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(57) ABSTRACT

A separable operation on a two-dimensional array of values
is performed at a processing unit. A two-dimensional array
of values is divided into a plurality of sub-arrays of values.
An initial phase of the separable operation is performed for
a sub-array to generate a processed value for each value of
the sub-array. Threads write a first plurality of processed
values to the memory over a plurality of writing steps. Each
of the threads reads a second plurality of processed values
from the memory over a plurality of reading steps. A
subsequent phase of the separable operation is performed for
the processed values read by the threads to generate an
output value for each value of the sub-array in a transposed
position; wherein a respective processed value is written into
each of the memory banks of the memory in at least one of
the writing steps, and a respective processed value is read
from each of the memory banks of the memory in at least
one of the reading steps.
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PERFORMING A SEPARABLE OPERATION
ON A TWO-DIMENSIONAL ARRAY OF
VALUES AT A PROCESSING UNIT
COMPRISING A MEMORY

CROSS-REFERENCE TO RELATED
APPLICATIONS AND CLAIM OF PRIORITY

[0001] This application claims foreign priority under 35
U.S.C. 119 from United Kingdom patent application Nos.
2219374.2 and 2219375.9, both filed on 21 Dec. 2022,
which are incorporated by reference herein in their entirety.

FIELD

[0002] The present disclosure is directed to performing a
separable operation on a two-dimensional array of values at
a processing unit comprising a memory.

BACKGROUND

[0003] FIG. 1A shows an example graphics processing
unit (GPU) 100 and global memory 108. Work to be
performed by a GPU can be arranged into “workgroups”,
“warps” and “threads”. A workgroup may comprise one or
more warps. A warp may comprise a plurality of threads,
where that plurality of threads can be processed in parallel
at a single core 102 of the GPU 100.

[0004] GPU 100 can perform operations on arrays of
values. FIG. 2 shows an example operation. In FIG. 2, the
operation is a one-dimensional Gaussian filter operation, in
which a value 204 is filtered in dependence on a one-
dimensional kernel 202 of values including the value 204 to
be filtered and three values on either side of that value 204.
A filtered output for the value 204 is determined by per-
forming a weighted sum of the values in the kernel 202. The
respective weight for each value in the kernel 202 is deter-
mined in dependence on a Gaussian function 200 centred on
the value 204 to be filtered.

[0005] A separable two-dimensional Gaussian filter opera-
tion can be implemented by performing an initial phase in
which a one-dimensional Gaussian filter operation is per-
formed horizontally across each row of a two-dimensional
array of values, followed by performing a subsequent phase
in which the same one-dimensional Gaussian filter operation
is performed vertically along each column of the horizon-
tally filtered two-dimensional array of values—or vice versa
(i.e. vertically, followed by horizontally).

[0006] In a simple approach, a phase of a separable
two-dimensional Gaussian filter operation can be performed
on an array of values by assigning each value of the array of
values to be filtered to a thread for processing. As an
illustrative example, consider a separable two-dimensional
Gaussian filter operation to be performed on a two-dimen-
sional array of values comprising 1024 values (e.g. arranged
as a 32x32 array of values). In this example, in order to
perform the initial (e.g. horizontal) phase of said operation,
each of said 1024 values could be assigned to a respective
one of 1024 threads. In order to filter each value, each thread
can read all of the values included in the one-dimensional
filter kernel used to filter that value (e.g. the value to be
filtered and the three values on either side of that value) from
global memory 108. Each thread can then generate a filtered
value for its value by performing a weighted sum of the
values in the kernel, and write that filtered value back to
global memory 108, such that the global memory 108 stores

Jul. 11, 2024

a once-filtered (e.g. horizontally filtered) value for each
value of the two-dimensional array of values. In order to
perform the subsequent (e.g. vertical) phase of said opera-
tion, each of said 1024 once-filtered values could be
assigned to a respective one of 1024 threads. In order to
further filter each once-filtered value, each thread can read
all of the once-filtered values included in the one-dimen-
sional filter kernel used to further filter that once-filtered
value (e.g. the once-filtered value to be further filtered and
the three once-filtered values on either side of that value)
from global memory 108. The one-dimensional filter kernels
used in the subsequent (e.g. vertical) phase are perpendicular
to the one-dimensional filter kernels used in the initial (e.g.
horizontal) phase. Each thread can then generate a further
filtered value for its once-filtered value by performing a
weighted sum of the once-filtered values in the kernel, and
write that further filtered value back to global memory 108,
such that the global memory 108 stores a further filtered (e.g.
horizontally and vertically filtered) value for each value of
the two-dimensional array of values.

[0007] Performing a separable two-dimensional Gaussian
filter operation on a graphics processing unit 100 in this way
is relatively slow, as it involves performing two sets of reads
and two sets of writes to global memory 108. Further, in
each phase of the separable filter operation, each value is
read from memory many times (e.g. seven times in the
example given above). This is because, in each phase, each
value is read from memory (e.g. global memory 108) by the
thread that is assigned to filter that value, and also read from
memory (e.g. a cache memory into which it is written after
being read from global memory 108) by each of the threads
that are assigned to filter other values using a filter kernel
that includes that value.

SUMMARY

[0008] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

[0009] According to a first aspect of the present invention
there is provided a computer-implemented method of per-
forming a separable operation on a two-dimensional array of
values at a processing unit comprising a memory, the
memory comprising a plurality of memory banks, wherein
in each writing or reading step each memory bank can be
written into or read from by only one respective thread, the
method comprising: dividing the two-dimensional array of
values into a plurality of two-dimensional sub-arrays of
values; for each of the plurality of sub-arrays: performing,
using a plurality of threads, an initial phase of the separable
operation for said sub-array of values in order to generate a
respective processed value for each value of said sub-array
of values; each of the plurality of threads writing a respec-
tive first plurality of processed values to the memory over a
plurality of writing steps, said first plurality of processed
values corresponding to a one-dimensional sequence of
values of said sub-array of values; each of the plurality of
threads reading a respective second plurality of processed
values from the memory over a plurality of reading steps,
said second plurality of processed values corresponding to a
perpendicular one-dimensional sequence of values of a
sub-array of values in a transposed position within the array
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of values relative to said sub-array of values; and perform-
ing, using the plurality of threads, a subsequent phase of the
separable operation for the plurality of processed values read
by the plurality of threads in order to generate a respective
output value for each value of the sub-array of values in the
transposed position; wherein a respective processed value is
written into each of the memory banks of the memory in at
least one of the plurality of writing steps, and a respective
processed value is read from each of the memory banks of
the memory in at least one of the plurality of reading steps.
[0010] The memory bank into which a processed value is
to be written may be determined in dependence on a write
buffer array having a number of elements greater than the
number of elements in the two-dimensional array of values.
[0011] The write buffer array may comprise: value ele-
ments corresponding to values of the two-dimensional array;
and padding elements. The padding elements may corre-
spond to memory padding.

[0012] The write buffer array may comprise groups of
contiguous value elements corresponding to values of the
two-dimensional array, and padding elements interspersed
between said groups.

[0013] The number of value elements in each group may
be (i) equal to, (ii) a multiple of, or (iii) a factor of the
number of memory banks comprised by the memory.
[0014] The number of value elements in each group may
be equal to or less than the number of threads used to
perform the separable operation for the array of values.
[0015] The write buffer array may be mapped to the
memory such that processed values corresponding to values
of the two-dimensional array are written into the memory in
memory locations to which the value elements of the write
buffer array are mapped, and processed values correspond-
ing to values of the two-dimensional array are not written to
the memory in memory locations to which the padding
elements of the write buffer array are mapped.

[0016] The memory location into which a thread writes a
processed value may be determined in dependence on a base
memory address, a writing offset amount and a writing
padding amount, the writing offset amount and the writing
padding amount may be dependent on the position of the
value within the array of values to which that processed
value corresponds.

[0017] The two-dimensional array of values may be
divided into a plurality of two-dimensional sub-arrays of
values is represented by a multidimensional array [I][J][K]
[M], where I and J represent the number of sub-arrays of
values within the array of values in each of the two dimen-
sions and K and M represent the number of values within
each of the sub-arrays of values in each of the two dimen-
sions, and wherein each value in the array of values has a
coordinate [i][j][k][m] which defines its position within the
multidimensional array [I][J][K][M], and the writing offset
amount may be equal to (ixJXxKxM)+(jxKxM)+(kxM)+m or
(IxIxKxM)+(xKxM)+(mxK)+k; and the writing padding
amount is equal to the writing offset amount divided by a
padding frequency.

[0018] The memory location from which a thread reads a
processed value may be determined in dependence on a base
memory address, a reading offset amount and a reading
padding amount, the reading offset amount and the reading
padding amount being dependent on the position of the
value within the array of values to which that processed
value corresponds.
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[0019] The two-dimensional array of values divided into a
plurality of two-dimensional sub-arrays of values may be
represented by a multidimensional array [1][J][K][M], where
I and J represent the number of sub-arrays of values within
the array of values in each of the two dimensions and K and
M represent the number of values within each of the
sub-arrays of values in each of the two dimensions, and
wherein each value in the array of values has a coordinate
[11[7] [k][m] which defines its position within the multidi-
mensional array [I][J][K][M], and the reading offset amount
may be equal to (jxJxKxM)+({ixKxM)+(mxM)+k or (jxJx
KxM)+(ixKxM)+(kxK)+m; and the reading padding
amount is equal to the reading offset amount divided by a
padding frequency.

[0020] The padding frequency may be (i) equal to, (ii) a
multiple of, or (iii) a factor of the number of memory banks
comprised by the memory.

[0021] The padding frequency may be equal to or less than
the number of threads used to perform the separable opera-
tion for the array of values.

[0022] The plurality of two-dimensional sub-arrays of
values may be non-overlapping. The two-dimensional array
of values may be square and each of the two-dimensional
sub-arrays of values may be square.

[0023] The plurality of threads may be processed by
processing logic comprised by a core of the processing unit,
the processing logic may be implemented on a chip and the
memory being physically located on the same chip as the
processing logic.

[0024] The two-dimensional array of values may be a
two-dimensional array of pixel values. The separable opera-
tion may be a separable filter operation or a separable fast
integral image calculation. The separable filter operation
may be a separable Gaussian filter operation or a separable
box filter operation.

[0025] The one dimensional sequence of values of said
sub-array of values may be a row of values of said sub-array
of'values and the perpendicular one dimensional sequence of
values of the sub-array of values in the transposed position
may be a column of values of the sub-array of values in the
transposed position; or the one dimensional sequence of
values of said sub-array of values may be a column of values
of said sub-array of values and the perpendicular one
dimensional sequence of values of the sub-array of values in
the transposed position may be a row of values of the
sub-array of values in the transposed position.

[0026] According to a second aspect of the present inven-
tion there is provided a processing unit for performing a
separable operation on a two-dimensional array of values,
the processing unit comprising: a memory comprising a
plurality of memory banks, wherein the memory is config-
ured so that in each writing or reading step each memory
bank can be written into or read from by only one respective
thread; and processing logic configured to: divide the two-
dimensional array of values into a plurality of two-dimen-
sional sub-arrays of values; for each of the plurality of
sub-arrays: perform, using a plurality of threads, an initial
phase of the separable operation for said sub-array of values
in order to generate a respective processed value for each
value of said sub-array of values; using each of the plurality
of threads, write a respective first plurality of processed
values to the memory over a plurality of writing steps, said
first plurality of processed values corresponding to a one-
dimensional sequence of values of said sub-array of values;
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using each of the plurality of threads, read a respective
second plurality of processed values from the memory over
a plurality of reading steps, said second plurality of pro-
cessed values corresponding to a perpendicular one-dimen-
sional sequence of values of a sub-array of values in a
transposed position within the array of values relative to said
sub-array of values; and perform, using the plurality of
threads, a subsequent phase of the separable operation for
the plurality of processed values read by the plurality of
threads in order to generate a respective output value for
each value of the sub-array of values in the transposed
position; wherein a respective processed value is written into
each of the memory banks of the memory in at least one of
the plurality of writing steps, and a respective processed
value is read from each of the memory banks of the memory
in at least one of the plurality of reading steps.

[0027] There may also be provided a computer-imple-
mented method of performing an operation on an array of
values at a processing unit, the method comprising: so as to
perform a phase of the operation: for each of one or more
one-dimensional sequences of values of the array of values:
assigning a respective section of values of the one-dimen-
sional sequence of values to each of a plurality of threads;
and a first thread of the plurality of threads: determining at
least one contribution, from the section of values assigned to
the first thread, to the phase of the operation that is to be
completed by a second thread of the plurality of threads for
a neighbouring section of values of the one-dimensional
sequence of values; and writing the at least one contribution
to a memory; and the second thread of the plurality of
threads: reading the at least one contribution from the
memory; and completing the phase of the operation for the
neighbouring section of values assigned to the second thread
in dependence on the at least one contribution read from the
memory in order to generate a section of processed values.

[0028] There may also be provided a processing unit for
performing an operation on an array of values, the process-
ing unit comprising processing logic and a memory, the
processing logic being configured to so as to perform a phase
of the operation: for each of one or more one-dimensional
sequences of values of the array of values: assign a respec-
tive section of values of the one-dimensional sequence of
values to each of a plurality of threads; and by a first thread
of the plurality of threads: determine at least one contribu-
tion, from the section of values assigned to the first thread,
to the phase of the operation that is to be completed by a
second thread of the plurality of threads for a neighbouring
section of values of the one-dimensional sequence of values;
and write the at least one contribution to the memory; and by
the second thread of the plurality of threads: read the at least
one contribution from the memory; and complete the phase
of the operation for the neighbouring section of values
assigned to the second thread in dependence on the at least
one contribution read from the memory in order to generate
a section of processed values.

[0029] A processing unit as described in any of the
examples herein may be embodied in hardware on an
integrated circuit. There may be provided a method of
manufacturing, at an integrated circuit manufacturing sys-
tem, a processing unit as described in any of the examples
herein. There may be provided an integrated circuit defini-
tion dataset that, when processed in an integrated circuit
manufacturing system, configures the system to manufacture
a processing unit as described in any of the examples herein.
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There may be provided a non-transitory computer readable
storage medium having stored thereon a computer readable
description of a processing unit as described in any of the
examples herein that, when processed in an integrated circuit
manufacturing system, causes the integrated circuit manu-
facturing system to manufacture an integrated circuit
embodying the processing unit.

[0030] There may be provided an integrated circuit manu-
facturing system comprising: a non-transitory computer
readable storage medium having stored thereon a computer
readable description of a processing unit as described in any
of the examples herein; a layout processing system config-
ured to process the computer readable description so as to
generate a circuit layout description of an integrated circuit
embodying the processing unit; and an integrated circuit
generation system configured to manufacture the processing
unit according to the circuit layout description.

[0031] There may be provided computer program code for
performing any of the methods described herein. There may
be provided non-transitory computer readable storage
medium having stored thereon computer readable instruc-
tions that, when executed at a computer system, cause the
computer system to perform any of the methods described
herein.

[0032] The above features may be combined as appropri-
ate, as would be apparent to a skilled person, and may be
combined with any of the aspects of the examples described
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] Examples will now be described in detail with
reference to the accompanying drawings in which:

[0034] FIG. 1A shows an example graphics processing
unit (GPU) and memory.

[0035] FIG. 1B shows an example memory hierarchy
accessible by processing logic.

[0036] FIG. 2 shows an example operation.

[0037] FIG. 3 shows an example image divided into a
plurality of overlapping tiles.

[0038] FIG. 4 shows an example assignment of sections of
values to a plurality of threads.

[0039] FIG. 5 shows a one-dimensional sequence of val-
ues.
[0040] FIG. 6 shows example filter kernels overlayed on a

one-dimensional sequence of values.

[0041] FIGS. 7a to 7¢ show example contributions from
values of a section of values to a phase of an operation to be
completed for a neighbouring a section of values.

[0042] FIG. 8 shows, in an example, the sections of values
to which the plurality of processed values assigned in the
subsequent phase of the operation correspond.

[0043] FIG. 9 shows a perpendicular one-dimensional
sequence of values.

[0044] FIG. 10 shows a method of performing an opera-
tion on an array of values at a processing unit according to
the principles described herein.

[0045] FIG. 11 shows an example memory comprising a
plurality of memory banks.

[0046] FIGS. 12A and 12B illustrate processed values in
memory.
[0047] FIG. 13 shows a method of performing a separable

operation on a two-dimensional array of values at a pro-
cessing unit comprising a memory according to the prin-
ciples described herein.
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[0048] FIG. 14 shows an array of values divided into a
plurality of sub-arrays of values.

[0049] FIGS. 15A to 15D illustrate processed values and
padding in memory.

[0050] FIG. 16 shows a computer system in which a
processing unit is implemented; and

[0051] FIG. 17 shows an integrated circuit manufacturing
system for generating an integrated circuit embodying a
processing unit.

[0052] The accompanying drawings illustrate various
examples. The skilled person will appreciate that the illus-
trated element boundaries (e.g., boxes, groups of boxes, or
other shapes) in the drawings represent one example of the
boundaries. It may be that in some examples, one element
may be designed as multiple elements or that multiple
elements may be designed as one element. Common refer-
ence numerals are used throughout the figures, where appro-
priate, to indicate similar features.

DETAILED DESCRIPTION

[0053] The following description is presented by way of
example to enable a person skilled in the art to make and use
the invention. The present invention is not limited to the
embodiments described herein and various modifications to
the disclosed embodiments will be apparent to those skilled
in the art.

[0054] Embodiments will now be described by way of
example only.
[0055] FIG. 1A shows an example graphics processing

unit (GPU) 100 and memory 108. Graphics processing unit
100 is described herein as an example of a processing unit
capable of (e.g. configured to perform) parallel processing.
It is to be understood that the principles described herein
could also be applied to any other suitable type of processing
unit that is capable of (e.g. configured to perform) parallel
processing—such as a digital signal processing unit (e.g.
DSP), or a suitable type of central processing unit (CPU)
that is capable of parallel processing.

[0056] Graphics processing unit 100 may have any suit-
able architecture. Graphics processing unit 100 may be
operable to perform any kind of graphics, image or video
processing, general processing and/or any other type of data
processing—such as the processing of general computing
tasks, particularly those which can be readily parallelised.
Examples of general computing tasks include signal pro-
cessing, audio processing, computer vision, physical simu-
lations, statistical calculations, neural networks and cryp-
tography.

[0057] A graphics processing unit typically comprises one
or more processing elements. In FIG. 1A, the graphics
processing unit 100 is shown comprising three processing
elements—Ilabelled as 102-1, 102-2 and 102-7. It is to be
understood that a processing unit configured in accordance
with the principles described herein could comprise any
suitable number of processing elements.

[0058] Each processing element 102 may be a different
core of the graphics processing unit 100. Each processing
element 102 comprises processing logic 104 and a memory
106. That is, in FIG. 1A: processing element 102-1 com-
prises processing logic 104-1 and memory 106-1; processing
element 102-2 comprises processing logic 104-2 and
memory 106-2; and processing element 102-z comprises
processing logic 104-z and memory 106-z. Each memory
106 may be available for the storage of data exclusively
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by/for the processing logic 104 of the processing element
102 that it is comprised by. Each memory 106 may be
physically located on the same chip (e.g. on the same
semiconductor die and/or in the same integrated circuit
package) as the processing logic 104 of the processing
element 102 that it is comprised by. As such, each memory
106 may be referred to as “local memory”, “on-chip
memory” or “internal memory”. The processing logic 104 of
each processing element 102 may be able to access its local
memory 106 without consuming memory bandwidth to the
memory 108. That said, relative to the storage capacity of
memory 108, each local memory 106 may have a small
storage capacity, e.g. 60 KB (kilobytes).

[0059] Memory 108 may also be accessible to the pro-
cessing logic 104 of each processing element 102, e.g. over
a system bus. Graphics processing unit 100 may be imple-
mented on a chip (e.g. semiconductor die and/or integrated
circuit package) and memory 108 may not be physically
located on the same chip (e.g. semiconductor die and/or
integrated circuit package) as the graphics processing unit
100. As such, memory 108 may be referred to as “off-chip
memory” and/or “external memory”. Memory 108 may also
be used to store data for other processing units of the system
at which the graphics processing unit is implemented, e.g. a
central processing unit (CPU—not shown in FIG. 1A), and
so may also be referred to as “system memory” and/or
“global memory”. Memory 108 may be a dynamic random
access memory (e.g. DRAM). Relative to the storage capac-
ity of each local memory 106, global memory 108 may have
a large storage capacity, e.g. 10 GB (gigabytes). That said,
the latency associated with processing logic 104 reading
from/writing to global memory 108 may be greater (e.g.
significantly greater) than with the latency associated with
processing logic 104 reading from/writing to its local
memory 106.

[0060] As described in further detail herein, other types of
memory (e.g. caches, registers or any other suitable type of
memory—not shown in FIG. 1A for ease of illustration) may
also be accessible to the processing logic 104 of each
processing element 102.

[0061] Work to be performed by a processing unit that is
capable of (e.g. configured to perform) parallel processing
can be arranged into so called “workgroups”, “warps” and
“threads”. A workgroup may comprise one or more warps.
A warp may comprise a plurality of threads, where that
plurality of threads can be processed in parallel (e.g. at a
single core of a graphics processing unit). In examples
where a workgroup comprises more than one warp, each of
those warps can be processed in series at a single core of a
graphics processing unit. Workgroups may be processed
independently of each other (e.g. at different cores of a
graphics processing unit, or in series at a single core of a
graphics processing unit). Threads within the same work-
group (e.g. threads within the same warp of a workgroup,
and threads within different warps of the same workgroup)
may be able to share access during their processing to
memory dedicated to the processing element (e.g. core) of
the processing unit processing those threads (e.g. local
memory 106 dedicated to the processing logic 104 process-
ing those threads). That is, threads within the same warp
may be able to share access during their processing to
memory dedicated to the processing element (e.g. core) of
the processing unit processing those threads (e.g. local
memory 106 dedicated to the processing logic 104 process-
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ing those threads). Further, warps within the same work-
group may be able to share access during their processing to
memory dedicated to the processing element (e.g. core) of
the processing unit processing those threads (e.g. local
memory 106 dedicated to the processing logic 104 process-
ing those warps). By contrast, different workgroups may not
be able to share access during their processing to memory
dedicated to a certain processing element (e.g. core) of the
processing unit.

