
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0226839 A1

Fuoco et al.

US 20120226839A1

(43) Pub. Date: Sep. 6, 2012

(54)

(75)

(73)

(21)
(22)

(60)

METHOD AND SYSTEM FORMONITORING
AND DEBUGGING ACCESS TO A BUS SLAVE
USING ONE OR MORE THROUGHPUT
COUNTERS

Inventors:

Assignee:

Appl. No.:
Filed:

Charles Fuoco, Allen, TX (US);
Brian Cruickshank, Oakville
(CA); Akila Subramaniam, Dallas,
TX (US); Chunhua Hu, Plano, TX
(US); Samuel Paul Visalli,
Richardson, TX (US)
TEXAS INSTRUMENTS
INCORPORATED, Dallas, TX
(US)
13/347,736

Jan. 11, 2012

Related U.S. Application Data

Provisional application No. 61/448,284, filed on Mar.
2, 2011.

Publication Classification

(51) Int. Cl.
G06F 3/20 (2006.01)

(52) U.S. Cl. .. 710/110

(57) ABSTRACT

A bus monitoring and debugging system operating indepen
dently without impacting the normal operation of the CPU
and without adding any overhead to the application being
monitored. Bus transactions to a selected slave are monitored
to determine possible conflicts when multiple masters may be
addressing the slave. Users are alerted to timing problems as
they occur, and bus statistics that are relevant to providing
insight to system operation are automatically captured. Log
ging of relevant events may be enabled or disabled when a
sliding time window expires, by a selected address range or
alternatively by external trigger events.

Sep. 6, 2012 Sheet 1 of 3 US 2012/0226839 A1 Patent Application Publication

www.www. --

erranrann.nnnaanaawrrinraaaaa-----

· · · · · ·, p. ~~~~

· · ·, ******x+xaer,

US 2012/0226839 A1

2 !

Sep. 6, 2012 Sheet 2 of 3

;

*… … ···

· · · · · · · · · · · · · · · · ·:

wn we re -- arras

Patent Application Publication

Patent Application Publication Sep. 6, 2012 Sheet 3 of 3 US 2012/0226839 A1

Figure 4

s'ssessessexxxxxswww.xxxww.sawrassrs.ww.xxxswww.rsssssvraxxx xxxxxxsswww.xxxsww.xxxxxx-xxxx

SSSSSSSS

CP TRACER ite 3rtists, ensities

Sssssssss 41 413

x ''', &xxxxxxxxxxxxx...

Access Statis
facing Reg svarurawww.xxxx

s

'Rei is AC&Waitti,
Nutrigrantent xx ki!! st&- RS:

- 411 s
403

www.

Fifo Reg
408 co-oxs

six-six-axis:

US 2012/02268.39 A1

METHOD AND SYSTEM FORMONITORING
AND DEBUGGING ACCESS TO A BUS SLAVE

USING ONE ORMORE THROUGHPUT
COUNTERS

CLAIM OF PRIORITY

0001. This application claims priority under 35 USC 119
(e)(1) to U.S. Provisional Application No. 61/448,284 filed
Feb. 3, 2011.

TECHNICAL FIELD OF THE INVENTION

0002 This invention relates in general to the field of mul
ticore computing systems and more particularly to debugging
bus transactions.

BACKGROUND OF THE INVENTION

0003 Modern System-on-chip (SoC) designs typically
have many masters that can access any given slave (or periph
eral. These interactions can have consequences, either
directly or indirectly, on the correct operation and/or the
performance of a device. Direct consequences can occur
when two masters (such as CPUs) are communicating via a
single slave (such as shared memory space) or otherwise
directly using the same peripheral in a coordinated interac
tion. Operations happening incorrectly or out of order can
cause failure. Operations failing to happen in a timely manner
can cause performance issues. Indirect consequences would
be when two masters are trying to utilize the same slave,
though not in a coordinated manner, but one master "hogs'
the resource, preventing the other master(s) from completing
its operation in a timely manner. This can lead to performance
issues or application failures if one of the masters is prevented
from completing a task within a required time limit. Keeping
track of how multiple masters in a multi-core SoC are inter
acting with a single slave is required for application tuning
and debug.

SUMMARY OF THE INVENTION

0004 One of the unique aspects of the solution is the
ability of the CP Tracer's sliding time window counter to
automatically collect bus transaction statistics and exports
them as hardware events over the System Trace only if a
deadline is missed. If the time window expires before the
transaction has completed, then the event that is logged by
CP Tracer allows external tooling to trigger on the event and
automatically display information about the occurrence to
users via a PC.
0005. The ability to log the events to a local memory buffer
allows the events to be exported via Ethernet or some other
transport to a remote PC so that multicore systems can be
monitored in the field without any special logic analyzers or
In-circuit emulators attached. The host-based tooling can pro
vide views that display the amount of data transferred by the
DMA vs. the expected amount of data, as well as all of the
other related Statistics and hardware events leading up to the
problem.

