
US 20200293413A1
IN

((19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0293413 A1

Barel et al . (43) Pub . Date : Sep. 17 , 2020

(54) DYNAMIC DATA STORAGE

(71) Applicant : Specterx N.D. LTD , Tel Aviv (IL)

(72) Inventors : Nimrod Barel , Tel Aviv (IL) ; Daniel
Barel , Tel Aviv (IL)

GO6F 16/188 (2006.01)
GO6F 21/62 (2006.01)
H04L 12/46 (2006.01)

(52) U.S. CI .
CPC G06F 11/1484 (2013.01) ; G06F 11/1464

(2013.01) ; G06F 11/1469 (2013.01) ; G06F
9/45558 (2013.01) ; G06F 2009/45587

(2013.01) ; G06F 21/6218 (2013.01) ; H04L
12/4633 (2013.01) ; G06F 2009/45595

(2013.01) ; G06F 16/188 (2019.01)

(73) Assignee : Specterx N.D. LTD , Tel Aviv (IL)

(21) Appl . No .: 16 / 645,387

(22) PCT Filed : Sep. 6 , 2018
(57) ABSTRACT

(86) PCT No .: PCT / IL2018 / 051007
§ 371 (c) (1) ,
(2) Date : Mar. 6 , 2020

(30) Foreign Application Priority Data

Sep. 11 , 2017 (IL) 254433

A method for dynamically storing files / data , comprising : a)
acquiring the file / data by an initial random Virtual Machine
(r VM) ; b) shredding the file / data to a plurality of segments ;
c) wrapping , in a standalone state , each of the remaining
segments with a unique code comprised of at least one or
more destination storage locations , a pointer to a following
segment in the file / data , and a timer ; d) autonomously and independently roaming each segment to the destination
storage location appearing in its unique code ; and e) peri
odically , according to the timer , continuously roaming seg
ments between storage locations until receiving a request for
retrieving of the dynamically stored file / data .

Publication Classification

(51) Int . Ci .
G06F 11/14
GO6F 9/455

(2006.01)
(2006.01)

101
CREATE FILE

102
LOGIN TO SYSTEM , REQUEST STORAGE

103
ALLOCATE INITAIL TVM

104
CREATE SECURE TUNNEL BETWEEN TVM AND USER

105
DIVIDE FILE TO SEGMENTS

106
WRAP SEGMENTS WITH UNIQUE CODE

107
ROAM SEGMENTS TO DESTINATION RVM

108
DEALLOCATE INITAIL PVM

101

CREATE FILE

102

LOGIN TO SYSTEM , REQUEST STORAGE

Patent Application Publication

103

ALLOCATE INITAIL PVM

104

CREATE SECURE TUNNEL BETWEEN RVM AND USER

105

DIVIDE FILE TO SEGMENTS

106

WRAP SEGMENTS WITH UNIQUE CODE

Sep. 17 , 2020 Sheet 1 of 3

107

ROAM SEGMENTS TO DESTINATION PVM

1087

DEALLOCATE INITAIL rVM

US 2020/0293413 A1

FIG . 1

SEGMENTS IN IDLE STATE

204

201

202

LOGIN TO SYSTEM , REQUEST FILE

FILE REQUESTED ?

Patent Application Publication

YES

NO

205

ISSUE TARGET rVM , CALLOUT FILE REQUEST

ROAM EACH SEGMENT TO DESTINATION OVM

206

203

REPLACE DESTINATION VM WITH TARGET TVM

207

ROAM ALL SEGMENTS TO TARGET TVM

208

Sep. 17 , 2020 Sheet 2 of 3

RECONSOLIDATE SEGMENTS TO ORIGINAL FILE

209

OPEN TUNNEL BETWEEN TARGET rVM AND USER

210

REQUEST DYNAMIC STORAGE

211

SEGMENT FILE ; WRAP SEGMENTS ; ROAM TO DESTINATION VM ; DEALLOCATE TARGET TVM

US 2020/0293413 A1

FIG . 2

306

305

307

309a 309b

301

308

311

Patent Application Publication

303

3024

304

07

317

111

-310

315

309N

-312

313

Sep. 17 , 2020 Sheet 3 of 3

314

-316a

E

316b
316N

US 2020/0293413 A1

FIG . 3

US 2020/0293413 A1 Sep. 17 , 2020
1

DYNAMIC DATA STORAGE

FIELD OF THE INVENTION

[0001] The present invention relates to the field of data
storage and security . More particularly , the invention relates
to a system and method for dynamically storing files at
random network locations .

