US 20230401164A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2023/0401164 A1l

Kruse et al.

43) Pub. Date: Dec. 14, 2023

(54)

(71)

(72)

@

(22)

(60)

METHODS AND APPARATUS TO ESTIMATE
CONSUMED MEMORY BANDWIDTH

Applicant: Texas Instruments Incorporated,
Dallas, TX (US)

Inventors: Patrick Kruse, Richmond, TX (US);
Gregory Shurtz, Houston, TX (US);
Denis Beaudoin, Rowlett, TX (US);
Abhishek Shankar, Sugar Land, TX
(US); Daniel Wu, Plano, TX (US)

Appl. No.: 17/892,693

Filed: Aug. 22, 2022

Related U.S. Application Data

Provisional application No. 63/350,456, filed on Jun.
9, 2022.

500

Publication Classification

(51) Int. CL
GOGF 12/14
GOGF 13/16

(52) US.CL
CPC ...

(2006.01)
(2006.01)

GOGF 12/1416 (2013.01); GOGF 13/1668
(2013.01); GO6F 2212/1052 (2013.01)

(57) ABSTRACT

An example apparatus includes: bandwidth estimator cir-
cuitry configured to: obtain a first memory transaction; and
determine a consumed bandwidth associated with the
memory transaction; and gate circuitry configured to: permit
transmission of the memory transaction to a memory con-
troller circuitry; determine whether to gate a second memory
transaction generated by a source of the first memory
transaction based on the consumed bandwidth of the first
memory transaction; and when it is determined to gate the
second memory transaction, prevent transmission of the
second memory transaction for an amount of time based on
the consumed bandwidth.

502 \|

OBTAIN A MEMORY TRANSACTION

504 ~

ESTIMATE CONSUMED BANDWIDTH
FOR THE MEMORY TRANSACTION

506~

FORWARD THE MEMORY TRANSACTION
TO THE MEMORY CONTROLLER

DOES THE
CONSUMED BANDWIDTH
EXCEED A THROTTLE
THRESHOLD?

5107

DETERMINE AN AMOUNT OF TIME
REQUIRED BY THE MEMORY CONTROLLER
TO PROCESS THE MEMORY TRANSACTION

512

PREVENT ADDITIONAL TRANSMISSIONS
TO THE MEMORY CONTROLLER FOR
THE AMOUNT OF TIME

514/|

LOG MEMORY TRANSACTION

ANOTHER MEMORY
TRANSACTION?




US 2023/0401164 Al

Dec. 14,2023 Sheet 1 of 6

Patent Application Publication

e

995

]
v




Patent Application Publication  Dec. 14, 2023 Sheet 2 of 6

US 2023/0401164 A1
FROM DATA SOURCE CIRCUITRY 102A
\ /
BANDWIDTH _ STATISTICS
ESTIMATOR CIRCUITRY 4 | COLLECTOR CIRCUITRY
/ 204 /
202 | ) 208 | 210
/
TRANSACTION il I
LIMITER CIRCUITRY S — —]
MEMORY
\
MMR
GATE CIRCUITRY CONFIGURATION
7 N
206 212
RATE LIMITER CIRCUITRY
v %4A
TO INTERCONNECT
CIRCUITRY 106

FIG. 2



US 2023/0401164 Al

Dec. 14,2023 Sheet 3 of 6

Patent Application Publication

€ ‘DIA
S31A9 ¢1S ‘HLAIMANYE AIWNSNOD e S31A49 8¢ ‘HLAIMANVYE AIWNSNOD e
FARS ~ 0¢00X0 ‘NOILYOOT ® 0VY00X0 ‘NOI1¥OO1 @ e 0LE
S31AL ¥9 - HLAIMANY9 31OVSNYHL @ J1A9 | - HLAIMANYE d310VSNYHL e
JLTHM TdAL @ av3d ‘3dAL e
‘7 NOILOVSNVYL ‘€ NOILOVSNVYL
S31A49 §9¢ ‘HLAIMANVYE AIWNSNOD e S31A49 8¢ ‘HLAIMANVYE AIWNSNOD e
80¢ ~ 0900X0 ‘NOILYOOT ® 0000X0 ‘NOILYOOT ® - 90¢
J1A9 | - HLAIMANVY9 A31OVSNYHL @ J1A9 | - HLAIMANYE d310VSNYHL e
JLTHM TdAL @ av3d ‘3dAL e
‘¢ NOILOVSNVYL '} NOILOVSNVYL
S3SS3HAAY AHOWAIN 003
_ “ m _ _ _ “
Vad ﬁo °?2 | | | | | | |
4% T T _ _ _ _ _ _ 1
0804X%0 0£04%0 0904X%0 0604%0 0¥04%0 0€04%0 0¢04%0 0104%0 0004%0
S3SSIHAAY AHOWIN ALVINTHEd
_ “ m m _ _ m
Vad _Ho ©o0 _ _ _ _ _ _ _
¢0e ——— i i " " i i _
0800X0  0/00X0  0900X0  0S00X0  OVOOX0  0S00X0  0ZO0X0  0LOOXO  0000X0



