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AUTOMATED CONTENT TAGGING WITH
LATENT DIRICHLET ALLOCATION OF
CONTEXTUAL WORD EMBEDDINGS

BACKGROUND

[0001] The disclosure generally relates to artificial intel-
ligence and classification or recognition.

[0002] A latent Dirichlet allocation (LDA) model is an
unsupervised learning model that predicts a set of latent
variables that explain similarity between subsets of observ-
able variables. For instance, if the observable variables are
words or phrases in content, the latent variables can be
topics related to the words or phrases. The LDA model can
be represented as a probabilistic graph model representing
the dependency between the latent variables and observable
variables. The LDA model can learn the latent variables
from the observable variables using the probabilistic graph
model via Bayesian inference. LDA models are “generative”
in the sense that they attempt to model the joint probability
distribution of an observed variable—the words or phrases
in a document—and a hidden (latent) variable—the
unknown topics.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Aspects of the disclosure may be better understood
by referencing the accompanying drawings.

[0004] FIG. 1 is a schematic diagram of a workflow for
automated content tagging with contextual N-grams and a
latent Dirichlet allocation model.

[0005] FIG. 2 depicts training for a content tagging system
that uses contextual N-grams and an LDA model.

[0006] FIG. 3 is a flowchart of example operations for
dynamically tagging content with topic-based deep learning
models at least partially trained with generative model

output.

[0007] FIG. 4 is a flowchart of example operations for
dynamically training deep learning models for content tag-
ging.

[0008] FIG. 5 is a flowchart of example operations for

generating contextual N-grams for inputting into a genera-
tive model.

[0009] FIG. 6 depicts an example computer system with a
dynamic content tagger.

DESCRIPTION

[0010] The description that follows includes example sys-
tems, methods, techniques, and program flows that embody
aspects of the disclosure. However, it is understood that this
disclosure may be practiced without these specific details.
For instance, this disclosure refers to training LDA models
to generate data-dependent content tags in illustrative
examples. Aspects of this disclosure can be instead applied
to training other types of generative models to generate
data-dependent content tags. In other instances, well-known
instruction instances, protocols, structures and techniques
have not been shown in detail in order not to obfuscate the
description.

Overview

[0011] Inorder to properly filter, recommend, or otherwise
allocate content to an end-user, the content is categorized by
various tags. Typically, tags can be generated manually by a
test user categorizing the content. This can result in narrow
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tags with variable accuracy, and models used to allocate
content (e.g., by computing similarity between an end-user
and a set of tags associated with content) can suffer from
limited training data. The technology disclosed herein auto-
matically generates descriptive content tags and uses these
descriptive tags to supplement predicted tags from a deep
learning model(s) trained on manually tagged content and/or
train the deep learning model(s) that predict tags for content.
These descriptive content tags enable accurate, automated
content categorization and allocation with less training data
by improving the quality of each tag.

[0012] A natural language processor (NLP) receives
untagged content (e.g., web pages, white pages, datasheets,
etc.) and preprocesses the content by removing punctuation/
stop words and generating contextual N-grams that represent
coherent, substantive phrases in the content based on a
specified domain, such as cybersecurity. A contextual
N-gram is a group of words that together represent a concept
or form a conceptual unit. The NLP sends the contextual
N-grams to a latent Dirichlet allocation (LDA) model. The
LDA model is an unsupervised topic model that, for each
contextual N-gram or phrase, generates a vector of prob-
abilities (likelihoods) that the phrase corresponds to one of
a predetermined number of unspecified/unlabeled topics.
The LDA model then labels each topic with a phrase having
a highest likelihood of corresponding to that topic. This label
is a data-dependent tag for the content and can be validated
against source training data (i.e. manually tagged content)
for accuracy. Trained deep learning models additionally
receive the untagged content and predict tags from a set of
known tags. The data-dependent tags are sent to supplement
training of the deep learning models. In addition or alterna-
tively, the data-dependent tags are provided as an alternative
to predicted tags output by the deep learning models. If
confidence values of the predicted tags from the deep
learning models fail to satisfy a confidence threshold, a
recommender uses the tags from the deep learning models
after supplemental training instead of the low confidence
predicted tags or supplements the low confidence predicted
tags with the data-dependent tags. With the data-dependent
tags generated by the LDA model supplementing the pre-
dicted tags, the recommender system can allocate content
more accurately with less tagged training data. Moreover,
the LDA model can automatically generate new tags for
incoming content that supplement (possibly low confidence)
tags generated by the trained deep learning models, which
facilitates dynamic content tagging and reduces reliance on
stakeholders or manual tagging that can be slow to adapt
and/or flawed.

Example Illustrations

[0013] FIG. 1 is a schematic diagram of a workflow for
automated content tagging with contextual N-grams and a
latent Dirichlet allocation model. A natural language pro-
cessor (NLP) 101 receives untagged content 100 and gen-
erates contextual N-grams 102 based on the untagged con-
tent 100. The NLP 101 forwards the contextual N-grams 102
a trained deep learning tagger 105 and, optionally, to a latent
Dirichlet allocation (LDA) model 103. The LDA model 103
can use the contextual N-grams 102 as well as a predeter-
mined number of topics as input to generate data-dependent
content tags 106. A trained deep learning tagger 105 uses the
contextual N-grams 102 to generate deep learning content
tags 108. A recommender system 107 receives the tagged
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content 110 comprising the untagged content 100, the deep
learning content tags 108, and optionally the data-dependent
content tags 106. Although depicted as an LDA model 103,
other generative models are within the scope of this disclo-
sure. Embodiments can also use other models, such as latent
semantic analysis and other topic models.