BACKGROUND OF THE INVENTION

[0002] In today's world , data is commonly required to be
available anytime and anywhere . These requirements expose
data to security risks , some of which isn't known by data
owners . The average cost of a corporate data breach is
estimated at millions of dollars . As the availability require
ment grows , along with hacking sophistication abilities , this
average cost is expected to grow , as more public and private
sector takedowns , hacks and exposure of sensitive personal
information are expected to occur .
[0003] Presently several solutions exist , mainly revolving
around an inherent coupling between system performance
(e.g. data integrity) , availability and security . This approach
results in high vulnerability of data created and managed on
platforms where availability and performance are guaran
teed . One explanation for this vulnerability is the relatively
low level of ease and simplicity that static data locations can
be targeted , therefore making such data vulnerable to hacks ,
data theft or harm . Other approaches entail compromising
on availability and / or performance , which in many cases is
less preferable than security .
[0004] It would be profitable to have a system and / or
method capable of dynamically i.e. non - statically) storing
data while decoupling the link and co - influence between
data integrity , availability and security requirements .
[0005] It is therefore an object of the present invention to
describe a system and method for dynamically storing data .
[0006] It is yet another object of the present invention to
provide a system and method for allowing owners of data to
securely and seamlessly create data on an agile platform that
maintains data integrity while minimizing a security breach
caused by elimination of data in a single location .
[0007] It is still another object of the present invention to
provide a system and method for removing the ability to
target data at any point , thereby making all current cyber
attack tactics obsolete while keeping user interface and
interaction unchanged and familiar .
[0008] Other objects and advantages of this invention will
become apparent as the description proceeds .

[0014] e . periodically , according to the timer , continu
ously roaming segments between storage locations
until receiving a request for retrieving of the dynami
cally stored file / data .

[0015] According to an embodiment of the invention , the
initial rVM is allocated by a Software as a Service (SAAS)
upon receiving a user's request for a file / data to be dynami
cally stored .
[0016] According to an embodiment of the invention , at
least two predefined segments possess relative portion of an
address of a secure target rVM for future Software as a
Service (SAAS) allocation in order to retrieve the dynami
cally stored file / data .
[0017] According to an embodiment of the invention , the retrieving of the dynamically stored file / data , comprising :

[0018] a . periodically inquiring the SAAS by each
segment , according to the timer of the unique code of
each segment , whether a request for the file / data has
been received ;

[0019] b . validating the identity and credentials of a
user ;

[0020] c . receiving at the SAAS a request for the
file / data from the user ;

[0021] d . obtaining , by the SAAS , the secure target
rVM address by retrieving the relative portions of the
address from each of the at least two segments ;

[0022] e . creating , by the SAAS the secure target rVM
and validating its secureness ;

[0023] f . terminating the connection of the SAAS with
the target rVM ;

[0024] g . autonomously swarming all of the relevant
file / data segments to the pre - defined target rVM ;

[0025] h . reconsolidating , by the target rVM , all of the
segments and rebuilding the original file / data according
to the pointers in the unique code of each segment ;

[0026] i . establishing , by the target rVM , a secure tunnel
to the computerized system of the user , performing post
identity validation and retrieving the predefined one of
the segments which is locally stored on the user's
system ; and

[0027] j . granting , by the target rVM relevant access
level to the user on a remote connection .