[0062] A warp may be arranged as an array of threads (e.g.
a one-dimensional, two-dimensional or three-dimensional
array of threads). The number of threads comprised by a
warp may be limited. The limit on the number of threads
comprised by a warp may be caused by a hardware restric-
tion (e.g. a limit on how many threads can be processed in
parallel on the available processing hardware). In an
example, a warp may comprise up to 128 threads. In this
example, if more than 128 threads are to be perform the
same operation, then more than one warp will be associated
with that operation. For example, if 2048 threads are to
perform the same operation, then sixteen warps may be
associated with that operation. Said sixteen warps may be
comprised by the same workgroup, or may be divided
between a plurality of workgroups (e.g. up to sixteen dif-
ferent workgroups). It is to be understood that the “work-
group”, “warp” and “thread” terminology used herein is not
intended to be limiting, and that other terminology could be
used to describe the same concepts. For example, a “thread”
as described herein could alternatively be referred to as an
“invocation” or a “work-item”, whilst a “workgroup” as
described herein could alternatively be referred to as a
“thread block™ or a “threadgroup”.

[0063] FIG. 1B shows an example memory hierarchy
accessible by the processing logic 104 of a processing
element 102. In FIG. 1B, for ease of illustration, the memory
hierarchy associated with a single processing element 102 of
a processing unit (e.g. processing unit 100 of FIG. 1A) is
shown. It is to be understood that each processing element
102 of a processing unit (e.g. processing unit 100 of FIG.
1A) may be associated with an equivalent memory hierarchy
to that shown in FIG. 1B.

[0064] In FIG. 1B, processing logic 104, local memory
106 and global memory 108 have the same properties as the
processing logic 104, local memory 106 and global memory
108 described with reference to FIG. 1A. Also shown in
FIG. 1B is a register bank 110 comprised by the processing
element 102. Register bank 110 comprises a plurality of
registers (e.g. register memories). Relative to the storage
capacity of local memory 106, each register of the register
bank 108 has a small storage capacity, e.g. 32 bits. That said,
the latency associated with processing logic 104 reading
from/writing to the register bank 110 may be less than with
the latency associated with processing logic 104 reading
from/writing to local memory 106. The register bank 110
may be physically located on the same chip (e.g. on the same
semiconductor die and/or in the same integrated circuit
package) as the processing logic 104 of the processing
element 102 that it is comprised by. The register bank 110
may be physically located on the same chip (e.g. on the same
semiconductor die and/or in the same integrated circuit
package) as the local memory 106 of the processing element
102 that it is comprised by.

[0065] When processing logic 104 is processing a warp
comprising a plurality of threads, a respective one or more
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registers of the register bank 110 may be dedicated to (e.g.
accessible exclusively by) each thread of that warp. That is,
values to be processed in accordance with (e.g. “by”) a
thread may be stored in the one or more registers accessible
by that thread. Other threads within the same warp may not
be able to access those values within the one or more
registers accessible by that thread.

[0066] For example, a warp comprising a plurality of
threads (e.g. 128 threads) can be processed at processing
element 102 (e.g. a core of a processing unit) so as to
perform an operation on an array of values (e.g. 1024
values). With reference to FIG. 1B, the array of values may
initially be stored in global memory 108. Each thread of the
warp may be configured to perform the operation on a group
of values (e.g. 8 values) of the array of values (e.g. 1024
values). The limit on the number of values that can be
processed by a thread may be caused by the amount of
register memory in register bank 110 accessible by (e.g.
dedicated to) each thread. In order to perform the operation,
the processing logic 104 may cause, for each thread of the
warp, a respective group of values (e.g. 8 values) to be
processed by that thread to be read from global memory 108
into the one or more registers dedicated to that thread. The
values written into the one or more registers dedicated to a
thread can be processed by the processing logic 104 in
accordance with that thread. Thereafter, the processed values
can be output from the processing element 102 by writing
those processed values from the respective one or more
registers dedicated to each thread into global memory 108.
Alternatively, if further processing is to be performed on
those processed values at the processing element 102, those
values can be written from the respective one or more
registers dedicated to each thread into local memory 106.
The plurality of threads within the warp can share access to
local memory 106. That is, the plurality of threads within the
warp can access the processed values written into local
memory 106. As such, the processing logic 104 may cause,
for each thread of the warp, a respective group of processed
values (e.g. 8 processed values) to be further processed by
that thread to be read from local memory 106 into the one
or more registers dedicated to that thread. The processed
values written into the one or more registers dedicated to a
thread can be further processed by the processing logic 104
in accordance with that thread. Thereafter, the further pro-
cessed values can be output from the processing element 102
by writing those further processed values from the respec-
tive one or more registers dedicated to each thread into
global memory 108. Alternatively, yet further processing
iterations can be performed at the processing element 102 in
the same manner.

[0067] Processing units, such as graphics processing unit
100, can perform operations on arrays of values (e.g. one-
dimensional or multi-dimensional arrays of values). In
examples, the values of said arrays of values can be pixels
values, audio samples of an audio signal, signal samples of
a transmitted signal, or any other suitable type of values.

[0068] FIG. 2 shows an example operation. In FIG. 2, the
operation is a one-dimensional Gaussian filter operation, in
which a value 204 is filtered in dependence on a one-
dimensional kernel 202 of values including the value 204 to
be filtered and one or more values on one or both sides of
that value 204. A one-dimensional Gaussian filter operation
can use a filter kernel 202 including an odd number of
values, the centre value 204 being the value to be filtered. In
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FIG. 2, the filter kernel 202 is symmetrical. In the specific
example shown in FIG. 2, the filter kernel 202 comprises
seven values, including the value 204 to be filtered, and three
values on either side of that value 204. In this example, the
filter kernel 202 can be said to have a radius r of three values.
That is, for a symmetrical filter kernel, the radius r of the
filter kernel 202 can be said to be the number of values on
either side of the central value to be filtered. It is to be
understood that, in other examples, the filter kernel need not
be symmetrical. That is, the filter kernel may include more
values on one side of the value to be filtered than on the other
side).

[0069] In a one-dimensional Gaussian filter operation, a
filtered output for the centre value 204 may be determined
by performing a weighted sum of the values in the kernel
202. The respective weight for each value in the kernel 202
can be determined in dependence on a Gaussian function
200 centred on the value 204 to be filtered. That is, as would
be understood by the skilled person, in dependence on the
Gaussian function 200, a value further from the value 204 to
be filtered will be weighted lower (e.g. with a value closer
to 0) in the weighted sum than a value closer to the value 204
to be filtered.

[0070] The one-dimensional Gaussian filter operation
shown in FIG. 2 may be performed for each value of a
one-dimensional sequence of values. That is, each value in
a one-dimensional sequence of values may be filtered in
dependence on a one-dimensional kernel 202 of values in
which it is the value to be filtered. As an aside, the skilled
person would be aware of numerous different techniques for
operating on the values at the start and end of a sequence of
values—such as when the value to be filtered is the first
value in the sequence of values. In one example, this edge
case may be addressed by duplicating the first value in the
sequence of values such that the filter kernel includes the
value to be filtered, a number of values from the sequence
of values on one side of the value to be filtered, and a number
of copies of the value to be filtered on the other side of the
value to be filtered. Typically, the number of values at the
start and end of a sequence of values to which an “edge case
technique” is applied during filtering is equal to the radius r
of the filter kernel. The skilled person would be aware of
various other techniques for addressing edge cases such as
this, and so these techniques will not be discussed further
herein for conciseness.

[0071] In examples where the array of values to be oper-
ated on is a one-dimensional array of values (e.g. a sequence
of audio samples of an audio signal, or a sequence of signal
samples of a transmitted signal), the output of said filtering
of each value in the one-dimensional sequence of values
may be the output of a one-dimensional Gaussian filter
operation. In other examples where the array of values to be
operated on is a multi-dimensional array of values (e.g. a
two-dimensional array of pixel values), said filtering of each
value in a one-dimensional sequence of values may be the
first phase of a separable multi-phase Gaussian filter opera-
tion. As would be understood by the skilled person, a
separable filter operation is one in which a multi-dimen-
sional operation is decomposed into a sequence of lesser-
dimensional filtering operations. For example, a separable
two-dimensional Gaussian filter operation can be imple-
mented by performing an initial phase in which a one-
dimensional Gaussian filter operation (as shown in FIG. 2)
is performed horizontally across each row of a two-dimen-

Jul. 11, 2024

sional array of values, followed by performing a subsequent
phase in which the same one-dimensional Gaussian filter
operation is performed vertically along each column of the
horizontally filtered two-dimensional array of values—or
vice versa (i.e. vertically, followed by horizontally). Sepa-
rable filter operations are often used to process images (e.g.
two-dimensional arrays of pixel values). For example, a
separable filter operation may be used to blur an image.

[0072] A Gaussian filter operation is described herein as
an example of an operation that can be performed on an
array of values (e.g. a one-dimensional or multi-dimensional
arrays of values). It is to be understood that the principles
described herein could be applied to other types of operation
that can be performed on one- or multi-dimensional array of
values—e.g. a box filter operation, a convolution operation,
a fast integral calculation operation or any other suitable
type of operation. As with a one-dimensional Gaussian filter
operation, a one-dimensional box filter operation can be
performed in one phase as a one-dimensional operation on
a one-dimensional array of values, or in multiple phases so
as to implement a separable operation on a multi-dimen-
sional array of values. In a one-dimensional box filter
operation, a value can be filtered in dependence on a
one-dimensional kernel of values including the value to be
filtered and one or more other values positioned on one or
both sides of that value. A filtered output for the value to be
filtered can be determined by averaging the values in the
kernel. Box filter operations are well understood by the
skilled person, and so will not be discussed further herein for
conciseness. In a convolution operation an array of activa-
tion values is convolved with (e.g. filtered by) an array of
coeflicients (e.g. filter weights)—e.g. so as to implement a
so-called “convolution layer” of a neural network. Convo-
Iution operations are well understood by the skilled person,
and so will not be discussed herein for conciseness. Fast
integral calculation operations are discussed in further detail
below.

[0073] In a simple approach, a phase of a separable
two-dimensional Gaussian filter operation can be performed
on an array of values by assigning each value of the array of
values to be filtered to a thread for processing. As an
illustrative example, consider a separable two-dimensional
Gaussian filter operation to be performed on a two-dimen-
sional array of values comprising 1024 values. In this
example, in order to perform the initial (e.g. horizontal)
phase of said operation, each of said 1024 values could be
assigned to a respective one of 1024 threads. In order to filter
each value, the processing logic 104 processing each thread
can read all of the values included in the one-dimensional
filter kernel used to filter that value (i.e. the value to be
filtered and the one or more values on one or both sides of
that value) from global memory 108 into the one or more
registers accessible by that thread. The processing logic 104
processing each thread can then generate a filtered value for
its value by performing a weighted sum of the values in the
kernel in the manner descried above, and write that filtered
value back to global memory 108, such that the global
memory 108 stores a once-filtered (e.g. horizontally filtered)
value for each value of the two-dimensional array of values.
In order to perform the subsequent (e.g. vertical) phase of
said operation, each of said 1024 once-filtered values could
be assigned to a respective one of 1024 threads. In order to
further filter each once-filtered value, the processing logic
104 processing each thread can read all of the once-filtered
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values included in the one-dimensional filter kernel used to
further filter that once-filtered value (i.e. the once-filtered
value to be further filtered and the one or more once-filtered
values on one or both sides of that value) from global
memory 108 into the one or more registers accessible by that
thread. The one-dimensional filter kernels used in the sub-
sequent (e.g. vertical) phase are perpendicular to the one-
dimensional filter kernels used in the initial (e.g. horizontal)
phase. The processing logic 104 processing each thread can
then generate a further filtered value for its one-filtered value
by performing a weighted sum of the values in the kernel in
the manner descried above, and write that further filtered
value back to global memory 108, such that the global
memory 108 stores a further filtered (e.g. horizontally and
vertically filtered) value for each value of the two-dimen-
sional array of values. Performing a separable two-dimen-
sional Gaussian filter operation in this way is relatively slow,
as it involves performing two sets of reads and two sets of
writes to global memory 108—each of which, as described
above, has a greater latency associated with it than a read
from/write to a local memory 106. Further, each value is
read from memory many times. This is because, in each
phase, each value is read from memory (e.g. global memory
108) by the processing logic 104 processing each thread that
is assigned to filter that value into the one or more registers
accessible by that thread, and also read from memory (e.g.
a cache memory into which it is written after being read
from global memory 108) by the processing logic 104
processing each of the threads that are assigned to filter other
values using a filter kernel that includes that value into the
one or more registers accessible by each of those threads. In
addition, this simple approach does not take advantage of the
ability of threads within the same workgroup to share access
during their processing to local memory 106 dedicated to the
processing logic 104 processing those threads.

[0074] Described herein with reference to the graphics
processing unit 100 shown in FIG. 1A and the flow diagram
shown in FIG. 10 is a computer-implemented method of
performing an operation on an array of values at a process-
ing unit 100. Said method can address one or more of the
problems with the simple approach as described in the
preceding paragraph. In the following, the method is
described primarily with reference to an illustrative example
in which the array of values is a two-dimensional array of
pixel values and the operation is a separable two-dimen-
sional Gaussian filter operation.

[0075] In this illustrative example, the input to the method
shown in FIG. 10 is a two-dimensional array of pixel
values—such as a two-dimensional image, or a portion of
(e.g. a tile or block of) a two-dimensional image. In
examples, said two-dimensional image may be representa-
tive of: a still image; a frame of a video; a computer
generated two-dimensional representation of a three-dimen-
sional scene (e.g. such as an image rendered using path or
ray tracing); or any other suitable type of image. A pixel
value may represent one or more characteristics of its
respective pixel within an image. For example, a pixel value
may represent one or more of luma, luminance, chroma,
chrominance, brightness, lightness, hue, saturation, colour-
fulness, any colour component (e.g. red, green or blue colour
components), or any other suitable characteristic of its
respective pixel. In other examples, a pixel value may
represent a characteristic associated with its respective pixel,
such as a characteristic indicated in a depth map, a normal
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map or a surface texture map (e.g. an albedo map) or any
combination (e.g. elementwise product) of these at the
position of its respective pixel. The input may be stored in
global memory 108. As would be understood by the skilled
person, the input may be written to global memory 108 by
an application (e.g. process) running at the computer system
at which the graphics processing unit 100 is implemented
(not shown in FIG. 1A).

[0076] In some examples in which a received two-dimen-
sional image is sufficiently small, one warp of threads may
be capable of performing the desired operation for all of the
pixel values of that two-dimensional image. This means that
one processing element 102 of the processing unit 100 could
perform the desired operation on that two-dimensional
image by processing the threads of that warp in parallel. By
way of non-limiting example, a warp may comprise up to
128 threads, each thread being capable of completing the
desired operation for up to eight pixel values. In this case,
the received two-dimensional image may be considered to
be sufficiently small if it comprises 1024 or fewer pixel
values. In these examples, the entire two-dimensional image
can be input to the method shown in FIG. 10 as a two-
dimensional array of pixel values.

[0077] In other examples, optionally, a received two-
dimensional image can be divided into a plurality of over-
lapping tiles. FIG. 3 shows an example two-dimensional
image 300 divided into a plurality of overlapping tiles A-P.
The overlap between tiles A and B is labelled 302. The
overlap between tiles A and E is labelled 304. Each of said
plurality of overlapping tiles A-P comprises a respective
two-dimensional array of pixel values. The tiles may be
sized so that one warp of threads is capable of performing
the desired operation for all of the pixel values comprised by
a tile. This means that a processing element 102 of the
processing unit 100 could perform the desired operation on
one of the plurality of overlapping tiles by processing the
threads of a warp in parallel. By way of non-limiting
example, a warp may comprise up to 128 threads, each
thread being capable of completing the desired operation for
up to eight pixel values. In this case, the received two-
dimensional image may be divided into a plurality of
overlapping tiles, each tile comprising 1024 or fewer pixel
values (e.g. each tile having pixels dimensions of 32x32 or
smaller). In these examples, the two-dimensional array of
pixel values of each overlapping tile can be input to the
method shown in FIG. 10. The two-dimensional array of
pixel values of each appropriately sized overlapping tile can
be independently processed according to the method shown
in FIG. 10 by a respective processing element 102 of the
processing unit 100.

[0078] Preferably, but optionally, the width of the overlap
between overlapping tiles is greater than or equal to twice
the radius r of the filter kernel that will be used in the filter
operation to be performed on each of those overlapping tiles.
For example, in FIG. 2, the filter kernel has a radius r of three
values, and so the width of the overlap between overlapping
tiles on which the operation shown in FIG. 2 is to be
performed should preferably be six or more values. This is
because, as described herein, the number of values at the
start and end of a sequence of values to which an “edge case
technique” is applied during filtering is equal to the radius r
of the filter kernel. Thus, the width of the overlap between
overlapping tiles is preferably greater than or equal to twice
the radius r of the filter kernel so that the filtered image
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output by the method need not include any pixel values in
the areas where the tiles overlapped that have been filtered
using a technique that addresses an edge case occurring at
the edge of a tile. That is, continuing the example started
earlier in this paragraph, when overlapping tiles A and B are
recombined after filtering to form a filtered image, the three
values at the end of each row of values in tile A to which an
“edge case technique” is applied during filtering can be
replaced by the fourth, fifth and sixth values of each row of
values in tile B that are filtered without using an “edge case
technique”. Similarly, the three values at the start of each
row of values in tile B to which an “edge case technique™ is
applied during filtering can be replaced by the fourth, fifth
and sixth from last values of each row of values in tile A that
are filtered without using an “edge case technique”.

[0079] Returning to FIG. 10, an array of values comprises
one or more one-dimensional sequences of values. For
example, a one-dimensional array of values may comprise a
single one-dimensional sequence of values (e.g. a single row
or column of values). A two-dimensional array of values, as
in the illustrative example, may comprise a plurality of
horizontal sequences of values (e.g. rows) and a plurality of
vertical sequences of values (e.g. columns).

[0080] In the illustrative example, each phase of the sepa-
rable two-dimensional Gaussian filter operation involves
performing a one-dimensional Gaussian filter operation. So
as to perform a phase of that operation, in step S1002, for
each of the one or more one-dimensional sequences of
values of the array of values, a respective section of values
of the one-dimensional sequence of values is assigned to
each of a plurality of threads. Said sections of values may be
non-overlapping sections of values. This step can be under-
stood with reference to FIGS. 4 and 5—which illustrate step
S1002 being performed for each of one or more horizontal
sequences of values (e.g. rows) of a two-dimensional array
of values. It is to be understood that step S1002 could
alternatively be performed for each of one or more vertical
sequences of values (e.g. columns) of a two-dimensional
array of values.

[0081] FIG. 4 shows an example assignment of sections of
values to a plurality of threads. In FIG. 4, each one-
dimensional sequence of values of the array of values 400 is
a row of values of the array of values 400. In FIG. 4, the
array of values comprises 32 rows of values. Each row of
values comprises 32 values. In examples described herein,
each thread may be capable of completing the desired
operation for up to eight values. This limit may be caused by
the amount of register memory in register bank 110 acces-
sible by (e.g. dedicated to) each thread—and it is to be
understood that, in other examples, each thread may be
capable of completing the desired operation for a different
number of values (e.g. in some examples, any suitable
number of values up to 100, of even more, values). In this
example, each row of values is divided into four non-
overlapping sections of values, each section of values com-
prising eight values. Each of said sections of values is
assigned to a thread. In FIG. 4, the two-dimensional array of
values is divided into 128 sections of values (i.e. 32 rowsx4
sections per row), each section of values being assigned to
a respective one of 128 threads—labelled in FIG. 4 as T1 to
T128. As described herein, in an example, a warp may
comprise up to 128 threads. As such, in this example, one
processing element 102 of the processing unit 100 can
process, in parallel, said 128 threads to which values of the
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array of values have been assigned. That is, said 128 threads
(i.e. T1 to T128 shown in FIG. 4) can be comprised by one
warp to be processed by a processing element 102 of the
processing unit 100.

[0082] FIG. 5 shows a one-dimensional sequence of val-
ues 500 in further detail. In particular, FIG. 5 shows the first
row of values 500 of the array of values 400. The row of
values 500 has been divided into four sections, each section
comprising eight values. Those sections of values have been
assigned to threads T1, T9, T17 and T25, respectively. The
section of values assigned to thread T1 neighbour the section
of values assigned to thread T9. The section of values
assigned to thread T9 neighbour the section of values
assigned to thread T1, and also neighbour the section of
values assigned to thread T17. The section of values
assigned to thread T17 neighbour the section of values
assigned to thread T9, and also neighbour the section of
values assigned to thread T25. The section of values
assigned to thread T25 neighbour the section of values
assigned to thread T17.

[0083] It is to be understood that each thread may alter-
natively be assigned more than one section of values. That
is, a thread may be assigned a section of values from each
of more than one one-dimensional sequence of values. For
example, a thread may be capable of completing the desired
operation for up to eight values, and that thread may be
assigned two sections of values from different one-dimen-
sional sequences of values (e.g. rows), each section of values
comprising four values. Said one-dimensional sequences of
values (e.g. rows) may be contiguous within the two-
dimensional array of values—although this need not be the
case.

