a2 United States Patent

Zhao et al.

US011659032B2

US 11,659,032 B2
May 23, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(30)

METHODS, ELECTRONIC DEVICES, AND
COMPUTER PROGRAM PRODUCTS FOR
ACCESSING A FILE

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.

Filed:

US 2021/0120004 A1l

EMC IP Holding Company LLC,
Hopkinton, MA (US)

Chaojun Zhao, Chengdu (CN);
Changxu Jiang, Chengdu (CN); Jianfei
Yang, Chengdu (CN); Xiaoyu Ren, Du
Jiangyan (CN)

EMC IP Holding Company LLC,
Hopkinton, MA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 167 days.

: 16/881,429
May 22, 2020

Prior Publication Data

Apr. 22, 2021

Foreign Application Priority Data

Oct. 21, 2019

(1)

(52)

Int. CL.

HO4L 67/1097
HO4L 9/40
HO4L 67/01
GO6F 18214

U.S. CL
CPC

(CN) 201911002078.6

(2022.01)
(2022.01)
(2022.01)
(2023.01)

. HO4L 67/1097 (2013.01); GO6F 18/214
(2023.01); HO4L 63/102 (2013.01); HO4L
63/108 (2013.01); HO4L 63/20 (2013.01);

HO4L 67/01 (2022.05)

100—\

(58) Field of Classification Search
CPCcoonueeeee HO04L 63/102; HO4L 63/108; HO4L
67/1097; HO4L 67/42; GO6K 9/6256
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9,154,296 B1 10/2015 O’Connell

10,552,072 B1 2/2020 Bono et al.
2010/0169392 Al* 7/2010 Lev Ran HO4L 67/06
707/827
2016/0224798 Al* 82016 Limcccocevveennen. GOGF 16/13
2019/0250998 Al* 82019 Bedadala GO6F 11/1469
2020/0065509 Al* 2/2020 Ojha HOAL 63/1466
2020/0302074 Al* 9/2020 Little GOGF 21/6218
2020/0349468 Al™* 112020 Aryaccccoveeennn GO6N 20/00
2020/0412726 ALl* 12/2020 Nev .cccooevvevvecnns GO6N 20/00

* cited by examiner

Primary Examiner — Nicholas R Taylor
Assistant Examiner — Sanjoy K Roy
(74) Attorney, Agent, or Firm — BainwoodHuang

(57) ABSTRACT

Techniques for accessing a file involve determining whether
a client requests a permission for a target file, the permission
allowing the client to cache data associated with the target
file. The techniques further involve in response to determin-
ing that the client requests the permission, obtaining pattern
information related to an access pattern in which the client
accesses the target file. The techniques further involve
determining availability of the permission to the client by
applying the pattern information to a decision model, the
decision model being trained based on training pattern
information and training permission information. The tech-
niques further involve providing, to the client, an indication
on the availability. Accordingly, access conflicts can be
reduced, so that the performance of the client and server can
be improved.

17 Claims, 9 Drawing Sheets

120 110
CLENT .. SERVER
-~
o E—
CACHE 111
FILE
130 »
CLIENT £
131
< > DECISION MODEL
CACHE

US 11,659,032 B2

U.S. Patent May 23, 2023 Sheet 1 of 9
100~
~120 110
CLIENT SERVER
121
o
CACHE | 111
FILE |
~130
CLIENT 112
131
«— »| | DECISIONMODEL
CACHE I

Fig. 1

U.S. Patent May 23, 2023 Sheet 2 of 9 US 11,659,032 B2

200—\

A CLIENT 210
REQUESTS APERMISSIONFOR = -

A TARGET FILE? QR

I YES 220

OBTAIN PATTERN INFORMATION RELATED TO AN ACCESS PATTERN
IN WHICH THE CLIENT ACCESSES THE TARGET FILE

Y _—230

DETERMINE AVAILABILITY OF THE PERMISSION TO THE CLIENT BY
APPLYING THE PATTERN INFORMATION TO A DECISION MODEL

v 240

PROVIDE TO THE CLIENT AN INDICATION ON THE AVAILABILITY

Fig. 2

U.S. Patent May 23, 2023 Sheet 3 of 9 US 11,659,032 B2

302

00~
112

e __ }

:

320 :

]

]

]

]

330 '

]

PATTERN OUTPUT '
INFORMATION > e -E--» FEEDBACK

:

]

]

]

]

]

]

]

]

]

]

U.S. Patent May 23, 2023 Sheet 4 of 9 US 11,659,032 B2

400-\

410

DETERMINE EVENT INFORMATION ASSOCIATED WITH PROVIDING
OF THE AVAILABILITY

INFORMATION
— 430
UPDATE THE DECISION MODEL WITH THE FEEDBACK
CORRESPONDING TO THE AVAILABILITY
Fig. 4
500 —\
—510

REQUEST TO A SERVER A PERMISSION FOR A TARGET FILE

RECEIVE FROM THE SERVER AN INDICATION ON AVAILABILITY OF
THE PERMISSION

Fig. 5

U.S. Patent May 23, 2023 Sheet 5 of 9 US 11,659,032 B2

600
™~ 90 .
,—604
~nn DECISION
603 - MODEL
602 A

REWARD
FUNCTION

]

]

]

:

]

]

]

|

‘ 601 FILE STATE :
PROCESSING 606w
' MODULE |
]

]

]

]

]

]

]

]

]

]

]

]

Fig. 6

U.S. Patent May 23, 2023 Sheet 6 of 9 US 11,659,032 B2

700—\
OPEN REQUEST FROM A CLIENT E
— 706
NO LEASE EXCLUSIVE 704
BREAK [EASEEXSTSONAFLRTHER

BREAK THE EXCLUSIVE LEASE E

DEGRADE TOA |
SHARED LEASE |

NOT GRANT A LEASE

Fig. 7A

U.S. Patent May 23, 2023 Sheet 7 of 9 US 11,659,032 B2

70~
WRITE REQUEST FROM A CLIENT E
72
NO LEASE/ 0 SHARED s
R __ LEASEEXSTSONAFURHTER

YES 122
BREAK A SHARED LEASE ON THE FURTHER
CLIENT

Fig. 7B

U.S. Patent May 23, 2023 Sheet 8 of 9 US 11,659,032 B2

800
™\

CLIENT 2%y = -

CL |E N T 1 S B & 3 T E3 & & § 3 ®

CLIENT 0

Fig. 8

U.S. Patent May 23, 2023 Sheet 9 of 9 US 11,659,032 B2
900_\
_— 901 902 _— 903
CPU ROM RAM
<: ! | } %
I |
/0 INTERFACE
T _— 906 l _— 907 908 I — 909
INPUT OUTPUT } STORAGE COMMUNICATION
UNIT UNIT UNIT UNIT

Fig. 9

US 11,659,032 B2

1

METHODS, ELECTRONIC DEVICES, AND
COMPUTER PROGRAM PRODUCTS FOR
ACCESSING A FILE

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to Chinese Patent Appli-
cation No. CN201911002078.6, on file at the China National
Intellectual Property Administration (CNIPA), having a fil-
ing date of Oct. 21, 2019, and having “METHOD,
DEVICES, AND COMPUTER PROGRAM PRODUCTS
FOR FILE ACCESS” as a title, the contents and teachings
of which are herein incorporated by reference in their
entirety.