US 2023/0401164 Al

Dec. 14,2023 Sheet 4 of 6

Patent Application Publication

[0:9¢lie1unoo ey N0 U @ H

1504000k

16040000 Y.

0

[0:Lchunoo™ejpi a0~ bal™) @g .
OO} MY M ﬁ

A

i
i
i
t
i
1

1
i
'
1
1
i

i

pwoim g ---

adGh Josing

aweN

[0:9}]uepid—m -6

[0:6huoehgo™oisTIuUI % H

16040000 U,

0

[0:)€hunoa ejpino Bos} -
SO MY UM g -

A

pwo™im gk -

suzols

SuL0lg

T

_ sl sl oo

a§oh J0sInD

auwepN




Patent Application Publication

Dec. 14,2023 Sheet 5 of 6 US 2023/0401164 Al

500

N\

( START )

Y

502~

OBTAIN A MEMORY TRANSACTION

A

A

504 4

ESTIMATE CONSUMED BANDWIDTH
FOR THE MEMORY TRANSACTION

Y

506~

FORWARD THE MEMORY TRANSACTION
TO THE MEMORY CONTROLLER

DOES THE
CONSUMED BANDWIDTH
EXCEED A THROTTLE
THRESHOLD?

510

DETERMINE AN AMOUNT OF TIME
REQUIRED BY THE MEMORY CONTROLLER
TO PROCESS THE MEMORY TRANSACTION

Y

512

PREVENT ADDITIONAL TRANSMISSIONS
TO THE MEMORY CONTROLLER FOR
THE AMOUNT OF TIME

\A

514

LOG MEMORY TRANSACTION

YES

ANOTHER MEMORY
TRANSACTION?

FIG. 5



Patent Application Publication Dec. 14, 2023 Sheet 6 of 6 US 2023/0401164 A1

600

\

ESTIMATE CONSUMED BANDWIDTH
FOR THE MEMORY TRANSACTION

v

602~ PARSE MEMORY TRANSACTION

!

OBTAIN MEMORY BURST LENGTH

!

604 ~ DETERMINE A NUMBER OF BYTES USED TO
OBTAIN PRIMARY VALUES FROM MEMORY

606

DOES A
PREVIOUS MEMORY
TRANSACTION CORRESPOND TO
THE SAME ECC BLOCK AS THE
CURRENT MEMORY
TRANSACTION?

DETERMINE A NUMBER OF BYTES USED
6081 TO ACCESS ECC VALUES FROM MEMORY

»

y

IS THE
CURRENT OPERATION A
WRITE?

DETERMINE A NUMBER OF BYTES USED TO STORE
612" MODIFIED PRIMARY AND ECC VALUES IN MEMORY

v
ESTIMATE TOTAL CONSUMED BANDWIDTH
614 AS SUM OF DETERMINATIONS

END

FIG. 6



US 2023/0401164 Al

METHODS AND APPARATUS TO ESTIMATE
CONSUMED MEMORY BANDWIDTH

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This patent application claims the benefit of and
priority to U.S. Provisional Patent Application Ser. No.
63/350,456 filed Jun. 9, 2022, which application is hereby
incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] This description relates generally to memory, and
more particularly to methods and apparatus to estimate
consumed memory bandwidth.

BACKGROUND

[0003] Many computer architecture designs include com-
puting systems that rely on a shared resource. For example,
some computer architecture designs may include one or
more processor cores that are each capable of executing
machine readable instructions. To execute the machine read-
able instructions, each of the processor cores may read to
and write from shared memory circuitry. In many examples,
the processor cores may utilize the same communication
system, also known as a bus, to access the memory circuitry.

SUMMARY

[0004] For methods and apparatus to estimate consumed
bandwidth, an example device includes bandwidth estimator
circuitry configured to: obtain a first memory transaction;
and determine a consumed bandwidth associated with the
memory transaction; and gate circuitry configured to: permit
transmission of the memory transaction to a memory con-
troller circuitry; determine whether to gate a second memory
transaction generated by a source of the first memory
transaction based on the consumed bandwidth of the first
memory transaction; and when it is determined to gate the
second memory transaction, prevent transmission of the
second memory transaction for an amount of time based on
the consumed bandwidth.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is an example block diagram of computer
circuitry.
[0006] FIG. 2 is an example block diagram of the rate

limiter circuitry of FIG. 1.

[0007] FIG. 3 is an illustrative example of consumed
bandwidth estimation as determined by the bandwidth esti-
mator circuitry of FIG. 2.

[0008] FIG. 4 is an illustrative example of simulation
results of the rate limiter circuitry of FIG. 2.

[0009] FIG. 5 is a flowchart representative of an example
process that may be performed using machine readable
instructions that can be executed and/or hardware configured
to implement the rate limiter circuitry of FIG. 2, and/or,
more generally, the computer circuitry of FIG. 1 to throttle
memory transactions.