[0084] In the method described herein, each thread is to
complete the phase of the operation for each of the values of
the section of values that it has been assigned. To achieve
this, first, each thread causes each of the values included in
the section of values assigned to that thread to be read from
global memory 108 into the one or more registers in register
bank 110 dedicated to that thread (e.g. “its registers™). That
is, with reference to FIG. 5, thread T1 reads all eight of the
values in the section it has been assigned from global
memory 108 into its registers, thread T9 reads all eight of the
values in the section it has been assigned from global
memory 108 into its registers, thread T17 reads all eight of
the values in the section it has been assigned from global
memory 108 into its registers, and thread T25 reads all eight
of the values in the section it has been assigned from global
memory 108 into its registers. Where it is described herein
that a thread reads to/writes from a memory, it can be
understood that it is that thread causing the processing logic
104 that is processing it to perform said reading to/writing
from that memory.

[0085] As described herein, in the illustrative example,
each phase of the separable two-dimensional Gaussian filter
operation involves performing a one-dimensional Gaussian
filter operation. Said one-dimensional Gaussian filter opera-
tion uses a filter kernel including seven values, including the
value 204 to be filtered, and three values on either side of
that value 204, as shown in FIG. 2. FIG. 6 shows examples
of said filter kernels overlayed on certain values of the
one-dimensional sequence of values shown in FIG. 5. As
will be understood with reference to FIG. 6, for some of the
values of the respective section of values assigned to each
thread, that thread may be capable of completing the one-
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dimensional Gaussian filter operation for that value using
only the values of the section of values that have been read
into the one or more registers accessible by that thread (e.g.
“its registers”). For example, in FIG. 6, thread T1 can
independently complete the one-dimensional Gaussian filter
operation for value 604-1, as all of the values within filter
kernel 602-1 have been read into its registers. In other
words, thread T1 can independently calculate a weighted
sum, as described herein, of all of the values within filter
kernel 602-1—as it has access to all of those values within
its registers. That said, in another example, thread T17
cannot independently complete the one-dimensional Gauss-
ian filter operation for value 604-2, as only read a subset of
(i.e. four of) the values within filter kernel 602-2 have been
read into the one or more registers accessible by thread T17.
The other three values within filter kernel 602-2 have been
read into the one or more registers accessible by thread T9.
In other words, neither thread T9, nor thread T17, can
independently calculate a weighted sum, as described
herein, of all of the values within filter kernel 602-2—as
neither of those threads has access to all of those values
within its registers. As such, in this example, threads T9 and
T17 must cooperate in order to complete the one-dimen-
sional Gaussian filter operation for value 604-2. The manner
in which two threads cooperate so as to complete the
one-dimensional Gaussian filter operation for certain values,
such as value 604-2, is described in the following with
reference to FIGS. 7a to 7c and 10.

[0086] The steps of a phase 1000 of the operation are
shown in FIG. 10. In step S1004, a first thread of the
plurality of threads determines at least one contribution,
from the section of values assigned to the first thread, to the
phase of the operation that is to be completed by a second
thread of the plurality of threads for a neighbouring section
of values of the one-dimensional sequence of values. In a
first example, in step S1004, the first thread of the plurality
of threads can perform at least one part of the phase of the
operation on at least one set of one or more values of the
section of values assigned to the first thread in order to
determine the at least one contribution, from said at least one
set of one or more values, to the phase of the operation that
is to be completed by the second thread of the plurality of
threads for a neighbouring section of values of the one-
dimensional sequence of values. In a second example, in
step S1004, the first thread of the plurality of threads can
determine one or more values of the section of values
assigned to the first thread as the at least one contribution,
from the section of values assigned to the first thread, to the
phase of the operation that is to be completed by a second
thread of the plurality of threads for a neighbouring section
of values of the one-dimensional sequence of values.
[0087] The first example of step S1004 can be understood
with reference to FIGS. 7a to 7¢-which shows example
contributions from sets of one or more values of a section of
values to a phase of a separable Gaussian filter operation to
be completed for a neighbouring section of values. In FIGS.
Ta to 7c, thread T9 is the “first thread” and thread T17 is the
“second thread”.

[0088] FIG. 7a shows how threads T9 and T17 from FIG.
6 can cooperate so as to complete a phase of a separable
Gaussian filter operation for value 604-2. In FIG. 7a, in the
first example of step S1004, thread T9 performs a part of the
one-dimensional Gaussian filter operation on a set of three
values (e.g. the 6%, 7% and 8” values) of the section of
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values it has been assigned so as to determine a contribution
708a. Performing this part of the Gaussian filter operation on
these three values involves performing a weighted sum of
those three values. The respective weight for each of those
three values is determined in dependence on a part 700a of
the Gaussian function centred on the value 604-2 to be
filtered.

[0089] FIG. 7 shows how threads T9 and T17 can coop-
erate so as to complete a phase of a separable Gaussian filter
operation for value 704-1. In FIG. 74, in the first example of
step S1004, thread T9 performs a part of the Gaussian filter
operation on a set of two values (e.g. the 7 and 8" values)
of the section of values it has been assigned so as to
determine a contribution 708b. Performing this part of the
Gaussian filter operation on these two values involves
performing a weighted sum of those two values. The respec-
tive weight for each of those two values is determined in
dependence on a part 7005 of the Gaussian function centred
on the value 704-1 to be filtered.

[0090] FIG. 7¢ shows how threads T9 and T17 can coop-
erate so as to complete a phase of a separable Gaussian filter
operation for value 704-2. In FIG. 7¢, in the first example of
step S1004, thread T9 performs a part of the Gaussian filter
operation on a set of one value (e.g. the 8% value) of the
section of values it has been assigned so as to determine a
contribution 708¢. Performing this part of the Gaussian filter
operation on this value involves weighting that value. The
weight by which that value is multiplied is determined in
dependence on a part 700¢ of the Gaussian function centred
on the value 704-2 to be filtered.

[0091] That is, in the first example of step S1004 of the
illustrative example, thread T9 determines three contribu-
tions 708a, 7085 and 708c¢, from three sets of one or more
values (e.g. (i) the 67, 77 and 87 values, (ii) the 7% and 8"
values, and (iii) the 8 value) of the section of values that it
has been assigned, to the phase of the operation that is to be
completed by thread T17 for a neighbouring section of
values of the one-dimensional sequence of values. In this
illustrative example, the number of contributions determined
in the first example of step S1004 by a first thread to the
phase of an operation that is to be completed a second thread
may be equal to the radius r of the filter kernel.

[0092] It is to be understood that, in the first example of
step S1004 of the illustrative example, in an analogous way
to that described with reference to FIGS. 7a to 7¢: thread T9
can also determine three contributions (not shown in FIGS.
7a to 7¢), from three sets of one or more values (e.g. (i) the
1° value, (i) the 1* and 2™ values, and (iii) the 1%, 2"¢ and
3’7 values) of the section of values that it has been assigned,
to the phase of the operation that is to be completed by
thread T1 (as shown in FIG. 6); thread T17 can determine
three contributions (not shown in FIGS. 7a to 7¢), from three
sets of one or more values (e.g. (i) the 1°* value, (ii) the 1%
and 2" values, and (iii) the 1°, 2" and 3" values) of the
section of values that it has been assigned, to the phase of the
operation that is to be completed by thread T9; and thread
T17 can determine three contributions (not shown in FIGS.
7a to 7¢), from three sets of one or more values (e.g. (i) the
6™, 7" and 8" values, (ii) the 7 and 8" values, and (iii) the
87 value) of the section of values that it has been assigned,
to the phase of the operation that is to be completed by
thread T25 (as shown in FIG. 6). In other words, each of the
threads of the plurality of threads (e.g. each thread shown in
FIG. 4) can determine at least one contribution to the phase
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of the operation to be completed by at least one other thread
by performing the actions of the “first thread” described with
reference to the first example of step S1004 of FIG. 10.

[0093] The second example of step S1004 can also be
understood with reference to FIGS. 7a to 7c. As will be
understood with reference to FIGS. 7a to 7c: the 67, 77 and
8 values of the section of values assigned to thread T9 will
contribute to the operation that is to be completed by thread
T17 for value 604-2 (see FIG. 7a); the 7 and 8" values of
the section of values assigned to thread T9 will contribute to
the operation that is to be completed by thread T17 for value
704-1 (see FIG. 7b); and the 8" value of the section of values
assigned to thread T9 will contribute to the operation that is
to be performed by thread T17 for value 704-2 (see FIG. 7¢).
Thus, in the second example of step S1004, the 67, 7% and
87 values of the section of values assigned to thread T9 can
be determined as contributions to the phase of the operation
that is to be completed by thread T17 for the neighbouring
section of values. That is, in the second example, the
contributions are unprocessed values. In other words, in the
second example, thread T9 does not perform at least one part
of the phase of the operation in step S1004—but rather
identifies one or more of the unprocessed values of the
section of values that it has been assigned as contributions
to the phase of the operation that is to be completed by
thread T17 for the neighbouring section of values. Thread T9
may identify the number of the values within the section of
values that it has been assigned that will contribute to the
phase of the operation that is to be completed by thread T17
in dependence on the number of values on the “left-hand-
side” of the value to be filtered in the filter kernel to be used
during the operation (e.g., in this example, three values). In
an analogous way, referring to FIG. 6: the 6”, 7% and 8"
values of the section of values assigned to thread T1 can be
determined as contributions to the phase of the operation
that is to be completed by thread T9; the 1%, 2"¢ and 3¢
values of the section of values assigned to thread T9 can be
determined as contributions to the phase of the operation
that is to be completed by thread T1; the 1%, 2" and 3¢
values of the section of values assigned to thread T17 can be
determined as contributions to the phase of the operation
that is to be completed by thread T9; the 6%, 7% and 8"
values of the section of values assigned to thread T17 can be
determined as contributions to the phase of the operation
that is to be completed by thread T25; and the 1°7, 2" and 3%
values of the section of values assigned to thread T25 can be
determined as contributions to the phase of the operation
that is to be completed by thread T17. In other words, each
of the threads of the plurality of threads (e.g. each thread
shown in FIG. 4) can determine at least one contribution to
the phase of the operation to be completed by at least one
other thread by performing the actions of the “first thread”
described with reference to the second example of step
S$1004 of FIG. 10.

[0094] Instep S1006, the first thread writes the at least one
contribution that it has determined to a memory. In particu-
lar, the first thread may write the at least one contribution to
local memory 106. For example, referring to FIGS. 7a to 7¢,
in the first example, thread T9 writes contributions 708a,
7086 and 708¢ to local memory 106. In the second example,
thread T9 writes the 67, 77 and 8” values of the section of
values it has been assigned to local memory 106. In step
S1006, each of the other threads of the plurality of threads
can also write any contributions they have determined in
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step S1004 to local memory 106. As described herein, the
plurality of threads within the warp can share access to local
memory 106.

[0095] As an aside, it can be advantageous for the radius
r of the filter kernel used in each phase of the operation to
be less than or equal to half of the number of values in each
section of values. This can be advantageous because it
means that the number of contributions generated by a
thread in step S1004 does not exceed the number of values
in the section of values assigned to that thread—which can
limit the number of memory locations required in local
memory 106 to store the contributions to no more than the
number of memory locations in local memory 106 required
to store the values of the array of values. As described
herein, relative to the storage capacity of memory 108, each
local memory 106 may have a small storage capacity, e.g. 60
KB (kilobytes)—and so limiting the number of memory
locations of the local memory 106 required to store the
contributions can be advantageous.

[0096] In step S1008, the second thread reads the at least
one contribution determined by the first thread from the
memory. In particular, the second thread may read the at
least one contribution from local memory 106. As described
herein, the plurality of threads within the warp can share
access to local memory 106. The second thread may cause
the at least one contribution to be read into the one or more
registers accessible by the second thread—such that said
registers include the at least one contribution as well as the
values of the neighbouring section of values assigned to the
second thread. For example, referring to FIGS. 7a to 7¢, in
the first example, thread T17 reads contributions 7084, 7085
and 708c¢ from local memory 106 into its registers. In the
second example, thread T17 reads the 67, 7 and 8 values
of the section of values assigned to thread T9 from local
memory 106 into its registers. In step S1008, each of the
other threads of the plurality of threads can also read any
contributions determined by thread(s) assigned its neigh-
bouring section(s) of values from local memory 106 into its
registers.

[0097] In step S1010, the second thread completes the
phase of the operation for the neighbouring section of values
assigned to the second thread in dependence on the at least
one contribution read from the memory in order to generate
a section of processed values.

[0098] In the first example, in step S1010, completing the
phase of the operation for the neighbouring section of values
may comprise the second thread performing at least one part
of the phase of the operation on at least one set of one or
more values of the neighbouring section of values assigned
to the second thread in order to determine at least one
contribution from each of said one or more values of the
neighbouring section of values to the phase of the operation,
and combining said at least one contribution determined by
the second thread for the neighbouring section of values
with the at least one contribution read from the memory by
the second thread. This first example of step S1010 can be
understood with reference to FIGS. 7a to 7¢, in which thread
T9 is the “first thread” and thread T17 is the “second thread”.
[0099] In FIG. 7a, in the first example of step S1010,
thread T17 performs a part of the one-dimensional Gaussian
filter operation on a set of four values (e.g. the 1, 2%, 37
and 4” values) of the section of values it has been assigned,
which neighbour the section of values assigned to thread T9,
s0 as to determine a contribution 712a. Performing this part
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of'the Gaussian filter operation on these four values involves
performing a weighted sum of those four values. The
respective weight for each of those three values is deter-
mined in dependence on a part 710a of the Gaussian
function centred on the value 604-2 to be filtered. Then, in
order to complete the phase of the Gaussian filter operation
s0 as to generate a processed value for value 604-2, thread
T17 combines (e.g. sums) the contribution 708« that it read
from the memory and contribution 712« that it determined.
[0100] In FIG. 754, in the first example of step S1010,
thread T17 performs a part of the Gaussian filter operation
on a set of five values (e.g. the 1%, 2?, 377 4% and 5% values)
of the section of values it has been assigned, which neigh-
bour the section of values assigned to thread T9, so as to
determine a contribution 7125. Performing this part of the
Gaussian filter operation on these five values involves
performing a weighted sum of those five values. The respec-
tive weight for each of those five values is determined in
dependence on a part 7105 of the Gaussian function centred
on the value 704-1 to be filtered. Then, in order to complete
the phase of the Gaussian filter operation so as to generate
aprocessed value for value 704-1, thread T17 combines (e.g.
sums) the contribution 7085 that it read from the memory
and contribution 7124 that it determined.

[0101] In FIG. 7¢, in the first example of step S1010,
thread T17 performs a part of the Gaussian filter operation
on a set of six values (e.g. e.g. the 1%, 29 377 4% 5% and
6" values) of the section of values it has been assigned,
which neighbour the section of values assigned to thread T9,
s0 as to determine a contribution 712¢. Performing this part
of the Gaussian filter operation on these six values involves
performing a weighted sum of those six values. The respec-
tive weight for each of those six values is determined in
dependence on a part 710¢ of the Gaussian function centred
on the value 704-2 to be filtered. Then, in order to complete
the phase of the Gaussian filter operation so as to generate
aprocessed value for value 704-2, thread T17 combines (e.g.
sums) the contribution 708¢ that it read from the memory
and contribution 712¢ that it determined.

[0102] In the first example, in step S1010, thread T17 can
independently (e.g. without cooperating with another
thread) complete the phase of the Gaussian filter operation
s0 as to generate a respective processed value for each of the
4" and 57 values in the section of values it has been
assigned—as, in an analogous way to value 604-1 of thread
T1 described with reference to FIG. 6, thread T17 has access
to all of the values within the filter kernel used to filter said
4% and 5% values within its registers. Thread T17 can
complete the phase of the Gaussian filter operation so as to
generate a respective processed value for each of the 67, 7%
and 8” values in the section of values it has been assigned
by cooperating with thread T25 in an analogous way to its
cooperation with thread T9 described with reference to
FIGS. 7a to 7¢. As such, using the method described herein,
in the first example, thread T17 can complete the phase of
the Gaussian filter operation for each of the values of the
section of values that it has been assigned in order to
generate a section of processed values.

[0103] In the second example, in step S1010, completing
the phase of the operation for the neighbouring section of
values may comprise the second thread performing the
phase of the operation on the values of the neighbouring
section of values assigned to the second thread using the
values of the neighbouring section of values assigned to the
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second thread and the at least one contribution read from the
memory in order to generate a section of processed values.
That is, in the second example, in step S1010, each thread
will have access to all of the values within the filter kernel
used to filter each of the values within the section of values
assigned to that thread within its registers. For example,
after performing step S1008, with reference to FIG. 6, thread
T17 will have access within its registers to: the 6*, 7% and
87 values of the section of values assigned to thread T9;
each of the values of the section of values assigned to thread
T17; and the 1%, 277 and 377 values of the section of values
assigned to thread T25. As such, in the second example of
step S1010, thread T17 can independently complete the
phase of the Gaussian filter operation so as to generate a
respective processed value for each of the values in the
section of values it has been assigned. In an analogous way,
in the second example of step S1010, each of the threads of
the plurality of threads (e.g. each thread shown in FIG. 4)
can independently complete the phase of the Gaussian filter
operation so as to generate a respective processed value for
each of the values in the section of values it has been
assigned.

[0104] It is to be understood that, in order to perform a
phase 1000 of the operation, each of the threads of the
plurality of threads (e.g. each thread shown in FIG. 4) may
perform the actions of the “first thread” in steps S1004 to
S1006 so as to determine at least one contribution to the
phase of the operation to be completed by at least one other
thread, and then perform the actions of the “second thread”
in steps S1008 to S1010 so as to complete the phase of the
operation in dependence on at least one contribution deter-
mined by at least one other thread.

[0105] In step S1014, it is determined whether the opera-
tion is complete. In examples where the array of values to be
operated on is a one-dimensional array of values (e.g. a
sequence of audio samples of an audio signal, or a sequence
of signal samples of a transmitted signal), and the phase
1000 of the operation performed in steps S1004 to S1010 is
a one-dimensional operation (e.g. a one-dimensional Gauss-
ian filter operation), the operation may be determined to be
complete after completing a single phase 1000 of steps
S1004 to S1010. In this case, the second thread can write the
section of processed values it has generated to global
memory 108. Each of the plurality of threads (e.g. each
thread shown in FIG. 4) can write the section of processed
values that it has generated to global memory 108, such that
a processed value is written to global memory 108 corre-
sponding to each value of the array of values on which the
operation is to be performed. The processed values written
to global memory 108 corresponding to each value of the
array of values can be the output of the method.

[0106] In the illustrative example, in which the array of
values to be operated on is a two-dimensional array of pixel
values, the operation is a separable two-dimensional Gauss-
ian filter operation, and the phase 1000 of the operation
performed in steps S1004 to S1010 is a one-dimensional
Gaussian filter operation, the operation may be determined
to not be complete after completing a single (e.g. initial)
phase 1000 of steps S1004 to S1010. In this case, the second
thread can write the section of processed values it has
generated to local memory 106. Each of the plurality of
threads (e.g. each thread shown in FIG. 4) can write the
section of processed values that it has generated to local
memory 106, such that a processed value is written to local
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memory 106 corresponding to each value of the array of
values on which the operation is to be performed. As
described herein, the plurality of threads within the warp can
share access to local memory 106. The method then con-
tinues to step S1016.

[0107] So as to perform a subsequent phase of the opera-
tion, in step S1016, for each of one or more perpendicular
one-dimensional sequences of values of the array of values,
a respective plurality of processed values from the memory
(e.g. local memory 106), said plurality of processed values
corresponding to a one-dimensional section of values of the
perpendicular one-dimensional sequence of values of the
two-dimensional array of values, is assigned to each of the
plurality of threads. Said sections of values may be non-
overlapping sections of values.

[0108] This step can be understood with reference to FIG.
8—which shows, in an example, the sections of values to
which the plurality of processed values assigned in the
subsequent phase of the operation correspond. In the
example shown in FIG. 8, step 1016 has been performed for
each of one or more vertical sequences of values (e.g.
columns) of the two-dimensional array of values that are
perpendicular to the one or more horizontal sequences of
values (e.g. rows) from which sections of values were
assigned to the plurality of threads in step S1002. It is to be
understood that step S1016 could alternatively be performed
for each of one or more horizontal sequences of values (e.g.
rows) of the two-dimensional array of values, were step
S1002 to have been performed for one or more vertical
sequences of values (e.g. columns) of the two-dimensional
array of values.

[0109] In FIG. 8, ecach perpendicular one-dimensional
sequence of values of the array of values 800 is a column of
values of the array of values 800. In FIG. 8, the array of
values comprises 32 columns of values. Each column of
values comprises 32 values. As described herein, each thread
may be capable of completing the desired operation for up
to eight pixel values. This limit may be caused by the
amount of register memory accessible by each thread—and
it is to be understood that in other examples each thread may
be capable of completing the desired operation for a different
number of pixel values (e.g. in some examples, any suitable
number of pixel values up to 100, or even more, pixel
values). In this example, each column of values is divided
into four non-overlapping sections of values, each section of
values comprising eight values. The plurality of processed
values stored in local memory 106 corresponding to each of
said sections of values is assigned to a thread. In FIG. 8, the
two-dimensional array of values is divided into 128 sections
of values (i.e. 32 columnsx4 sections per column), the
plurality of processed values stored in local memory 106
corresponding to each section of values being assigned to a
respective one of 128 threads—labelled in FIG. 8 as T1 to
T128. As described herein, in an example, a warp may
comprise up to 128 threads. As such, in this example, one
processing element 102 of the processing unit 100 can
process, in parallel, said 128 threads to which processed
values corresponding to values of the array of values have
been assigned. That is, said 128 threads (i.e. T1 to T128
shown in FIG. 8) can be comprised by a warp to be
processed by a processing element 102 of the processing
unit 100.