[0014] The NLP 101 extracts contextual N-grams 102
from the untagged content 100 using a word embedding of
N-grams present in the untagged content 100. The untagged
content 100 can be user documents, web pages, white pages,
datasheets, advertisements, emails, or any other text data
that can be appropriately allocated using content tags. The
contextual N-grams 102 comprise vectors of real numbers
generated by the NLP 101 that represent N-grams in the
untagged content 100, where N-grams having common
contexts have word embeddings (i.e. vectors of real num-
bers) that are close together in FEuclidean space. For
instance, the N-grams “Cheshire Cat” and “Alice in won-
derland” have a common context and therefore should have
word embeddings that are close together, whereas “Cheshire
Cat” and “Iron Man” have dissimilar contexts and should
have word embeddings that are far apart. The NLP 101
generates the word embeddings in two phases: first, tokens
are extracted from the untagged content 100 and second, the
tokens are used as input into a model running on the NLP
101 that generates word embeddings. Each “token”
extracted in the first phase above can be alternatively
referred to as a unigram or a word.

[0015] During the tokenization phase, the NLP 101
removes punctuation, stop words, and any extraneous char-
acters from the untagged content. The stop words can be
common words according to a list, and the list of stop words
can depend on the type of untagged content 100 being
received by the NLP 101. As an additional step, the words
can be converted into numerical vectors that can be pro-
cessed by a model. For instance, one-hot encoding on the
entire vocabulary of the content can be implemented, or any
other similar encoding algorithm.

[0016] During the embedding phase, the NLP 101 inputs
the tokens from the tokenization phase into a word embed-
ding model to generate the contextual N-grams 102. A
“contextual N-gram” refers to one or more tokens extracted
from the untagged content 100 that are adjacent in the
untagged content 100. The word embedding model can be
any standard word embedding model configured to generate
embeddings of N-grams. For example, a skip-gram (a.k.a.
word2vec) model can be used to generate vectors of each
token in the untagged content 100. N-gram embeddings can
be computed as an average of the skip-gram token embed-
dings for each token in the N-gram. Other models, such as
GloVe, Ngram2vec, and Sent2vec which use local or global
context to compute N-gram embeddings can be used. In the
skip-gram example, local context refers to a window of
tokens around each token in the N-gram. The skip-gram
model is a neural network that predicts tokens in the window
of tokens around a given token using the token as input to
the neural network. Therefore, the resulting embeddings of
each token depend on the local context (i.e. window of
tokens around the input token), and the embedding of the
N-gram which is the average of the embeddings of each
token in the N-gram depends on the local context of each
token in the N-gram. For the GloVe model, a token co-
occurrence matrix (whose (i,j)th entry is the number of
instances that the ith and jth token in the untagged content
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100 occur next to each other) is factored to extract vectors
representing context for each token in the untagged content
100. The meaning of local and global context can vary
depending on the model for word embeddings used, with
two illustrative examples given above. In the above
examples, local context is restricted to the document con-
taining an N-gram, whereas global context can refer to all of
the content.

[0017] For both local and global context, a contextual
N-gram is determined based on proximity of tokens using
the appropriate notion of context. For instance, for the
skip-gram model, when the neural network predicts a set of
adjacent (i.e. consecutive and containing a current token)
tokens to an input token with sufficiently high confidence,
then the group of tokens comprising the input token and the
set of adjacent tokens can be aggregated into a contextual
N-gram. Different methods for choosing contextual N-grams
can be used for different word embedding models.

[0018] Although described as N-grams, the contextual
N-grams 102 can be numerical vectors that can be input into
models such as the trained LDA model 103. Once the LDA
model 103 generates the data-dependent content tags 106,
the NLP 101 can revert the numerical vectors (comprising
these content tags) back into words using the encoding
scheme described above. The phrase “contextual N-gram” is
used interchangeably throughout to refer to both the words
in the N-grams and the corresponding numerical represen-
tation.

[0019] The trained LDA model 103 receives the contex-
tual N-grams 102 and clusters them according to unlabeled
topics. The number of topics can be a hard-coded parameter
in the trained LDA model 103 or can be a manual input. The
number of topics can depend on the type of untagged content
100 and can be optimized prior to deployment of the LDA
model 103. The LDA model 103 clusters the contextual
N-grams 102 by predicting which contextual N-grams 102
correspond to each topic in the unlabeled topics (each cluster
corresponding to an unlabeled topic). The prediction is
based on a probabilistic graph model that models the prob-
ability of the observed words based on a number of related
latent variables including a Dirichlet prior on the per-
document topic distributions, a Dirichlet prior on the per-
topic token distribution, the topic distribution for each
document, the token distribution for each document, and the
topic distribution for each token in each document. Here,
each document in the untagged content 100 is represented as
the corresponding tokens extracted from that document in
the contextual N-grams 102. Using standard techniques in
Bayesian inference, such as variational Bayes, Gibbs sam-
pling, or expectation propagation, etc. and the dependencies
among the above variables, the probability for each of the
contextual N-grams 102 to correspond to each unlabeled
topic is computed. The resulting trained LDA model there-
fore comprises a weighted vector for each contextual
N-gram in the contextual N-grams 102 that indicates a
likelihood (probability) that the contextual N-gram corre-
sponds to each topic. In some embodiments, the LDA model
103 comprises multiple LDA sub-models corresponding to
each document in the content and trained independently on
the contextual N-grams from the respective documents.
[0020] The resulting clusters from training the LDA model
103 comprise the subset of the contextual N-grams 102
having a greatest likelihood value of corresponding to that
unlabeled topic. Within each unlabeled topic, a label is
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generated as the contextual N-gram 102 in that topic having
a highest probability (i.e. likelihood value) of corresponding
to that unlabeled topic. For example, if an unlabeled topic
corresponds to the contextual N-grams “tumbleweed” with
probability 0.6, “arid” with probability 0.4, and “desert”
with probability 0.95, then the topic is labelled with “desert”
having the highest probability of corresponding to that topic.
The LDA model 103 aggregates these topic labels into the
data-dependent content tags 106.