[0028] According to an embodiment of the invention , the
SAAS resides on a virtual machine (VM) .
[0029] According to another embodiment of the invention ,
shredding of the file / data is performed according to Shamir's
Secret Sharing algorithm .
[0030] According to another embodiment of the invention ,
while segments roam between storage locations , no two
segments reside at a single storage location . According to yet
another embodiment of the invention , one segment of the
file / data is stored on the local user's system . According to
still another embodiment of the invention , the unique code
further comprises pointers pointing to the adjacent segments
as was originally arranged in the file / data before shredding .
[0031] According to an embodiment of the invention , the
segments are backed up periodically .
[0032] According to another embodiment of the invention ,
identical copies of segments are saved on storage locations
before they roam to their respective next storage locations ;
and wherein the identical copies comprise an algorithm
allowing them to self - destruct .

SUMMARY OF THE INVENTION

[0009] A method for dynamically storing files / data , com
prising :

[0010] a . acquiring the file / data by an initial random
Virtual Machine (rVM) ;

[0011] b . shredding the file / data to a plurality of seg
ments ;

[0012] c . wrapping , in a standalone state , each of the
remaining segments with a unique code comprised of at
least one or more destination storage locations , a
pointer to a following segment in the file / data , and a
timer ;

[0013] d . autonomously and independently roaming
each segment to the destination storage location
appearing in its unique code ; and

US 2020/0293413 A1 Sep. 17 , 2020
2

[0033] According to an embodiment of the invention , the
initial rVM acquires the file / data by creating a secure tunnel
to a computerized system of the user .
[0034] According to an embodiment of the invention , the
method further comprises auto - terminating the initial rVM .

BRIEF DESCRIPTION OF THE DRAWINGS

second parameter comprises an algorithm to determine the
random VM on which the data will be reconstructed upon
initiating the swarm protocol generated by the user retrieval
request . This parameter is common for all the segments of a
single file . A third parameter comprises a unique pointer
linking each segment to the segment following it in the
original file . Obviously the third parameter of the last
segment is void . Another parameter in the unique code is a
timer for measuring predefined periods of time between each
roam and other periods of times . The unique code further
comprises the address and communication details of the
SAAS .

[0035] In the drawings :
[0036] FIG . 1 shows a block diagram of a method for
dynamically storing a file according to an embodiment of the
present invention ;
[0037] FIG . 2 shows a block diagram of a method for
retrieving a dynamically stored file according to an embodi
ment of the present invention ; and
[0038] FIG . 3 schematically illustrates a system for
securely and dynamically creating and storing files , accord
ing to an embodiment of the invention .

DETAILED DESCRIPTION OF THE
INVENTION

[0039] Reference will now be made to an embodiment of
the present invention , examples of which are illustrated in
the accompanying figures for purposes of illustration only .
One skilled in the art will readily recognize from the
following description that alternative embodiments of the
structures and methods illustrated herein may be employed ,
mutatis mutandis , without departing from the principles of
the claimed invention .
[0040] According to an embodiment of the invention , a
file is securely uploaded by remote server (hereinafter
Software as a Service ' or ' SAAS ') , that is associated with
the system of the present invention , to a random virtual
machine (VM) where it is segmented (shredded) to a plu
rality of segments . According to an embodiment of the
invention , the SAAS itself resides on a VM . Each segment
is wrapped with a unique software code , and according to
parameters within the unique code the segments are each
sent to a different storage platform or location some of which
utilize server - less computing , besides one particular seg
ment that is stored on the user machine regardless of the
VMs to which the other segments of the same file were sent .
While a segment is in storage (idle) state the unique code
periodically inquires the SAAS to detect if the file from
which it is segmented has been requested by a user . In
addition , during idle state the segment constantly roams
from one storage platform or location to another , according
to parameters within the unique code . Upon detecting that
the file has been requested , the segment (along with all other
segments of the file) initiates a swarm protocol to move to
a new random VM on which the segments are reconstructed
to form the original file . Prior to creating the random VM it
is fully validated to be safe and without malicious code . The
last step of consolidation (reconstruction) would be the
adding of the locally stored segment from the users ' system .
Post reconstruction access to the data is granted to the user .
[0041] Accordingly , segments are wrapped by a unique
code , comprising several parameters that are essential for the
dynamic roaming of each file segment and for successfully
consolidating files . A first parameter comprises a destination
algorithm defining the roaming scheme of the segment
though the different storage platforms and addresses . The
algorithm is based on a random calculation that enables the
segment to constantly roam without leaving any trace . A