[0010] FIG. 6 is a flowchart representative of an example
process that may be performed using machine readable
instructions that can be executed and/or hardware configured
to implement the rate limiter circuitry of FIG. 2, and/or,

Dec. 14, 2023

more generally, the computer circuitry of FIG. 1 to estimate
consumed bandwidth as described in FIG. 5.

[0011] The same reference numbers or other reference
designators are used in the drawings to designate the same
or similar (functionally and/or structurally) features.

DETAILED DESCRIPTION

[0012] The drawings are not necessarily to scale. Gener-
ally, the same reference numbers in the drawing(s) and this
description refer to the same or like parts. Although the
drawings show regions with clean lines and boundaries,
some or all of these lines and/or boundaries may be ideal-
ized. In reality, the boundaries and/or lines may be unob-
servable, blended and/or irregular.

[0013] A bus may include various hardware connections
and use various communication protocols depending on the
computer architecture design. Regardless of their composi-
tion, buses are composed of a finite amount of resources. As
such, there is a maximum amount of data that a bus is
capable of transferring between components connected to
the bus in a given amount of time. In some examples, the
maximum amount of data per unit of time supported by a bus
is referred to as the bus bandwidth.

[0014] An important aspect of computer architecture
design is ensuring that the bus bandwidth is correctly
utilized by the processor cores. For example, manufacturers
may determine the rate at which data from a given processor
core is transmitted to the memory circuit based on the type
of processor core, type of bus, type of memory circuit, and
total number of processor cores within the system that use
the bus. In many examples, software applications executed
by the processor cores may perform operations based on the
assumption that data transfer between a given source and a
memory will always occur at the rate determined by the
manufacturer for the given source. Therefore, if a first
processor core transters data at a higher rate (e.g., uses more
bandwidth) than a manufacturer intended, data coming to
and from a second processor core may be transferred over
the bus at a lower than intended rate. As a result, a software
application running on the second processor core may
behave unexpectedly and/or produce errors. In some
examples, a processor core may be referred to as a transac-
tion source.

[0015] Rather than providing each transaction source
direct access to memory, many computer architectures uti-
lize a memory controller that receives memory transactions
from the multiple transaction sources and routes the memory
transaction to memory. As used herein, a memory transac-
tion refers to a request that is sent by a transaction source to
the memory controller. In a memory transaction, the trans-
action source requests that the memory controller read an
amount of data from memory or write an amount of data to
memory. In some examples, a memory controller may be
referred to as overloaded when the memory controller
receives memory transactions over a bus at a rate faster than
the controller can process the transactions. Like an overuti-
lized bus, an overloaded memory controller may occur when
a transaction source uses more than an intended share of
bandwidth to transmit memory transactions. Similarly, an
overloaded memory controller may lead to software appli-
cations that behave unexpectedly and/or produce errors.
[0016] Some computer architectures seek to avoid
memory controller overload and bus overutilization by throt-
tling individual transaction sources for a given amount of



US 2023/0401164 Al

time. When a transaction source is throttled, its ability to
transmit memory transactions over a bus may be reduced or
eliminated, therefore enabling the bus bandwidth to be
utilized by other transaction sources. Ideally, if all transac-
tion sources accessing a bus are throttled correctly, the
memory controller can sustainably respond to the memory
transactions without becoming overloaded and each source
will experience data transfer at the rate pre-determined by
the manufacturer.

[0017] Previous solutions to throttle transaction sources
may determine the amount of time each source should be
throttled based on a transacted bandwidth. As used herein, a
transacted bandwidth is associated with the amount of data
to be read from or written to memory by a memory trans-
action. This may be specified by the data source in the
memory transaction or determined based on the amount of
data contained in the memory transaction. However, in many
examples, transacted bandwidth is not an accurate represen-
tation of the actual amount of data that a memory controller
reads from or writes to from memory when processing a
memory transaction. For example, a first write transaction
that specifies 64 bytes of data may align with a memory
boundary and consume less bandwidth than a second write
transaction that specifies 64 bytes of data but is not aligned
and therefore entails two partial writes to the memory.
Therefore, a previous solution that throttles based on trans-
acted bandwidth may underestimate the amount of time a
given transaction source should be throttled. As a result, in
some previous solutions, a memory controller may become
overloaded due to differences between the throttle time of a
processor core and the actual time it takes a memory
controller to process the memory transaction.

[0018] Example methods, systems, and apparatus dis-
closed herein determine whether to throttle transaction
sources based on a consumed bandwidth as opposed to a
transacted bandwidth. As used herein, a consumed band-
width is associated with the amount of data that a memory
controller reads to or writes from memory when processing
a memory transaction. Example systems that throttle based
on consumed bandwidth may estimate memory controller
processing time more accurately than previous solutions due
to the consideration of factors that may include but are not
limited to memory burst size, address alignment, error
correction codes (ECCs), partial writes, etc. As a result,
examples disclosed herein decrease the odds that a memory
controller becomes overloaded or that a bus becomes over-
utilized when compared to previous solutions.