BRIEF DESCRIPTION OF THE DRAWINGS

0006. These and other aspects of this invention are illus
trated in the drawings, in which:
0007 FIG. 1 shows a generalized block diagram of a sys
tem;

Sep. 6, 2012

0008 FIG. 2 shows a target system in greater detail;
0009 FIG. 3 shows one implementation of the system;
0010 FIG. 4 shows a high level block diagram of the
CP-Tracer module described in the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0011. The following discussion is directed to various
embodiments of the invention. Although one or more of these
embodiments may be preferred, the embodiments disclosed
should not be interpreted, or otherwise used, as limiting the
Scope of the disclosure, including the claims. In addition, one
skilled in the art will understand that the following descrip
tion has broad application, and the discussion of any embodi
ment is meant only to be exemplary of that embodiment, and
not intended to intimate that the scope of the disclosure,
including the claims, is limited to that embodiment.
0012 FIG. 1 illustrates a software development system
100 in accordance with embodiments of the invention. The
Software development system 100 comprises a target system
10 coupled to a host computer 12. The target system 10 may
be any processor-based system upon which a software pro
grammer would like to testand/or debuga computer program.
The target system 10 may be, for example, a cellular tele
phone, a BLACKBERRYR) device, or a computer system. In
Some embodiments, the host computer 12 stores and executes
a program that is used for Software debugging (e.g., gather
trace data and produce trace displays), and thus is referred to
herein as a Software debugger program or a debug-trace pro
gram 13.
0013 The host computer 12 and target system 10 couple
by way of one or more interconnects 14. Such as cables. In
Some embodiments, the host computer 12 couples to target
system 10 by way of one or more multi-pin cables 16. Each
multi-pin cable 16 enables transfer of trace data files from a
processor core the target system 10 to the host computer 12. In
alternative embodiments, the host computer 12 couples to the
target system 10 by way of one or more serial cables 18 across
which the host computer 12 communicates with the joint test
action group (JTAG) communication system, or other cur
rently existing or after developed serial communication sys
tem. Serial communication between the host computer 12 and
each processor core of the target system 10 on a serial cable 18
has lower bandwidth than a multi-pin connection through
illustrative cable 16. Thus, in embodiments where it is not
cost-effective to use trace to capture every event of a proces
Sor core within a particular time frame, the statistical Sam
pling Subsystem (discussed more fully below) of each pro
cessor core is configured to statistically sample pertinent data,
and transfer the statistically sampled data across its respective
serial cable 18. In yet still further alternative embodiments,
the multi-pin cable 16 for a particular processor core may
have two or more pins dedicated to serial communication, and
thus the host computer 12 and each processor core of the
target system 10 may communicate using multiple protocols,
yet over the same multi-pin cable 16. In yet still other embodi
ments, interconnects between processor cores on the same
integrated circuit enable one processor core to be the recipient
of trace data, whether the trace data comprises all the events
of a traced processor core or statistically sampled events of
the traced processor core.
0014 FIG. 2 shows in greater detail a portion of the target
system 10. In particular, a target system 10 in accordance with
at least Some embodiments comprises a System-On-A-Chip

US 2012/02268.39 A1

(SOC) 20. The SOC 20 is so named because many devices
that were previously individual components are integrated on
a single integrated circuit. The SOC 20 in accordance with
embodiments of the invention comprises multiple processor
cores (e.g., processor cores 30 and 32) which may be, for
example, digital signal processors, advanced reduced instruc
tion set (RISC) machines, video processors, and co-proces
sors. Each processor core of the SOC20 may have associated
therewith various systems, but the various systems are shown
only with respect to processor cores 30 and 32 so as not to
unduly complicate the drawing. A memory controller 23
couples to each processor core. The memory controller 23
interfaces with external random access memory (RAM) (e.g.,
RAM 21 of FIG. 1), interfaces with RAM on the SOC 20 (if
any), and facilitates message passing between the various
processor cores. Attention now turns to the specific systems
associated with at least some processor cores of an SOC 20.
0015 The following discussion is directed to the various
systems associated with processor core 30. The discussion of
the various systems associated with processor core 30 is
equally applicable to the processor core 32 and any other
processor core on the SOC 20. In accordance with some
embodiments, processor core 30 has associated therewith a
trace system 34. The trace system 34 comprises a First In
First Out (FIFO) buffer 36 in which trace data is gathered.
When operating in the trace mode the trace data is sent to the
host computer 12 (FIG. 1) by the trace system34. Because the
processor core 30 may perform a plurality of parallel opera
tions, in some embodiments the processor core 30 also
couples to a data flattener system38. As the name implies, the
data flattener system 38 gathers the pertinent trace data from
the processor core's execution pipeline, serializes or “flat
tens' the trace data so that events that execute at different
stages in the pipeline are logged in the correct sequence, and
forwards the trace data to the FIFO buffer 36 in the trace
system 34. A non-limiting list of the various data points the
data flattener system 38 may read, serialize and then provide
to the FIFO buffer 36 is: direct memory access (DMA) trace
data; cache memory trace data; addresses of opcodes
executed by the processor 30; the value of hardware registers
in the processor 30; and interrupts received by the processor
3O.