[0021] The NLP 101 additionally sends the contextual
N-grams 102 to the trained deep learning tagger 105. The
trained deep learning tagger 105 comprises multiple deep
learning models that tag the untagged content 100 according
to various topics. The deep learning tagger 105 can prepro-
cess the untagged content 100 into a format that these deep
learning models can use as input, as described in further
detail with reference to FIG. 2. The generated deep learning
content tags 108 are aggregated into the tagged content 110.
[0022] In some embodiments, the deep learning content
tags 108 are determined prior to deployment of the dynamic
content tagging system 120 and are not updated. Conversely,
as the untagged content 100 is received in a data stream, the
LDA model 103 is dynamically generated for batches of
incoming content, and the data-dependent content tags 106
are dynamically updated and included in the recommender
system 107. This allows the recommender system 107 to
detect and compensate for time-dependent changes in the
incoming content. In some embodiments the LDA model
103 is not trained and data-dependent content tags 106 are
not used. The pipeline of feeding the untagged content into
the NLP 101 which generates contextual N-grams 102 and
sends them to the LDA model 103, which in turn generates
the data-dependent content tags 106 can be used as a means
for online generation of content tags without having to
retrained the trained deep learning tagger 105 as content is
received. The criterion for when to use this pipeline can vary
depending on the type of deep learning model, the type of
content, the amount of content received, etc.

[0023] The recommender system 107 receives the tagged
content 110 (comprising the data-dependent content tags
106, the deep learning content tags 108, and the untagged
content 100) and generates recommendations using the
enhanced content tags. The recommender system 107 can be
any content-based recommender system and can vary based
on the type of tagged content 110.

[0024] To exemplify, the recommender system 107 can be
a URL filter that monitors and filters user website access
over HTTP and HTTPS addresses. The untagged content
100 can comprise URLs, and content received in response to
HTTP GET requests to the URLs. The NLP 101 can then
extract contextual N-grams 102 from the content received
from the HTTP requests. The generated data-dependent
content tags 106 and the deep learning content tags 108 can
be indicators of whether websites corresponding to the
URLs should be filtered, for example indicators that a
website is malicious, categories for the websites, etc. The
recommender system 107 can filter content received from
websites based on tags in the tagged content 110 and a set
of hard coded preferences. The set of preferences can
indicate particular categories of content (i.e., topics) from
URLS:s to filter. For instance, URLSs related to social media or
news or URLs containing mature content can be blocked by
the recommender system 107, and URLSs related to software
as a service (SaaS) or other business-related websites can be
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allowed by the recommender system 107. The recommender
system 107 can additionally maintain a white list and black
list of websites to automatically block and allow respec-
tively, and these lists can be dynamically updated. Finer
granularity of categories, such as tolerated, blocked, and
allowed websites can be implemented.

[0025] The dynamic content tagging system 120 can be a
component of a firewall or malware detector and can receive
untagged content in a data stream for online threat detection.
The data-dependent content tags 106 and deep learning
content tags 108 can be processed by the recommender
system 107 for known malicious tags. The firewall or
malware detector can be implemented in different compo-
nents of a user-level system or network. For instance, the
untagged content can be activity of a SaaS application and
the trained deep learning tagger 105 can be trained on data
specific to the SaaS application in order to detect and tag
normal and/or abnormal behaviors, in which case the dif-
ferent types of behaviors would be topics from the perspec-
tive of the models/taggers. Therefore, the malware detector
can be implemented across systems and can intercept and
filter traffic between nodes in a network. The context and
scope of the dynamic content tagging system 120 and
recommender system 107 can be user-specified and can vary
depending on the sensitivity of particular SaaS applications,
particular nodes in a network, particular users, etc. Because
the tagged content 110 is dynamically generated, the rec-
ommender system 107 can classify content and/or behavior
as malicious before systems are compromised.

[0026] In some embodiments, the recommender system
107 can maintain profiles for users, applications, nodes in a
network, etc. to monitor behavior. The profiles can comprise
lists of tags that are normal and lists of tags that are
abnormal, and the recommender system 107 can verify tags
in the tagged content 110 against these lists to detect
malicious behavior. These profiles can by dynamically
updated as new threats are detected or behavior changes.
The profile updates can use the data-dependent content tags
106 to enrich the existing tags in the profile. Dynamically
generated tags can be flagged as normal or abnormal by an
expert or based on activity for corresponding entities from
which the untagged content 100 was received as they are
added to the profiles.