FIELD

Embodiments of the present disclosure relate to the field
of data storage, and more specifically, to a method, an
electronic device and a computer program product for
accessing a file.

BACKGROUND

A client caching mechanism is a common, widely-used
and critical function for a remote file system, which can
reduce network traffics and improve 10 performance. For
example, a client can store data for writing in its local cache
to reduce network packets if the client is notified there is no
other client or process accessing a file. Similar caching can
be done when reading a file at a server, where the client can
read data from a remote file at the server and store the same
at its local cache to reduce communication between the
client and the server and relevant overheads, if the client
knows that there is no other client or process writing data to
the file.

SUMMARY

Embodiments of the present disclosure provide a solution
for accessing a file.

In a first aspect of the present disclosure, a method for
accessing a file is provided. The method includes determin-
ing whether a client requests a permission for a target file,
the permission allowing the client to cache data associated
with the target file. The method further includes, in response
to determining that the client requests the permission,
obtaining pattern information related to an access pattern in
which the client accesses the target file. The method further
includes determining availability of the permission to the
client by applying the pattern information to a decision
model, the decision model being trained based on training
pattern information and training permission information.
The method further includes providing, to the client, an
indication on the availability.

In a second aspect of the present disclosure, a method of
accessing a file is provided. The method includes requesting
to a server permission for a target file, the permission
allowing cache of data associated with the target file. The
method further includes receiving from the server an indi-
cation on availability of the permission, wherein the avail-
ability is determined by applying pattern information to a
decision model, the pattern information related to an access
pattern of access to the target file, the decision model trained
based on training pattern information and training permis-
sion information.

10

15

20

25

30

35

40

45

50

55

60

65

2

In a third aspect of the present disclosure, an electronic
device is provided. The device includes a processor and a
memory coupled to the processor, the memory having
instructions stored thereon, the instructions, when executed
by the processor, causing the device to perform acts. The
acts include determining whether a client requests permis-
sion for a target file, the permission allowing the client to
cache data associated with the target file. The acts further
include in response to determining that the client requests
the permission, obtaining pattern information related to an
access pattern in which the client accesses the target file. The
acts further include determining availability of the permis-
sion to the client by applying the pattern information to a
decision model, the decision model being trained based on
training pattern information and training permission infor-
mation. The acts further include providing, to the client, an
indication on the availability.

In a fourth aspect of the present disclosure, an electronic
device is provided. The device includes a processor and a
memory coupled to the processor, the memory having
instructions stored thereon, the instructions, when executed
by the processor, causing the device to perform acts. The
acts include requesting to a server a permission for a target
file, the permission allowing caching of data associated with
the target file. The acts further include receiving from the
server an indication on availability of the permission,
wherein the availability is determined by applying pattern
information to a decision model, the pattern information
related to an access pattern of accessing the target file, the
decision model trained based on training pattern information
and training permission information.

In a fifth aspect of the present disclosure, a computer
program product is provided. The computer program prod-
uct is tangibly stored on a computer-readable medium and
includes machine-executable instructions which, when
executed, causes the machine to perform a method according
to the first aspect of the present disclosure.

In a sixth aspect of the present disclosure, a computer
program product is provided. The computer program prod-
uct is tangibly stored on a computer-readable medium and
includes machine-executable instructions which, when
executed, causes the machine to perform a method according
to the second aspect of the present disclosure.

The Summary is to introduce a selection of concepts in a
simplified form that are further described below in the
Detailed Description. This Summary is not intended to
identify key features or essential features of the present
disclosure, nor is it intended to be used to limit the scope of
the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

Through the following more detailed description of the
example implementations of the present disclosure with
reference to the accompanying drawings, the above and
other objectives, features, and advantages of the present
disclosure will become more apparent, where the same
reference sign usually refers to the same component in the
example implementations of the present disclosure.

FIG. 1 shows a schematic view of an example environ-
ment in which embodiments of the present disclosure can be
implemented;

FIG. 2 shows a flowchart of a process of accessing a file
according to some embodiments of the present disclosure;

FIG. 3 shows a schematic view of one example of a
decision model according to some embodiments of the
present disclosure;

US 11,659,032 B2

3

FIG. 4 shows a flowchart of a process of updating a
decision model according to some embodiments of the
present disclosure;

FIG. 5 shows a flowchart of a process of accessing a file
according to some embodiments of the present disclosure;

FIG. 6 shows a logical view of an emulation model
according to some embodiments of the present disclosure;

FIG. 7A shows an example logical process of condition A
for a lease break according to some embodiments of the
present disclosure;

FIG. 7B shows an example logical process of condition B
for a lease break according to some embodiments of the
present disclosure;

FIG. 8 shows a schematic view of an access pattern
corresponding to a simulated scenario; and

FIG. 9 shows a block diagram of an example device
which can be used to implement embodiments of the present
disclosure.

DETAILED DESCRIPTION OF
IMPLEMENTATIONS

The individual features of the various embodiments,
examples, and implementations disclosed within this docu-
ment can be combined in any desired manner that makes
technological sense. Furthermore, the individual features are
hereby combined in this manner to form all possible com-
binations, permutations and variants except to the extent that
such combinations, permutations and/or variants have been
explicitly excluded or are impractical. Support for such
combinations, permutations and variants is considered to
exist within this document.

It should be understood that the specialized circuitry that
performs one or more of the various operations disclosed
herein may be formed by one or more processors operating
in accordance with specialized instructions persistently
stored in memory. Such components may be arranged in a
variety of ways such as tightly coupled with each other (e.g.,
where the components electronically communicate over a
computer bus), distributed among different locations (e.g.,
where the components electronically communicate over a
computer network), combinations thereof, and so on.