0016 Still referring to FIG. 2, in some embodiments pro
cessor core 30 may also couple to an event trigger system 40.
The event trigger system 40 couples to the data flattener
system38 and receives a least a portion of the serialized data.
In response to various pre-programmed triggers (where Such
triggers may be communicated to the event trigger system 40
by way of JTAG-based communications or programmed
directly by the processor core itself), the event trigger system
40 asserts a trigger signal 42 to the trace system 34. In
response, the trace system 34 accumulates trace data in its
FIFO buffer 36 and sends the trace data to the host computer
12 (FIG. 1).
0017 Referring simultaneously to FIGS. 1 and 2, a user of
the host computer system 12 wishing to debug instructions of
processor core 30 enables the event trigger system 40, possi
bly by JTAG-based communication over a serial cable 18.
Thereafter, the user initiates the instructions on the processor
core 30. The processor core 30 executes the instructions,
while the data flattener system 38 gathers pertinent informa
tion, serializes the information, and forwards it to both the
event trigger system 40 and the trace system 34. At points in
time before the trace system 34 is enabled by the event trigger

Sep. 6, 2012

system 40, the data supplied to the trace system 34 by the
flattener 38 may be ignored, discarded or collected such that
the trace data comprises events prior to the trigger. At a point
in execution of the instructions, the trigger events occur and
the triggerevents are identified by the event trigger system 40.
When the trigger events occur, the event trigger system 40
asserts the trigger signal 42 to the trace system 34.
0018. In response to assertion of the trigger signal 42, the
trace system 34 collects the trace data in the FIFO buffer 36
(possibly together with events that occur prior to the trigger).
Simultaneously with collecting, the trace system 34 sends the
trace data to the host computer 12. In embodiments where all
or substantially all the events after the assertion of the trigger
signal 42 are part of the trace data for the processor core 30,
the trace system 34 sends the trace data over a relatively high
bandwidth multi-pin cable 16. Other embodiments comprise
sending the data over optical interconnect to the host com
puter, or logging the captured trace data in memory or disk
that is accessible by the processor core 30 where it can be
accessed by another program running on the processor core
30, for example by an embedded software debugging pro
gram.

0019. As illustrated in FIG. 2, processor core 32 likewise
has a trace system 44, FIFO buffer 46, data flattener system 48
and event trigger system 50. In accordance with embodiments
of the invention, the trace system 34 (and related systems and
components) associated with processor core 30 and the trace
system 44 (and related systems and components) associated
with processor core 32 may be simultaneously operational,
each sending a separate stream of trace data to the host com
puter 12. Thus, the debug-trace program 13 of the host com
puter 12 may have trace data from each processor core of the
SOC 20; however, the processor cores of the SOC 20 may
operate at different clock frequencies, and may also operate
on different instruction streams and data streams. In some
cases, a first processor core may perform various tasks to
assist a second processor core in completing an overall task.
If a problem exists in the instruction stream for the first
processor core, the second processor may stall waiting for the
first processor core to complete an action (e.g., passing a
result or releasing a shared memory location). When debug
ging in a situation where two or more processor cores are
generating trace data, it is difficult to correlate the code
executing as between the processor cores to determine which
instructions the processor cores were contemporaneously
executed. In the case of one processor core stalled waiting on
another processor core to complete an activity, it is difficult
from viewing only a list of addresses of executed instructions
for each processor to determined what activity of the non
stalled processor core caused the stall of the other processor
COC.

0020. In order to address this difficulty, and in accordance
with some embodiments, the integrated circuit SOC20 may
be configured to insert markers or marker values into the trace
data of each processor core. The debug-trace program 13
(executing on the host computer 12 or as an embedded debug
ger) extracts the marker values from the trace data, which
enable the debug-trace program to correlate the two sets of
trace data to identify contemporaneously executed instruc
tions. The following discussion is again directed to processor
core 30 and its related systems, but the description is equally
applicable to processor core 32 and its related systems, and
any other processor core on the SOC20. The illustrative trace
system 34 obtains each marker value from a target state reg