[0110] FIG. 9 shows a perpendicular one-dimensional
sequence of values 900 in further detail. In particular, FIG.

Jul. 11, 2024

9 shows the first column of values 900 of the array of values
800. The column of values 900 has been divided into four
sections, each section comprising eight values. The plurality
of processed values stored in local memory 106 correspond-
ing to the values of each of those sections of values have
been assigned to threads T1, T9, T17 and T25, respectively.
The plurality of processed values assigned to thread T1
correspond to a section of values that neighbour the section
of values that correspond to a plurality of processed values
assigned to thread T9. The plurality of processed values
assigned to thread T9 correspond to a section of values that
neighbour the section of values that correspond to the
plurality of processed values assigned to thread T1, and also
correspond to a section of values that neighbour the section
of values that correspond to a plurality of processed values
assigned to thread T17. The plurality of processed values
assigned to thread T17 correspond to a section of values that
neighbour the section of values that correspond to the
plurality of processed values assigned to thread T9, and also
correspond to a section of values that neighbour the section
of values that correspond to a plurality of processed values
assigned to thread T25. The plurality of processed values
assigned to thread T25 correspond to a section of values that
neighbour the section of values that correspond to the
plurality of processed values assigned to T17.

[0111] In the examples described herein, the same plural-
ity of threads (e.g. threads T1 to T128 shown in FIGS. 4 and
8) are used in the subsequent phase of the operation as are
used in the initial phase of the operation. That said, it is be
understood that, although convenient to perform the assign-
ments as shown in FIGS. 4 and 8 such that the number of
values assigned to each thread in the subsequent phase of the
operation is equal to the number of values assigned to each
thread in the initial phase of the operation, this need not be
the case.

[0112] In an alternative example, step S1016 may com-
prise assigning the processed values generated by a thread in
the initial phase of the operation back to that thread for
further processing in the subsequent phase of the operation.
For example, as described herein, in some examples, a
thread may be assigned a section of values from each of
more than one one-dimensional sequence of values. Thus, in
an alternative example, in step S1002, each of the sections
of values labelled T1 to T8 in FIG. 4 may be assigned to one
thread (not shown in the Figures). More generally, in this
alternative example, in step S1002, a thread may be assigned
a number of (e.g. eight) contiguous sections of values in
different one-dimensional sequences of values that equals
the number of (e.g. eight) values in each section of values
that it is assigned. In this alternative example, during the
initial phase of the operation, that thread may cooperate
according to the principles described herein with one or
more neighbouring threads “to its right” in order to generate
a plurality of processed values (e.g. one or more neighbour-
ing threads to which the sections of values labelled T9 to
T16 in FIG. 4 have been assigned). In this alternative
example, in step S1016, the processed values generated by
that thread in the initial phase of the operation may be
assigned back to that thread for further processing in the
subsequent phase of the operation (e.g. that thread may be
“assigned” the plurality of processed values corresponding
to each of the perpendicular sections of values labelled T1
to T8 in FIG. 8). In this alternative example, said processed
values need not be written to local memory 106 between the
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initial phase and the subsequent phase, and can instead be
retained within the one or more registers accessible by that
thread between the initial phase and the subsequent phase. In
this alternative example, during the subsequent phase of the
operation, that thread can cooperate according to the prin-
ciples described herein with one or more neighbouring
threads “from below” in order to generate a plurality of
output values (e.g. one or more neighbouring threads to
which the sections of values labelled T9 to T16 in FIG. 8
have been assigned).

[0113] Returning to FIG. 10, in the method described
herein, each thread is to complete the subsequent phase of
the operation for each of the values of the plurality of
processed values that it has been assigned. To achieve this,
first, each thread causes each of the processed values
assigned to that thread to be read from local memory 106
into the one or more registers accessible by that thread.

[0114] The method then continues to a second pass of
steps S1004 to steps S1010 in order to perform the subse-
quent phase 1000 of the operation. In the subsequent phase
of the operation, the same one-dimensional Gaussian filter
operation is performed for the plurality of processed values
assigned to each of the plurality of threads as was performed
for the sections of values assigned to each of the plurality of
threads in the initial phase of the operation.

[0115] In the subsequent phase, in step S1004, a first
thread of the plurality of threads determines at least one
contribution, from the plurality of processed values assigned
to the first thread, to the subsequent phase of the operation
that is to be completed by a second thread of the plurality of
threads for a plurality of processed values that correspond
with a one-dimensional section of values of the perpendicu-
lar one-dimensional sequence of values of the two-dimen-
sional array of values that neighbour the one-dimensional
section of values of the perpendicular one-dimensional
sequence of values that correspond to the plurality of
processed values assigned to the first thread. In a first
example, the first thread of the plurality of threads can
perform at least one part of the subsequent phase of the
separable operation on at least one set of one or more values
of the plurality of processed values assigned to the first
thread in order to determine at least one contribution, from
said at least one set of one or more values, to the subsequent
phase of the operation that is to be completed by the second
thread of the plurality of threads for the plurality of pro-
cessed values that correspond with the one-dimensional
section of values of the perpendicular one-dimensional
sequence of values of the two-dimensional array of values
that neighbour the one-dimensional section of values of the
perpendicular one-dimensional sequence of values that cor-
respond to the plurality of processed values assigned to the
first thread. In a second example, the first thread of the
plurality of threads can determine one or more values of the
plurality of processed values assigned to the first thread as
the at least one contribution, from the plurality of processed
values assigned to the first thread, to the subsequent phase
of the operation that is to be completed by the second thread
of the plurality of threads for the plurality of processed
values that correspond with the one-dimensional section of
values of the perpendicular one-dimensional sequence of
values of the two-dimensional array of values that neighbour
the one-dimensional section of values of the perpendicular
one-dimensional sequence of values that correspond to the
plurality of processed values assigned to the first thread.

Jul. 11, 2024

Step S1004 of the subsequent phase is performed in an
analogous way to step S1004 of the initial phase, as
described with reference to FIGS. 7a to 7c¢. That is, for
example, threads T9 and T17 as shown in FIG. 8 cooperate
with each other in the subsequent phase of the operation in
an analogous way to threads T9 and T17 as shown in FIG.
4 cooperate with each other in the initial phase of the
operation.

[0116] In the subsequent phase, in step S1006, the first
thread of the plurality of threads writes the at least one
contribution it has determined to the memory. In particular,
the first thread of the plurality of threads can write the at
least one contribution it has determined to the local memory
106. As described herein, the plurality of threads within the
warp can share access to local memory 106.

[0117] In the subsequent phase, in step S1008, the second
thread of the plurality of threads reads the at least one
contribution determined by the first thread from the memory.
In particular, the second thread of the plurality of threads can
read the at least one contribution determined by the first
thread from the local memory 106. The second thread may
cause the at least one contribution to be read into the one or
more registers accessible by the second thread—such that
said registers include the at least one contribution as well as
the values assigned to the second thread.

[0118] In the subsequent phase, in step S1010, the second
thread of the plurality of threads completes the subsequent
phase of the separable operation for the plurality of pro-
cessed values assigned to the second thread in dependence
on the at least one contribution determined by the first thread
in order to generate a section of output values. Step S1010
of the subsequent phase is performed in an analogous way
to step S1010 of the initial phase, as described with refer-
ence to FIGS. 7a to 7c¢. That is, for example, threads T9 and
T17 as shown in FIG. 8 cooperate with each other in the
subsequent phase of the operation in an analogous way to
threads T9 and T17 as shown in FIG. 4 cooperate with each
other in the initial phase of the operation.

[0119] It is to be understood that, in order to perform the
subsequent phase of the operation, each of the threads of the
plurality of threads (e.g. each thread shown in FIG. 8) may
perform the actions of the “first thread” in steps S1004 to
S1006 of the subsequent phase so as to determine at least
one contribution to the subsequent phase of the operation to
be completed by at least one other thread, and then perform
the actions of the “second thread” in steps S1008 to S1010
of the subsequent phase so as to complete the subsequent
phase of the operation in dependence on at least one con-
tribution determined by at least one other thread.

[0120] In the subsequent phase, in step S1014, it is deter-
mined whether the operation is complete. In the illustrative
example, in which the array of values to be operated on is
a two-dimensional array of pixel values, the operation is a
separable two-dimensional Gaussian filter operation, and the
initial and subsequent phases of the operation performed in
steps S1004 to S1010 were perpendicular one-dimensional
Gaussian filter operations, the operation may be determined
to be complete after completing the subsequent phase 1000
of steps S1004 to S1010. In this case, the second thread can
write the section of output values it has generated to global
memory 108. Each of the plurality of threads (e.g. each
thread shown in FIG. 8) can write the section of output
values that it has generated to global memory 108, such that
an output value is written to global memory 108 correspond-
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ing to each value of the array of values on which the
operation is to be performed. The output values written to
global memory 108 corresponding to each value of the array
of values can be the output of the method. In examples
where a received two-dimensional image has been divided
into a plurality of overlapping tiles for inputting to the
method, the outputs of the method for each overlapping tile
may be re-combined as described herein so as to form a
filtered two-dimensional image.

[0121] It is advantageous to perform a separable two-
dimensional Gaussian filter operation using the method of
FIG. 10, rather than using the simple approach described
herein. This is because the method described herein is
relatively fast, as it involves performing just one sets of
reads and one set of writes to global memory 108 to perform
the operation —relative to the two sets of reads and two sets
of writes to global memory 108 required in the simple
approach. Further, in the method of FIG. 10, each value is
read from global memory 108 only once—regardless of the
number of phases of the operation that are to be performed.
This is because each thread completes each phase of the
operation for each of the plurality of values it is assigned,
and the processed values are stored in local memory 106
between phases. This is in contrast to the simple approach
where each value is read from memory many times so that
each thread can complete each phase for a single value. The
method described herein takes advantage of the ability of
threads within the same warp to share access during their
processing to local memory 106 dedicated to the processing
logic 104 processing those threads.

[0122] It is to be understood that the method described
herein with reference to FIG. 10 could also be applied to
separable multi-dimensional operations performed on arrays
of values having more than two dimensions. In these
examples, further passes of steps S1016, and S1004 to
S1010 may be performed so as to perform further phases of
the operation.

Fast Integral Calculations

[0123] It is to be understood that method described herein
with reference to FIG. 10 is not limited to use in performing
separable filter operations, such as separable Gaussian or
box filter operations. The method described herein with
reference to FIG. 10 could be used to perform other types of
separable operation, such as a fast integral calculation opera-
tion or any other suitable type of separable operation.
[0124] As with a one-dimensional filter operation, a one-
dimensional fast integral calculation operation can be per-
formed in multiple phases so as to implement a separable
operation on a multi-dimensional array of values. In a
one-dimensional fast integral calculation operation, the val-
ues in a one-dimensional sequence of values are succes-
sively summed such that the first processed value in the
processed sequence is equal to the first input value in the
input sequence, the second processed value in the processed
sequence is equal to a sum of the first and second input
values in the input sequence, the third processed value in the
processed sequence is equal to a sum of the first, second and
third input values in the input sequence, and so on to the final
processed value in the processed sequence that is equal to a
sum of all of the input values in the input sequence.
[0125] A fast integral image calculation operation is a type
of fast integral calculation operation that is performed in two
phases on a two-dimensional image. When performing a fast

Jul. 11, 2024

integral image calculation operation, the input to the method
of FIG. 10 can be two-dimensional array of pixel values.
[0126] In some examples in which a received two-dimen-
sional image is sufficiently small, one warp of threads may
be capable of performing the desired operation for all of the
pixel values of that two-dimensional image. In these
examples, the entire two-dimensional image can be input to
the method shown in FIG. 10 as a two-dimensional array of
pixel values.

[0127] In other examples, optionally, a received two-
dimensional image can be divided into a plurality of tiles.
Each of said plurality of tiles comprises a respective two-
dimensional array of pixel values. Unlike in the filter opera-
tion examples given above, the tiles need not be overlap-
ping, as edge cases do not occur at the start/end of each
sequence of values when performing fast integral image
calculation operations. That said, unlike in the filter opera-
tion examples given above, it is not always possible for all
of the tiles to be processed in parallel when performing fast
integral image calculation operations. This is because, in an
example where the initial phase is performed horizontally,
the final output value of each row of the tile(s) in a first “tile
column” of the image is an input to each respective row of
the tile(s) in a second “tile column” of the image, the final
output value of each row of the tile(s) in a second “tile
column” of the image is an input to each respective row of
the tile(s) in a third “tile column” of the image, and so on.
Hence, when performing fast integral image calculation
operations, some of the tiles may be processed in series at a
processing unit. The skilled person would be aware of
numerous techniques for propagating output values from the
processing of a tile in the first “tile column” or “tile row” of
an input image for use in the subsequent processing of tiles
in the second “tile column” or “tile row” of that image, and
so on—e.g. by processing a workgroup comprising a plu-
rality of warps at a processing element of a processing unit,
where each of the tiles in a row or column of tiles is
processed by a warp of the plurality of warps, and the
plurality of warps are processed in series at that processing
element, such that a tile in the first “tile column™ or “tile
row” is processed by a first warp of that workgroup, which
then shares its output values via local memory with a second
warp of that workgroup that then processes a tile in the
second “tile column” or “tile row”, and so on—and so these
techniques will not be discussed further herein for concise-
ness.

[0128] In the following, an example is discussed in which
an entire two-dimensional image can be input to the method
shown in FIG. 10 as a two-dimensional array of pixel values
to be processed by threads of a warp running in parallel at
a single processing element (e.g. core) of a processing unit.
[0129] So as to perform an initial phase of the fast integral
image calculation operation, in step S1002, for each of the
one or more one-dimensional sequences of values of the
array of values, a respective section of values of the one-
dimensional sequence of values is assigned to each of a
plurality of threads. Step S1002 for a fast integral image
calculation operation can be performed in the same way as
step S1002 is performed for a separable filter operation, as
described herein with reference to FIGS. 4 and 5. Each
thread causes each of the values included in the section of
values assigned to that thread to be read from global memory
108 into the one or more registers in register bank 110
dedicated to that thread (e.g. “its registers™).
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[0130] In step S1004, a first thread of the plurality of
threads performs at least one part of the phase of the
operation on at least one set of one or more values of the
section of values assigned to the first thread in order to
determine at least one contribution, from said at least one set
of one or more values, to the phase of the operation that is
to be completed by a second thread of the plurality of threads
for a neighbouring section of values of the one-dimensional
sequence of values. For example, with reference to FIGS. 4
and 5, thread T1 can perform a sum of all of the values (e.g.
all eight values) in the section of values it has been assigned.
This sum is a contribution to the phase of the fast integral
image calculation that thread T9 is to complete. When
performing fast integral image calculation operation, this
sum is also a contribution to the phase of the fast integral
calculation that threads T17 and T25 are to complete. Each
of threads T1 to T24, T33 to T56, T65 to T88 and T97 to
T120 (as shown in FIG. 4) can determine a contribution in
this way by performing a sum of all of the values (e.g. all
eight values) in the section of values it has been assigned.

[0131] Instep S1006, the first thread writes the at least one
contribution that it has determined to a memory. In particu-
lar, the first thread (e.g. T1 in this example) may write the
at least one contribution to local memory 106. As described
herein, the plurality of threads within the warp can share
access to local memory 106. In step S1006, each of the other
threads of the plurality of threads can also write any con-
tributions they have determined in step S1004 to local
memory 106.

[0132] In step S1008, the second thread reads the at least
one contribution determined by the first thread from the
memory. In particular, the second thread (e.g. T9 in this
example) may read the at least one contribution from local
memory 106. The second thread may cause the at least one
contribution to be read into the one or more registers
accessible by the second thread—such that said registers
include the at least one contribution as well as the values of
the neighbouring section of values assigned to the second
thread. For example, thread T9 can read the contribution
determined by thread T1 from memory. Also, when per-
forming fast integral image calculation operation: thread
T17 can read the contributions determined by threads T1 and
T9 from memory, and thread T25 can read the contributions
determined by threads T1, T9 and T17 from memory. The
same principles apply to the other one dimensional
sequences of values (e.g. rows) of the two-dimensional array
of values.

[0133] In step S1010, the second thread completes the
phase of the operation for the neighbouring section of values
assigned to the second thread in dependence on the at least
one contribution determined by the memory in order to
generate a section of processed values. For example: thread
T9 can determine a processed value for the first value in the
section of values it has been assigned by summing the
contribution determined by thread T1 and the first value in
the section of values it has been assigned; thread T9 can
determine a processed value for the second value in the
section of values it has been assigned by summing the
contribution determined by thread T1, the first value and the
second value in the section of values it has been assigned;
and so on, through to thread T9 can determine a processed
value for the final (e.g. eighth) value in the section of values
it has been assigned by summing the contribution deter-
mined by thread T1, and the all of the values in the section
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of values it has been assigned. Also: thread T17 can deter-
mine a processed value for the first value in the section of
values it has been assigned by summing the contribution
determined by thread T1, the contribution determined by T9
and the first value in the section of values it has been
assigned; thread T17 can determine a processed value for the
second value in the section of values it has been assigned by
summing the contribution determined by thread T1, the
contribution determined by T9, the first value and the second
value in the section of values it has been assigned; and so on,
through to thread T17 can determine a processed value for
the final (e.g. eighth) value in the section of values it has
been assigned by summing the contribution determined by
thread T1, the contribution determined by T9 and all of the
values in the section of values it has been assigned. Also:
thread T25 can determine a processed value for the first
value in the section of values it has been assigned by
summing the contribution determined by thread T1, the
contribution determined by T9, the contribution determined
by T17 and the first value in the section of values it has been
assigned; thread T25 can determine a processed value for the
second value in the section of values it has been assigned by
summing the contribution determined by thread T1, the
contribution determined by T9, the contribution determined
by T17, the first value and the second value in the section of
values it has been assigned; and so on, through to thread T25
can determine a processed value for the final (e.g. eighth)
value in the section of values it has been assigned by
summing the contribution determined by thread T1, the
contribution determined by T9, the contribution determined
by T17 and all of the values in the section of values it has
been assigned. The same principles apply to the other one
dimensional sequences of values (e.g. rows) of the two-
dimensional array of values.

[0134] In step S1014, it is determined whether the opera-
tion is complete. In this example, in which the array of
values to be operated on is a two-dimensional array of pixel
values, the operation is a separable two-dimensional fast
integral image calculation operation, and the phase 1000 of
the operation performed in steps S1004 to S1010 is a
one-dimensional fast integral image calculation operation,
the operation may be determined to not be complete after
completing a single (e.g. initial) phase 1000 of steps S1004
to S1010. In this case, the second thread (e.g. thread T9 in
this example) can write the section of processed values it has
generated to local memory 106. Each of the plurality of
threads (e.g. each thread shown in FIG. 4) can write the
section of processed values that it has generated to the local
memory 106, such that a processed value is written to local
memory 106 corresponding to each value of the array of
values on which the operation is to be performed. As
described herein, the plurality of threads within the warp can
share access to local memory 106. Then, the method con-
tinues to step S1016.

[0135] So as to perform a subsequent phase of the opera-
tion, in step S1016, for each of one or more perpendicular
one-dimensional sequences of values of the array of values,
a respective plurality of processed values from the memory
(e.g. local memory 106), said plurality of processed values
corresponding to a one-dimensional section of values of the
perpendicular one-dimensional sequence of values of the
two-dimensional array of values, is assigned to each of the
plurality of threads. Step S1016 for a fast integral image
calculation operation can be performed in the same way as
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step S1016 is performed for a separable filter operation, as
described herein with reference to FIGS. 8 and 9. As
described herein, in some alternative examples, step S1016
may comprise assigning the processed values generated by
a thread in the initial phase of the operation back to that
thread for further processing in the subsequent phase of the
operation.

[0136] The method then continues to a second pass of
steps S1004 to steps S1010 in order to perform the subse-
quent phase 1000 of the fast integral image calculation
operation. In the subsequent phase of the operation, the same
one-dimensional fast integral image calculation operation is
performed for the plurality of processed values assigned to
each of the plurality of threads as was performed for the
sections of values assigned to each of the plurality of threads
in the initial phase of the operation. Steps S1004 to steps
S1010 of the subsequent phase 1000 of a fast integral image
calculation operation are performed in an analogous manner
to steps S1004 to steps S1010 of the initial phase 1000 of a
fast integral image calculation operation, as described
herein.

[0137] In step S1014 of the subsequent phase, it is deter-
mined whether the operation is complete. In this example, in
which the array of values to be operated on is a two-
dimensional array of pixel values, the operation is a sepa-
rable two-dimensional fast integral calculation operation,
and the initial and subsequent phases of the operation
performed in steps S1004 to S1010 were perpendicular
one-dimensional fast integral calculation operations, the
operation may be determined to be complete after complet-
ing the subsequent phase 1000 of steps S1004 to S1010. In
this case, each of the plurality of threads (e.g. each thread
shown in FIG. 8) can write the section of output values that
it has generated to the global memory 108, such that an
output value is written to global memory 108 corresponding
to each value of the array of values on which the operation
is to be performed. The output values written to global
memory 108 corresponding to each value of the array of
values can be the output of the method.

[0138] It is to be understood that the method described
herein with reference to FIG. 10 could also be applied to
one-dimensional fast integral calculation operations per-
formed on one-dimensional arrays of values (e.g. a sequence
of audio samples of an audio signal, or a sequence of signal
samples of a transmitted signal). In these examples, a single
pass of steps S1002 to S1014 may be performed so as to
perform a single phase of the fast integral calculation
operation.