[0027] FIG. 2 depicts training for a content tagging system
that uses contextual N-grams and an LDA model. A deep
learning tagger 201 receives tagged content 200. The deep
learning tagger 201 comprises a tag model A 203, a tag
model B 205, and a tag model C 207. The deep learning
tagger 201 trains the models 203, 205, and 207 to predict
tags for the contextual N-grams 212. Using the predicted
tags 202, 204, and 206 output by the models 203, 205, and
207 respectively, the deep learning tagger 201 trains the
internal parameters of the models 203, 205, and 207 based
on the difference between the predicted tags 202, 204, and
206 and the tags in the tagged content 200. If the confidence
of output for the tag models 203, 205, and 207 is below a
threshold confidence level, then a natural language proces-
sor (NLP) 219 receives the tagged content 200 and generates
contextual N-grams 212 which it sends to an LDA model
209. The LDA model 209 receives the contextual N-grams
212 and generates data-dependent tags 208 which it sends
the deep learning tagger 201. The deep learning tagger 201
uses the data-dependent tags 208 to supplement the training
data and retrains the tag models 203, 205, and 207. Once
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trained and the confidence of outputs of the models 203, 205,
and 207 is above a threshold confidence level, the deep
learning tagger 201 stores the trained topic models 213 in the
dynamic content tagging system 120. The tagged content
200 comprises previously tagged content that can be manu-
ally tagged by a user and verified based on deploying the
content using the tags to a recommender system. The quality
of the generated recommendations can be verified using
domain-specific metrics (for instance, if the recommender
system is generating advertisements, the click-through rate).
[0028] Independent and/or parallel to the above opera-
tions, the LDA model 209 receives the contextual N-grams
and generates data-dependent tags 208 which it sends to a
user 211. The user 211 evaluates the data-dependent tags 208
and based on the evaluation sends a number of topics 210 to
the LDA model 209. The LDA model 209 then generates a
new set of data-dependent tags 208 for the number of topics
210. This cycle continues until the user 211 decides that the
data-dependent tags 208 are contextually accurate for the
tagged content 200, and the corresponding optimized num-
ber of topics 214 is stored by the dynamic content tagging
system 120.

[0029] Although depicted as three tag models 203, 205,
and 207, the deep learning tagger can comprise any number
of models based on the type of tagged content 200 and tags
required by a recommender system using the tagged content
200. For example, a business running the recommender
system on marketing content may require tags for go-to-
market, product, industry, buyer’s journey stage, and target
audience/persona. There can be five tag models correspond-
ing to each of these types of tags. The tag models 203, 205,
207 can vary in complexity based on the type/amount of
training data and complexity of predicting each tag. For
example, for a product tag, a simple model such as logistic
regression can be implemented whereas for a more difficult
tag such as buyer’s journey stage, a neural network can be
implemented.

[0030] Each of the tag models 203, 205, and 207 can
preprocess the tagged content 200 so that it can be used as
input to a deep learning model. These models 203, 205, and
207 can operate in communication with the NLP 219 to
generate word embeddings for the tagged content 200.
Additional preprocessing steps such as normalization and/or
transformation of the data can be used depending on the type
of deep learning models. Both the content in the tagged
content 200 and the tags can be preprocessed, so that the
deep learning models learn to predict the processed tags
(e.g., as word embeddings). The NLP 219 can additionally
be used to convert the predicted embeddings by the tag
models 203, 205, and 207 back to words that can be used as
predicted tags.

[0031] Once the tagged content 200 is processed into
appropriate inputs for each of the models 203, 205, and 207,
the models respectively generate predicted tags 202, 204,
and 206 based on the inputs. Using the difference between
the predicted tags 202, 204, and 206 and tags indicated in the
tagged content 200, the models 203, 205, and 207 update
their internal parameters using a loss function of this dif-
ference. Depending on the type of deep learning model used,
the training can continue until convergence, until a prede-
termined number of iterations has been reached, or until
another termination criterion is reached. If the confidence of
outputs from the model 203, 205, and 207 on test data is
below a threshold confidence level, then the NLP 219
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processes the tagged content 200 to generate the contextual
N-grams 212, as described above with reference to FIG. 1,
and the LDA model 209 trains on the tagged content 200 to
generate the data-dependent tags 208. The deep learning
tagger 201 adds the data-dependent tags 208 to training data
for the model 203, 205, 207 (e.g., by adding the tags as
possible outcomes) and retrains the models until a threshold
confidence level (e.g. 90%) is reached. The threshold con-
fidence level can be a confidence level for all of the models
203, 205, and 207, can be for an average of the confidence
levels, etc. Once trained, the dynamic content tagging sys-
tem 120 stores the trained topic models.

[0032] The operations of generating the contextual
N-grams 212, training and/or retraining the LDA model 209
to determine the optimized number of topics 210 based on
feedback from a user 211 and sending data-dependent tags
208 to the deep learning tagger 201 are optional. These
operations can only be performed when models 203, 205,
and 207 have outputs below a threshold confidence level, or
according to other considerations such as desired computa-
tion time for tag generation.

[0033] The LDA model 209 receives the contextual
N-grams 212 and clusters them according to an unknown
topic distribution on the contextual N-grams 212 as
described variously above. The initial number of topics 210
can be randomized or can be chosen by the user 211. Once
the LDA model 209 clusters/tags the topics, the user 211
receives the generated data-dependent tags 208. The user
211 can be a domain-level expert and can verify quality of
the data-dependent tags 208. If the quality of the data-
dependent tags 208 is insufficient, the user 211 can adjust the
number of topics 210 and sends the updated number back to
the LDA model 209. The meaning of “quality” of the
data-dependent tags 208 can vary depending on the type of
content. For example, if the content is email documents then
the user 211 can evaluate how descriptive the data-depen-
dent tags 208 are for categorizing emails as spam.

