INTERNATIONAL SEARCH REPORT i

int atlonal Application No

PCT/US 97/14660

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F17/30

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimumdocumentation to the extent that such documents are included in the tields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, whare appropriate, of the retevant passages

Relevant to claim No.

RECORD, DEC. 1987, USA,

see the whole document

pages 440-453, XP002050106

A HANSON £ N: "A performance analysis of 1,11,21
view materialization strategies"
ASSOCIATION FOR COMPUTING MACHINERY
SPECIAL INTEREST GROUP ON MANAGEMENT OF
DATA 1987 ANNUAL CONFERENCE, SAN
FRANCISCO, CA, USA, 27-29 MAY 1987,
vol. 16, no. 3, ISSN 0163-5808, SIGMOD

Further documents are listed in the continuation of box C.

D Patent tamily members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considsred to be of particuiar relevanca

“E" earlier documsent but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publicationdate of anothar
citation or other special reason (as specitied)

“Q" documaent referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the intemational filing date but
later than the priorty date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invantion

X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the documsnt is taken alone

"Y" document of particular relevance; the claimad invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
Ime'r_:t:. such combination being obvious to a person skilled
n the an.

"&" document member of the same patant family

Date ot the actual completion of theinternational search

15 December 1997

Date of mailing of the intarnational search report

14/01/1998

Name and mailing address of the ISA
Eurcpean Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswifk
Tel. (+31-70) 340--2040, Tx. 31 651 epo ni,
Fax: (+31~70) 340-3016

Authorized officer

Katerbau, R

Form PCTASA/210 (second sheet) (July 1982)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Int. tionat Application No

PCT/US 97/14660

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation ot document, with indication,where appropriate, of the relevant passages Relevant to claim No.

A SRIVASTAVA J ET AL: "Analytical modeling 1,11,21
of materialized view maintenance"
PROCEEDINGS OF THE SEVENTH ACM
SIGACT~SIGMOD-SIGART SYMPOSIUM ON
PRINCIPLES OF DATABASE SYSTEMS, AUSTIN,
TX, USA, 21-23 MARCH 1988, ISBN
0-89791-263-2, 1988, NEW YORK, NY, USA,
ACM, USA,

pages 126-134, XP002050107

see the whole document

Form PCT/ISA210 (continuation of second sheet) (July 1992)

page 2 of 2

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