[0139] It is also to be understood that the method
described herein with reference to FIG. 10 could also be
applied to separable multi-dimensional fast integral calcu-
lation operations performed on arrays of values having more
than two dimensions. In these examples, further passes of
steps S1016, and S1004 to S1014 may be performed so as
to perform further phases of the fast integral calculation
operation.

Writing to/Reading from Memory Between Phases of a
Separable Operation

[0140] As described herein with reference to FIG. 10, in
step S1014 of the initial phase of a separable operation, each
of'a plurality of threads can cause the values it has processed
to be written to memory (e.g. local memory 106). In step
S1016, the processed values to be operated on in the
subsequent phase of the separable operation can be assigned
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to the plurality of threads. Then, step S1004 of the subse-
quent phase of the separable operation can begin with each
of the plurality of threads causing the processed values that
it has been assigned to be read from memory (e.g. local
memory 106) into its registers (e.g. its registers in register
bank 110).

[0141] Optionally, the latency of a separable operation can
be decreased by writing the processed values to memory
(e.g. local memory 106) after the initial phase of that
separable operation in a prescribed manner—as will be
described herein.

[0142] FIG. 11 shows an example memory 106 compris-
ing a plurality of memory banks. Memory 106 shown in
FIG. 11 may be “local” memory 106—as defined previously
herein with reference to FIGS. 1A and 1B. In particular,
memory 106 may be comprised by a processing element
(e.g. core) of a processing unit. Memory 106 may be
accessible by processing logic of that processing element.
[0143] Local memory 106 described herein with reference
to FIGS. 1A and 1B may have the same properties as
memory 106, as will be described herein with reference to
FIG. 11.

[0144] Memory 106 shown in FIG. 11 comprises sixteen
memory banks—Iabelled as 1 to 16 in FIG. 11. The sixteen
memory banks in FIG. 11 are illustrated as sixteen columns
of memory locations. A memory location is a portion of the
memory into which one value (e.g. one pixel value) can be
written. It is to be understood that one value may comprise
more than one bit of information. It is to be understood that
a memory could comprise any suitable number of memory
banks (e.g. 8, 32, 64 or any other suitable number of memory
banks). It is to be understood that the number of memory
locations illustrated in FIG. 11 is not intended to be limit-
ing—a memory could comprise any suitable number of
memory locations. The sixteen memory banks shown in
FIG. 11 are each one memory location “wide”. That is, each
memory bank shown in FIG. 11 can store one value in each
of'its rows. It is to be understood that a memory bank could
be more than one memory location “wide” (e.g. a memory
bank could be 2, 4 or any other suitable number of memory
locations “wide”). That is, a memory bank could store more
than one value in each of its rows.

[0145] As described herein, a warp comprising a plurality
of threads can be processed by a processing element (e.g.
core) comprising processing logic and a memory 106. The
plurality of threads within the warp can share access to the
memory 106. In other words, each thread of the plurality of
threads can cause the processing logic to write values to
and/or read values from memory 106.

Excessive Bank Conflicts when Writing Processed Values to
Memory after the Initial Phase of a Separable Operation
[0146] In each writing step (e.g. clock, or instruction) a
thread can cause only one value (e.g. pixel value) to be
written into memory 106. In each writing step each memory
bank can be written into by only one respective thread. A
“bank conflict” occurs when each of a plurality of threads
attempt to write a respective value into one memory bank in
a single writing step. When a bank conflict occurs, said
writes into that memory bank are performed over a plurality
of writing steps. That said, in each writing step, each of a
plurality of different threads can write a respective value into
a respective bank of a plurality of different memory banks of
the memory. As such, the most efficient (e.g. lowest latency)
way for a plurality of threads to write their processed values



US 2024/0231913 Al

into a memory is for, in each writing step, a number of
different threads equal to the number of memory banks in the
memory to each write one respective value into a respective
bank of the plurality of memory banks. For example, the
most efficient (e.g. lowest latency) way for the plurality of
threads shown in FIG. 4 to write their processed values into
the memory 106 of FIG. 11 after performing the initial phase
of a separable operation is for, in each writing step, 16
different threads to each write one respective value into a
respective bank of the 16 different memory banks of
memory 106.

[0147] Inexamples where the number of processed values
to be written by each thread of a plurality of threads is a
factor of or equal to the number of memory banks in a
memory, unnecessary bank conflicts can occur when that
plurality of threads write their processed values into that
memory. This means that, in each writing step, not all of the
memory banks of that memory can be written to. This can be
understood with reference to FIG. 12A, which shows a
plurality of processed values written to memory 106 using a
first simple approach. The processed values shown in FIG.
12A are values processed by the plurality of threads as
illustrated in FIGS. 4 and 5—in which threads T1 to T128
each process eight respective values (e.g. pixels P1 to P8) in
the initial phase of a separable operation as described herein.
In this example, the number (i.e. 8) of processed values to
be written by each thread of the plurality of threads after
performing the initial phase of a separable operation is a
factor of the number of memory banks (i.e. 16) in the
memory 106. A number of rows of memory locations are
omitted for ease of illustration.

[0148] The memory bank into which a processed value is
to be written can be determined in dependence on a write
buffer array. In the first simple approach illustrated in FIG.
12A, the write buffer array may be a one-dimensional
sequence of elements comprising: elements corresponding
to each the 8 processed values to be written by thread T1 (i.e.
T1P1, TP2 . . . T1P8); followed by elements corresponding
to the 8 processed values to be written by thread T2 (i.e.
T2P1, T2P2 . . . T2P8); followed by elements corresponding
to the 8 processed values to be written by thread T3 (i.e.
T3P1, T3P2 . . . T3P8); and so on through to elements
corresponding to the 8 processed values to be written by
thread T128 (i.e. T128P1, T128P2 . . . T128P8). The write
buffer array can be mapped to the memory 106 by mapping
the first 16 elements (e.g. the 1 to 16 values) in the write
buffer array to the first row of 16 memory locations, map-
ping the second 16 elements (e.g. the 177 to 32”9 values) in
the write buffer array to the second row of 16 memory
locations, and so on. The write buffer array is mapped to the
memory such that processed values are written into the
memory in the memory locations to which the correspond-
ing elements of the write buffer array are mapped.

[0149] As described herein, in each writing step (e.g.
clock, or instruction) each thread can cause only one value
to be written into memory 106. Thus, in a first writing step,
each of threads T1 to T128 attempt to write a respective
processed value for their first value (i.e. P1) to memory (i.e.
the processed values T1P1, T2P1, T3P1, T4P1, T5P1, T6P1,
T7P1, T8P1 through to T128P1). Although it is not possible
for all 128 threads to write to the 16 memory banks in
memory 106 in a single writing step, it would be preferable
if groups of 16 threads of the 128 threads were able to write
to the 16 memory banks in memory 106 in each writing step
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(i.e. such that all 128 of the P1 values are written over 8
writing steps). However, this is also not possible using the
first simple approach—as will be understood with reference
to FIG. 12A. For example, in a first writing step, thread T1
is attempting to write T1P1 to the same memory bank (e.g.
memory bank 1 in FIG. 12A) as: thread T3 is attempting to
write T3P1, TS is attempting to write T5P1, thread T7 is
attempting to write T7P1, thread T9 is attempting to write
TOP1, thread T11 is attempting to write T11P1, thread T13
is attempting to write T13P1 and thread T15 is attempting to
write T15P1. Also in that first writing step, thread T2 is
attempting to write T2P1 to the same memory bank (e.g.
memory bank 9 in FIG. 12A) as: thread T4 is attempting to
write T4P1, T6 is attempting to write T6P1, thread T8 is
attempting to write T8P1, T10 is attempting to write T10P1,
thread T12 is attempting to write T12P1, T14 is attempting
to write T14P1 and thread T16 is attempting to write T16P1.
This means that, rather than this group of 16 threads (i.e.
threads T1 to T16) writing to 16 different memory banks in
one writing step, in this first simple approach the same
number of writes are performed by pairs of these 16 threads
(i.e. threads (i) T1 and T2, (ii) T3 and T4 and so on to (viii)
T15 and T16) writing to two different memory banks over
eight writing steps. This is inefficient, as in each writing step
only two out of the sixteen memory banks are being written
to. A further eight writing steps are required for each of
threads T17 to T32 to write a respective processed value for
their P1 to memory, and so on through to threads T113 to
T128 requiring eight writing steps to write a respective
processed value for their P1 to memory. This means that 64
writing steps are required for all 128 of the P1 values to be
written into memory 106—rather than 8 writing steps were
all 16 memory banks to be written to in each writing step.
This inefficient writing process is then repeated seven fur-
ther times in order for each of the plurality of threads to write
each of its other seven processed values (i.e. each of P2 to
Pg).

Excessive Bank Conflicts when Reading Processed Values
from Memory Prior to the Subsequent Phase of a Separable
Operation

[0150] In each reading step (e.g. clock, or instruction) a
thread can cause only one value (e.g. pixel value) to be read
from memory 106. In each reading step each memory bank
can be read from by only one respective thread. A “bank
conflict” occurs when each of a plurality of threads attempt
to read a respective value from one memory bank in a single
reading step. When a bank conflict occurs, said reads from
that memory bank are performed over a plurality of reading
steps. That said, in each reading step, each of a plurality of
different threads can read a respective value from a respec-
tive bank of a plurality of different memory banks of the
memory. As such, the most efficient (e.g. lowest latency)
way for a plurality of threads to read processed values from
a memory is for, in each reading step, a number of different
threads equal to the number of memory banks in the memory
to each read one respective value from a respective bank of
the plurality of memory banks. For example, the most
efficient (e.g. lowest latency) way for the plurality of threads
shown in FIG. 8 to read processed values from the memory
106 of FIG. 11 prior to performing the subsequent phase of
a separable operation is for, in each reading step, 16 different
threads to each read one respective value from a respective
bank of the 16 different memory banks of memory 106.
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[0151] Inexamples where the number of processed values
to be read by each thread of a plurality of threads is a factor
of or equal to the number of memory banks in a memory,
unnecessary bank conflicts can occur when that plurality of
threads read their processed values from that memory. This
means that, in each reading step, not all of the memory banks
of that memory can be read from. This can be understood
with reference to FIG. 12B, which shows a plurality of
processed values written to memory 106 using a second
simple approach. The processed values shown in FIG. 12B
are values processed by the plurality of threads as illustrated
in FIGS. 4 and 5—in which threads T1 to T128 each process
eight respective values (e.g. pixels P1 to P8) in the initial
phase of a separable operation as described herein. In this
example, the number (i.e. 8) of values to be read by each
thread of the plurality of threads (e.g. arranged as shown in
FIG. 8) prior to performing the subsequent phase of the
separable operation is a factor of the number of memory
banks (i.e. 16) in the memory. A number of rows of memory
locations are omitted for ease of illustration.

[0152] As described herein, the memory bank into which
a processed value is to be written can be determined in
dependence on a write buffer array. In the second simple
approach illustrated in FIG. 12B, the write buffer array may
be a one-dimensional sequence of elements comprising:
elements corresponding to the first processed value P1 of
each of threads T1 to T8 (i.e. T1P1, T2P1 . . . T8PI1);
followed by elements corresponding to the second processed
value P2 for each of threads T1 to T8 (i.e. T1P2, T2P2 ...
T8P2); and so on through to elements corresponding to the
eighth processed value P8 for each of threads T1 to T8 (i.e.
T1P8, T2PS . . . T8P8); followed by elements corresponding
to the first processed value P1 of each of threads T9 to T16
(ie. T9P1, T10P1 . . . T16P1); followed by elements
corresponding to the second processed value P2 of each of
threads T9 to T16 (i.e. TOP2, T10P2 . . . T16P2); and so on
through to elements corresponding to the eighth processed
value P8 for each of threads T9 to T16 (i.e. T9P8, T10PS8 .
.. T16P8); and so on through to elements corresponding to
the eighth processed value P8 for each of threads T121 to
T128 (i.e. T121P8, T122P8 . . . T128P8). The write buffer
array can be mapped to the memory 106 by mapping the first
16 elements (e.g. the 1° to 16” values) in the write buffer
array to the first row of 16 memory locations, mapping the
second 16 elements (e.g. the 17 to 32" values) in the write
buffer array to the second row of 16 memory locations, and
so on. The write buffer array is mapped to the memory such
that processed values are written into the memory in the
memory locations to which the corresponding elements of
the write buffer array are mapped.

[0153] Prior to the subsequent phase of the operation,
thread T1 shown in FIG. 8 reads processed values T1P1,
T2P1, T3P1, T4P1, T5P1, T6P1, T7P1 and T8P1 from
memory 106. This can be understood by comparing the
positions within the array of the values assigned to threads
T1 to T8 in the initial phase as shown in FIG. 4, with the
positions within the array of the values corresponding to the
processed values assigned to thread T1 in the subsequent
phase as shown in FIG. 8. Applying the same principles:
thread T2 shown in FIG. 8 reads processed values T1P2,
T2P2, T3P2, T4P2, TSP2, T6P2, T7P2 and T8P2; thread T3
shown in FIG. 8 reads processed values T1P3, T2P3, T3P3,
T4P3, T5P3, T6P3, T7P3 and T8P3; thread T4 shown in
FIG. 8 reads processed values T1P4, T2P4, T3P4, T4P4,
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T5P4, T6P4, T7P4 and T8P4, thread T5 shown in FIG. 8
reads processed values T1P5, T2P5, T3PS, T4PS, TSPS,
T6P5, T7P5 and T8PS; thread T6 shown in FIG. 8 reads
processed values T1P6, T2P6, T3P6, T4P6, T5P6, T6P6,
T7P6 and T8P6; thread T7 shown in FIG. 8 reads processed
values T1P7, T2P7, T3P7, T4P7, T5P7, T6P7, T7P7 and
T8P7; and thread T8 shown in FIG. 8 reads processed values
T1P8, T2P8, T3P8, T4P8, T5P8, T6P8, T7P8 and T8P8. For
conciseness, the processed values read by each of the other
threads shown in FIG. 8 prior to the subsequent phase of the
separable operation will not be exhaustively listed here. The
skilled person would have no difficulty determining which
processed values are read by each of the other threads shown
in FIG. 8 by comparing FIGS. 4 and 8 as described herein.

[0154] As described herein, in each reading step (e.g.
clock, or instruction) a thread can cause only one value (e.g.
pixel value) to be read from memory 106. Thus, in a first
reading step, each of threads T1 to T128 as shown in FIG.
8 attempt to read a respective processed value from memory.
Although it is not possible for all 128 threads to read from
the 16 memory banks in memory 106 in a single reading
step, it would be preferable if groups of 16 threads of the 128
threads were able to read from the 16 memory banks in
memory 106 in each reading step (i.e. such that all 128 of the
threads read in a respective processed value over 8 reading
steps). However, this is also not possible using the second
simple approach—as will be understood with reference to
FIG. 12B. For example, in a first reading step, thread T1 is
attempting to read T1P1 from the same memory bank (e.g.
memory bank 1 in FIG. 12B) as: thread T3 is attempting to
read T1P3; thread T5 is attempting to read T1P5; thread T7
is attempting to read T1P7; thread T33 is attempting to read
TOP1; thread T35 is attempting to read TOP3; thread T37 is
attempting to read T9P5; and thread T39 is attempting to
read T9P7. Also in that first reading step, thread T2 is
attempting to read T1P2 from the same memory bank (e.g.
memory bank 9 in FIG. 12B) as: thread T4 is attempting to
read T1P4; thread T6 is attempting to read T1P6; thread T8
is attempting to read T1P8; thread T34 is attempting to read
TOP2; thread T36 is attempting to read TOP4; thread T38 is
attempting to read T9P6; and thread T40 is attempting to
read T9P8. This means that, rather than this group of 16
threads (i.e. threads T1 to T8 and T33 to T40) reading from
16 different memory banks in one reading step, in this
second simple approach the same number of reads are
performed by pairs of these 16 threads (i.e. threads (i) T1 and
T2, (ii) T3 and T4 and so on to (viii) T39 and T40) reading
from two different memory banks over eight reading steps.
This is inefficient, as in each reading step only two out of the
sixteen memory banks are being read from. This means that
64 reading steps are required for all 128 of the threads to
read in one respective processed value—rather than 8 read-
ing steps were all 16 memory banks to be read from in each
reading step. This inefficient reading process is then repeated
seven further times in order for each of the plurality of
threads to read in the other seven of the processed values
assigned to it.

Avoiding Excessive Bank Conflicts when Writing to/Read-
ing from Memory Between Phases of a Separable Operation
[0155] Described herein with reference to FIG. 13 is a
computer-implemented method of performing a separable
operation on a two-dimensional array of values at a pro-
cessing unit comprising a memory. The separable operation
may be any of the separable operations described herein
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(e.g. a separable Gaussian filter operation, a separable box
filter operation or a separable fast integral calculation opera-
tion) or any other suitable type of separable operation. Said
method can be used to both: (i) minimise the number of bank
conflicts caused when writing processed values to memory
(e.g. local memory 106) after the initial phase of a separable
operation; and (ii) minimise the number of bank conflicts
caused when reading those processed values from that
memory (e.g. local memory 106) prior to the subsequent
phase of that separable operation. As such, said method can
reduce the latency associated with performing the separable
operation.

[0156] The input to the method shown in FIG. 13 is a
two-dimensional array of values. The two-dimensional array
of values input to the method shown in FIG. 13 can have the
same properties as any of the two-dimensional array of
values as discussed herein that can be input to the method
shown in FIG. 10.

[0157] In step S1302, the two-dimensional array of values
input to the method is divided into a plurality of two-
dimensional sub-arrays of values (e.g. cells). This step can
be understood with reference to FIG. 14—which shows a
two-dimensional array of values 1400 divided into a plural-
ity of two-dimensional sub-arrays of values 1 to 16. The
two-dimensional sub-arrays of values may be non-overlap-
ping. In FIG. 14, the two-dimensional array of values is
square and each of the two-dimensional sub-arrays of values
are square. In FIG. 14, the number of sub-arrays in each row
of the array equals the number of sub-arrays in each column
of the array. The two-dimensional array of values divided
into a plurality of two-dimensional sub-arrays of values can
be represented by a multidimensional array [I][J][K][M],
where I and J represent the number of sub-arrays of values
within the array of values in each of the two dimensions and
K and M represent the number of values within each of the
sub-arrays of values in each of the two dimensions. For
example, in the illustrative example described herein with
reference to FIGS. 4, 5, 8, 9 and 14, the multidimensional
array can be represented by [4][4][8][8]. That is, I represents
the number of rows of sub-arrays, J represents the number
of columns of sub-arrays, K represents the number of rows
within each sub-array, and M represents the number of
columns within each sub-array.

[0158] In step S1304, for each of the plurality of sub-
arrays, using a plurality of threads, an initial phase of the
separable operation is performed for said sub-array of values
in order to generate a respective processed value for each
value of said sub-array of values. Step S1304 can be
performed by performing steps S1002 to S1010 as described
herein with reference to FIG. 10. For example: an initial
phase of the separable operation can be performed for
sub-array 1 as shown in FIG. 14 by using threads T1 to T8
as shown in FIG. 4; an initial phase of the separable
operation can be performed for sub-array 2 as shown in FIG.
14 by using threads T9 to T16 as shown in FIG. 4; and so
on through to an initial phase of the separable operation can
be performed for sub-array 16 as shown in FIG. 14 by using
threads T121 to T128 as shown in FIG. 4.

[0159] In step S1306, for each of the plurality of sub-
arrays, each of the plurality of threads writes a respective
first plurality of processed values to a memory (e.g. memory
106 shown in FIG. 11) over a plurality of writing steps, said
first plurality of processed values corresponding to a one-
dimensional sequence of values of said sub-array of values.
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For example, with reference to FIGS. 4, 5 and 14, thread T1
writes eight processed values (e.g. T1P1, T1P2, T1P3, T1P4,
T1PS, T1P6, T1P7 and T1P8) corresponding to the eight
values within a one-dimensional sequence of values (e.g.
row) of sub-array 1 for which it performed the initial phase
of the separable operation. For conciseness, the processed
values written by each of the other threads shown in FIG. 4
for each of the sub-arrays shown in FIG. 14 will not be
exhaustively listed here. By referring to FIGS. 4 and 14, the
skilled person would have no difficulty determining which
processed values are written for each of the sub-arrays by
each of the other threads.

[0160] As described herein, the memory bank into which
a processed value is to be written can be determined in
dependence on a write buffer array. According to the prin-
ciples described herein, in step S1306, the memory bank into
which a processed value is to be written can be determined
in dependence on a write buffer array having a number of
elements greater than the number of elements in the two-
dimensional array of values. For example, in the illustrative
example described herein, the two-dimensional array of
values comprises 1024 elements, and so the write buffer
array used in step S1306 comprises greater than 1024
elements. The write buffer array may comprise value ele-
ments corresponding to values of the two-dimensional array,
and padding elements corresponding to memory padding.
More specifically, the write buffer array may comprise
groups of contiguous value elements corresponding to val-
ues of the two-dimensional array, and padding elements
interspersed between said groups. The number of value
elements in each group may be (i) equal to, (i) a multiple of,
or (iii) a factor of the number of memory banks comprised
by the memory. For example, memory 106 comprises 16
memory banks, and so the number of value elements in each
group may be (i) 16, (ii) a multiple of 16, such as 32, 64 or
128, or (iii) a factor of 16 such as 8. The number of value
elements in each group may be equal to or less than the
number of threads used to perform the separable operation
for the array of values. For example, in the illustrative
example described herein, 128 threads are used to perform
the separable operation for the array of values. In this
example, the number of value elements in each group of the
write buffer array may be equal to or less than 128.