US 2012/02268.39 A1

ister (TSR). In some embodiments the target state register is
a hardware register located within the processor 30, such as
target state register 52. Although the hardware register ver
sion of the target state register 52 is shown to couple to the
trace system (by way of a dashed line), it will be understood
that the value of the target state register may, in actuality, be
Supplied to the trace system after passing through the data
flattener38. A hardware register may be equivalently referred
to as an opcode addressable register. In alternative embodi
ments, the target state register may be a register outside the
processor. For example, and referring briefly to FIG. 1, the
SOC 20 may couple to a memory subsystem 21 which imple
ments the target state register 54. In these alternative embodi
ments, the target state register 54 may be readable by a
memory operation to a predefined address within the proces
Sor core 30 address space, and thus target state register 54 may
be referred to as a memory addressable register. In yet still
other embodiments, the memory subsystem 21 may be inte
grated with other devices of the SOC20. The trace system 34
is configured to send the value in the target state register 52.
54 to the debug-trace program 13 when the value in the target
state register, or a portion thereof, is newly written. Processor
core 32 may correspondingly have: target state register 52
within the processor core 32 or a target state register in the
memory Subsystem 21; and a trace system 44 associated with
processor core 32 which trace system 44 sends marker values
in the TSR when newly written.
0021. In embodiments where each trace system 34, 44
couples to the host computer 12 by way of the relatively high
bandwidth connection, the trace systems 34, 44 are config
ured to monitor the marker values in their respective target
state registers 52, 62 and send the marker values to the host
computer system 12. In each case the trace systems 34, 44
send their respective marker values in a message wrapping
protocol that identifies to the host computer 12 that the infor
mation is the marker from target state register52, 62. Thus, in
these embodiments the marker values in the target state reg
isters are sent across high bandwidth cables (e.g., multi-pin
cables 16) along with other trace data (e.g., direct memory
access (DMA) trace data, cache memory trace data, addresses
of opcodes executed by the processor core (the program
counter values), the value of hardware registers in the proces
Sor core, and interrupts received by the processor core). The
discussion now turns to various embodiments for writing the
marker values to each target state register 52, 62.
0022. In some embodiments, each processor core 30, 32 is
configured to receive a periodic interrupt. In response to the
periodic interrupt, each processor core is configured to load
and execute an interrupt service routine which reads the
marker value, and then writes the marker value to the target
state register of its respective processor. In some embodi
ments, the interrupts are asserted to each processor 30, 32
Substantially simultaneously. In alternative embodiments, the
interrupts may be asynchronous with respect to each other,
and in some cases may be asserted at different frequencies. In
yet still other embodiments, portions of each operating sys
tem may be instrumented to write the marker values to the
target state registers. For example, the dispatcher program of
each operating system may be configured to write the marker
value each time a new task is instantiated on its respective
processor core. In yet still other embodiments, portions of a
user program executing on each processor core may be instru
mented to periodically write the marker values to the target

Sep. 6, 2012

state register. The discussion now turns to various embodi
ments for obtaining the marker values.
(0023 FIG.3 illustrates a simplified version of the SOC20
of FIG. 2, along with a timestamp register in accordance with
some embodiments of the invention. In particular, FIG. 3
illustrates SOC20 having a plurality of processor cores, with
only processors cores 30 and 32 indicated with reference
numbers. Each processor core couples to a timestamp register
64. In some embodiments, the timestamp register 64 is a
hardware register, and in other embodiments the timestamp
register 64 is a predetermined memory location in shared
memory (either on the SOC, or in the external memory sub
system). In accordance with embodiments of the invention,
the timestamp register contains the marker value, such as a
free running counter value. Each processor core periodically
reads the marker value from the timestamp register and
inserts the marker value in its trace data stream by writing the
marker value into its target state register. The debug-trace
program 13 utilizes the marker values as the mechanism to
correlate data Such that contemporaneously executed instruc
tions are identifiable.

0024. In some embodiments, the SOC 20 comprises a
timestamp driver circuit 66 which couples to the timestamp
register 64, and periodically updates the marker value in the
timestamp register atomically (i.e. in a non-interruptible
manner). In other embodiments, one processor core of the
SOC 20 is tasked with periodically updating the maker value
held in the timestamp register. In embodiments where one
processor core updates the marker value, the one processor
core receives a periodic interrupt. The periodic interrupt
instantiates an interrupt service routine which reads the
marker value from the timestamp register 64, increments or
decrements the marker value, and then atomically writes the
new marker value to the timestamp register 64. Other systems
and methods for updating the marker value in the timestamp
register may be equivalently used.
0025 FIG. 3 also illustrates alternative embodiments for
each processor core obtaining the marker values. In particu
lar, FIG. 3 illustrates each processor core 30 and 32 having
timestamp register 68 and 70 respectively. One of the proces
Sor cores (e.g., processor core 32) is tasked with periodically
updating the marker values in its timestamp register 70, writ
ing the updated marker value to the timestamp register in the
second processor core (e.g., processor core 30), and writing
the updated marker value to the timestamp registers in other
processor cores on the SOC 20.
0026. In order to address situations where the number of
bits of the marker value becomes large, or where a majority of
bits of the target state register are used for other information,
in accordance with some embodiments each marker values is
written to a log buffer. A log buffer may be equivalently
referred to as a data table, data array and/or data structure. In
some embodiments, the marker values the log buffer are read
out by the debug-trace program after execution of the target or
traced program has stopped. In situations where each log
buffer does not contain a Sufficient number of storage loca
tions to store all the marker values written during a trace
period (e.g., log buffer has too few locations, or the log buffer
is circular and the number of entries expected will overwrite
earlier entries during the trace period), each log buffer may be
read by the host computer 12 one or more times during the
trace period to ensure all the entries generated are available to
the debug-trace program.