[0019] FIG. 1 is an example block diagram of computer
circuitry. The example computer circuitry 100 includes
example transaction source circuitry 102A, 102B, 102C,
example rate limiter circuitry 104A, 104B, 104C, example
interconnect circuitry 106, example memory controller cir-
cuitry 108, and example memory 110.

[0020] The example transaction source circuitry 102A,
102B, 102C generate memory transactions. Each of the
example transaction source circuitry 102A, 102B, 102C may
generate any number of memory transactions within a given
time period. In some examples, the transaction source cir-
cuitry 102A, 102B, 102C may generate memory transactions
independently of one another. In other examples, the trans-
action source circuitry 102A, 102B, 102C may communicate
with one another to generate memory transactions in a
particular sequence. In some examples, each of the example
transaction source circuitry 102A, 102B, 102C may be

Dec. 14, 2023

referred to as an intellectual property core. While the
example block diagram of FIG. 1 illustrates three instances
of transaction source circuitry, in other examples, the
example computer circuitry 100 may implement a different
number of transaction source circuits.

[0021] The example rate limiter circuitry 104A, 104B,
104C throttles memory transactions generated by the corre-
sponding transaction source circuitry 102A, 102B, 102C
according to the teachings of this disclosure. In FIG. 1, the
example computer circuitry 100 implements one rate limiter
circuitry 104A, 104B, 104C for each of the example trans-
action source circuitry 102A, 102B, 102C. In other
examples, the example computer circuitry 100 may imple-
ment a rate limiter circuit that is shared by multiple trans-
action source circuits. In other examples, the example com-
puter circuitry 100 may additionally implement a transaction
source circuit that is not throttled by a corresponding rate
limiter circuit. The example rate limiter circuitry 104A,
104B, 104C determines how long to throttle a given memory
transaction by estimating a consumed memory bandwidth.
The example rate limiter circuitry 104A, 104B, 104C is
discussed further in connection with FIG. 2.

[0022] The example interconnect circuitry 106 is a com-
munication system used to exchange data between the
components of the example computer circuitry 100. For
example, any of the rate limiter circuitry 104A, 104B, 104C
may transmit a memory transaction to the example memory
controller circuitry 108 via the interconnect circuitry 106.
Furthermore, after processing the memory transaction, the
example memory controller circuitry 108 may provide
response data to the corresponding transaction source cir-
cuitry 102A, 102B, 102C via the interconnect circuitry 106.
The example interconnect circuitry 106 may be imple-
mented using any communication system that meets pre-
determined threshold power and latency requirements. In
some examples, the example interconnect circuitry 106 may
implement communication protocols that include, but are
not limited to, the Texas Instruments® Common Bus Archi-
tecture (CBA) protocol, Open Core Protocol (OCP),
Advanced Extensible Interface (AXI), etc.

[0023] The example memory controller circuitry 108
receives memory transactions from each of the rate limiter
circuitry 104A, 104B, 104C. The example memory control-
ler circuitry 108 processes the memory transactions by either
reading data from or writing data to the example memory
110. In some examples, after processing the memory trans-
action from a particular source (e.g., transaction source
circuitry 102A), the example memory controller circuitry
108 may provide response data to the source. Response data
may include, for example, an amount of data read from the
memory 110, a confirmation that data within the memory
transaction has successfully been written into memory, etc.
The example memory controller circuitry 108 may perform
multiple reads, multiple writes, and other operations to
process a single memory transaction. The example memory
controller circuitry 108 is discussed further in connection
with FIG. 3.

[0024] The example memory 110 stores data used by the
example transaction source circuitry 102A, 102B, 102C.
The example memory 110 may store any amount of data and
may be implemented by any form of memory. Additionally,
the memory 110 may only provide access to data as part of



US 2023/0401164 Al

a block of addresses, as opposed to other memory circuits
that that may provide access to a single memory address
upon request.

[0025] The example computer circuitry 100 includes rate
limiter circuitry 104A, 104B, 104C to manages the rate at
which the example memory controller circuitry 108 receives
memory transactions, thereby preventing bus overutilization
and/or memory controller overloading. Advantageously, the
example rate limiter circuitry 104A, 104B, 104C throttles
the respective transaction source circuitry 102A, 102B,
102C based on a consumed bandwidth, which is a more
accurate representation of the amount of data a memory
controller reads or writes from memory than the transacted
bandwidth used by previous solutions. Consumed band-
width is discussed further in connection with FIG. 3.