[0161] In examples where each memory bank in the
memory is one memory location “wide” (e.g. as in memory
106 shown in FIG. 11), at least one padding element may be
interspersed between the groups of value elements. In
examples where each memory bank in the memory is more
than one memory location “wide”, a plurality of contiguous
padding elements may be interspersed between the groups of
contiguous value elements. In other words, the number of
contiguous padding elements interspersed between the
groups of contiguous value elements may be greater than or
equal to the number of memory locations in each row of a
memory bank in the memory.

[0162] The write buffer array may be a one-dimensional
array—e.g. a one-dimensional sequence of elements. In
order to determine which memory bank each processed
value is to be written into, the write buffer array may be
mapped to the structure of the memory accessible by the
processing logic. For example, the write buffer array can be
mapped to the structure of memory 106 of FIG. 11 by
mapping the first 16 elements (e.g. the 1° to 16” values) in
the write buffer array to the first row of 16 memory loca-
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tions, mapping the second 16 elements (e.g. the 177 to 32"*¢
values) in the write buffer array to the second row of 16
memory locations, and so on. It is to be understood that the
write buffer array need not be mapped to the structure of
memory 106 starting from the first (e.g. “top-left” memory
location of the memory 106. That is, the write buffer array
can be mapped to the structure of memory 106 starting from
any suitable memory location in memory 106.

[0163] Instep S1306, the write buffer array can be mapped
to the memory such that processed values corresponding to
values of the two-dimensional array are written into the
memory in memory locations to which the value elements of
the write buffer array are mapped, and processed values
corresponding to values of the two-dimensional array are not
written to the memory in memory locations to which the
padding elements of the write buffer array are mapped. Any
other information (e.g. one or more “0” bits, or any arbitrary
value) may be written to the memory in memory locations
to which the padding elements of the write buffer array are
mapped. Alternatively, the memory locations to which the
padding elements of the write buffer array are mapped may
not be written to at all (e.g. those memory locations may be
“left blank™).

[0164] The memory location into which a thread writes a
processed value in step S1306 can be determined in depen-
dence on a base memory address, a writing offset amount
and a writing padding amount. The memory location into
which a thread writes a processed value may be determined
in dependence on a sum of the base memory address, the
writing offset amount and the writing padding amount. Said
sum may be used to determine the element of the write
buffer array to which the processed value to be written
corresponds. The base memory address may be the first
element within the write buffer array.

[0165] The writing offset amount and the writing padding
amount can be dependent on the position of the value within
the array of values to which the processed value that is to be
written to memory corresponds. For example, each value in
the array of values may be assigned a coordinate [1][j] [k][m]
—defined using zero indexing (i.e. so that the first sub-array
or value in a row or column is assigned a “0” coordinate for
that row or column dimension)—which defines its position
within the multidimensional array [I][J][K][M] as defined
herein. The writing offset amount for a processed value to be
written may be a function of the coordinate [i][j][k][m] of
the value to which that processed value corresponds. That is,
i represents the row of sub-arrays in which the sub-array
comprising the value is positioned, j represents the column
of sub-arrays in which the sub-array comprising the value is
positioned, k represents the row of the sub-array in which
the value is positioned, and m represents the column of the
sub-array in which the value is positioned. In some
examples, referring to FIG. 4, value T1P1 has a coordinate
[O][O][0][0], value T1P2 has a coordinate [0][0][0][1], value
T9P1 has a coordinate [0][1][0][0], value T78P3 has a
coordinate [2][1][5][2], and value T128T6 has as a coordi-
nate [3][3][7][5].

[0166] Non-limiting examples of suitable writing offset
amounts are provided below.

[0167] The writing padding amount can be equal to the
writing offset amount divided by a padding frequency. Said
division may be an integer division. An integer division
comprises dividing a first number by a second number and
returning the integer part of the result as the output. For
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example, an integer division of 53 by 8 would equal 6 (e.g.
the “remainder” of 5 is not returned as part of the output).
The padding frequency may be (i) equal to, (ii) a multiple of,
or (iii) a factor of the number of memory banks comprised
by the memory. For example, memory 106 comprises 16
memory banks, and so the padding frequency may be (i) 16,
(i1) a multiple of 16, such as 32, 64 or 128, or (iii) a factor
of 16 such as 8. The padding frequency may be equal to or
less than the number of threads used to perform the sepa-
rable operation for the array of values. For example, in the
illustrative example described herein, 128 threads used to
perform the separable operation for the array of values. In
this example, the padding frequency may be equal to or less
than 128. The padding frequency may also be a power of
two, i.e. it is 2" where n is an integer. This means that the
division of 1 by this number can be performed as a right shift
of the bits, rather than having to perform a full division
calculation which is inefficient to implement in hardware.
[0168] It is to be understood that the write buffer array
may exist in a physical memory (e.g. may be implemented
in registers in register bank 110) such that the processed
values generated by the treads in step S1304 are physically
written into that write buffer array, before the contents of that
write buffer array are transferred to the memory (e.g.
memory 106). Alternatively, the write buffer array may be a
construct that is conceptually used by the threads to deter-
mine which memory location in memory each processed
value generated in step S1304 is to be written, where the
processed values are physically written directly from the
respective one or more registers accessible by each thread
into the determined memory locations in memory (e.g.
memory 106).

[0169] In step S1306, by applying the principles described
herein, a respective processed value is written into each of
the memory banks of the memory (e.g. memory 106 of FIG.
11) in at least one of the plurality of writing steps. In
particular, by applying the principles described herein, a
respective processed value may be written into each of the
memory banks of the memory (e.g. memory 106 of FIG. 11)
in each of the plurality of writing steps. That is, excessive
bank conflicts are avoided during writing in step S1306.
[0170] In the following, four specific examples are pro-
vided which illustrate the memory locations in memory 106
to which the plurality of threads could write processed
values by applying the principles described herein. It is to be
understood that these specific implementations are provided
by way of example only, and that the principles described
herein could be applied differently.

Example 1

[0171] Example 1 can be understood with reference to
FIG. 15A—which shows a plurality of processed values
written to memory 106 using a first approach according to
the principles described herein. The processed values shown
in FIG. 15A are values processed by the plurality of threads
as illustrated in FIGS. 4 and 5—in which threads T1 to T128
each process eight respective values (e.g. pixels P1 to P8) in
the initial phase of a separable operation as described herein.
[0172] In Example 1, the write buffer array used to deter-
mine which memory location in memory 106 each processed
value is to be written to comprises groups of eight contigu-
ous value elements corresponding to values of the two-
dimensional array, with one padding element interspersed
between each of said groups. In Example 1, the write buffer
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array is a one-dimensional sequence of elements compris-
ing: value elements corresponding to the 8 processed values
to be written by thread T1 (i.e. T1P1, T1P2 . . . T1P8);
followed by a padding element; followed by value elements
corresponding to the 8 processed values to be written by
thread T2 (i.e. T2P1, T2P2 ... T2P8); followed by a padding
element; followed by value elements corresponding to the 8
processed values to be written by thread T3 (i.e. T3P1, T3P2
. . . T3P8); followed by a padding element; and so on
through to value elements corresponding to the 8 processed
values to be written by thread T128 (i.e. T128P1, T128P2 .
.. T128P8).

[0173] As described herein, the memory location into
which a thread writes a processed value in step S1306 can
be determined in dependence on a sum of a base memory
address, a writing offset amount and a writing padding
amount. Said sum may be used to determine the element of
the write buffer array to which the processed value to be
written corresponds—where the base memory address is the
first element within that write buffer array. In Example 1, for
a value having a coordinate [i][j][k][m] within a multidi-
mensional array [I][J][K][M], the writing offset amount is
equal to (ixJxKxM)+(GxKxM)+(kxM)+m, and the writing
padding amount is equal to the writing offset amount divided
by 8 (the padding frequency). Said division may be an
integer division.

[0174] FIG. 15A illustrates the contents of the memory
106 when this write buffer array is mapped to the memory
106 such that processed values corresponding to values of
the two-dimensional array are written into the memory 106
in memory locations to which the corresponding value
elements of the write buffer array are mapped, and processed
values corresponding to values of the two-dimensional array
are not written to the memory 106 in memory locations to
which the padding elements of the write buffer array are
mapped. In FIG. 15A, memory locations to which the
padding elements of the write buffer array are mapped are
indicated by “X”. A number of rows of memory locations are
omitted for ease of illustration.

[0175] In Example 1, a respective processed value can be
written into each of the memory banks of the memory (e.g.
memory 106 of FIG. 11) in at least one of the plurality of
writing steps. For example, referring to FIG. 15A, in one
writing step: thread T1 can write T1P1 into memory bank 1;
thread T2 can write T2P1 into memory bank 10; thread T3
can write T3P1 into memory bank 3; thread T4 can write
T4P1 into memory bank 12; thread T5 can write T5P1 into
memory bank 5; thread T6 can write T6P1 into memory
bank 14; thread T7 can write T7P1 into memory bank 7;
thread T8 can write T8P1 into memory bank 16; thread T9
can write T9P1 into memory bank 9; thread T10 can write
T10P1 into memory bank 2; thread T11 can write T11P1 into
memory bank 11; thread T12 can write T12P1 into memory
bank 4; thread T13 can write T13P1 into memory bank 13;
thread T14 can write T14P1 into memory bank 6; thread T15
can write T15P1 into memory bank 15; and thread T16 can
write T16P1 into memory bank 8.

[0176] This first approach is efficient, as groups of 16
threads of the 128 threads are able to write to the 16 memory
banks in memory 106 in each writing step (i.e. such that all
128 of the P1 values are written over 8 writing steps). This
efficient writing process can then be repeated seven further
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times in order for each of the plurality of threads to write
each of its other seven processed values (i.e. each of P2 to
Pg).

Example 2

[0177] Example 2 can be understood with reference to
FIG. 15B—which shows a plurality of processed values
written to memory 106 using a second approach according
to the principles described herein. The processed values
shown in FIG. 15B are values processed by the plurality of
threads as illustrated in FIGS. 4 and 5—in which threads T1
to T128 each process eight respective values (e.g. pixels P1
to P8) in the initial phase of a separable operation as
described herein.

[0178] In Example 2, the write buffer array used to deter-
mine which memory location in memory 106 each processed
value is to be written to comprises groups of sixteen con-
tiguous value elements corresponding to values of the two-
dimensional array, with one padding element interspersed
between each of said groups. In Example 2, the write buffer
array is a one-dimensional sequence of elements compris-
ing: value elements corresponding to the 8 processed values
to be written by thread T1 (i.e. T1P1, T1P2 . . . T1P8);
followed by value elements corresponding to the 8 pro-
cessed values to be written by thread T2 (i.e. T2P1, T2P2 .
.. T2PB); followed by a padding element; followed by value
elements corresponding to the 8 processed values to be
written by thread T3 (i.e. T3P1, T3P2 . .. T3P8); followed
by value elements corresponding to the 8 processed values
to be written by thread T4 (i.e. T4P1, T4P2 . . . T4P8);
followed by a padding element; and so on through to value
elements corresponding to the 8 processed values to be
written by thread T128 (i.e. T128P1, T128P2 . . . T128P8).
[0179] As described herein, the memory location into
which a thread writes a processed value in step S1306 can
be determined in dependence on a sum of a base memory
address, a writing offset amount and a writing padding
amount. Said sum may be used to determine the element of
the write buffer array to which the processed value to be
written corresponds—where the base memory address is the
first element within that write buffer array. In Example 2, for
a value having a coordinate [i][j][k][m] within a multidi-
mensional array [I][J][K][M], the writing offset amount is
equal to (ixJxKxM)+(GxKxM)+(kxM)+m, and the writing
padding amount is equal to the writing offset amount divided
by 16 (the padding frequency). Said division may be an
integer division.

[0180] FIG. 15B illustrates the contents of the memory
106 when this write buffer array is mapped to the memory
106 such that processed values corresponding to values of
the two-dimensional array are written into the memory 106
in memory locations to which the corresponding value
elements of the write buffer array are mapped, and processed
values corresponding to values of the two-dimensional array
are not written to the memory 106 in memory locations to
which the padding elements of the write buffer array are
mapped. In FIG. 15B, memory locations to which the
padding elements of the write buffer array are mapped are
indicated by “X”. A number of rows of memory locations are
omitted for ease of illustration.

[0181] In Example 2, a respective processed value can be
written into each of the memory banks of the memory (e.g.
memory 106 of FIG. 11) in at least one of the plurality of
writing steps. For example, referring to FIG. 15B, in one
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writing step: thread T1 can write T1P1 into memory bank 1;
thread T2 can write T2P1 into memory bank 9; thread T3 can
write T3P1 into memory bank 2; thread T4 can write T4P1
into memory bank 10; thread T5 can write T5P1 into
memory bank 3; thread T6 can write T6P1 into memory
bank 11; thread T7 can write T7P1 into memory bank 4;
thread T8 can write T8P1 into memory bank 12; thread T9
can write T9P1 into memory bank 5; thread T10 can write
T10P1 into memory bank 13; thread T11 can write T11P1
into memory bank 6; thread T12 can write T12P1 into
memory bank 14; thread T13 can write T13P1 into memory
bank 7; thread T14 can write T14P1 into memory bank 15;
thread T15 can write T15P1 into memory bank 8; and thread
T16 can write T16P1 into memory bank 16.

[0182] This second approach is efficient, as groups of 16
threads of the 128 threads are able to write to the 16 memory
banks in memory 106 in each writing step (i.e. such that all
128 of the P1 values are written over 8 writing steps). This
efficient writing process can then be repeated seven further
times in order for each of the plurality of threads to write
each of its other seven processed values (i.e. each of P2 to
P8).

Example 3

[0183] Example 3 can be understood with reference to
FIG. 15C—which shows a plurality of processed values
written to memory 106 using a third approach according to
the principles described herein. The processed values shown
in FIG. 15C are values processed by the plurality of threads
as illustrated in FIGS. 4 and 5—in which threads T1 to T128
each process eight respective values (e.g. pixels P1 to P8) in
the initial phase of a separable operation as described herein.
[0184] In Example 3, the write buffer array used to deter-
mine which memory location in memory 106 each processed
value is to be written to comprises groups of 32 contiguous
value elements corresponding to values of the two-dimen-
sional array, with one padding element interspersed between
each of said groups. In Example 3, the write buffer array is
a one-dimensional sequence of elements comprising: value
elements corresponding to the 8 processed values to be
written by thread T1 (i.e. T1P1, T1P2 . . . T1P8); followed
by value elements corresponding to the 8 processed values
to be written by thread T2 (i.e. T2P1, T2P2 . . . T2P8);
followed by value elements corresponding to the 8 pro-
cessed values to be written by thread T3 (i.e. T3P1, T3P2 .
.. T3P8); followed by value elements corresponding to the
8 processed values to be written by thread T4 (i.e. T4P1,
T4P2 . . . T4P8); followed by a padding element; followed
by value elements corresponding to the 8 processed values
to be written by thread TS5 (i.e. TSP1, TSP2 . . . T5P8);
followed by value elements corresponding to the 8 pro-
cessed values to be written by thread T6 (i.e. T6P1, T6P2 .
. . T6P8); followed by value elements corresponding to the
8 processed values to be written by thread T7 (i.e. T7P1,
T7P2 ... T7P8); followed by value elements corresponding
to the 8 processed values to be written by thread T8 (i.e.
T8P1, T8P2 ... T8PY); followed by a padding element; and
so on through to value elements corresponding to the 8
processed values to be written by thread T128 (i.e. T128P1,
T128P2 . .. T128P8).

[0185] As described herein, the memory location into
which a thread writes a processed value in step S1306 can
be determined in dependence on a sum of a base memory
address, a writing offset amount and a writing padding
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amount. Said sum may be used to determine the element of
the write buffer array to which the processed value to be
written corresponds—where the base memory address is the
first element within that write buffer array. In Example 3, for
a value having a coordinate [i][j][k][m] within a multidi-
mensional array [I][J][K][M], the writing offset amount is
equal to (ixJxKxM)+(GxKxM)+(kxM)+m, and the writing
padding amount is equal to the writing offset amount divided
by 32 (the padding frequency). Said division may be an
integer division.

[0186] FIG. 15C illustrates the contents of the memory
106 when this write buffer array is mapped to the memory
106 such that processed values corresponding to values of
the two-dimensional array are written into the memory 106
in memory locations to which the corresponding value
elements of the write buffer array are mapped, and processed
values corresponding to values of the two-dimensional array
are not written to the memory 106 in memory locations to
which the padding elements of the write buffer array are
mapped. In FIG. 15C, memory locations to which the
padding elements of the write buffer array are mapped are
indicated by “X”. A number of rows of memory locations are
omitted for ease of illustration.

[0187] In Example 3, a respective processed value can be
written into each of the memory banks of the memory (e.g.
memory 106 of FIG. 11) in at least one of the plurality of
writing steps. For example, referring to FIG. 15C, in one
writing step: thread T1 can write T1P1 into memory bank 1;
thread T2 can write T2P1 into memory bank 9; thread TS can
write TSP1 into memory bank 2; thread T6 can write T6P1
into memory bank 10; thread T9 can write T9P1 into
memory bank 3; thread T10 can write T10P1 into memory
bank 11; thread T13 can write T13P1 into memory bank 4;
thread T14 can write T14P1 into memory bank 12; thread
T17 can write T17P1 into memory bank 5; thread T18 can
write T18P1 into memory bank 13; thread T21 can write
T21P1 into memory bank 6; thread T22 can write T22P1
into memory bank 14; thread T25 can write T25P1 into
memory bank 7; thread T26 can write T26P1 into memory
bank 15; thread T29 can write T29P1 into memory bank 8;
and thread T30 can write T30P1 into memory bank 16.
[0188] This third approach is efficient, as groups of 16
threads of the 128 threads are able to write to the 16 memory
banks in memory 106 in each writing step (i.e. such that all
128 of the P1 values are written over 8 writing steps). This
efficient writing process can then be repeated seven further
times in order for each of the plurality of threads to write
each of its other seven processed values (i.e. each of P2 to
Pg).

Example 4

[0189] Example 4 can be understood with reference to
FIG. 15D—which shows a plurality of processed values
written to memory 106 using a fourth approach according to
the principles described herein. The processed values shown
in FIG. 15D are values processed by the plurality of threads
as illustrated in FIGS. 4 and 5—in which threads T1 to T128
each process eight respective values (e.g. pixels P1 to P8) in
the initial phase of a separable operation as described herein.
[0190] In Example 4, the write buffer array used to deter-
mine which memory location in memory 106 each processed
value is to be written to comprises groups of 16 contiguous
value elements corresponding to values of the two-dimen-
sional array, with one padding element interspersed between
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each of said groups. In Example 4, the write buffer array is
a one-dimensional sequence of elements comprising: value
elements corresponding to the first processed value P1 of
each of threads T1 to T8 of sub-array 1 (i.e. T1P1, T2P1 ..
. T8P1); followed by value elements corresponding to the
second processed value P2 for each of threads T1 to T8 of
sub-array 1 (i.e. T1P2, T2P2 . . . T8P2); followed by a
padding element; followed by value elements corresponding
to the third processed value P3 of each of threads T1 to T8
of'sub-array 1 (i.e. TIP3, T2P3 ... T8P3); followed by value
elements corresponding to the fourth processed value P4 for
each of threads T1 to T8 of sub-array 1 (i.e. T1P4, T2P4 . .
. T8P4); followed by a padding element; and so on through
to value elements corresponding to the eighth processed
value P8 for each of threads T1 to T8 of sub-array 1 (i.e.
T1P8, T2P8 . . . T8PY); followed by a padding element;
followed by value elements corresponding to the first pro-
cessed value P1 of each of threads T9 to T16 of sub-array 2
(i.e. T9P1, T10P1 . . . T16P1); followed by value elements
corresponding to the second processed value P2 of each of
threads T9 to T16 of sub-array 2 (i.e. TOP2, T10P2 . . .
T16P2); followed by a padding element; and so on through
to elements corresponding to the eighth processed value P8
for each of threads T9 to T16 of sub-array 2 (i.e. TOPS,
T10P8 . . . T16P8); followed by a padding element; and so
on through to elements corresponding to the eighth pro-
cessed value P8 for each of threads T121 to T128 of
sub-array 16 (i.e. T121P8, T122P8 . . . T128P8).

[0191] As described herein, the memory location into
which a thread writes a processed value in step S1306 can
be determined in dependence on a sum of a base memory
address, a writing offset amount and a writing padding
amount. Said sum may be used to determine the element of
the write buffer array to which the processed value to be
written corresponds—where the base memory address is the
first element within that write buffer array. In Example 4, for
a value having a coordinate [i][j][k][m] within a multidi-
mensional array [I][J][K][M], the writing offset amount is
equal to (ixJIxKxM)+(jxKxM)+(mxK)+k, and the writing
padding amount is equal to the writing offset amount divided
by 16 (the padding frequency). Said division may be an
integer division.

[0192] FIG. 15D illustrates the contents of the memory
106 when this write buffer array is mapped to the memory
106 such that processed values corresponding to values of
the two-dimensional array are written into the memory 106
in memory locations to which the corresponding value
elements of the write buffer array are mapped, and processed
values corresponding to values of the two-dimensional array
are not written to the memory 106 in memory locations to
which the padding elements of the write buffer array are
mapped. In FIG. 15D, memory locations to which the
padding elements of the write buffer array are mapped are
indicated by “X”. A number of rows of memory locations are
omitted for ease of illustration.