Principles of the present disclosure will now be described
with reference to several example embodiments illustrated
in the drawings. Although some preferred embodiments of
the present disclosure are shown in the drawings, it would be
appreciated that description of those embodiments is merely
for the purpose of enabling those skilled in the art to better
understand and further implement the present disclosure and
is not intended for limiting the scope disclosed herein in any
manner.

As used herein, the term “includes” and its variants are to
be read as open-ended terms that mean “includes, but is not
limited to.” The term “or” is to be read as “and/or” unless the
context clearly indicates otherwise. The term “based on” is
to be read as “based at least in part on.” The terms “one
example implementation” and “one implementation” are to
be read as “at least one example implementation.” The term
“a further implementation” is to be read as “at least a further
implementation.” The terms “first”, “second” and so on can
refer to same or different objects. The following text also can
include other explicit and implicit definitions.

As mentioned above, a client caching mechanism is an
important function for a remote file system. For example, in
server message block SMB 2.1, a lease is introduced as a
new type of client caching mechanism. Opportunity lock
Oplocks is used as the client caching mechanism prior to

10

15

20

25

30

35

40

45

50

55

60

65

4

SMB 2.1. The lease shares the same purpose as Oplocks,
which allows clients to adjust their buffering policy to
increase performance and to reduce network traffic. In
addition, the lease provides greater flexibility and much
better performance. Compared with Oplocks, another
enhancement function of the lease is that it allows full
caching when multiple handles are opened by the same
client.

No matter Oplocks or lease, a server can send a break
notification when a client file open request has a conflict
with an existing Oplocks/lease. When an exclusive write-
caching lease is broken, the client needs to flush its cached
data to a new server or close the file, and then the server can
open the file to another client. When a shared read-caching
lease is broken, the server sends to the client a notification
indicating the lease has been broken, but the server does not
wait for any acknowledgment, as there is no cached data to
be flushed to the server.

It can be seen that the lease break, especially the write-
caching lease break will consume system costs. If the server
can grant a lease to a file open request which is less likely
to have conflicts in concurrent file sharing, performance and
cache coherence balance will be improved, and the lease
break costs in a system will be reduced.

There is no mechanism in conventional storage systems to
predict the probability of future conflicting open requests
when granting a lease. If a conflicting probability is high, the
performance penalty could be severe.

Inventors of the present application realized that a con-
flicting probability of different open requests is closely
related to access pattern in a storage environment. However,
access pattern could be diverse in different user scenarios,
and for a specific user scenario, the access pattern could
change dynamically. In this case, a predefined or statically-
configured lease granting policy will not work well in a
dynamic environment.

The present disclosure provides a file accessing solution
to at least overcome one or more of the above drawbacks. In
this solution, a mechanism can discover access pattern and
adapt to the real-time changing access pattern through
self-learning. For example, the solution may use a method
from the reinforcement learning area to alleviate the prob-
lems stated above. Reinforcement learning allows a system
to enhance its behavior by self-learning (given a measure-
ment of a series of actions). For example, a server (and its
inner components) serves as an agent, in which case it
includes two types of actions: grant permission with a proper
type or not grant permission. The table maintained in the
server is the environment that this agent observes. The
grading system (feedback or reward) may be roughly orga-
nized depending on how long a client holds the permission
before being revoked, or whether a permission is closed
normally by a client, etc. Considering that a permission
break cost is less for a shared permission than for an
exclusive permission, feedbacks or rewards will be calcu-
lated with different weights. Based on feedback or reward
the server receives from each action, the server learns to
make better decisions as time progresses, and eventually
exceeds the quality of permission granting compared to the
conventional implementation. With such a mechanism, a
permission (e.g., a lease) can be granted more effectively, the
possibility of access conflicts can be reduced, thereby further
improving the performance on the client and the server.

As used herein, the term “permission” refers to the
implementation of a client caching mechanism, that is, a
client to which a permission is granted is allowed to store
data associated with a file at a server in its local cache.

US 11,659,032 B2

5

Specific types of “permission” may include, e.g., read-
caching, write-caching, handle-caching, etc. For the read-
caching, the client may read data of an accessed file from the
server in advance and store the data in its local cache. For
the write-caching, the client may write data to be written to
the server to its local cache and then send the data to the
server in batches. For the handle-caching, the client may
cache a handle of an accessed file, so that different appli-
cation programs of the same client may directly manage the
same file at the client when opening the file. “Permission”
may be implemented in any appropriate manner, for
example, may be implemented as a lease or Oplocks under
the SMB protocol or may also be implemented as similar
forms under other protocols.

Embodiments of the present disclosure are described in
detail with reference to the drawings. FIG. 1 shows a
schematic view of an example environment 100 in which
embodiments of the present disclosure may be implemented.
As depicted in FIG. 1, the example environment 100 may
generally include a server 110 and clients 120, 130. It should
be understood that the structure and functionality of the
example environment 100 are described only for the purpose
of illustration and do not suggest any limitation to the scope
of the present disclosure. Embodiments of the present dis-
closure may further be applied to an environment with a
different structure and/or functionality. The respective num-
bers of servers and clients included in the example environ-
ment 100 are also by way of example without limiting the
scope of the present disclosure.

The clients 120 and 130 have caches 121 and 131,
respectively. After obtaining a permission (such as a lease)
from the server, the clients 120 and 130 may cache data
associated with a file (e.g., a file 111) at the server.

The server 110 includes data which is accessible to the
clients 120 and 130, for example, the file 111. In the
following description, the file 111 may also be referred to as
a target file 111. The clients 120 and 130 may request a
permission for the target file 111 or a further file so as to
perform relevant caching operations. The server 110 may
use a decision model 112 to determine whether to grant a
permission to the clients 120 and 130.

The decision model 112 may make a decision on whether
a permission is granted and/or what type of permission is
granted, through learning. The decision model 112 may use
a real-time learning process to adaptively explore and find
out a file access pattern and further come to a decision. For
example, the decision model 112 may be a model based on
reinforcement learning.

In the process of deploying the decision model 112, for
example, during the process of the server 110 utilizing the
decision model 112, the decision model 112 may be trained
or updated continuously so as to make better decisions or
decisions that conform to real-time status of the system.
Although the decision model 112 is shown as being inside
the server 110, it should be understood that the decision
model 112 may also entirely or partly reside on another
device with which the server 110 may communicate or on a
medium which the server 110 may utilize.