US 2012/02268.39 A1

0027. Referring again to FIG. 2, and using the various
systems associated with processor core 30 as illustrative of
other processors cores, in Some embodiments the trace sys
tem34, in addition to the FIFO buffer 36, implements a series
of memory locations 74 to be the log buffer. In alternative
embodiments, the log buffer is located in RAM, either on the
SOC 20 or in the external memory subsystem (FIG. 1).
Regardless of the precise location of the log buffer, the debug
trace program has access to the log buffer and can read data
from the log buffer as described above. Likewise, trace sys
tem 44 has a log buffer 84 where the marker values may be
placed. In cases where the log buffer can be read while the
processor is running, the log buffer can be periodically read
and emptied by the host computer so that the buffer size does
not limit the amount of information that can be captured.
0028. The logical construction of the log buffers may take
many forms. In some embodiments, the log buffers are imple
mented as a plurality of equivalently sized data fields. In
alternative embodiments, the log buffers are implemented as
a plurality of arbitrary sized data fields. In yet still other
embodiments, the log buffers are tables each having a plural
ity of rows and columns. Regardless of the logical construc
tion of the log buffers, inaccordance with embodiments of the
invention each entry in the log buffer comprises the marker
value and an index value. The index value is an index into the
log buffer that identifies the location of the entry in the log
buffer. The index value could be, for example, a pointer,
packet number, sequence number, row number or any other
value indicative of the location of the entry. In some embodi
ments, the index value is an inherent part of the entry, and in
other embodiments the index value is generated and written
when the marker value is written.

0029. In addition to writing the marker value and possibly
the index value in the log buffer 24, each processor core in
accordance with embodiments of the invention also places its
respective index value in the target state register 52, 62. Writ
ing the index value to the target state register contemporane
ously with writing the log buffer ensures that the index value
is present in the trace data associated with the traced program.
In accordance with some embodiments, the debug-trace pro
gram 13 in host computer 12 reads the index value from the
trace data, indexes into the log buffer databased on the index
value, and thus obtains the marker values. Thus, inserting
marker values into the trace data stream comprises not only
writing the marker values to the target state registers 52, 62
directly, but also writing the marker values to log buffers and
placing index values in the target state registers 52, 62.
0030. In overall software applications using multiple pro
cessor cores, one or more of the processors cores may cause
other processor cores to stall, and thus slow overall system
performance. Stalls can occur for a number of different rea
sons. For example, a general purpose processor may instruct
a special-purpose coprocessor to perform a complex opera
tion that the co-processor is optimized to implement. If a task
that is running on the general purpose processor program
needs the results of the coprocessor to be available before the
general purpose processor can continue execution, the task is
said to be stalled, or blocked. Contention over shared
resources can also introduce stalls (e.g., systems that use an
arbitration mechanism to share a memory device or periph
eral can cause one processor to be stalled while another pro
cessor accesses the memory device). Other examples com
prise one processor core waiting for a response from another
processor core through an inter-processor communication

Sep. 6, 2012

mechanism (cqueues, flags, FIFOs, etc.). While the first pro
cessor core waits for the second processor core to respond, the
first processor core is said to be stalled. Still other examples
comprise one processor core waiting for another processor
core to come out of a power-down situation or to finish boot
ing after being reprogrammed. A debug-trace program in
accordance with embodiments of the invention uses the
marker values, and other information, to help the user of the
debug-trace program to navigate in the trace data to instruc
tions executed in a non-stalled processor core that caused
another processor core to stall. In particular, in accordance
with embodiments of the invention when a task executing on
a processor core stalls waiting for another processor core
(e.g., waiting for the other processor core to provide a value or
release a shared memory location), the stalled processor core
is configured to write information to its respective target state
register 52, 62 which assists the debug-trace program. More
particularly still, when one processor core stalls waiting on
another processor core, in Some embodiments the stalled
processor core is configured to write the marker value to the
target state register as discussed above, along with its proces
sor identification number, the processor identification num
ber of the processor core on which it is waiting, and an
indication that the processor core has stalled (hereinafter stall
information). In some embodiments, when the stalled proces
Sor core is able again to make forward progress, the formerly
stalled processor again writes stall information into the trace
data, except in this case the stall information comprises the
marker value and an indication that the stall condition has
cleared. In alternative embodiments, some or all of the stall
information may be written to a log buffer as discussed above.
0031. In order to debug the operation of programmed
peripherals and DMA engines, a combination of Software
instrumentation, CPU-level advanced event triggering and
silicon bus monitoring logic may be used. The CP Tracer
silicon module shown in FIG. 4 demonstrates an alternate
implementation, and provides dedicated bus monitoring logic
that enables bus transactions to be monitored while the device
is running. It also can be configured to collect statistics on
particular bus transactions and to raise trigger events that can
be responded to by other CP Tracer modules, raise interrupts
to any of the CPUs on the device, or raise triggers that can
change the state of Advanced Event Triggering state
machines on one or more CPUs.