[0193] In Example 4, a respective processed value can be
written into each of the memory banks of the memory (e.g.
memory 106 of FIG. 11) in at least one of the plurality of
writing steps. For example, referring to FIG. 15D, in one
writing step: thread T1 can write T1P1 into memory bank 1;
thread T2 can write T2P1 into memory bank 2; thread T3 can
write T3P1 into memory bank 3; thread T4 can write T4P1
into memory bank 4; thread TS can write T5P1 into memory
bank 5; thread T6 can write T6P1 into memory bank 6;
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thread T7 can write T7P1 into memory bank 7; thread T8 can
write T8P1 into memory bank 8; thread T17 can write T17P1
into memory bank 9; thread T18 can write T18P1 into
memory bank 10; thread T19 can write T19P1 into memory
bank 11; thread T20 can write T20P1 into memory bank 12;
thread T21 can write T21P1 into memory bank 13; thread
T22 can write T22P1 into memory bank 14; thread T23 can
write T23P1 into memory bank 15; and thread T24 can write
T24P1 into memory bank 16.

[0194] This fourth approach is efficient, as groups of 16
threads of the 128 threads are able to write to the 16 memory
banks in memory 106 in each writing step (i.e. such that all
128 of the P1 values are written over 8 writing steps). This
efficient writing process can then be repeated seven further
times in order for each of the plurality of threads to write
each of its other seven processed values (i.e. each of P2 to
Pg).

[0195] Returning to FIG. 13, in step S1308, for each of the
plurality of sub-arrays, each of the plurality of threads read
a respective second plurality of processed values from the
memory 106 over a plurality of reading steps, said second
plurality of processed values corresponding to a perpendicu-
lar one-dimensional sequence of values of a sub-array of
values in a transposed position within the array of values
relative to said sub-array of values. This can be understood
with reference to FIGS. 4, 8, 14 and Table 1.

[0196] As shownin FIG. 14, were the array of values 1400
to be transposed, it would effectively be reflected about
diagonal line 1402. The sub-arrays intersected by diagonal
line 1402 (i.e. sub-arrays 1, 6, 11 and 16 shown in FIG. 14)
would not change position during that transpose (although
their rows and columns of values would be transposed). So,
for example, for sub-array 1, the sub-array in a transposed
position within the array 1400 is sub-array 1. For the
sub-arrays not intersected by diagonal line 1402, their posi-
tion would change during a transpose of array 1400. So, for
example, for sub-array 2, the sub-array in a transposed
position within the array 1400 is sub-array 5. Table 1 defines
the sub-array in a transposed position relative to each of the
sub-arrays within array 1400.

TABLE 1
Sub-array Sub-array of values in the
of values transposed position
1 1
2 5
3 9
4 13
5 2
6 6
7 10
8 14
9 3
10 7
11 11
12 15
13 4
14 8
15 12
16 16

[0197] So, in an example, in step S1306, with reference to
FIGS. 4 and 14, thread T1 writes eight processed values (e.g.
T1P1, T1P2, T1P3, T1P4, TIPS, T1P6, T1P7 and T1Pg)
corresponding to the eight values within a one-dimensional
sequence of values (e.g. a row) of sub-array 1 for which it
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performed the initial phase of the separable operation. In
step S1308, with reference to FIGS. 4, 8 and 14, thread T1
reads eight processed values (e.g. T1P1, T2P1, T3P1, T4P1,
T5P1, T6P1, T7P1 and T8P1) corresponding to the eight
values within a perpendicular one-dimensional sequence of
values (e.g. a column) of sub-array 1 (the sub-array in a
transposed position within the array relative to sub-array 1)
for which it will perform the subsequent phase of the
separable operation.

[0198] In another example, in step S1306, with reference
to FIGS. 4 and 14, thread T9 writes eight processed values
(e.g. TOP1, T9P2, TIP3, T9P4, TIP3, T9P6, T9P7 and
TOP8) corresponding to the eight values within a one-
dimensional sequence of values (e.g. a row) of sub-array 2
for which it performed the initial phase of the separable
operation. In step S1308, with reference to FIGS. 4, 8 and
14, thread T9 reads eight processed values (e.g. T33P1,
T34P1, T35P1, T36P1, T37P1, T38P1, T39P1 and T40P1)
corresponding to the eight values within a perpendicular
one-dimensional sequence of values (e.g. a column) of
sub-array 5 (the sub-array in a transposed position within the
array relative to sub-array 2) for which it will perform the
subsequent phase of the separable operation.

[0199] For conciseness, the processed values written by
each of the other threads shown in FIG. 4 for each of the
sub-arrays shown in FIG. 14 after performing the initial
phase of the separable operation, and the processed values
read by each of the other threads shown in FIG. 8 prior to
performing the subsequent phase of the separable operation
will not be exhaustively listed here. By referring to FIGS. 4
and 14, the skilled person would have no difficulty deter-
mining which processed values are written for each of the
sub-arrays by each of the other threads. The skilled person
would have no difficulty determining which processed val-
ues are read by each of the other threads shown in FIG. 8 by
comparing FIGS. 4 and 8 as described herein.

[0200] The memory bank from which a thread is to read a
processed value can be determined in dependence on a read
buffer array. The read buffer array used in step S1308 may
have the same properties as the write buffer array used in
step S1306—as described herein. For example, the read
buffer array may be a one-dimensional array. The read buffer
array may have a number of elements greater than the
number of elements in the two-dimensional array of values.
The read buffer array may comprise groups of contiguous
value elements corresponding to values of the two-dimen-
sional array, and padding elements interspersed between
said groups. The relative number of value and padding
elements in the read buffer array used in step S1308 may
correspond to the relative number of value and padding
elements in the write buffer array used in step S1306.
[0201] The contents of memory can be mapped to the
structure of the read buffer array such that processed values
corresponding to values of the two-dimensional array are
read from the memory from memory locations that are
mapped onto the value elements of the read buffer array, and
values are not read from the memory from memory locations
that are mapped onto the padding elements of the read buffer
array. For example, the contents of the memory 106 of FIG.
11 can be mapped to the structure of the read buffer array by
mapping the first row of 16 memory locations of the memory
106 to the first 16 elements (e.g. the 1 to 16” values) in the
read buffer array, mapping the second row of 16 memory
locations of the memory 106 to the second 16 elements (e.g.
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the 17 to 32" values) in the read buffer array, and so on.
It is to be understood that the memory 106 need not be
mapped to the read buffer array starting from the first
(“top-left”) memory location of the memory 106. Rather, the
memory 106 can be mapped to the read buffer array starting
from the first memory location to which a processed value
was written in step S1306.

[0202] As described herein, each value in the array of
values may be assigned a coordinate [i][j][k][m]—which
defines its position within the multidimensional array [I][J]
[K][M] as defined herein. In general, a thread that, in step
S1306, wrote a processed value having the coordinate [i][j]
[k][m] within the multidimensional array [I][J][K][M] to
memory can, in step S1308, read in the processed value
having the transposed coordinate (e.g. [j][i][m][k]) within
the multidimensional array [I][J][K][M] from memory. For
example, as described herein, in step S1306 thread T1 writes
processed values: T1P1 having coordinate [0][0][0][O];
T1P2 having coordinate [0][0][0][1]; T1P3 having coordi-
nate [0][0][0][2]; T1P4 having coordinate [0][0][0][3]; T1P5
having coordinate [0][0][0][4]; T1P6 having coordinate [O]
[0][0][5]; T1P7 having coordinate [0][0][0][6]; and T1P8
having coordinate [0][0][0][7]. As described herein, in step
S1308, thread T1 reads processed values: T1P1 having
coordinate [0][0][0][0]; T2P1 having coordinate [0][0][1]
[0]; T3P1 having coordinate [0][0][2][0]; T4P1 having coor-
dinate [O][0][3][0]; T5P1 having coordinate [0][0][4][0];
T6P1 having coordinate [0][0][5][0]; T7P1 having coordi-
nate [0][0][6][0]; and T8P1 having coordinate [0][0][7][O].
[0203] The memory location from which a thread reads a
processed value in step S1308 can be determined in depen-
dence on a base memory address, a reading offset amount
and a reading padding amount. The reading offset amount
and the reading padding amount may be dependent on the
position (e.g. coordinate) of the value within the array of
values to which the processed value that is to be read
corresponds. The memory location from which a thread is to
read a processed value may be determined in dependence on
a sum of the base memory address, the reading offset amount
and the reading padding amount. Said sum may be used to
determine the element of the read buffer array to which the
processed value to be read corresponds. Non-limiting
examples of suitable reading offset amounts are provided
below. The reading padding amount can be equal to the
reading offset amount divided by a padding frequency. Said
division may be an integer division. The padding frequency
used in step S1308 may be equal to the padding frequency
used in step S1306—as described herein.

[0204] It is to be understood that the read buffer array may
exist in a physical memory (e.g. may be implemented in
registers in register bank 110) such that the threads cause
processed values from the memory to be physically read into
that read buffer array, before the contents of that read buffer
array are transferred into the respective one or more registers
accessible by each thread. Alternatively, the read buffer
array may be a construct that is conceptually used by the
threads to determine which memory locations in memory
those threads are to read values from, where the processed
values are physically read directly from the determined
memory locations into the respective one or more registers
accessible by each thread.

[0205] In step S1308, by applying the principles described
herein, a respective processed value is read from each of the
memory banks of the memory (e.g. memory 106 of FIG. 11)
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in at least one of the plurality of reading steps. In particular,
by applying the principles described herein, a respective
processed value may be read from each of the memory banks
of the memory (e.g. memory 106 of FIG. 11) in each of the
plurality of reading steps. That is, excessive bank conflicts
can be avoided during reading in step S1308. This can be
understood by returning to the four specific examples
described above with reference to FIGS. 15A to 15D.

Example 1

[0206] The relative number of value and padding elements
in the read buffer array used in Example 1 in step S1308 may
correspond to the relative number of value and padding
elements in the write buffer array used in Example 1 in step
S1306, as described herein. In Example 1, the contents of the
memory 106 shown in FIG. 15A can be mapped to the read
buffer array. The memory location from which a thread reads
a processed value in step S1308 can be determined in
dependence on a sum of a base memory address, a writing
offset amount and a writing padding amount. Said sum may
be used to determine the element of the read buffer array
from which the processed value to be read corresponds—
where the base memory address is the first element within
that read buffer array. As described herein, in general, a
thread that, in step S1306, wrote a processed value having
the coordinate [i][j][k][m] to memory can, in step S1308,
read in the processed value having the transposed coordinate
(e.g. [jl[i][m][k]) from memory. Thus, in Example 1, the
reading offset amount used by a thread that, in step S1306,
wrote a processed value having the coordinate [i][j][k][m],
is equal to (xIxKxM)+(ixKxM)+(mxM)+k, and the reading
padding amount is equal to the reading offset amount
divided by 8 (the padding frequency). Said division may be
an integer division.

[0207] In Example 1, a respective processed value can be
read from each of the memory banks of the memory (e.g.
memory 106 of FIG. 11) in at least one of the plurality of
reading steps. For example, referring to FIG. 15A, in one
reading step: thread T1 can read T1P1 from memory bank 1;
thread T2 can read T1P2 from memory bank 2; thread T3
can read T1P3 from memory bank 3; thread T4 can read
T1P4 from memory bank 4; thread T5 can read T1P5 from
memory bank 5; thread T6 can read T1P6 from memory
bank 6; thread T7 can read T1P7 from memory bank 7;
thread T8 can read T1P8 from memory bank 8; thread T33
can read T9P1 from memory bank 9; thread T34 can read
TO9P2 from memory bank 10; thread T35 can read T9P3 from
memory bank 11; thread T36 can read T9P4 from memory
bank 12; thread T37 can read T9P5 from memory bank 13;
thread T38 can read T9P6 from memory bank 14; thread T39
can read TOP7 from memory bank 15; and thread T40 can
read TOP8 from memory bank 16. This first approach is
efficient, as groups of 16 threads of the 128 threads are able
to read from the 16 memory banks in memory 106 in each
reading step (i.e. such that all 128 of the threads can read in
one respective processed value over 8 reading steps). This
efficient reading process can then be repeated seven further
times in order for each of the plurality of threads to read each
of the other respective seven processed values assigned to it.

Example 2

[0208] The relative number of value and padding elements
in the read buffer array used in Example 2 in step S1308 may
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correspond to the relative number of value and padding
elements in the write buffer array used in Example 2 in step
S1306, as described herein. In Example 2, the contents of the
memory 106 shown in FIG. 15B can be mapped to the read
buffer array. The memory location from which a thread reads
a processed value in step S1308 can be determined in
dependence on a sum of a base memory address, a writing
offset amount and a writing padding amount. Said sum may
be used to determine the element of the read buffer array
from which the processed value to be read corresponds—
where the base memory address is the first element within
that read buffer array. As described herein, in general, a
thread that, in step S1306, wrote a processed value having
the coordinate [i][j][k][m] to memory can, in step S1308,
read in the processed value having the transposed coordinate
(e.g. [jl[i][m][k]) from memory. Thus, in Example 2, the
reading offset amount used by a thread that, in step S1306,
wrote a processed value having the coordinate [i][j][k][m],
is equal to (jxIxKxM)+(ixKxM)+(mxM)+k, and the reading
padding amount is equal to the reading offset amount
divided by 16 (the padding frequency). Said division may be
an integer division.

[0209] In Example 2, a respective processed value can be
read from each of the memory banks of the memory (e.g.
memory 106 of FIG. 11) in at least one of the plurality of
reading steps. For example, referring to FIG. 15B, in one
reading step: thread T1 can read T1P1 from memory bank 1;
thread T2 can read T1P2 from memory bank 2; thread T3
can read T1P3 from memory bank 3; thread T4 can read
T1P4 from memory bank 4; thread T5 can read T1P5 from
memory bank 5; thread T6 can read T1P6 from memory
bank 6; thread T7 can read T1P7 from memory bank 7;
thread T8 can read T1P8 from memory bank 8; thread T65
can read T17P1 from memory bank 9; thread T66 can read
T17P2 from memory bank 10; thread T67 can read T17P3
from memory bank 11; thread T68 can read T17P4 from
memory bank 12; thread T69 can read T17P5 from memory
bank 13; thread T70 can read T17P6 from memory bank 14;
thread T71 can read T17P7 from memory bank 15; and
thread T72 can read T17P8 from memory bank 16.

[0210] This second approach is efficient, as groups of 16
threads of the 128 threads are able to read from the 16
memory banks in memory 106 in each reading step (i.e. such
that all 128 of the threads can read in one respective
processed value over 8 reading steps). This efficient reading
process can then be repeated seven further times in order for
each of the plurality of threads to read each of the respective
other seven processed values assigned to it.

Example 3

[0211] The relative number of value and padding elements
in the read buffer array used in Example 3 in step S1308 may
correspond to the relative number of value and padding
elements in the write buffer array used in Example 3 in step
S1306, as described herein. In Example 3, the contents of the
memory 106 shown in FIG. 15C can be mapped to the read
buffer array. The memory location from which a thread reads
a processed value in step S1308 can be determined in
dependence on a sum of a base memory address, a writing
offset amount and a writing padding amount. Said sum may
be used to determine the element of the read buffer array
from which the processed value to be read corresponds—
where the base memory address is the first element within
that read buffer array. As described herein, in general, a
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thread that, in step S1306, wrote a processed value having
the coordinate [i][j][k][m] to memory can, in step S1308,
read in the processed value having the transposed coordinate
(e.g. [jl[i][m][k]) from memory. Thus, in Example 3, the
reading offset amount used by a thread that, in step S1306,
wrote a processed value having the coordinate [i] [j][k][m],
is equal to (xIxKxM)+(ixKxM)+(mxM)+k, and the reading
padding amount is equal to the reading offset amount
divided by 32 (the padding frequency). Said division may be
an integer division.

[0212] In Example 3, a respective processed value can be
read from each of the memory banks of the memory (e.g.
memory 106 of FIG. 11) in at least one of the plurality of
reading steps. For example, referring to FIG. 15C, in one
reading step: thread T1 can read T1P1 from memory bank 1;
thread T2 can read T1P2 from memory bank 2; thread T3
can read T1P3 from memory bank 3; thread T4 can read
T1P4 from memory bank 4; thread T5 can read T1P5 from
memory bank 5; thread T6 can read T1P6 from memory
bank 6; thread T7 can read T1P7 from memory bank 7;
thread T8 can read T1P8 from memory bank 8; thread T9
can read T33P1 from memory bank 9; thread T10 can read
T33P2 from memory bank 10; thread T11 can read T33P3
from memory bank 11; thread T12 can read T33P4 from
memory bank 12; thread T13 can read T33P5 from memory
bank 13; thread T14 can read T33P6 from memory bank 14;
thread T15 can read T33P7 from memory bank 15; and
thread T16 can read T33P8 from memory bank 16.

[0213] This third approach is efficient, as groups of 16
threads of the 128 threads are able to read from the 16
memory banks in memory 106 in each reading step (i.e. such
that all 128 of the threads can read in one respective
processed value over 8 reading steps). This efficient reading
process can then be repeated seven further times in order for
each of the plurality of threads to read each of the respective
other seven processed values assigned to it.

Example 4

[0214] The relative number of value and padding elements
in the read buffer array used in Example 4 in step S1308 may
correspond to the relative number of value and padding
elements in the write buffer array used in Example 4 in step
S1306, as described herein. In Example 4, the contents of the
memory 106 shown in FIG. 15D can be mapped to the read
buffer array. The memory location from which a thread reads
a processed value in step S1308 can be determined in
dependence on a sum of a base memory address, a writing
offset amount and a writing padding amount. Said sum may
be used to determine the element of the read buffer array
from which the processed value to be read corresponds—
where the base memory address is the first element within
that read buffer array. As described herein, in general, a
thread that, in step S1306, wrote a processed value having
the coordinate [i][j][k][m] to memory can, in step S1308,
read in the processed value having the transposed coordinate
(e.g. [jI[i][m][k]) from memory. Thus, in Example 4, the
reading offset amount used by a thread that, in step S1306,
wrote a processed value having the coordinate [i][j][k][m],
is equal to (jxJxKxM)+(ixKxM)+(kxK)+m, and the reading
padding amount is equal to the reading offset amount
divided by 16 (the padding frequency). Said division may be
an integer division.

[0215] In Example 4, a respective processed value can be
read from each of the memory banks of the memory (e.g.
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memory 106 of FIG. 11) in at least one of the plurality of
reading steps. For example, referring to FIG. 15D, in one
reading step: thread T1 can read T1P1 from memory bank 1;
thread T2 can read T1P2 from memory bank 9; thread T3
can read T1P3 from memory bank 2; thread T4 can read
T1P4 from memory bank 10; thread T5 can read T1P5 from
memory bank 3; thread T6 can read T1P6 from memory
bank 11; thread T7 can read T1P7 from memory bank 4;
thread T8 can read T1P8 from memory bank 12; thread T33
can read T9P1 from memory bank 5; thread T34 can read
TI9P2 from memory bank 13; thread T35 can read TIP3 from
memory bank 6; thread T36 can read T9P4 from memory
bank 14; thread T37 can read T9P5 from memory bank 7;
thread T38 can read TOP6 from memory bank 15; thread T39
can read T9P7 from memory bank 8; and thread T40 can
read T9P8 from memory bank 16.

[0216] This fourth approach is efficient, as groups of 16
threads of the 128 threads are able to read from the 16
memory banks in memory 106 in each reading step (i.e. such
that all 128 of the threads can read in one respective
processed value over 8 reading steps). This efficient reading
process can then be repeated seven further times in order for
each of the plurality of threads to read each of the respective
other seven processed values assigned to it.

[0217] Returning to FIG. 13, in step S1310, for each of the
plurality of sub-arrays, using the plurality of threads, a
subsequent phase of the separable operation is performed for
the plurality of processed values read by the plurality of
threads in order to generate a respective output value for
each value of the sub-array of values in the transposed
position. Step S1310 can be performed by performing steps
S1004 to S1010 as described herein with reference to FIG.
10. For example: a subsequent phase of the separable
operation can be performed for sub-array 1 as shown in FIG.
14 by using threads T1 to T8 as shown in FIG. 8; a
subsequent phase of the separable operation can be per-
formed for sub-array 2 as shown in FIG. 14 by using threads
T33 to T40 as shown in FIG. 8; a subsequent phase of the
separable operation can be performed for sub-array 3 as
shown in FIG. 14 by using threads T65 to T72 as shown in
FIG. 8; a subsequent phase of the separable operation can be
performed for sub-array 4 as shown in FIG. 14 by using
threads T97 to T104 as shown in FIG. 8; and so on through
to a subsequent phase of the separable operation can be
performed for sub-array 16 as shown in FIG. 14 by using
threads T121 to T128 as shown in FIG. 8.

[0218] After performing the subsequent phase of the
operation, each of the plurality of threads (e.g. each thread
shown in FIG. 8) can write the section of output values that
it has generated to memory (e.g. global memory 108), such
that an output value is written to memory (e.g. global
memory 108) corresponding to each value of the array of
values on which the operation is to be performed. Said
writes can also be performed using the principles described
herein, e.g. so as to minimise the number of bank conflicts
caused when writing the output values to global memory
108.

[0219] The output values written to memory (e.g. global
memory 108) corresponding to each value of the array of
values can be the output of the method of FIG. 13.