Embodiments of the present disclosure will be described
below in detail with reference to FIGS. 2-9. FIG. 2 shows a
flowchart of a file accessing process 200 according to some
embodiments of the present disclosure. For purpose of
discussion, the process 200 will be described in conjunction
with FIG. 1. In such an example, the process 200 may be
implemented at the server 110.

At block 210, the server 110 determines whether the client
120 requests a permission for the target file 111, where the

10

15

20

25

30

35

40

45

50

55

60

65

6

permission allows the client 120 to cache data associated
with the target file 111. For example, in one implementation,
the server 110 may determine whether the client 120
requests a lease for the target file 111. The server 110 may
use any appropriate approach to determine whether the
client 120 requests a lease for the target file 111.

In some embodiments, for example, the request for a
permission may be sent from the client 120 to the server 110
as an independent request. In some embodiments, the
request for a permission may be included in an open request
for the target file 111 from the client 120. After passing a
shared violation check, the server 110 may determine
whether the open request for the target file 111 from the
client 120 includes the request for a permission.

If the server 110 determines the client 120 requests the
permission, then the process 200 proceeds to block 220. At
block 220, the server 110 obtains pattern information related
to an access pattern that the client 120 accesses the target file
111. The pattern information may include various informa-
tion related to the client 120 accessing the target file 111.

The pattern information may include an operation to be
performed on the target file 111 by the client 120. Such an
operation may include, but is not limited to, read, write and
close. The pattern information may further include an iden-
tification of the client 120, e.g., an ID of the client 120. The
pattern information may further include time on which the
client 120 makes a request for a permission, for example,
year, month, day when the request is sent, specific time in a
day (for example, hours, minutes). In some embodiments,
such information may be obtained from the open request for
the target file 111 from the client 120.

The pattern information may further include the level or
type of permission for the target file 111 which the client 120
can obtain. In some embodiments, the server 110 may
determine whether the target file 111 is being accessed or to
be accessed by a further client. If the target file 111 is being
accessed or to be accessed by the further client (e.g., the
client 130), then the server 110 may determine that the
permission requested by the client 120 has a first permission
level. If there is no further client that is accessing or to
access the target file 111, then the server 110 may determine
the permission requested by the client 120 has a second
permission level that is higher than the first permission level.

In some embodiments, the first permission level may
correspond to a shared permission, while the second per-
mission level may correspond to an exclusive permission.
The exclusive permission may refer to a permission includ-
ing a write caching, while the shared permission does not
include a write caching.

For example, where a permission is implemented as a
lease, the exclusive lease may start one or more of read
caching, write caching and handle caching, for example,
read and write caching RW as well as read, write and handle
caching RWH. The shared lease may start one or more of
read caching and handle caching, for example, read caching
R as well as read and handle caching RH. In this case, if the
server 110 determines there is no further client accessing the
target file 111, then the server 110 may determine the lease
which can be granted to the client 120 has a higher level, for
example, an exclusive lease. If the server 110 determines the
request from the client 120 will cause a file access conflict
or conflicts with an existing file access, then the server 110
may determine the lease which can be granted to the client
120 has a lower level, such as a shared lease.

At block 230, the server 110 determines the availability of
the lease to the client 120 by applying the pattern informa-
tion to the decision model 112. The decision model 112 is

US 11,659,032 B2

7

trained based on training pattern information and training
permission information. As used herein, the availability may
include whether to grant the permission (e.g., a lease) for the
target file 111 to the client 120. Where the client 120 is
granted the permission, the availability may further include
or indicate which type of permission is granted to the client
120. The type of the permission may be specific to the type
of cache being used, for example, RWH, RW, RH and the
like as mentioned above. As one example, where the per-
mission is implemented as a lease, the availability may
indicate granting to a client 120 an exclusive lease, a shared
lease or no lease is granted to the client 120.

As mentioned above with reference to FIG. 1, the decision
model 112 may adaptively explore and find out file access
patter through a learning process (such as reinforcement
learning) to come to a decision. The training pattern infor-
mation and training permission information for training the
decision model 112 may include at least one of: pattern
information related to a permission for a file of a further
server (or a further storage system) and corresponding
permission information (including whether a permission and
a feedback are granted, as to be described below), pattern
information related to a permission for a file (including the
target file 111 and a further file) of the server 110 and
corresponding permission information.

For example, the decision model 112 may be trained with
the grant of a lease in another server and then be deployed
in the server 110. The decision model 112, after being built,
may be directly deployed in the server 110 and then be
trained with the grant of a lease in the server 110. After being
deployed, the decision model 112 may further be trained or
updated based on the grant of a lease in the server 110, as to
be further described below.

With reference to FIG. 3, this figure shows a schematic
view 300 of one example of the decision model 112 accord-
ing to some embodiments of the present disclosure. It should
be understood the structure of the decision model 112 shown
in FIG. 3 is merely illustrative without limiting the protec-
tion scope of the present disclosure. According to embodi-
ments of the present disclosure, the decision model 112 may
be built with any appropriate structure or network.

In the example of FIG. 3, the decision model 112 includes
a first layer 310, a second layer 320 and an output layer 330,
where the first layer 310 and the second layer 320 includes
a plurality of neurons 311 and 321, respectively. The deci-
sion model 112 uses pattern information 301 as input, which
is obtained at block 220 and may be used to evaluate a
current environment, and outputs a decision on availability
via the output layer 330. In some embodiments, the decision
model 112 may directly make a decision on which type of
permission is to be granted to the client 120, or make a
decision that a permission is not granted to the client 120. In
some embodiments, the decision model 112 may output
probabilities for different decisions. For example, the deci-
sion model 112 may output a probability of granting an
exclusive permission, a probability of granting a shared
permission and a probability of not granting permission.
Then, the server 110 may determine the availability (e.g., an
option of the highest probability) of the permission
requested by the client 120 based on these probabilities, that
is, which type of permission is to be granted to the client 120
or permission is not granted to the client 120.

As one example, where permission is implemented as a
lease, the decision model 112 may output the probability of
granting exclusive lease, the probability of granting shared
lease and the probability of not grating lease. Then, the
server 110 may select an appropriate type of lease to grant

20

25

30

35

40

45

8

to the client 120. In order to grant an appropriate type of
lease, when the permission level or type determined at block
220 corresponds to an exclusive lease, the exclusive lease or
a shared lease may be granted to the client 120, or no lease
is granted to the client 120, in accordance with probabilities.