[0034] Although depicted as determined by a user 211, the
optimized number of topics 214 can be determined in an
automated manner by a computer, and the criterion for the
data-dependent tags 208 having sufficient quality can be an
objective metric. For example, the generated data-dependent
tags 208 can be implemented in a recommender system with
A/B testing, comparing the additional tags to the base
predicted tags generated by the trained topic models 213.
The criterion for sufficient quality can thus be a percentage
improvement over the baseline in the A/B testing. Alterna-
tively, when the recommender system is part of a firewall or
malware detector, quality can correspond to threat detection
rate. In some embodiments, the optimized number of topics
214 can be a hard-coded value pertaining to the type of
content being generated. Once generated, the dynamic con-
tent tagging system 120 stores the optimized number of
topics 214 for future LDA model generation.

[0035] FIG. 3 is a flowchart of example operations for
dynamically tagging content with topic-based deep learning
models at least partially trained with generative model
output. The example operations are described with reference
to a dynamic tagging system for consistency with the earlier
figures. The name chosen for the program code is not to be
limiting on the claims. Structure and organization of a
program can vary due to platform, programmer/architect
preferences, programming language, etc. In addition, names
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of code units (programs, modules, methods, functions, etc.)
can vary for the same reasons and can be arbitrary.

[0036] At block 301, the dynamic tagging system detects
incoming content. The incoming content can be received as
a data stream or in batches of data. The dynamic tagging
system can collect incoming content according to a schedule
or can wait until a threshold amount of content is received.

[0037] At block 303, the dynamic tagging system prepro-
cesses the content into a format that can be input into
topic-based deep learning models. The dynamic tagging
system can tokenize the content and can convert the token-
ized content into numerical vectors using an encoding
scheme. The dynamic tagging system can further normalize
and/or transform the data depending on the type of topic-
based deep learning models and can perform different nor-
malizations and transformations for each model. In some
embodiments, the dynamic tagging system can generate
numerical vectors for the untagged content without token-
izing the content.

[0038] At block 305, the dynamic tagging system deter-
mines whether to dynamically update the content tag mod-
els. This determination can be based on an amount of
incoming content, a time period since the content tag models
were last updated, a domain-level expert assessing that
content has changed for the purposes of categorization, etc.
If the dynamic tagging system determines to dynamically
update the deep learning models, operations proceed to
block 307. Otherwise, operations skip to block 309.

[0039] At block 307, the dynamic tagging system dynami-
cally trains the deep learning models based on data-depen-
dent content tags output from a generative statistical model,
such as the previously mentioned LDA model. The output
from the generative statistical model will be based on
contextual N-grams generated from the content detected at
block 301. The operations for dynamically training the deep
learning models are described in FIG. 4 below.

[0040] At block 309, the dynamic tagging system gener-
ates deep learning content tags by inputting preprocessed
untagged content into the deep learning models. The deep
learning models are pretrained to predict tags corresponding
to a specific topic using untagged content preprocessed into
a format specific to each deep learning model. The deep
learning models can additionally output a confidence value
for the predicted deep learning content tags.

[0041] At block 311, the dynamic tagging system aggre-
gates the content and dynamically generated content and
forwards it to a recommender system. The recommender
system can be any system that allocates content to relevant/
engaged endpoints as described variously above.

[0042] FIG. 4 is a flowchart of example operations for
dynamically training deep learning models for content tag-
ging. The example operations are described with reference
to a dynamic deep learning tagger for consistency with the
earlier figures. The name chosen for the program code is not
to be limiting on the claims. Structure and organization of a
program can vary due to platform, programmer/architect
preferences, programming language, etc. In addition, names
of code units (programs, modules, methods, functions, etc.)
can vary for the same reasons and can be arbitrary.

[0043] At block 401, the deep learning tagger prepro-
cesses tagged content to input into topic-based deep learning
models. This operation can occur, for example, as described
at block 303 with reference to FIG. 3. In some embodiments,
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the content will have already been preprocessed at an early
stage in the content tagging workflow.

[0044] At block 403, the deep learning tagger trains topic-
based deep learning models on the preprocessed tagged
content generated at block 401. The deep learning tagger can
input the tagged content without tags into the topic-based
deep learning models and can update the internal parameters
of the topic-based deep learning models based on a com-
parison with the model outputs and tags for the content. In
some embodiments, the deep learning tagger can convert the
tags to numerical vectors using natural language processing,
and the comparison between model outputs and tags for the
content can be a norm between the numerical vectors output
by the models and the numerical vectors for the tags.
[0045] At block 405, the deep learning tagger determines
whether confidence of predictions generated from the topic-
based deep learning models trained at block 403 is below a
threshold confidence level. If the confidence is below this
threshold confidence level, then operations proceed to block
407. Otherwise, operations terminate. In some embodi-
ments, once the loop of operations at blocks 407, 409, 411,
and 413 has repeated a threshold number of times, opera-
tions terminate. The threshold confidence level can depend
on the type of machine learning model, the amount of
training data, the complexity of the machine learning model
(e.g., neural network vs. support vector machine), etc. This
threshold confidence level can be the same confidence level
used during training of the topic-based machine learning
models as described with reference to FIG. 2 or can be
different depending on, for example, similarity between the
tagged content and previous tagged content used to train the
topic-based machine learning models. Because the confi-
dence of the predictions is generated on new tagged content,
in some embodiments deep learning models above a thresh-
old confidence level for previous tagged content can require
retraining on new incoming content. Alternatively, the topic-
based deep learning models can be trained independently of
the operations in FIG. 4 and received by the deep learning
tagger (i.e., they are not known to exceed a threshold
confidence level).