[0042] FIG . 1 shows a block diagram of a method for
dynamically storing a file according to an embodiment of the
present invention . At the first stage 101 a file to be stored is
created by a user . The file can comprise data of any type or
size that is to be stored securely in a remote memory unit .
At the next stage 102 , the user utilizes a user interface ,
installed in advance on the user's system , to log in to the
dynamic storage system and request for the file to be
dynamically stored . At the next stage 103 , the SAAS creates
(allocates) an initial random virtual machine (rVM) being a
virtual machine residing on a random location across the
internet fully validated not to contain a malicious code . At
the next stage 104 the initial rVM creates a secure tunnel
with the user's system , and the initial rVM acquires the file .
According to an embodiment of the invention , the tunnel is
secure by an end to end encrypted tunneling protocol . At the
next stage 105 , the initial rVM shreds (performs segmenta
tion) the file to segments . According to an embodiment of
the invention , the data shredding (segmentation) is per
formed according to (prior art) Shamir's Secret Sharing
algorithm . At the next stage 106 , each segment is wrapped
with a unique code , as explained above . At the next stage
107 , each of the segments automatically roams from the
initial rVM to a destination storage location , regardless of
the destination storage locations of other segments , solely
and independently according to the pre - programmed algo
rithm and parameters contained in the unique code by which
each segment is wrapped and without centralized control or
management . At the next and final stage 108 of dynamically
storing data , the initial rVM that was created in stage 103 is
terminated thereby making it impossible to track the data or
a file segment .
[0043] According to an embodiment of the invention , a
file can be created after the user logs in to the storage system ,
thereby utilizing resources of a VM not only for storing but
also for creating and editing files .
[0044] FIG . 2 shows a block diagram of a method for
retrieving a dynamically stored file according to an embodi
ment of the present invention . At the first stage 201 a
plurality of segments to which the file was previously
segmented are in idle state . In this state each segment resides
at a different storage location . At stage 202 an algorithm
within the unique code wrapping the segment causes the
segment to send an inquiry to the SAAS inquiring if the file
from which it is segmented from has been requested by a
user . If no request is detected , then at stage 203 each
segment continues to roam (according to commands and
parameters contained in the unique code) from its respective
storage location to a random destination storage location and
returns to idle state (stage 201) .

US 2020/0293413 A1 Sep. 17 , 2020
3

[0045] According to an embodiment of the invention , the
roaming of each segment may involve the following “ copy
delete ” procedure :

[0046] copying the segment from its respective storage
location to a random destination storage location , thus
after completing the copy action , the segment is tem
porary located in both storage locations (i.e. , at the
respective storage location and at the random destina
tion storage location) ; and

[0047] deleting the segment from the respective storage
location , thus the segment will only remain in the
random destination storage location (that becomes now
the “ new ” respective location) .