[0220] In the illustrative example described above with
reference to FIGS. 4, 8, 13 and 14, the initial phase of the
separable operation in step S1304 is performed “horizon-
tally”, and the subsequent phase of the separable operation
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in step S1310 is performed “vertically”. It is to be under-
stood that, alternatively, the initial phase of the separable
operation in step S1304 could be performed “vertically”,
and the subsequent phase of the separable operation in step
S1310 could be performed “horizontally”. In other words, in
the illustrative example described above with reference to
FIGS. 4, 8, 13 and 14, in step S1306 the one dimensional
sequence of values of each sub-array of values is a row of
values of that sub-array of values and in step S1308 the
perpendicular one dimensional sequence of values of each
sub-array of values in the transposed position is a column of
values of that sub-array of values in the transposed position.
It is to be understood that, alternatively, is step S1306 the
one dimensional sequence of values of each sub-array of
values could be a column of values of said sub-array of
values and in step S1308 the perpendicular one dimensional
sequence of values of each sub-array of values in the
transposed position could be a row of values of that sub-
array of values in the transposed position.

[0221] In the illustrative example of the method described
herein with reference to FIG. 13, in each phase of the
separable operation (e.g. in steps S1304 and S1310), each
one-dimensional sequence of values of the two-dimensional
array can be divided into a plurality of sections of values that
are assigned to each of a respective plurality of threads. For
example, referring to FIG. 5, the first row of values 500 of
the array of values 400 can be divided into four sections that
can be assigned to threads T1, T9, T17 and T25 in the initial
phase of the operation, and, referring to FIG. 9, the pro-
cessed values corresponding to the first column of values
900 of the array of values 800 can be divided into four
sections that can be assigned to threads T1, T9, T17 and T25
in the subsequent phase of the operation. In this illustrative
example, during each phase of the operation, adjacent
threads can cooperate so as to complete each phase of the
one-dimensional operation—as described herein with refer-
ence to steps S1004 to S1010 of FIG. 10. It is to be
understood that this need not be the case in the method
described herein with reference to FIG. 13. That is, in an
alternative example, in each phase of the separable operation
(e.g. in steps S1304 and S1310), an entire one-dimensional
sequence of values of the two-dimensional array can be
assigned to each of a plurality of threads. For example,
referring to FIG. 5, the entire first row of values 500 of the
array of values 400 could be assigned to a single thread in
the initial phase of the operation (i.e. in step S1304), and,
referring to FIG. 9, the processed values corresponding to
the entire first column of values 900 of the array of values
800 could be assigned to that single thread in the subsequent
phase of the operation (i.e. in step S1304). In this alternative
example, that thread need not cooperate with another thread
in order to complete each phase of the operation—as it will
have access within its registers to all of the values of the
one-dimensional sequence of values to be operated on in
each phase of the operation and so can independently
complete each phase of the operation (e.g. a one-dimen-
sional Gaussian operation described herein with reference to
FIG. 2).

[0222] FIG. 16 shows a computer system in which the
processing unit described herein may be implemented. The
computer system comprises a central processing unit (CPU)
1602, a graphics processing unit (GPU) 100, a memory 108,
a neural network accelerator (NNA) 1608 and other devices
1614, such as a display 1616, speakers 1618 and a camera
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1622. The array of values (e.g. the images and/or audio
signals) input to the method described herein may be gen-
erated by one or more of said other devices 1614—e.g. the
camera 1622 and/or a microphone (not shown in FIG. 14).
The output of the method described herein (e.g. the filtered
images and/or filtered audio signals) may be provided to one
or more of said other devices 1614—e.g. the display 1616
and/or the speakers 1618. One or more processing elements
102 are implemented on the GPU 100. In other examples,
one or more of the depicted components may be omitted
from the computer system. The components of the computer
system can communicate with each other via a communi-
cations bus 1620.

[0223] The graphics processing unit of FIGS. 1A and 1B,
and the computer system of FIG. 16, are shown as compris-
ing a number of functional blocks. This is schematic only
and is not intended to define a strict division between
different logic elements of such entities. Each functional
block may be provided in any suitable manner. It is to be
understood that intermediate values described herein as
being formed by a processing unit need not be physically
generated by the processing unit at any point and may
merely represent logical values which conveniently describe
the processing performed by the processing unit between its
input and output.

[0224] The processing unit described herein may be
embodied in hardware on an integrated circuit. The process-
ing unit described herein may be configured to perform any
of the methods described herein. Generally, any of the
functions, methods, techniques or components described
above can be implemented in software, firmware, hardware
(e.g., fixed logic circuitry), or any combination thereof. The
terms “module,” “functionality,” “component”, “element”,
“unit”, “block™ and “logic” may be used herein to generally
represent software, firmware, hardware, or any combination
thereof. In the case of a software implementation, the
module, functionality, component, element, unit, block or
logic represents program code that performs the specified
tasks when executed on a processor. The algorithms and
methods described herein could be performed by one or
more processors executing code that causes the processor(s)
to perform the algorithms/methods. Examples of a com-
puter-readable storage medium include a random-access
memory (RAM), read-only memory (ROM), an optical disc,
flash memory, hard disk memory, and other memory devices
that may use magnetic, optical, and other techniques to store
instructions or other data and that can be accessed by a
machine.

[0225] The terms computer program code and computer
readable instructions as used herein refer to any kind of
executable code for processors, including code expressed in
a machine language, an interpreted language or a scripting
language. Executable code includes binary code, machine
code, bytecode, code defining an integrated circuit (such as
a hardware description language or netlist), and code
expressed in a programming language code such as C, Java
or OpenCL. Executable code may be, for example, any kind
of software, firmware, script, module or library which, when
suitably executed, processed, interpreted, compiled,
executed at a virtual machine or other software environment,
cause a processor of the computer system at which the
executable code is supported to perform the tasks specified
by the code.
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[0226] A processor, computer, or computer system may be
any kind of device, machine or dedicated circuit, or collec-
tion or portion thereof, with processing capability such that
it can execute instructions. A processor may be or comprise
any kind of general purpose or dedicated processor, such as
a CPU, GPU, NNA, System-on-chip, state machine, media
processor, an application-specific integrated circuit (ASIC),
a programmable logic array, a field-programmable gate
array (FPGA), or the like. A computer or computer system
may comprise one or more processors.

[0227] It is also intended to encompass software which
defines a configuration of hardware as described herein, such
as HDL (hardware description language) software, as is used
for designing integrated circuits, or for configuring program-
mable chips, to carry out desired functions. That is, there
may be provided a computer readable storage medium
having encoded thereon computer readable program code in
the form of an integrated circuit definition dataset that when
processed (i.e. run) in an integrated circuit manufacturing
system configures the system to manufacture a processing
unit configured to perform any of the methods described
herein, or to manufacture a processing unit comprising any
apparatus described herein. An integrated circuit definition
dataset may be, for example, an integrated circuit descrip-
tion.

[0228] Therefore, there may be provided a method of
manufacturing, at an integrated circuit manufacturing sys-
tem, a processing unit as described herein. Furthermore,
there may be provided an integrated circuit definition dataset
that, when processed in an integrated circuit manufacturing
system, causes the method of manufacturing a processing
unit to be performed.

[0229] An integrated circuit definition dataset may be in
the form of computer code, for example as a netlist, code for
configuring a programmable chip, as a hardware description
language defining hardware suitable for manufacture in an
integrated circuit at any level, including as register transfer
level (RTL) code, as high-level circuit representations such
as Verilog or VHDL, and as low-level circuit representations
such as OASIS® and GDSII. Higher level representations
which logically define hardware suitable for manufacture in
an integrated circuit (such as RTL) may be processed at a
computer system configured for generating a manufacturing
definition of an integrated circuit in the context of a software
environment comprising definitions of circuit elements and
rules for combining those elements in order to generate the
manufacturing definition of an integrated circuit so defined
by the representation. As is typically the case with software
executing at a computer system so as to define a machine,
one or more intermediate user steps (e.g. providing com-
mands, variables etc.) may be required in order for a
computer system configured for generating a manufacturing
definition of an integrated circuit to execute code defining an
integrated circuit so as to generate the manufacturing defi-
nition of that integrated circuit.

[0230] An example of processing an integrated circuit
definition dataset at an integrated circuit manufacturing
system so as to configure the system to manufacture a
processing unit will now be described with respect to FIG.
17.

[0231] FIG. 17 shows an example of an integrated circuit
(IC) manufacturing system 1702 which is configured to
manufacture a processing unit as described in any of the
examples herein. In particular, the IC manufacturing system
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1702 comprises a layout processing system 1704 and an
integrated circuit generation system 1706. The IC manufac-
turing system 1702 is configured to receive an IC definition
dataset (e.g. defining a processing unit as described in any of
the examples herein), process the IC definition dataset, and
generate an IC according to the IC definition dataset (e.g.
which embodies a processing unit as described in any of the
examples herein). The processing of the IC definition dataset
configures the IC manufacturing system 1702 to manufac-
ture an integrated circuit embodying a processing unit as
described in any of the examples herein.

[0232] The layout processing system 1704 is configured to
receive and process the IC definition dataset to determine a
circuit layout. Methods of determining a circuit layout from
an IC definition dataset are known in the art, and for example
may involve synthesising RTL code to determine a gate level
representation of a circuit to be generated, e.g. in terms of
logical components (e.g. NAND, NOR, AND, OR, MUX
and FLIP-FLOP components). A circuit layout can be deter-
mined from the gate level representation of the circuit by
determining positional information for the logical compo-
nents. This may be done automatically or with user involve-
ment in order to optimise the circuit layout. When the layout
processing system 1704 has determined the circuit layout it
may output a circuit layout definition to the IC generation
system 1706. A circuit layout definition may be, for
example, a circuit layout description.

[0233] The IC generation system 1706 generates an IC
according to the circuit layout definition, as is known in the
art. For example, the IC generation system 1706 may
implement a semiconductor device fabrication process to
generate the IC, which may involve a multiple-step
sequence of photo lithographic and chemical processing
steps during which electronic circuits are gradually created
on a wafer made of semiconducting material. The circuit
layout definition may be in the form of a mask which can be
used in a lithographic process for generating an IC according
to the circuit definition. Alternatively, the circuit layout
definition provided to the IC generation system 1706 may be
in the form of computer-readable code which the IC gen-
eration system 1706 can use to form a suitable mask for use
in generating an IC.

[0234] The different processes performed by the IC manu-
facturing system 1702 may be implemented all in one
location, e.g. by one party. Alternatively, the IC manufac-
turing system 1702 may be a distributed system such that
some of the processes may be performed at different loca-
tions, and may be performed by different parties. For
example, some of the stages of: (i) synthesising RTL code
representing the IC definition dataset to form a gate level
representation of a circuit to be generated, (ii) generating a
circuit layout based on the gate level representation, (iii)
forming a mask in accordance with the circuit layout, and
(iv) fabricating an integrated circuit using the mask, may be
performed in different locations and/or by different parties.
[0235] In other examples, processing of the integrated
circuit definition dataset at an integrated circuit manufac-
turing system may configure the system to manufacture a
processing unit without the IC definition dataset being
processed so as to determine a circuit layout. For instance,
an integrated circuit definition dataset may define the con-
figuration of a reconfigurable processor, such as an FPGA,
and the processing of that dataset may configure an IC
manufacturing system to generate a reconfigurable proces-
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sor having that defined configuration (e.g. by loading con-
figuration data to the FPGA).

[0236] In some embodiments, an integrated circuit manu-
facturing definition dataset, when processed in an integrated
circuit manufacturing system, may cause an integrated cir-
cuit manufacturing system to generate a device as described
herein. For example, the configuration of an integrated
circuit manufacturing system in the manner described above
with respect to FIG. 17 by an integrated circuit manufac-
turing definition dataset may cause a device as described
herein to be manufactured.

[0237] In some examples, an integrated circuit definition
dataset could include software which runs on hardware
defined at the dataset or in combination with hardware
defined at the dataset. In the example shown in FIG. 17, the
IC generation system may further be configured by an
integrated circuit definition dataset to, on manufacturing an
integrated circuit, load firmware onto that integrated circuit
in accordance with program code defined at the integrated
circuit definition dataset or otherwise provide program code
with the integrated circuit for use with the integrated circuit.
[0238] The implementation of concepts set forth in this
application in devices, apparatus, modules, and/or systems
(as well as in methods implemented herein) may give rise to
performance improvements when compared with known
implementations. The performance improvements may
include one or more of increased computational perfor-
mance, reduced latency, increased throughput, and/or
reduced power consumption. During manufacture of such
devices, apparatus, modules, and systems (e.g. in integrated
circuits) performance improvements can be traded-off
against the physical implementation, thereby improving the
method of manufacture. For example, a performance
improvement may be traded against layout area, thereby
matching the performance of a known implementation but
using less silicon. This may be done, for example, by reusing
functional blocks in a serialised fashion or sharing func-
tional blocks between elements of the devices, apparatus,
modules and/or systems. Conversely, concepts set forth in
this application that give rise to improvements in the physi-
cal implementation of the devices, apparatus, modules, and
systems (such as reduced silicon area) may be traded for
improved performance. This may be done, for example, by
manufacturing multiple instances of a module within a
predefined area budget.

[0239] The applicant hereby discloses in isolation each
individual feature described herein and any combination of
two or more such features, to the extent that such features or
combinations are capable of being carried out based on the
present specification as a whole in the light of the common
general knowledge of a person skilled in the art, irrespective
of whether such features or combinations of features solve
any problems disclosed herein. In view of the foregoing
description it will be evident to a person skilled in the art that
various modifications may be made within the scope of the
invention.

What is claimed is:

1. A computer-implemented method of performing a
separable operation on a two-dimensional array of values at
a processing unit comprising a memory, the memory com-
prising a plurality of memory banks, wherein in each writing
or reading step each memory bank can be written into or
read from by only one respective thread, the method com-
prising:

Jul. 11, 2024

dividing the two-dimensional array of values into a plu-

rality of two-dimensional sub-arrays of values;

for each of the plurality of sub-arrays:

performing, using a plurality of threads, an initial phase
of the separable operation for said sub-array of
values in order to generate a respective processed
value for each value of said sub-array of values;

each of the plurality of threads writing a respective first
plurality of processed values to the memory over a
plurality of writing steps, said first plurality of pro-
cessed values corresponding to a one-dimensional
sequence of values of said sub-array of values;

each of the plurality of threads reading a respective
second plurality of processed values from the
memory over a plurality of reading steps, said sec-
ond plurality of processed values corresponding to a
perpendicular one-dimensional sequence of values
of a sub-array of values in a transposed position
within the array of values relative to said sub-array
of values; and

performing, using the plurality of threads, a subsequent
phase of the separable operation for the plurality of
processed values read by the plurality of threads in
order to generate a respective output value for each
value of the sub-array of values in the transposed
position;

wherein a respective processed value is written into each

of the memory banks of the memory in at least one of
the plurality of writing steps, and a respective pro-
cessed value is read from each of the memory banks of
the memory in at least one of the plurality of reading
steps.

2. The method of claim 1, wherein the memory bank into
which a processed value is to be written is determined in
dependence on a write buffer array having a number of
elements greater than the number of elements in the two-
dimensional array of values.

3. The method of claim 2, wherein the write buffer array
comprises:

value elements corresponding to values of the two-dimen-

sional array; and

padding elements.

4. The method of claim 3, wherein the padding elements
correspond to memory padding.

5. The method of claim 3, wherein the write buffer array
comprises groups of contiguous value elements correspond-
ing to values of the two-dimensional array, and padding
elements interspersed between said groups.

6. The method of claim 5, wherein the number of value
elements in each group is (i) equal to, (ii) a multiple of, or
(iii) a factor of the number of memory banks comprised by
the memory.

7. The method of claim 5, wherein the number of value
elements in each group is equal to or less than the number
of threads used to perform the separable operation for the
array of values.

8. The method of claim 3, wherein the write buffer array
is mapped to the memory such that processed values corre-
sponding to values of the two-dimensional array are written
into the memory in memory locations to which the value
elements of the write buffer array are mapped, and processed
values corresponding to values of the two-dimensional array
are not written to the memory in memory locations to which
the padding elements of the write buffer array are mapped.



US 2024/0231913 Al

9. The method of claim 1, wherein the memory location
into which a thread writes a processed value is determined
in dependence on a base memory address, a writing offset
amount and a writing padding amount, the writing offset
amount and the writing padding amount being dependent on
the position of the value within the array of values to which
that processed value corresponds.

10. The method of claim 9, wherein the two-dimensional
array of values divided into a plurality of two-dimensional
sub-arrays of values is represented by a multidimensional
array [I][J][K][M], where I and J represent the number of
sub-arrays of values within the array of values in each of the
two dimensions and K and M represent the number of values
within each of the sub-arrays of values in each of the two
dimensions, and wherein each value in the array of values
has a coordinate [i][j][k][m] which defines its position
within the multidimensional array [I][J][K][M], and
wherein:

the writing offset amount is equal to (IxJxKxM)+(jxKx

M)+(kxM)+m or (ixIJxKxM)+([jxKxM)+(mxK)+k; and
the writing padding amount is equal to the writing offset
amount divided by a padding frequency.

11. The method of claim 10, wherein the padding fre-
quency is (i) equal to, (ii) a multiple of, or (iii) a factor of
the number of memory banks comprised by the memory.

12. The method of claim 11, wherein the padding fre-
quency is equal to or less than the number of threads used
to perform the separable operation for the array of values.

13. The method of claim 1, wherein the memory location
from which a thread reads a processed value is determined
in dependence on a base memory address, a reading offset
amount and a reading padding amount, the reading offset
amount and the reading padding amount being dependent on
the position of the value within the array of values to which
that processed value corresponds.

14. The method of claim 13, wherein the two-dimensional
array of values divided into a plurality of two-dimensional
sub-arrays of values is represented by a multidimensional
array [I][J][K][M], where I and J represent the number of
sub-arrays of values within the array of values in each of the
two dimensions and K and M represent the number of values
within each of the sub-arrays of values in each of the two
dimensions, and wherein each value in the array of values
has a coordinate [i][j][k][m] which defines its position
within the multidimensional array [I][J][K][M], and
wherein:

the reading offset amount is equal to (jxJxKxM)+(ixKx

M)+(mxM)+k or (jxIxKxM)+(ixKxM)+(kxK)+m; and
the reading padding amount is equal to the reading offset
amount divided by a padding frequency.

15. The method of claim 1, wherein the plurality of
two-dimensional sub-arrays of values are non-overlapping.

16. The method of claim 1, wherein the plurality of
threads are processed by processing logic comprised by a
core of the processing unit, the processing logic being
implemented on a chip and the memory being physically
located on the same chip as the processing logic.

17. The method of claim 1, wherein the two-dimensional
array of values is a two-dimensional array of pixel values.

18. The method of claim 1, wherein:

the one dimensional sequence of values of said sub-array

of values is a row of values of said sub-array of values
and the perpendicular one dimensional sequence of
values of the sub-array of values in the transposed
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position is a column of values of the sub-array of values
in the transposed position; or

the one dimensional sequence of values of said sub-array
of values is a column of values of said sub-array of
values and the perpendicular one dimensional sequence
of values of the sub-array of values in the transposed
position is a row of values of the sub-array of values in
the transposed position.

19. A processing unit for performing a separable operation

on a two-dimensional array of values, comprising:

a memory comprising a plurality of memory banks,
wherein the memory is configured so that in each
writing or reading step each memory bank can be
written into or read from by only one respective thread;
and

processing logic configured to:
divide the two-dimensional array of values into a

plurality of two-dimensional sub-arrays of values,

for each of the plurality of sub-arrays:

perform, using a plurality of threads, an initial phase
of the separable operation for said sub-array of
values in order to generate a respective processed
value for each value of said sub-array of values,

using each of the plurality of threads, write a respec-
tive first plurality of processed values to the
memory over a plurality of writing steps, said first
plurality of processed values corresponding to a
one-dimensional sequence of values of said sub-
array of values,

using each of the plurality of threads, read a respec-
tive second plurality of processed values from the
memory over a plurality of reading steps, said
second plurality of processed values correspond-
ing to a perpendicular one-dimensional sequence
of values of a sub-array of values in a transposed
position within the array of values relative to said
sub-array of values, and

perform, using the plurality of threads, a subsequent
phase of the separable operation for the plurality
of processed values read by the plurality of threads
in order to generate a respective output value for
each value of the sub-array of values in the
transposed position;

wherein a respective processed value is written into

each of the memory banks of the memory in at least

one of the plurality of writing steps, and a respective

processed value is read from each of the memory

banks of the memory in at least one of the plurality

of reading steps.

20. A non-transitory computer readable storage medium
having stored thereon computer readable instructions that,
when executed at a computer system, cause the computer
system to perform a computer-implemented method of per-
forming a separable operation on a two-dimensional array of
values at a processing unit comprising a memory, the
memory comprising a plurality of memory banks, wherein
in each writing or reading step each memory bank can be
written into or read from by only one respective thread,
comprising:

dividing the two-dimensional array of values into a plu-
rality of two-dimensional sub-arrays of values;

for each of the plurality of sub-arrays:
performing, using a plurality of threads, an initial phase

of the separable operation for said sub-array of
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values in order to generate a respective processed
value for each value of said sub-array of values;
each of the plurality of threads writing a respective first
plurality of processed values to the memory over a
plurality of writing steps, said first plurality of pro-
cessed values corresponding to a one-dimensional
sequence of values of said sub-array of values;
each of the plurality of threads reading a respective
second plurality of processed values from the
memory over a plurality of reading steps, said sec-
ond plurality of processed values corresponding to a
perpendicular one-dimensional sequence of values
of a sub-array of values in a transposed position
within the array of values relative to said sub-array
of values; and
performing, using the plurality of threads, a subsequent
phase of the separable operation for the plurality of
processed values read by the plurality of threads in
order to generate a respective output value for each
value of the sub-array of values in the transposed
position;
wherein a respective processed value is written into each
of the memory banks of the memory in at least one of
the plurality of writing steps, and a respective pro-
cessed value is read from each of the memory banks of
the memory in at least one of the plurality of reading
steps.
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