Similarly, when the permission level or type determined
at block 220 corresponds to the shared lease, the shared lease
may be granted to the client 120, or no lease is granted to the
client 120, in accordance with probabilities. It should be
understood in this implementation, since the output type of
the decision model 112 may not be changed or not easy to
change, where the permission level or type corresponds to
the shared lease, if an option with the highest probability is
the exclusive lease, then the shared lease may be considered.

Subsequently, the server 110 may determine a feedback
302 on the decision made by the decision model 112. The
feedback 302 (e.g., a reward) may be used to further train or
update the decision model 112. For example, parameters
(e.g., W1, bl) of the first layer 310 and/or parameters (W2,
b2) of the second layer 320 of the network may be updated
based on the feedback 302. Further description will be
presented below with reference to FIGS. 3 and 4.

Still with reference to FIG. 2, at block 240, the server 110
provides, to the client 120, an indication on the availability.
For example, the server 110 may indicate, to the client 120
and in a packet sent to the client 120, the type of the granted
permission for the target file 111, or indicate, to the client
120 and in a packet sent to the client 120, that permission is
not granted for the target file 111. After receiving the
indication from the server 110, the client 120 may access the
target file 111 in accordance with the indication.

The solution for accessing a file according to some
embodiments of present disclosure has been described with
reference to FIGS. 1 to 3. In such embodiments, with the
decision model that may learn continuously, the server may
evolve continuously and make better decisions on permis-
sion requests, find out rules behind file access patterns and
correctly reject permission requests that may cause conflicts.
In this way, the performance of the client and the server may
further be improved. In addition, this implementation will
not affect other services on a system since it is only an
enhancement function of determining whether a right type of
permission (e.g., a lease) should be granted for a file open
request. The solution is user-friendly since it does not need
any interaction with customers. Furthermore, the decision
model used is a light weight decision-making algorithm and
easy to implement.

As mentioned above, the decision model 112 may be
reinforced through continuous learning during deployment.
This embodiment will be described with reference to FIG. 4.
FIG. 4 shows a flowchart of a process 400 of updating a
decision model according to some embodiments of the
present disclosure. For the purpose of discussion, the pro-
cess 400 is described in conjunction with FIGS. 1 and 3.

At block 410, a server 110 determines event information
associated with providing availability. The event informa-
tion may indicate at least one of: maintenance of a granted
permission, disabling of a granted permission and access to
a target file 111. In other words, the quality of a decision on
granting or refusing the permission may be considered or
evaluated.

If the permission is granted to the client 120, then the
event information may indicate how long the permission is
maintained, whether and/or when the permission is broken,
revoked or disabled, or indicate that the permission ends
normally without being broken, etc. If the client 120 is not
granted a permission, then the event information may indi-

US 11,659,032 B2

9

cate whether there is an access conflicting method within a
period of time (e.g., within a predetermined period of time
or during the client 120 accessing the target file 111), that is,
whether there is a further client accessing the target file 111.

At block 420, the server 110 determines, based on the
event information, a feedback 302 corresponding to the
availability (e.g., the availability determined at block 230)
and used for the decision model 112. Depending on the event
information, the feedback 302 may be a positive feedback
(e.g., a reward with a positive value) or a negative feedback
(e.g., a punishment with a negative value).

Where the client 120 is granted a permission for the target
file 111, the event information may indicate whether the
permission (e.g., a lease) is broken, when the permission is
broken, etc. If the event information indicates the permission
is maintained for a period of time, then the server 110 may
determine the feedback 302 is positive. If the event infor-
mation indicates disabling of the permission, e.g., broken
during the client 120 accessing the target file 111, then the
server 110 may determine the feedback 302 is negative.
Amounts of positive feedback or negative feedback, e.g., the
positive or negative value of a reward may depend on the
duration and/or type of the permission.

Where the client 120 is refused grant of a permission for
the target file 111, the event information may indicate
whether an access conflict has happened, that is, whether
there is a further client accessing the target file 111 during a
period of time. If the event information indicates the target
file 111 has not been accessed by a further client for a period
of time, then the server 110 may determine the feedback 302
is negative. Amounts of the negative feedback may be
adjustable, and embodiments of the present disclosure are
not limited in this regard.

At block 430, the server 110 updates the decision model
112 with the feedback 302 corresponding to the availability.
For example, parameters of the network of the decision
model 112 may be updated. In other words, the decision
model 112 may be trained further.

In this embodiment, the decision model 112 may be
adjusted according to the state of the system (e.g., a file
access pattern). In this way, the decision model 112 may be
dynamically adapted to the current state of the system
including the server and the client, thereby making a more
appropriate decision. The decision made as such can reduce
the probability of occurrence of conflict and decrease costs
caused by the break of permission, such as a lease.

How to determine a feedback for the decision model 112
will be illustrated below by way of a specific example. In
this example, the feedback may also be referred to as a
reward. Where the server 110 grants an exclusive permission
to the client 120, the following rules may be applied:

if an exclusive permission endures for at least 1 hour
without being broken, then a reward may be 10;

if an exclusive permission break happens before an aver-
age permission duration, then a reward may be -5 to -10;

if an exclusive permission break happens after the average
permission duration, then a reward may be -1;

if an exclusive permission break happens after 2 times of
the average permission duration, then a reward may be 2 to
9,

if an exclusive permission is normally closed without a
break, then a reward may be 1 to 10.

Where the server 110 grants a shared permission to the
client 120, a certain amount of discount (e.g., 50% to 80%)
will be applied to the value of the reward. The size of the
discount may vary depending on the system. Where the cost
of breaking a shared permission break is low, the discount

10

15

20

25

30

35

40

45

50

55

60

65

10

may even be 0, that is, the feedback corresponding to the
shared permission is not considered.

Where the server 110 does not grant a permission to the
client 120, if no file access conflict happens, then a reward
may be -10.

It should be understood that the specific values of rewards
above are merely by way of example and not limiting. In
addition, the division of the above reward levels is also by
way of example. In embodiments of the present disclosure,
more or less reward levels may exist, for example, only two
levels of whether a permission is broken or not, regardless
of the duration of the permission.

FIG. 5 shows a flowchart of a process 500 of accessing a
file according to some embodiments of the present disclo-
sure. For the purpose of discussion, the process 500 will be
described in conjunction with FIG. 1. In this example, the
process 500 may be implemented at a client 120 and/or a
client 130. Simply for purpose of discussion, the process 500
will be described in conjunction with the client 120.