[0026] FIG. 2 is an example block diagram of the rate
limiter circuitry of FIG. 1. The rate limiter circuitry 104A,
104B, 104C includes example bandwidth estimator circuitry
202, example transaction limiter circuitry 204, example gate
circuitry 206, example statistics collector circuitry 208, and
example memory 210. The example memory 210 includes a
Memory Mapped Registers (MMR) configuration section
212. Furthermore, while the example block diagram of FIG.
2 illustrates the rate limiter circuitry 104A for simplicity,
other rate limiter circuitry 104B, 104C, . . ., 104-z imple-
mented by the computer circuitry 100 may include the same
components illustrated in FIG. 2 and functionality described
herein.

[0027] The example bandwidth estimator circuitry 202
receives memory transactions from the example transaction
source circuitry 102A. The example bandwidth estimator
circuitry 202 estimates a consumed bandwidth for each
memory transaction it receives. To determine the consumed
bandwidth, the example bandwidth estimator circuitry 202
may parse the memory transaction to determine information
regarding the type of requested operation (e.g., a read or a
write), the memory address that the requested operation
begins, the transacted bandwidth, etc. This transaction infor-
mation may be used to determine a consumed bandwidth for
the transaction. The example bandwidth estimator circuitry
202 may also use information from the example MMR
configuration section 212 to estimate the consumed band-
width.

[0028] The consumed bandwidth value produced by the
example bandwidth estimator circuitry 202 is considered an
estimation because, in some examples, the exact amount of
data used by the memory controller circuitry 108 to process
a memory transaction may be different than consumed
bandwidth value. For example, if a different source not
affiliated with the rate limiter circuitry 104A causes the
memory controller circuitry 108 to read a section of ECC
data immediately before an example memory transaction
needs to read the same ECC data, the example bandwidth
estimator circuitry 202 may be unaware that the memory
controller circuitry 108 stored the necessary ECC data in its
cache and may inadvertently estimate additional bandwidth
for the example memory transaction that will not be con-
sumed. However, in many cases, the consumed bandwidth
estimator circuitry 202 does correctly predict the exact
amount of data used by the memory controller circuitry 108
to process a memory transaction. The example bandwidth
estimator circuitry 202 is described further in connection
with FIG. 3.

Dec. 14, 2023

[0029] The consumed bandwidth may determine whether
the transaction source circuitry 102A should be throttled,
and, when throttled, the example transaction limiter circuitry
204 determines an amount of time that the example trans-
action source circuitry 102A should be throttled for. To
calculate the amount of time, the example transaction limiter
circuitry 204 uses the consumed bandwidth and information
within the example memory 210. For example, the example
transaction limiter circuitry 204 may access the memory 210
to determine an allocated bandwidth value, a number of
bytes that the example memory controller circuitry 108 can
process per clock cycle, etc. The bytes per clock cycle value
may be stored in the example MMR configuration section
212. The example transaction limiter circuitry 204 also uses
the calculated throttle time to determine whether to change
the state of the gate circuitry 206.

[0030] The example gate circuitry 206 has an open state
and a closed state. When in the open state, the example gate
circuitry 206 forwards any memory transaction it receives to
the interconnect circuitry 106. When in the closed state, the
example gate circuitry 206 prevents memory transactions
generated by the transaction source circuitry 102A from
being transmitted on the interconnect circuitry 106. The
example gate circuitry 206 changes between the open state
and the closed state based on instructions from the example
transaction limiter circuitry 204.

[0031] The example statistics collector circuitry 208
obtains information that may be used to evaluate the per-
formance of the example rate limiter circuitry 104A. Such
information may include the memory transaction, a corre-
sponding consumed bandwidth, and the corresponding
throttle time. The example statistics collector stores the
obtained data in the example memory 210.

[0032] The example memory 210 stores information
obtained by the statistics collector circuitry 208. The
example memory 210 also stores the MMR configuration
section 212. The MMR configuration section 212 includes
data used by the bandwidth estimator circuitry 202 and
transaction limiter circuitry 204. For example, data within
the MMR configuration section 212 may include, but is not
limited to, the number of bytes the memory controller
circuitry 108 can process per clock cycle, the burst size of
the example memory 110, an allocated memory controller
utilization of the example transaction source circuitry 102A,
etc. As used above and herein, burst size refers to the
minimum amount of data that the memory controller cir-
cuitry must read or write to the example memory 110 to
process a memory transaction.

[0033] In some examples, data within the example MMR
configuration section 212 may be predetermined by a manu-
facturer. Additionally or alternatively, data within the
example MMR configuration section 212 may be deter-
mined by an operating system or other system level software
application of the computer circuitry 100. For example, a
system level software application may determine that the
transaction source circuitry 102A is only permitted to trans-
mit a certain number of bytes per unit of time to the memory
controller circuitry 108 via the interconnect circuitry 106. As
used above and herein, the number of bytes per unit of time
that a transaction source circuitry is permitted to send to the
memory controller circuitry 108 is referred to as an allocated
bandwidth. The system level software application may
determine allocated bandwidth based on a prioritization of
the transaction source circuitry 102A relative to the other



US 2023/0401164 Al

transaction source circuitry 102B, 102C, . . ., 102-z imple-
mentations, the compute resources available to the compo-
nents within the computer circuitry 100. The allocated
bandwidth of transaction source circuitry 102A may be
stored in the MMR configuration section 112 and may be
enforced by the transaction limiter circuitry 204 of the
corresponding rate limiter circuitry 104A.