0032 CP Tracer events and statistics can be output to the
system trace either directly or (preferably) to an emulation
trace buffer or a region of internal memory without impacting
the operation of the device. Multiple CP Tracer modules may
be provided in the system, placed strategically to monitor bus
transactions going to particular bus slaves Such as shared
memory, peripherals, etc.
0033. The CP Tracer modules can be configured to
qualify the statistics and events that it generates based on the
bus master ID and the address range of the transaction. This
allows the software that configures the peripheral/DMA
engine to configure the CP Tracer module associated with
the destination of the data transfer to monitor the transactions
originating from that peripheral/DMA engine.
0034. The software on the CPU may configure the
CP Tracer module's sliding time window to have a period
equal to the worst-case time period that a transfer needs to be
completed by. A chained DMA transaction may be configured
to write into the CP Tracer's configuration registers in order
to disable the sliding time window when the transaction com

US 2012/02268.39 A1

pletes in order to prevent it from expiring. Alternatively, an
interrupt service routine on the CPU may disable the
CP Tracer upon notification from the DMA that the transac
tion had completed on time. If the transaction did not com
plete in a timely manner, the CP Tracer sliding time window
will expire and will automatically log the event via the System
Trace that contains statistics collected during the time inter
val.
0035 CP Tracer statistics of interest include the number
ofbytes sent by the DMA engine and the number of bytes sent
by all bus masters, providing some insight into whether the
delay can be attributed to the bus being too busy. Alterna
tively, a second statistic can be used to monitor a specific bus
master or set of bus masters that are likely to be hogging the
bus.
0036 When the sliding time window expires, it can
optionally be configured to automatically halt/freeze the
logged software and hardware events without Software
involvement. This is particularly useful when the problem has
impacted the ability of the CPU to operate properly. It allows
hardware events and statistics and Software events leading up
to the missed deadline to be captured and uploaded for off
line analysis.
0037. The ability to correlate the hardware events and
statistics with software events from all of the CPU cores and
the CPU trace from all of the cores allows software tooling to
reconstruct the events leading up to the problem or the missed
deadline. Software events can periodically log performance
counter values including cache statistics to provide additional
insight into the behavior of the device over time, allowing
potential causes for the delays or improper operation to be
identified, either by the user looking at transaction graphs of
events over time, or by automatic means using software that
filters out normal operational behavior from abnormal
operational behavior.
0038. One important application of the CP Tracer
described in this invention relates to the monitoring of trans
actions originating in multiple bus masters addressed to a
single bus slave. In this case one or more sets of counters that
count the bus throughput (how many bytes are accessed) to
the given slave are employed, but instead of just counting total
bytes each counter can be set to filter on one or more of the
following transaction characteristics:

0039) 1. Direction (read/write)
0040 2. Transaction type (DMA, cache, instruction,
normal, etc. . . .)

0041. 3. Address range
0042. 4. Originating master

0043. In addition, the tracking of the throughput can be
enabled or disabled either:

0044) 1. Manually via software programming
0045 2. With the use of a sliding time window pro
grammed by Software

0046 3. Via an emulation enable/disable that can be
triggered by a hardware or software event external to the
tracing hardware. This includes a trigger generated by
other tracing hardware in the system or a trigger directly
from a CPU

0047. The ability to track this information enables the user
to observe in detail how one, two or more masters are inter
acting with a given slave.
0048 For example, if two CPUs are attempting to access
the same shared memory structure, one throughput counter
may be configured to look for data writes from CPU 1 in a

Sep. 6, 2012

certain address range that contains the structure. A second
throughput counter can be programmed to look for data reads
from CPU 2 to the same address range. Given this informa
tion, external software can observe when CPU 1 wrote a data
structure and when CPU 2 read it. This can be used to check
and see if events happened out of order, and how much time
passed between events. Additionally a third throughput
counter may be configured to track other traffic from one or
more other masters to see if they (or other transactions from
one of the 2 CPUs) are interfering with the task completing in
a timely manner.
0049. A high level block diagram of the CP Tracer mod
ule is shown on FIG. 4. Input 401 is the slave input interface,
inputs 402 through 404 are event inputs A through C, and
input 405 is event input E. Event input 412 (F) and event input
413 (G) connect directly to block 411. The function of the
event inputs is shown in Table 1. Event inputs 402-405 con
nect to Fifo registers 406-409 to buffer the input signals, and
slave input interface 401 connects to setup and status register
block 410. Block 411 contains a 24bit counter that is used to
accumulate the number of cycles a request is waiting until
arbitration. The counter is enabled by a software loadable
register bit, and is reset when the sliding timer window
expires. The accumulated wait time is calculated by tracking
the number of event A, event B, event E and event Farrivals.
The number of pending requests is incremented any time a
new request event occurs on the event A interface, and the
number of pending requests is decremented when a request
event occurs on the event B interface, or when an event F
(write merged) or event G (command discarded) occurs. The
following pseudo code shows how the accumulated wait time
and the number of grants are calculated:

for (n=0; n< # event A if n++)
{

If (event A is triggered) numPending ++:
If (event F is triggered and numPending > 0)
numPending --:
If (event G is triggered and numPending > 0)
numPending --:

If(event B and arb last)
{
num granted ++:
If(numPending > 0)

{
numPending --:

If(numPending > 0) wait time ++:

0050 Block 411 also contains a second 24 bit counter
(Num Grant Counter) that is used to count the number of
times arbitration has been granted. This counter is enabled by
a software register bit, and is reset when the sliding timer
window expires.
0051. The CP Tracer's statistics counters allow the fol
lowing statistics to be calculated:

0.052 Bus bandwidth to slave used by one or more
selected bus masters (bytes/sec) throughput for bus
master/sliding time window duration

0.053 Average access size=throughput byte count/num
accesses granted

0.054 Bus utilization (transactions per second)=Num
accesses granted/sliding time window duration

US 2012/02268.39 A1

0055 Percentage of time there was contention for the
bus (accumulated wait time? sliding window length in
cycles)*100

0056 Minimum Average Latency=Accumulated Wait
Time/number of accesses

0057 Percentage of bus throughput used by bus mas
ter-(throughput for a bus master/throughput for all bus
masters)*100

0.058 sliding time window duration=sliding time win
dow period in cycles/number of cycles per second

0059. The Minimum Average Latency is not a true average
arbitration latency, since it ignores the cycle counts where
multiple bus masters are waiting at the same time. It will
typically be lower than the true average latency.