[0048] Such “ copy - delete ” procedure enables each seg
ment to roam from one storage destination to another .
[0049] When a user eventually logs in to the system (post
user validation protocol) of the invention , and requests the
file (i.e. at stage 204) , the SAAS initiates the swarm protocol
to signal all relevant segments to start moving to a pre
assigned rVM (the pre - assigned rVM refers herein to a
secure target rVM or shortly a target rVM that represents the
" geo - location ” where the segments will be joined and
restructured into the whole file / data) . According to an
embodiment of the present invention , at least two segments ,
e.g. , the first and last segments of a segmented file (i.e. , the
head and tail segments) , are each assigned with a relative
portion of the address of the pre - assigned rVM for the SAAS
(e.g. , the head and tail segments each possess half of address
of the secure target rVM) . Each provides the SAAS with the
address portion allowing the SAAS to securely create and
allocate an rVM according to the pre - defined information
obtained from the segments , at stage 205 , to which all
relevant segments will swarm and will be restructured into
the whole file / data , after which the connection of the SAAS
with the target rVM is terminated . Consequently the inquir
ing algorithm of each segment detects the user's request and
at stage 206 the destination storage location is replaced with
the location of the target rVM . At stage 207 all of the
segments roam to the target rVM from each of their respec
tive storage locations . At stage 208 the nts reconsoli
date into the original file . At the next stage 209 , a secure
end - to - end tunnel is established between the rVM and the
user's system , the rVM performs post authentication , and
finally retrieves the last segment from the user's machine ,
after which the user is granted access to the file (still residing
on the secure target rVM) . At this stage the file can be
updated , edited etc. Once the user finishes using the file / data
and at stage 210 requests to once again dynamically store the
file , then at stage 211 the file is once again segmented , one
segment is sent to the user's system , the connection to the
user's system is terminated and at this stage of standalone
each remaining segment is then wrapped by a unique code ,
and then each segment roams to a new destination storage
location , and once all segments have swarmed out of the
rVM the rVM shuts - down and terminates .
[0050] According to an embodiment of the invention ,
never at any point during idle state do two or more different
segments of a single file reside at a single location (e.g.
storage cluster or location) . According to another embodi
ment of the invention , one segment of each file is stored on
the local user side device .
[0051] According to an embodiment of the invention ,
besides a pointer pointing to the following segment in the
original file , each segment further comprises a pointer

pointing to the adjacent segment in the original file . When
comparing the pointers the segments are able to indepen
dently (by help of suitable software of a rVM) combine
themselves properly into the original file without the use of
a general index . According to an embodiment of the inven
tion , the first segment of a file comprises a head indicator
marking it as the first segment , whereas the last segment
comprises a tail indicator .
[0052] According to an embodiment of the invention , data
is automatically backed up periodically . The backup can be
at the segment level or at another level . According to a
predefined backup algorithm a segment can leave an iden
tical copy of itself (with a firm tractability capability) on a
storage location before roaming to next storage location ,
allowing for backup and redundancy of the “ old ” segment .
The predefined backup algorithm decides how many active
versions can co - exist simultaneously . According to an
embodiment of the present invention , segments comprise
self - destruct capabilities . In order to call to an “ old ” version
of the file , the SAAS points relevant segments to the user
based on hashes of the segment .
[0053] FIG . 3 schematically illustrates a system for
securely and dynamically creating and storing files , accord
ing to an embodiment of the invention . A user's side
physical computing device 301 activates a user interface ,
and thereby communication 303 with SAAS 302 is estab
lished wherein SAAS 302 (in the embodiment of FIG . 3) is
a VM . A temporary rVM 305 is created and validated 304 by
the SAAS after recognizing and approving credentials and
identity of the user . Secure tunnel 306 is established by rVM
305. rVM 305 comprises algorithms (generally denoted by
numeral 307) configured to perform segmentation of files
(e.g. 308) to N segments , 309a - 309N , wherein N is deter
mined according to the segmentation algorithm's (e.g.
Shamir secret sharing) optimal value , and to wrap each
segment 309 with unique code 311 , thereby creating a new
file 310 containing the segmented data (e.g. 309b) and
unique code 311. The unique code 311 comprises the address
of SAAS 302 , the address of a destination rVM and a unique
pointer linking each segment to the segment following it in
the original file . Code 311 further comprises software com
mands suitable to execute roaming , reconsolidation , com
municate with the SAAS , etc. that are to be executed by a
rVM at which file 310 resides . Accordingly each newly
created file , e.g. 310 , is sent 312 to a storage location chosen
randomly from a group of storage locations 313. Some of
rVMs 313 are illustrated with connecting one headed arrows
for illustrating the roaming of a file from one rVM to
another .