[0034] When the example transaction source circuitry
102A begins to generate memory transactions, the example
gate circuitry 206 may begin in an open state. When a first
memory transaction is generated, the transaction limiter
circuitry 204 may determine that the size of the first memory
transaction is greater than the number of bits described in the
allocated bandwidth. In such examples, after the gate cir-
cuitry 206 forwards the first memory transaction to the
example memory controller circuitry 108, the transaction
limiter circuitry 204 changes the state of the gate circuitry
206 from opened to closed. The transaction limiter circuitry
204 may change the state of the gate circuitry 206 from
closed to open after the throttle time has passed. In doing so,
when the example transaction source circuitry 102A trans-
mits the first memory transaction to the example memory
controller circuitry 108, it must wait for the throttle time to
pass before transmitting a second memory transaction to the
memory controller circuitry 108. The actual bandwidth used
by the example transaction source circuitry 102 A for the first
memory transaction can be calculated by dividing the num-
ber of bytes in the first memory transaction by the total
number of clock cycles (i.e., the number of clock cycles
spent transmitting the memory transaction added to a num-
ber of clock cycles corresponding to the throttle time).
Because the rate limiter circuitry 104A introduces the
throttle time, the actual bandwidth used by the example
transaction source circuitry 102A may not exceed the allo-
cated bandwidth.

[0035] Advantageously, the example transaction limiter
circuitry 204 calculates the throttle tine based on the con-
sumed bandwidth rather than a transacted bandwidth. As a
result, after an example memory transaction is sent, the
example rate limiter circuitry 104 A may throttle the example
transaction source circuitry 102A for an amount of time that
is more representative of how long the memory controller
circuitry 108 takes to process the example memory trans-
action than previous solutions. In doing so, the example rate
limiter circuitry 104A, 104B, 104C improve the perfor-
mance of the example computer circuitry 100 by reducing
the likelihood that the example memory controller circuitry
108 becomes overloaded.

[0036] FIG. 3 is an illustrative example of consumed
bandwidth estimation as determined by the bandwidth esti-
mator circuitry of FIG. 2. FIG. 3 includes example primary
memory addresses 302, example ECC memory addresses
304, an example first transaction 306, an example second
transaction 308, an example third transaction 310, and an
example fourth transaction 312.

[0037] The example primary memory addresses 302 are a
set of addresses within the example memory 110. For
example, FIG. 3 illustrates the example primary memory
addresses 302 as 0x0000 to 0x0080, were each hexadecimal
value is a memory address that stores a byte of data. The
example primary memory addresses 302 refers to the portion
(s) of memory that may be listed in a memory transaction
generated by the example transaction source circuitry 102A,
102B, 102C. While only 128 memory addresses are illus-

Dec. 14, 2023

trated in the example primary memory addresses 302 of FI1G.
3, in practice, the example primary memory addresses 302
may be any size. Furthermore, FIG. 3 illustrates the primary
memory addresses 302 as continuous for simplicity. In some
examples, the primary memory addresses 302 may be dis-
continuous.

[0038] The example ECC memory addresses 304 are a set
of addresses within the example memory 110 that are
separate from the example primary memory addresses 302.
For example, FIG. 3 illustrates the example ECC memory
addresses 304 as 0xF000 to 0xFO080. The example ECC
memory addresses 304 refers to the portion(s) of memory
that are used by the memory controller circuitry 108 to
identify and/or correct error codes from the received
memory transaction.

[0039] The example first transaction 306 is a first memory
transaction received by the memory controller circuitry 108.
The memory transaction may be from any of the transaction
source circuitry 102A, 102B, 102C implementations. Upon
parsing the first transaction 306, the example bandwidth
estimator circuitry 202 determines the memory transaction is
a read operation with a transacted bandwidth of 1 byte and
a location of 0x0000. That is, the transaction source circuitry
that generated the first transaction 306 requests the memory
controller circuitry 108 read the value of a byte that begins
at 0x0000 and ends at 0x0001, and that the memory con-
troller circuitry 108 provide the value to the transaction
source circuitry.