TABLE 1.

EVENT SIGNAL NAME WIDTH

EVENTA

Master requesting to slave event <msts <slvis req evt 1

EVENT B

New request to slave event <Sw> arb evt 1

event <slva arb last 1

event <slvic arb mistid 8

event <slvic arb dir 1
event <slvo arb dtype 2

event <slvic arb. xid 4

event <slva arb address 48
event <slvo arb bytecnt 10

EVENT C

Last write data to slave event <Sw> wast evt 1

EVENTE

Last read data from slave event <slve-rlast evt

event <slvic rod mistid 8

event <slvic rod Xid 4

EVENTF

event <msts sslvis merge evt 1

EVENT G

event <mst 3slve disc evt 1

0060. The throughput count represents the total number of
bytes forwarded to the target slave during the specified time
duration. This counter accumulates the byte count presented
to the slave interface. This count can be used to calculate the
effective throughput in terms of Mb/s at a given slave inter

Sep. 6, 2012

face. There are 2 throughput counters in Block 420 (0 and 1)
that can be individually enabled by software control bits. The
counters are each filtered by a set of mistids in Blocks 415 and
416 programmed via MMR registers in Block 410. The
throughput counters are also filtered by a programmable
address range in Block 414, qualif EMU in Blocks 417, 418
and 419, and by read/write transaction type in Block 415.
0061 The sliding time window specifies the measurement
interval for all statistic counters implemented in the
CP TRACER module. The sliding time window is specified
in number of CP TRACER clock cycles. All the counters that
are enabled start counting at the first transaction after the
sliding window begins. When the sliding window timer
expires, the counter values are loaded into the respective

FUNCTION

This event triggers when there is a new
request from the master decoded to the
slave.

This event triggers when a transaction
is sent to the slave. The associated
master ID and transaction ID are valid
when arb evt = 1.
This indicates that this is the last arb
event for a given command.
Associated master ID with the arb
ewet
Associated direction with the arb event
Associated dtypefcdtype with the arb
ewet
Associated transaction ID with the arb
ewet
Address with the arb event
Bytecnt with the arb event

This event triggers when the last write
data is sent to the slave, thus
completing the write burst.

This event triggers when the
last read data arrives at the
slave interface, thus
completing the read burst.
Associated mistid and Xid are
valid when rlast evt is high.
Associated master ID with therfirst or
rlast event
Associated transaction ID with therfirst
orrlast even

Indicates that a write request from
<msts to <slvo has been merged with
another request

Indicates that a read request from
<mst- to <slve has been discarded.

registers and the count starts again. If enabled, an interrupt is
also generated when the sliding time window expires. The
host CPU can read the statistics counters upon assertion of the
interrupt. The sliding time window is by default disabled at
reset and begins counting as soon as a non-Zero value is

US 2012/02268.39 A1

written into the sliding time window register in Block 410.
After it is enabled, the sliding time window can be disabled by
writing 0x00000000 into the register.
0062. The following filtering modes are applied to either
statistics generation or exporting event traces:

0063 Filtering based on mistid on events B and E
0064 Filtering based on read/write on event B
0065. Filtering based on dtype on event B
0.066 Filtering based on address range (inclusive of
addresses within the range and exclusive outside the
range) on event B

0067. Filtering based on EMU0/1 control inputs on all
events B, C and E

0068. If any bytes of a transaction fall within the address
window (or outside for exclusive address filtering) then that
transaction will count as passing the address range filter. Only
the bytes that pass the address range filter will count towards
throughput calculations. This means that it's possible for only
some of the bytes of a transaction to be counted in the
throughput counters. Example: Assuming all other qualifiers
are met, if a transaction starts outside of the address window
but ends inside, and exclusive address filtering is off, then
those bytes that fall inside the address window will be added
to throughput.
0069. The CP Tracer will export 3 types of messages
through the VBUSP interface 424:

Status Message

0070 A status bit for every event A interface is used to
track any new request event. A '0' indicates that no new
request events occurred and a 1 indicates that one or more
new request events have occurred.
0071. Due to bandwidth concerns, the CP Tracer also
needs to implement some pacing scheme to control the band
width consumed by exporting event A. This can be done by
exporting the status message only if the following 2 condi
tions are met:

0072 1. At least one of the status bit is set to one, and
0073 2. The previous status message was exported X
cycles before (x can be configurable via the MMR reg
ister 410) or the sliding time window expires.

0074 3.