[0054] When SAAS 302 receives a request for a file (e.g.
308) , temporary rVM 314 is allocated 315 by the SAAS .
Each of the segment containing files (e.g. 310) detects the
request and receives the location of rVM 314 , sets it as the
segment's next destination rVM , and finally roams 316a
316N to rVM 314. Once a file is consolidated at rVM 314
a secure tunnel 317 is created by rVM 302 to user side 301 .
As explained above , once use of the file is finished the file
is again segmented , each segment is wrapped and roams to
another storage location , and rVM 314 is deallocated .
[0055] Although embodiments of the invention have been
described by way of illustration , it will be understood that
the invention may be carried out with many variations ,

US 2020/0293413 A1 Sep. 17 , 2020
4

modifications , and adaptations , without exceeding the scope
of the claims .

1. A method for dynamically storing files / data , compris
ing :

a . acquiring the file / data by an initial random Virtual
Machine (rVM) ;

b . shredding the file / data to a plurality of segments ;
c . wrapping , in a standalone state , each of the remaining

segments with a unique code comprised of at least one
or more destination storage locations , a pointer to a
following segment in the file / data , and a timer ;

d . autonomously and independently roaming each seg
ment to the destination storage location appearing in its
unique code ; and

e . periodically , according to the timer , continuously roam
ing segments between storage locations until receiving
a request for retrieving of the dynamically stored
file / data .

2. A method according to claim 1 , wherein the initial rVM
is allocated by a Software as a Service (SAAS) upon
receiving a user's request for a file / data to be dynamically
stored .

3. A method according to claim 1 , wherein at least two
predefined segments possess relative portion of an address
of a secure target rVM for future Software as a Service
(SAAS) allocation in order to retrieve the dynamically
stored file / data .

4. A method according to claim 3 , wherein the retrieving
of the dynamically stored file / data , comprising :

a . periodically inquiring the SAAS by each segment ,
according to the timer of the unique code of each
segment , whether a request for the file / data has been
received ;

b . validating the identity and credentials of a user ;
c . receiving at the SAAS a request for the file / data from

f . terminating the connection of the SAAS with the target
rVM ;

g . autonomously swarming all of the relevant file / data
segments to the pre - defined target rVM ;

h . reconsolidating , by the target rVM , all of the segments
and rebuilding the original file / data according to the
pointers in the unique code of each segment ;

i . establishing , by the target rVM , a secure tunnel to the
computerized system of the user , performing post iden
tity validation and retrieving the predefined one of the
segments which is locally stored on the user's system ;
and

j . granting , by the target rVM relevant access level to the
user on a remote connection .

5. A method according to claim 2 , wherein the SAAS
resides on a virtual machine (VM) .

6. A method according to claim 1 , wherein shredding of
the file / data is performed according to Shamir's Secret
Sharing algorithm .

7. A method according to claim 1 , wherein while seg
ments roam between storage locations , no two segments
reside at a single storage location .

8. A method according to claim 1 , wherein one segment
of the file / data is stored on the local user's system .

9. A method according to claim 1 , wherein the unique
code further comprises pointers pointing to the adjacent
segments as was originally arranged in the file / data before
shredding

10. A method according to claim 1 , wherein the segments
are backed up periodically .

11. A method according to claim 10 , wherein identical
copies of segments are saved on storage locations before
they roam to their respective next storage locations ; and
wherein the identical copies comprise an algorithm allowing
them to self - destruct .

12. A method according to claim 1 , wherein the initial
rVM acquires the file / data by creating a secure tunnel to a
computerized system of the user .

13. A method according to claim 1 , further comprising
auto - terminating the initial rVM .

the user ,
d . obtaining , by the SAAS , the secure target rVM address
by retrieving the relative portions of the address from
each of the at least two segments ;

e . creating , by the SAAS the secure target rVM and
validating its secureness ;