[0046] For embodiments where the deep learning tagger is
implemented for threat detection, the threshold confidence
level at block 405 can further comprise a threat detection
level. For example, the retraining criterion can depend on a
rate of detection for malicious activity over a network, SaaS
application, user system, etc. The retraining criterion can
additionally depend on known changes in user or network
behavior or new attacks/security threats. The deep learning
tagger can determine to retrain the topic-based deep learning
models as described at blocks 407, 409, 411 and 413 below
based on a combination of the above criteria.

[0047] At block 407, the deep learning tagger prepro-
cesses content to generate tokens for the content. This
tokenization can occur using standard algorithms for token-
izing content in natural language processing by removing
stop words, punctuation, etc. as described variously above.
[0048] At block 409, the deep learning tagger inputs the
tokens generated at block 407 into a word embedding model
to generate contextual N-grams for the content. The word
embedding model can be any of the standard natural lan-
guage processing models that incorporate local or global
context as described variously above.

[0049] At block 411, the dynamic tagging system trains a
generative statistical model to generate data-dependent con-
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tent tags based on the contextual N-grams. The dynamic
tagging system can use techniques in Bayesian inference
such as variational Bayes, Gibbs sampling, etc. to train the
generative statistical model for topic detection. The quantity
or number of topics (clusters) generated by the generative
statistical model can be a user input or a hard-coded value
and should be optimized to generate the highest quality tags
based on the incoming content. The resulting trained gen-
erative statistical model comprises likelihood values that
each contextual N-gram corresponds to each topic. For each
cluster/unlabeled (e.g., “topic 1), the dynamic tagging
system chooses the contextual N-gram having a highest
likelihood value of being a topic label as the data-dependent
content tag(s). Embodiments can choose multiple contextual
N-grams having the highest likelihood values for a topic.
[0050] At block 413, the dynamic tagging system retrains
the topic-based deep learning models with preprocessed
content and data-dependent content tags. The dynamic tag-
ging system can add the data-dependent content tags as
outcomes that the deep learning models will learn to predict.
The dynamic tagging system can further reinitialize internal
parameters of the deep learning models and can train them
to convergence on training data comprising the content and
the data-dependent tags. In some embodiments, the training
data further comprises the existing tags used to train the deep
learning models prior to the retraining operations at blocks
407, 409, 411, and 413.

[0051] FIG. 5 is a flowchart of example operations for
generating contextual N-grams for inputting into a genera-
tive model. The example operations are described with
reference to a natural language processor (NLP) for consis-
tency with the earlier figures. The name chosen for the
program code is not to be limiting on the claims. Structure
and organization of a program can vary due to platform,
programmer/architect preferences, programming language,
etc. In addition, names of code units (programs, modules,
methods, functions, etc.) can vary for the same reasons and
can be arbitrary.

[0052] At block 501, the NLP extracts tokens from the
content corresponding to words in the content. The tokeni-
zation process can comprise removing stop words and
punctuation from the content as described variously above.
[0053] At block 503, the NLP begins iterating through
documents in the content. The loop of operations includes
the example operations at blocks 505, 507, 509, 511, 513,
and 515.

[0054] At block 505, the NLP begins iterating through
documents in the content. The loop of operations includes
the example operations at blocks 505, 507, 509, and 511.
[0055] At block 507, the NLP computes context metric
values for the current token against groups of adjacent
tokens in the current document. For example, the context
metric values can be confidence values that a neural network
will predict tokens in a group of adjacent tokens using the
current token as input, as described above with reference to
the skip-gram model. Other context metric values using
local and global context for the current token can be used.
[0056] At block 509, the NLP verifies whether any of the
context metric values computed at block 507 are above a
threshold context value. If there are context metric values
above the threshold context value, operations continue to
block 511. Otherwise, operations skip to block 513. Other
criterion for determining whether to continue to block 511
can be used, such as whether an average context metric
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value for the context metric values computed at block 507 is
above a threshold context value, and context metric values
for adjacent tokens can additionally be used. In some
embodiments, the NLP iterates through all tokens in the
current document to compute context metric values before it
determines whether to perform the operations at block 511.
[0057] Atblock 511, the NLP identifies groups of adjacent
tokens (i.e., consecutive tokens containing the current token)
having context metric values above a threshold context
metric value. Other criterion for determining whether to
group of adjacent tokens can be used, as described variously
above.

[0058] At block 513, the NLP determines whether there is
an additional token in the current document. If there is an
additional token, operations return to block 505. Otherwise,
operations continue to block 515.

[0059] At block 515, the NLP encodes the tokens grouped
at block 511 and outputs the encoded groups of tokens as
contextual N-grams for the current document. The contex-
tual N-grams can be output to a generative model for
determining tags for the content.

[0060] At block 517, the NLP determines whether there is
an additional document in the content. If there is an addi-
tional document in the content, operations return to block
503. Otherwise, the example operations in FIG. 5 are
complete.