Event Message
0075) Events B, C and E are exported in the event message
after applying the selected filters.

Statistics Message
0076. This message exports the throughput statistics for 2
groups of mistid, accumulated wait time for arbitration and
number of times arbitration has been granted. These are
exported when the sliding timer expires.

Cross Triggering
0.077 Cross triggering involves using an external trigger
to start and stop monitoring. The emu0 in line is trace start
and emul in is trace stop. Both signals are asynchronous and
active low. If Qualif EMU is set, only transactions happening
between an emu0 in low pulse and an emul in low pulse will
be traced for event export and statistics.
0078. The emu in signals are typically sourced by the
Debug Subsystem, which routes them from either GEM emu
signals or from another CP Tracer. The emu in signals are

Sep. 6, 2012

asynchronous and active low. They are synchronized to the
CP Tracer clock, so it is the responsibility of the source to
make Sure the low pulses are long enough to be captured. For
instance, if the source is on a clock CLK1 and the CP Tracer
is on clock CLK1/3, then the source's pulse must be 3 CLK1
cycles long (equivalent to 1 CLK3 cycle). Because the events
are synchronized, events that happen too close together may
not be recognized due to synchronizer delay. For instance, if
an emul in (emulation trace disable) comes too close follow
ing an emu0 in (emulation trace enable), tracing will not be
disabled. The tracer will miss this event and continue on until
another emul in low pulse is detected.
0079. Note that emulation triggering has no effect on the
export of Statistics messages being exported based on the
sliding time window. When using cross triggering, statistics
will only be gathered between a trace start and trace stop, but
the statistics messages themselves will continue to be
exported at the end of the sliding time window. The EMU
status bit of the Transaction Qualifier Register indicates
whether tracing is enabled.
0080 CP Tracer also has the ability to assert emu0 out
and emul out triggered by a qualified event Band enabled by
the EMUO trigger and EMU1 trigger bits in the transaction
qualifier register. A qualified event B means that all of the
following filters have been applied:

0081 1. Corresponding emu0/1 trigger from the trans
action qualifier register

I0082) 2. Address filtering
I0083) 3. MSTID select registers for Throughput.0
0084. 4. Qualif trig and dir from the transaction quali
fier register

0085 5. Qualif dtype trig and dtype from the transac
tion qualifier register

I0086 EMU0/1 out are active low pulses. The length of the
pulses is determined by the emu pulse len input. The length
of the low pulse is emu pulse len+1. emu pulse lenis 3 bits
and can be any number from 0-7 corresponding to a pulse
length from 1-8.
I0087 EMU0/1 out pulses are cumulative. This means that
if the pulse length is set to 5, and there is a qualified event
followed by another qualified event 3 cycles later, then the
length of the low pulse will be 8 cycles. The first event will
start a 5 cycle pulse, but the 2" event 3 cycles later will reset
this count to 5, meaning you get 3 cycles from the first pulse
and 5 cycles from the second combining for a total of 8 clock
cycles on the pulse. More than two pulses can be combined
also.
I0088. The VBUSP i423 is a write-only 32-bit transfer
controller. The transfer controller will issue a transaction if
there is 1 or more elements in the message Fifo 422. The
interface is burst-capable and can issue a burst transaction if
there is more than 1 message pending in the message Fifo
422. The maximum burst size is 16 bytes. The following
attributes define the VBUSP interface:

I0089 a.) Write-only interface
0090 b.) Linear incrementing bursts only
0.091 c.) Address (based on programmed destination
address value)

0092 d.) No gap in byte enables. Maximum burst size
of 16 bytes

0.093 e.) No support for write status interface
0094 f.) No error logging
0.095 g.) Address must be word aligned

US 2012/02268.39 A1

What is claimed is:
1. A bus monitoring system comprising of
an input configured to provide control, timing, setup and
programming information to the system,

an input configured to monitor bus transactions to a
Selected slave,

an input configured to monitor bus transactions from a
Selected master,

an output configured to interface to the bus and to provide
debugging, status and statistics information, and

a plurality of registers and counters configured to collect
and calculate timing, performance and statistics infor
mation.

2. The bus monitoring system of claim 1, further compris
ing of

a plurality of programmable timers.
3. The bus monitoring system of claim 2, wherein the

counters may be enabled or disabled by the programmable
timers.

4. The bus monitoring system of claim 1 wherein a counter
is configured to be operable to count the number of bytes
addressed to a selected slave.

Sep. 6, 2012

5. The bus monitoring system of claim 4 wherein the
counter is enabled to count only read transactions.

6. The bus monitoring system of claim 4 wherein the
counter is enabled to count only write transactions.

7. The bus monitoring system of claim 4 wherein the
counteris enabled to count only transactions within a selected
address range.

8. The bus monitoring system of claim 4 wherein the
counteris enabled to count only transactions originating from
a selected master.

9. The bus monitoring system of claim 4 wherein the
counter is enabled to count only transactions of a selected
type.

10. The bus monitoring system of claim 4 wherein the
counter may be enabled or disabled under program control.

11. The bus monitoring system of claim 4 wherein the
output port is configured to be operable to output the collected
throughput data.