At block 510, the client 120 requests a server 110 for
permission for a target file 111. The permission allows the
client 120 to cache data associated with the target file 111.
For example, the client 120 may include a request for a lease
for the target file 111 in an open request for the target file
111.

At block 520, the client 120 receives from the server 110
an indication on the availability of the permission. For
example, the indication may indicate to the client 120
whether the requested permission is granted or which type of
permission is granted. The availability is determined by
applying pattern information to the decision model 112, the
pattern information is related to an access pattern in which
the target file 111 is accessed, and the decision model 112 is
trained based on training pattern information and training
permission information. The availability is determined as
described with respect to the process 200.

The above described solution for accessing a file accord-
ing to embodiments of the present disclosure utilizes a
decision model with learning ability. A specific example will
be given below to illustrate the verification and effect of this
solution. In this example, an example of a permission being
implemented as a lease will be used for illustration.

FIG. 6 shows a logical view 600 of an emulation model
according to some embodiments of the present disclosure. A
file state processing module 602 processes a simulated
request from a client, including a file open request or write
request. The file state processing module 602 further gen-
erates input information 603 which is used for simulating the
above mentioned pattern information as input of a decision
model 604. The decision model 604 sends a decision made
about the permission availability (whether a permission is
granted or not, the type of a permission) to the file state
processing module 602. Subsequently, the file state process-
ing module 602 generates a reward for the decision on the
decision model 604 and appends the reward to a reward
function 606. The reward function 606 is sent to the decision
model 604 for training the decision model 604. Elements
included in block 610 may be elements to be actually
deployed, for example, the decision model 604 may be one
implementation of the decision model 112.

The rewards may be calculated based on lease break logic.
The server will send a lease break notification to the client
when a lease conflict is detected. In the simulation, lease
break conditions may be summarized as condition A and
condition B as below. Condition A: an exclusive lease exists
on another client while an open request is received from one

US 11,659,032 B2

11

client. Condition B: one or more shared leases exist on other
clients while a write request is received from a client.

FIG. 7A shows an example logical process 700 for
condition A of a lease break. At block 702, an open request
for a file is received from a client. At block 704, it is
determined whether there exists an exclusive lease for the
file on a further client or not. If it is determined that there is
no exclusive lease for the file on the further client, then the
process 700 proceeds to block 706, i.c., no lease break. If it
is determined that there is an exclusive lease for the file on
the further client, then the process 700 proceeds to block
708, where the exclusive lease for the file is broken. At block
710, it is determined whether the lease is degraded to a
shared lease. If it is determined that the lease is degraded to
a shared lease, then the process 700 proceeds to block 712,
where the further client is degraded to a shared lease. If it is
determined that the lease is not degraded to a shared lease,
then the process 700 proceeds to block 714, where a lease is
not granted.

FIG. 7B shows an example logical process 750 for
condition B of a lease break. At block 716, a write request
for a file is received from a client. At block 718, it is
determined whether there exists a shared lease for the file on
a further client. If it is determined that there is no shared
lease for the file on the further client, then the process 750
proceeds to block 720, where there is no lease break. If it is
determined that there is a shared lease for the file on the
further client, then the process 750 proceeds to block 722,
where the shared lease on the other client is broken.

Now explanations are presented to parameters used in the
simulation.

X: the number of clients that may access the file with open
requests. It is assumed that all clients have a lease capability.

client_id: an identification of a client making an open
request. The range of “client_id” is O, . . . , X-1.

Tn: the time point of an open request of the client for the
file. Tn is recorded with a format “year-month-day hours:
minutes: seconds.” For example, if Tn is ‘2019-06-07 06:36:
11°, then Tn.year is 2019, Tn.month is 6, Tn.day is 7,
Tn.hours is 6, Tn.minutes is 36, and Tn.seconds is 11.

action: an operation for the file. The operation is “read,”
“write” or “close.”

Data_frame: the access pattern of a file by X clients is
designed to test the algorithm and may be demonstrated as
Table 1.

TABLE 1

Examples of Access Pattern for Simulation

Access Information

Time Point [client_id, action]
T1 [0, read]
T2 [1, read]
T3 [0, close]
T4 [2, write]

[X-1, close]

T _dur: the duration for which each client owned a lease
last time. T_dur=[t_dur[0], t_dur[0], t_dur[1], . . ., t_dur
(X-11]

duration_train: a period of time. Training will happen
during every period of time duration_train.

10

15

20

25

30

35

40

45

50

55

60

65

12

R: a reward calculated for the decision made by the
decision model for each request. R=[r[0], r[1], . . ., f[X]],
r[client_id]=reward_calculator(t_dur[client_id],break_flag,
noDeleNoConflict), where break_flag is a 3-bit flag to
record whether the lease is an exclusive lease or a shared
lease and whether the lease is broken, and noDeleNoConflict
is used to record whether a conflict happens where no lease
is granted for an open request.

rewards: the rewards calculated for each decision on each
request made by the decision model over a period of time
duration_train. For each decision, rewards will be appended
with a reward.

data_in: the input constructed for the decision model, i.e.,
for simulating the above mentioned pattern information. For
the Data_frame at Tn, data_in =[action, client_id, action,
lease_type, Tn.year, Tn.month, Tn.day, Tn.hours,
Tn.minutes, t_dur[client_id]]. lease_type is an exclusive
lease (because an exclusive lease can be granted only when
no other client is accessing the file), or else the lease_type
is a shared lease.

The following steps may be performed as below for each
real-time open request that has passed a share violation
check.

Step 1: If a client requests a lease, then the file state
processing module 602 will set the possible lease_type as an
exclusive leasing for the first open request for the file, or else
the lease_type is a shared lease, and then the flow goes to
step 2. Otherwise, no lease will be granted.

Step 2: The file state processing module 602 sends the
data_in to the decision model 604.

Step 3: The decision model 604 receives the data_in, then
calculates a possibility value, for example, based on rein-
forcement learning RL, as described above.

Step 4: The file state processing module 602 receives a
response from the decision model 604 and determines
whether to grant a proper lease to the request.

Step 5: The file state processing module 602 calculates
rewards and appends the rewards to the reward function 606.

Step 6: The rewards during each duration_train are sent
back to the decision model 604 as an input for training the
decision model 604.