[0061] The flowcharts are provided to aid in understanding
the illustrations and are not to be used to limit scope of the
claims. The flowcharts depict example operations that can
vary within the scope of the claims. Additional operations
may be performed; fewer operations may be performed; the
operations may be performed in parallel; and the operations
may be performed in a different order. For example, the
operations depicted in blocks 301 and 303 can be performed
in parallel or concurrently. With respect to FIG. 3, blocks
307 is not necessary. It will be understood that each block of
the flowchart illustrations and/or block diagrams, and com-
binations of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by program code. The pro-
gram code may be provided to a processor of a general-
purpose computer, special purpose computer, or other pro-
grammable machine or apparatus.

[0062] As will be appreciated, aspects of the disclosure
may be embodied as a system, method or program code/
instructions stored in one or more machine-readable media.
Accordingly, aspects may take the form of hardware, soft-
ware (including firmware, resident software, micro-code,
etc.), or a combination of software and hardware aspects that
may all generally be referred to herein as a “circuit,”
“module” or “system.” The functionality presented as indi-
vidual modules/units in the example illustrations can be
organized differently in accordance with any one of platform
(operating system and/or hardware), application ecosystem,
interfaces, programmer preferences, programming lan-
guage, administrator preferences, etc.

[0063] Any combination of one or more machine-readable
medium(s) may be utilized. The machine-readable medium
may be a machine-readable signal medium or a machine-
readable storage medium. A machine-readable storage
medium may be, for example, but not limited to, a system,
apparatus, or device, that employs any one of or combina-
tion of electronic, magnetic, optical, electromagnetic, infra-
red, or semiconductor technology to store program code.
More specific examples (a non-exhaustive list) of the
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machine-readable storage medium would include the fol-
lowing: a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or
Flash memory), a portable compact disc read-only memory
(CD-ROM), an optical storage device, a magnetic storage
device, or any suitable combination of the foregoing. In the
context of this document, a machine-readable storage
medium may be any tangible medium that can contain or
store a program for use by or in connection with an instruc-
tion execution system, apparatus, or device. A machine-
readable storage medium is not a machine-readable signal
medium.

[0064] A machine-readable signal medium may include a
propagated data signal with machine-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
machine-readable signal medium may be any machine-
readable medium that is not a machine-readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

[0065] Program code embodied on a machine-readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0066] The program code/instructions may also be stored
in a machine-readable medium that can direct a machine to
function in a particular manner, such that the instructions
stored in the machine-readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

[0067] FIG. 6 depicts an example computer system with a
dynamic content tagger. The computer system includes a
processor 601 (possibly including multiple processors, mul-
tiple cores, multiple nodes, and/or implementing multi-
threading, etc.). The computer system includes memory 607.
The memory 607 may be system memory or any one or more
of the above already described possible realizations of
machine-readable media. The computer system also
includes a bus 603 and a network interface 605. The system
also includes a dynamic content tagger 611. The dynamic
content tagger 611 can receive and process untagged content
in a data stream, generate dynamic content tags using the
processed content as input to a generative model, and retrain
deep learning models with the dynamic content tags, as
describe variously above. Any one of the previously
described functionalities may be partially (or entirely)
implemented in hardware and/or on the processor 601. For
example, the functionality may be implemented with an
application specific integrated circuit, in logic implemented
in the processor 601, in a co-processor on a peripheral
device or card, etc. Further, realizations may include fewer
or additional components not illustrated in FIG. 6 (e.g.,
video cards, audio cards, additional network interfaces,
peripheral devices, etc.). The processor 601 and the network
interface 605 are coupled to the bus 603. Although illus-
trated as being coupled to the bus 603, the memory 607 may
be coupled to the processor 601.

[0068] While the aspects of the disclosure are described
with reference to various implementations and exploitations,
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it will be understood that these aspects are illustrative and
that the scope of the claims is not limited to them. In general,
techniques for generation of dynamic content tags as
described herein may be implemented with facilities con-
sistent with any hardware system or hardware systems.
Many variations, modifications, additions, and improve-
ments are possible.

[0069] Plural instances may be provided for components,
operations or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative
configurations. Other allocations of functionality are envi-
sioned and may fall within the scope of the disclosure. In
general, structures and functionality presented as separate
components in the example configurations may be imple-
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other variations, modifications, additions, and improve-
ments may fall within the scope of the disclosure.

Terminology

[0070] The term “content” is used throughout to refer to
one or more documents each document comprising a set of
words. “Content” is synonymous with “corpus,” and more
specifically refers to one or more related documents that
share a common i.e. are related to a same subject, originate
from a same or similar source, occur during an ongoing
session between two nodes on a network, etc.
[0071] This description uses the term “data stream” to
refer to a unidirectional stream of data flowing over a data
connection between two entities in a session. The entities in
the session may be interfaces, services, etc. The elements of
the data stream will vary in size and formatting depending
upon the entities communicating with the session. Although
the data stream elements will be segmented/divided accord-
ing to the protocol supporting the session, the entities may
be handling the data at an operating system perspective and
the data stream elements may be data blocks from that
operating system perspective. The data stream is a “stream”
because a data set (e.g., a volume or directory) is serialized
at the source for streaming to a destination. Serialization of
the data stream elements allows for reconstruction of the
data set. The data stream is characterized as “flowing” over
a data connection because the data stream elements are
continuously transmitted from the source until completion or
an interruption. The data connection over which the data
stream flows is a logical construct that represents the end-
points that define the data connection. The endpoints can be
represented with logical data structures that can be referred
to as interfaces. A session is an abstraction of one or more
connections. A session may be, for example, a data connec-
tion and a management connection. A management connec-
tion is a connection that carries management messages for
changing state of services associated with the session.
[0072] As used herein, the term “or” is inclusive unless
otherwise explicitly noted. Thus, the phrase “at least one of
A, B, or C” is satisfied by any element from the set {A, B,
C} or any combination thereof, including multiples of any
element.