[0040] Because the example memory 110 only provides
access to groups of adjacent addresses, the memory control-
ler circuitry 108 is unable to obtain the byte that begins at
0x0000 and ends at 0x0001 by itself. Instead, the example
memory controller circuitry 108 is required to obtain a group
of'bytes in a burst. For example, if the example memory 110
has a burst size of 64 bytes, the example memory controller
circuitry 108 obtains 64 bytes from 0x0000 to 0x0040.
Furthermore, memory transactions may be subjected to
transmission error when sent over the interconnect circuitry
106. Transmission errors include but are not limited to bit
interleaving, bit corruption, bit loss, etc. To identify and/or
correct any transmission errors that exist within the example
first transaction 306, the example memory controller cir-
cuitry 108 requires additional information outside of the
memory transaction. Namely, the memory controller cir-
cuitry 108 may access data stored in the ECC memory
addresses 304 each time a memory transaction is received to
identify and/or correct transmission errors. While the
amount of ECC data required to identify and/or correct
transmission errors for a single memory transaction may
vary on the types of errors, type of memory transaction, etc.,
the amount of ECC data obtained from the example memory
110 has a lower limit of the memory burst size. For example,
the memory controller circuitry 108 may obtain bytes
between 0xF000 and 0xF040 to obtain ECC data for the
example first transaction 306. The example bandwidth esti-
mator circuitry 202 accounts for both 64 byte burst reads to
determine the example first transaction 306 has a consumed
bandwidth of 128 bytes.

[0041] The example second transaction 308 is a second
memory transaction received by the memory controller
circuitry 108. The memory transaction may be from any of
the transaction source circuitry 102A, 102B, 102C imple-
mentations. Upon parsing the second transaction 308, the
example bandwidth estimator circuitry 202 determines the



US 2023/0401164 Al

memory transaction is a write operation with a transacted
bandwidth of 1 byte and a location of 0x0050. That is,
transaction source circuitry included 1 byte of data within
the second transaction 308, and the memory controller
circuitry 108 is instructed to store the byte of data between
0x0050 and ends at 0x0051.

[0042] Like the first transaction 306, the example memory
controller circuitry 108 requires two bursts to access the data
necessary to process the example second transaction 308.
Specifically, the example memory controller circuitry 108
obtains bytes 0x0040 through 0x00080 from the primary
memory addresses 302 and bytes 0xF040 through 0xFO080
from the ECC memory addresses 304. The example memory
controller circuitry 108 then modifies the both sections of
data. The modifications store the 1 byte of data described in
the second transaction 308 and update the corresponding
ECC data to reflect the changes between 0x0050 and
0x0051. To finish processing the second transaction 308, the
example memory controller circuitry 108 requires two addi-
tional bursts to write the modified sections of data into
memory 110 for storage. The example bandwidth estimator
circuitry 202 accounts for the four total 64 byte bursts to
determine the example second memory transaction 308 has
a consumed bandwidth of 265 bytes.

[0043] The example third transaction 310 is a third
memory transaction received by the memory controller
circuitry 108. The memory transaction may be from any of
the transaction source circuitry 102A, 102B, 102C imple-
mentations. Upon parsing the third transaction 310, the
example bandwidth estimator circuitry 202 determines the
memory transaction is a read operation with a transacted
bandwidth of 1 byte and a location of 0x00AOQ. That is, the
transaction source circuitry that generated the third transac-
tion 310 requests the memory controller circuitry 108 read
the value of a byte that begins at 0xO0A0 and ends at
0x0001, and that the memory controller circuitry 108 pro-
vide the value to the transaction source circuitry. Like the
first transaction 306, the example memory controller cir-
cuitry reads a first section of memory from the primary
memory addresses 302 (0x0080 through 0x00CO0) and a
second section of memory from the ECC memory addresses
304 (0xFO080 through 0xFOCO0), so the example bandwidth
estimator circuitry 202 determines a consumed bandwidth of
128 bytes.

[0044] The example fourth transaction 312 is a fourth
memory transaction received by the memory controller
circuitry 108. The memory transaction may be from any of
the transaction source circuitry 102A, 102B, 102C imple-
mentations. Upon parsing the fourth transaction 312, the
example bandwidth estimator circuitry 202 determines the
memory transaction is a write operation with a transacted
bandwidth of 64 bytes and a location of 0x0020. That is,
transaction source circuitry included 64 bytes of data within
the fourth transaction 312, and the memory controller cir-
cuitry 108 is instructed to store the bytes of data between
0x0020 and 0x0060.

[0045] In many examples, the example memory 110 may
enforce burst boundaries. A burst boundary refers to specific
addresses within the example memory 110, wherein the
memory controller circuitry 108 can only read or write data
between two consecutive burst boundaries in a single
memory burst. For example, the burst boundaries of the
example primary memory addresses 302 in FIG. 3 are
0x0000, 0x0040, 0x0080, 0x00CO, etc. Similarly, the burst

Dec. 14, 2023

boundaries for the example ECC memory addresses 304 in
FIG. 3 are 0xF000, 0xF040, 0xF080, OxFOCO, etc. There-
fore, although the amount of data within the fourth trans-
action 312 is less than or equal to the burst size of the
illustrative example of FIG. 3 (64 bytes), the relevant data
crosses two burst boundaries and therefore requires four
total burst operations to access. Specifically, the example
memory controller circuitry 108 uses a first burst for 0x0000
through 0x0040, a second burst for 0x0040 through 0x0080,
a third burst for 0xFO00 through 0xF040, and a fourth burst
for 0xF040 through 0xFO080. In some examples, a memory
transaction may be referred to as misaligned if the transacted
bandwidth is less than or equal to the burst size and the
referenced memory location crosses a burst boundary. To
process the example fourth transaction 312, the example
memory controller circuitry 108 may modify the four sec-
tions of data and write each of them back to memory 110.
The example bandwidth estimator circuitry 202 accounts for
the eight total 64 byte bursts to determine the example fourth
memory transaction 312 has a consumed bandwidth of 512
bytes.