As one example, a simulation result is provided for the
scenario where X=3 clients access one file. Client 0 will
write this file in a row at random intervals. The open
duration conforms to normal distribution (e.g., an applica-
tion that stores information permanently to a file is simu-
lated). Client 1 will open this file periodically (e.g., every
hour), and the open duration might be very short. (e.g., a
virus scan is simulated). Client 2 will read this file periodi-
cally with a long duration, e.g., once a day. The open
duration might be long. (e.g., a backup application is simu-
lated, which might read the whole file). FIG. 8 shows a
schematic view 800 of an access pattern corresponding to
the simulated scenario.

Table 2 shows a simulation result with respect to the
above scenario. In this scenario, the decision model can
reduce a break count for about 193.98% compared with a
scenario where there is no decision model in 35 days. Only
exclusive-leasing breaks are counted herein since a shared-
lease break is trifling compared to an exclusive-lease break.
As can be seen from this simulation, the solution of the
present disclosure shows advantageous effects on reducing
lease breaks.

US 11,659,032 B2

13
TABLE 2

One Example of Simulation Result

Comparison between no
decision model and with
decision model

Lease break count
(with decision model)

Lease break count
(no decision model)

4936 1679 193.98%

FIG. 9 is a schematic block diagram illustrating an
example device 900 that can be used to implement embodi-
ments of the present disclosure. As illustrated, the device
900 includes a central processing unit (CPU) 901 which can
perform various suitable acts and processing based on the
computer program instructions stored in a read-only
memory (ROM) 902 or computer program instructions
loaded into a random access memory (RAM) 903 from a
storage unit 908. The RAM 903 also stores various types of
programs and data required by operating the storage device
900. The CPU 901, ROM 902 and RAM 903 are connected
to each other via a bus 904 to which an input/output (I/O)
interface 905 is also connected.

Various components in the device 900 are connected to
the I/O interface 905, including: an input unit 906, such as
a keyboard, a mouse and the like; an output unit 907, such
as a variety of types of displays, loudspeakers and the like;
a storage unit 908, such as a magnetic disk, an optical disk
and the like; and a communication unit 909, such as a
network a card, a modem, a wireless communication trans-
ceiver and the like. The communication unit 909 enables the
device 900 to exchange information/data with other devices
via a computer network such as Internet and/or a variety of
telecommunication networks.

The processing unit 901 performs various methods and
processes as described above, for example, any of the
processes 200, 400 and 500. For example, in some embodi-
ments, any of the processes 200, 400 and 500 may be
implemented as a computer software program or computer
program product, which is tangibly included in a machine-
readable medium, such as the storage unit 908. In some
implementations, the computer program may be partially or
fully loaded and/or installed to the device 900 via the ROM
902 and/or the communication unit 909. When the computer
program is loaded to the RAM 903 and executed by the CPU
901, one or more steps of any of the processes 200, 400 and
500 described above are implemented. Alternatively, in
other implementations, the CPU 901 may be configured to
implement any of the processes 200, 400 and 500 in any
other suitable manner (for example, by means of a firm-
ware).

According to some embodiments of the present disclo-
sure, there is provided a computer-readable medium. The
computer-readable medium is stored with a computer pro-
gram which, when executed by a processor, performs the
method according to the present disclosure.

Those skilled in the art would understand that various
steps of the method of the disclosure above may be imple-
mented via a general-purpose computing device, which may
be integrated on a single computing device or distributed
over a network composed of a plurality of computing
devices. Optionally, they may be implemented using pro-
gram code executable by the computing device, such that
they may be stored in a storage device and executed by the
computing device; or they may be made into respective
integrated circuit modules or a plurality of modules or steps
therein may be made into a single integrated circuit module

w

10

15

20

25

30

35

40

45

50

55

60

65

14

for implementation. In this way, the present disclosure is not
limited to any specific combination of hardware and soft-
ware.

It would be appreciated that although several means or
sub-means (e.g., specialized circuitry) of the apparatus have
been mentioned in detailed description above, such partition
is only by way of example, but not mandatory. Actually,
according to the embodiments of the present disclosure,
features and functions of two or more apparatuses described
above may be instantiated in one apparatus. In turn, features
and functions of one apparatus described above may be
further partitioned to be instantiated by various apparatuses.

What have been mentioned above are only some optional
embodiments of the present disclosure and are not intended
to limit the present disclosure. For those skilled in the art, the
present disclosure may have various modifications and
changes. Any modifications, equivalents and improvements
made within the spirit and principle of the present disclosure
should be included within the scope of the present disclo-
sure.

We claim:
1. A method of accessing a file, comprising:
determining whether a client requests a permission for a
target file, responsive to receipt of an open request for
the target file from the client, the permission allowing
the client to cache data associated with the target file;
in response to determining that the client requests the
permission, obtaining pattern information from the
open request received from the client, wherein the
pattern information is related to an access pattern in
which the client accesses the target file and includes a
time when the client requests the permission, wherein
the time the client requests the permission comprises a
year, month, and day when the open request was sent
from the client, and wherein determining that the client
requests the permission for the target file comprises
determining that the open request received from the
client includes a request from the client for the permis-
sion;
determining availability of the permission to the client by
applying the pattern information to a decision model,
the decision model being trained based on training
pattern information and training permission informa-
tion;
providing, to the client, an indication on the availability;
determining event information associated with providing
of the availability, the event information indicating at
least one of maintenance of the permission, disabling of
the permission and access to the target file;
determining, for the decision model, a feedback corre-
sponding to the availability, based on the event infor-
mation, at least in part by:
determining as the feedback a reward in response to a
period of time during which the permission is main-
tained,
wherein the reward has a first value in the event that a
break in the permission happens before the period of
time during which the permission is maintained
reaches an average permission duration,
wherein the reward has a second value in the event that
a break in the permission happens after the period of
time during which the permission is maintained
reaches the average permission duration,
wherein the first value is less than the second value,
wherein the reward has a third value in the event that
a break in the permission happens after a period of

US 11,659,032 B2

15

time during which the permission is maintained
reaches a multiple of the average permission dura-
tion, and

wherein the third value is greater than the second value;
and

updating the decision model with the feedback corre-

sponding to the availability.

2. The method of claim 1, wherein obtaining the pattern
information comprises:

determining whether the target file is being accessed or is

to be accessed by a further client;

in response to determining that the target file is being

accessed or is to be accessed by the further client,
determining that the permission has a first permission
level; and

in response to determining that no further client is access-

ing or is to access the target file, determining that the
permission has a second permission level higher than
the first permission level.