1. A method comprising:

inputting contextual N-grams for content into one or more

topic-based deep learning models; and
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based, at least in part, on one or more confidence values

for outputs of the one or more topic-based deep learn-

ing models being below a threshold confidence value,

training a generative statistical model to generate a
plurality of content tags from the contextual
N-grams;

aggregating the plurality of content tags into training
data for the one or more topic-based deep learning
models to generate updated training data; and

retraining the one or more topic-based deep learning
models with the updated training data.

2. The method of claim 1, further comprising generating
the contextual N-grams for the content, where the contextual
N-grams are generated based, at least in part, on proximity
of word embeddings for words in the content.

3. The method of claim 2, wherein generating the con-
textual N-grams for the content comprises,

removing stop words to generate tokens for the content;

for each document in the content, identifying groups of

consecutive tokens in the content having sufficiently
close word embeddings; and

aggregating tokens in each group of consecutive tokens in

the content into the contextual N-grams.

4. The method of claim 1, further comprising inputting the
contextual N-grams into one or more retrained topic-based
deep learning models to generate a plurality of updated
content tags for the content.

5. The method of claim 4, further comprising communi-
cating the plurality of updated content tags and the content
to a recommender system.

6. The method of claim 1, wherein the generative statis-
tical model comprises a latent Dirichlet allocation model.

7. The method of claim 1, wherein training the generative
statistical model to generate a plurality of content tags from
the contextual N-grams comprises learning a joint probabil-
ity distribution of the contextual N-grams against m topics
for the content.

8. One or more non-transitory machine-readable media
having program code stored thereon, the program code
comprising instructions to:

input contextual N-grams for content into one or more

topic-based deep learning models; and

based, at least in part, on one or more confidence values

for outputs of the one or more topic-based deep learn-

ing models being below a threshold confidence value,

train a generative statistical model to generate a plu-
rality of content tags from the contextual N-grams;

aggregate the plurality of content tags into training data
for the one or more topic-based deep learning models
to generate updated training data; and

retrain the one or more topic-based deep learning
models with the updated training data.

9. The non-transitory machine-readable media of claim 8,
wherein the program code further comprises instructions to
generate the contextual N-grams for the content, where the
contextual N-grams are generated based, at least in part, on
proximity of word embeddings for words in the content.

10. The non-transitory machine-readable media of claim
9, wherein the instructions to generate the contextual
N-grams for the content comprise instructions to, remove
stop words to generate tokens for the content;

for each document in the content, identify groups of

consecutive tokens in the content having sufficiently
close word embeddings; and
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aggregate tokens in each group of consecutive tokens in

the content into the contextual N-grams.

11. The non-transitory machine-readable media of claim
8, wherein the program code further comprises instructions
to input the contextual N-grams into one or more retrained
topic-based deep learning models to generate a plurality of
updated content tags for the content.

12. The non-transitory machine-readable media of claim
11, wherein the program code further comprises instructions
to communicate the plurality of updated content tags and the
content to a recommender system.

13. The non-transitory machine-readable media of claim
8, wherein the generative statistical model comprises a latent
Dirichlet allocation model.

14. The non-transitory machine-readable media of claim
8, wherein the instructions to train the generative statistical
model to generate a plurality of content tags from the
contextual N-grams comprise instructions to learn a joint
probability distribution of the contextual N-grams against m
topics for the content.

15. An apparatus comprising:

a processor; and

a machine-readable medium having instructions stored

thereon that are executable by the processor to cause
the apparatus to,
input contextual N-grams for content into one or more
topic-based deep learning models; and
based, at least in part, on one or more confidence values
for outputs of the one or more topic-based deep
learning models being below a threshold confidence
value,
train a generative statistical model to generate a
plurality of content tags from the contextual
N-grams;
aggregate the plurality of content tags into training
data for the one or more topic-based deep learning
models to generate updated training data; and
retrain the one or more topic-based deep learning
models with the updated training data.

16. The apparatus of claim 15, further comprising instruc-
tions executable by the processor to cause the apparatus to
generate the contextual N-grams for the content, where the
contextual N-grams are generated based, at least in part, on
proximity of word embeddings for words in the content.

17. The apparatus of claim 15, further comprising instruc-
tions executable by the processor to cause the apparatus to
input the contextual N-grams into one or more retrained
topic-based deep learning models to generate a plurality of
updated content tags for the content.

18. The apparatus of claim 17, further comprising instruc-
tions executable by the processor to cause the apparatus to
communicate the plurality of updated content tags and the
content to a recommender system.

19. The apparatus of claim 15, wherein the generative
statistical model comprises a latent Dirichlet allocation
model.

20. The apparatus of claim 15, wherein the instructions
executable by the processor to cause the apparatus to train
the generative statistical model to generate a plurality of
content tags from the contextual N-grams comprise instruc-
tions to learn a joint probability distribution of the contex-
tual N-grams against m topics for the content.
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