3. The method of claim 2, wherein the first permission
level corresponds to a shared permission, and the second
permission level corresponds to an exclusive permission.

4. The method of claim 2, wherein obtaining the pattern
information further comprises obtaining:

an operation to be performed on the target file by the

client, and

an identification of the client.

5. The method of claim 1, wherein the availability indi-
cates that the client is refused to be granted the permission,
and wherein determining the feedback corresponding to the
availability comprises:

in response to the event information indicating that the

target file is not accessed by a further client during a
period of time, determining that the feedback corre-
sponding to the availability is a negative feedback.

6. The method of claim 1, wherein the availability indi-
cates that the client is allowed to be granted the permission,
and wherein determining the feedback corresponding to the
availability comprises:

in response to the event information indicating that the

permission is maintained during a period of time,
determining that the feedback corresponding to the
availability is a positive feedback; and

in response to the event information indicating that the

permission is disabled during the client accessing the
target file, determining that the feedback corresponding
to the availability is a negative feedback.

7. The method of claim 6, wherein amounts of the positive
feedback and the negative feedback depend on at least one
of a type of the permission and duration of the permission.

8. The method of claim 1, wherein the decision model is
a model based on reinforcement learning.

9. An electronic device, comprising:

a processor; and

a memory coupled to the processor and having instruc-

tions stored thereon, the instructions, when executed by
the processor, causing the device to perform acts com-
prising:

determining whether a client requests a permission for a

target file, responsive to receipt of an open request for
the target file from the client, the permission allowing
the client to cache data associated with the target file;
in response to determining that the client requests the
permission, obtaining pattern information from the
open request received from the client, wherein the
pattern information is related to an access pattern in
which the client accesses the target file and includes a

16

time when the client requests the permission, wherein
the time the client requests the permission comprises a
year, month, and day when the open request was sent
from the client, and wherein determining that the client
5 requests the permission for the target file comprises
determining that the open request received from the
client includes a request from the client for the permis-
sion;
determining availability of the permission to the client by
applying the pattern information to a decision model,
the decision model being trained based on training
pattern information and training permission informa-
tion;
providing, to the client, an indication on the availability;
determining event information associated with providing
of the availability, the event information indicating at
least one of maintenance of the permission, disabling of
the permission and access to the target file;
determining, for the decision model, a feedback corre-
sponding to the availability, based on the event infor-
mation, at least in part by:
determining as the feedback a reward in response to a
period of time during which the permission is main-
tained,

wherein the reward has a first value in the event that a

break in the permission happens before the period of
time during which the permission is maintained
reaches an average permission duration,

wherein the reward has a second value in the event that

a break in the permission happens after the period of
time during which the permission is maintained
reaches the average permission duration,

wherein the first value is less than the second value,

wherein the reward has a third value in the event that

a break in the permission happens after a period of
time during which the permission is maintained
reaches a multiple of the average permission dura-
tion, and

wherein the third value is greater than the second value;

and
updating the decision model with the feedback corre-
sponding to the availability.
10. The device of claim 9, wherein obtaining the pattern
45 information comprises:

determining whether the target file is being accessed or to

be accessed by a further client;

in response to determining that the target file is being

accessed or to be accessed by the further client, deter-
mining that the permission has a first permission level;
and

in response to determining that no further client is access-

ing or to access the target file, determining that the
permission has a second permission level higher than
the first permission level.

11. The device of claim 10, wherein the first permission
level corresponds to a shared permission, and the second
permission level corresponds to an exclusive permission.

12. The device of claim 10, wherein obtaining the pattern
60 information further comprises obtaining:

an operation to be performed on the target file by the
client, and
an identification of the client.
13. The device of claim 9, wherein the availability indi-
65 cates that the client is refused to be granted the permission,
and wherein determining the feedback corresponding to the
availability comprises:

10

15

20

25

30

35

40

50

55

US 11,659,032 B2

17

in response to the event information indicating that the
target file is not accessed by a further client during a
period of time, determining that the feedback corre-
sponding to the availability is a negative feedback.

14. The device of claim 9, wherein the availability indi-
cates that the client is allowed to be granted the permission,
and wherein determining the feedback corresponding to the
availability comprises:

in response to the event information indicating that the

permission is maintained during a period of time,
determining that the feedback corresponding to the
availability is a positive feedback; and

in response to the event information indicating that the

permission is disabled during the client accessing the
target file, determining that the feedback corresponding
to the availability is a negative feedback.

15. The device of claim 14, wherein amounts of the
positive feedback and the negative feedback depend on at
least one of a type of the permission and duration of the
permission.

16. The device of claim 9, wherein the decision model is
a model based on reinforcement learning.

17. A computer program product having a non-transitory
computer readable medium which stores a set of instructions
to access a file; the set of instructions, when carried out by
computerized circuitry, causing the computerized circuitry
to perform a method of:

determining whether a client requests a permission for a

target file, responsive to receipt of an open request for
the target file from the client, the permission allowing
the client to cache data associated with the target file;
in response to determining that the client requests the
permission, obtaining pattern information from the
open request received from the client, wherein the
pattern information is related to an access pattern in
which the client accesses the target file and includes a
time when the client requests the permission, wherein
the time the client requests the permission comprises a
year, month, and day when the open request was sent
from the client, and wherein determining that the client

10

15

20

25

30

35

18

requests the permission for the target file comprises
determining that the open request received from the
client includes a request from the client for the permis-
sion;
determining availability of the permission to the client by
applying the pattern information to a decision model,
the decision model being trained based on training
pattern information and training permission informa-
tion;
providing, to the client, an indication on the availability;
determining event information associated with providing
of the availability, the event information indicating at
least one of maintenance of the permission, disabling of
the permission and access to the target file;
determining, for the decision model, a feedback corre-
sponding to the availability, based on the event infor-
mation, at least in part by:
determining as the feedback a reward in response to a
period of time during which the permission is main-
tained,
wherein the reward has a first value in the event that a
break in the permission happens before the period of
time during which the permission is maintained
reaches an average permission duration,
wherein the reward has a second value in the event that
a break in the permission happens after the period of
time during which the permission is maintained
reaches the average permission duration,
wherein the first value is less than the second value,
wherein the reward has a third value in the event that
a break in the permission happens after a period of
time during which the permission is maintained
reaches a multiple of the average permission dura-
tion, and
wherein the third value is greater than the second value;
and
updating the decision model with the feedback corre-
sponding to the availability.

#* #* #* #* #*