[0046] In the illustrated example of FIG. 3, the example
first transaction 306 requires access to a different section of
the ECC memory addresses 304 than the example second
transaction 308. As a result, the memory controller circuitry
108 requires two separate bursts to access each respective
section of memory. However, in some examples, the ECC
data needed to process two consecutive memory transactions
may be within the same section of data. The example
consumed bandwidth determiner circuitry may determine
the ECC data of a current memory transaction is in the same
section as the previous memory transaction by accessing the
previous memory transaction during the evaluation of the
current memory transaction. The example statistics collector
circuitry 208 memory transactions in the example memory
110 for future analysis.

[0047] When the example memory controller circuitry 108
obtains a section of ECC data from the example memory
110, it may store the data in an internal memory. In some
examples, the internal memory of the example memory
controller circuitry 108 may be referred to as a cache.
Therefore, in examples where the ECC data needed to
process two consecutive memory transactions are within the
same section of data, the memory controller circuitry 108
does not require a burst to access the ECC memory
addresses 304 during the second memory transaction
because the memory controller circuitry 108 already has
access to the relevant section from the first memory trans-
action. Accordingly, in such examples, the bandwidth esti-
mator circuitry 202 would not include an ECC burst read
when determining the consumed bandwidth of the second
memory transaction. For example, if the second transaction
308 did not have a location of 0x0050, and instead requested
a write operation located entirely between 0x0000 and
0x0040, the example bandwidth estimator circuitry 202 may
have computed a consumed bandwidth of 192 bytes due to
bytes 0xFO00 through OxF040 already being stored in the
cache of the memory controller circuitry 108.

[0048] The example second transaction 308 and example
fourth transaction 312 are examples of partial write opera-
tions. A partial write operation refers to when the data
received in the memory transaction is not sufficient for the
example memory controller circuitry 108 to calculate the
corresponding new ECC values. A partial write operation



US 2023/0401164 Al

may occur because the memory transaction may be mis-
aligned with the example ECC memory addresses 304, or
because the data in the memory transaction may include
gaps. For example, communication protocols that include,
but are not limited to, CBA, AXI, etc., may include a byte
enable signal or similar signal. When a byte enable signal is
low, a partial write may occur. A partial write operation may
cause the memory controller circuitry 108 to read a block of
data from the example primary memory addresses 302 (as
described previously in connection with the example second
transaction 308 and example fourth transaction 312) which,
for example memory transactions that are not partial write
operations, is not necessary.

[0049] In some examples, the example memory controller
circuitry 108 may receive a memory transaction that is a full
write operation. As used herein, a full write operation refers
to any memory transaction with a write operation that is not
a partial write. When the memory controller circuitry 108
receives a full write, the amount of data to be written is both
aligned properly and sufficiently large that the example
memory controller circuitry 108 can calculate the corre-
sponding ECC value based on the transacted write data
itself. As a result, in examples where the example memory
controller circuitry 108 receives a memory transaction with
a full write operation, a 64 byte burst to read data from the
example primary memory addresses 302 is not required.
Instead, the example memory controller circuitry 108 over-
writes the old primary values in the example primary
memory addresses 302 with new primary values obtained
from the transacted write data. The example memory con-
troller circuitry 108 also reads ECC values from the example
ECC memory addresses 304, modifies the ECC data, and
writes the new ECC data back as described previously,
regardless of whether the transaction is a partial write
operation or a full write operation. The example bandwidth
estimator circuitry 202 determines whether a given memory
transaction is a read operation, a partial write operation, or
a full write operation, and estimates the consumed memory
bandwidth accordingly.

[0050] The illustrative example of FIG. 3 illustrates how
the example bandwidth estimator circuitry 202 determines
consumed bandwidth for a memory transaction. The
example first transaction 306, the example second transac-
tion 308, the example third transaction 310, and the example
fourth transaction 312 also illustrate how, in many examples,
a transacted bandwidth can be magnitudes smaller than the
consumed bandwidth. Advantageously, the example trans-
action limiter circuitry 204 determines throttle time based on
the consumed bandwidth rather than the transacted band-
width. In doing so, transaction source circuitry 102A, 102B,
102C are prevented from transmitting additional memory
transactions for an amount of time that is more representa-
tive of the time required for the memory controller circuitry
108 to process a memory transaction than previous solu-
tions.

[0051] FIG. 4 is an illustrative example of simulation
results of the example rate limiter circuitry 104A of FIG. 1.
FIG. 4 includes an example timeline 400, example command
signal 402, an example throttle signal 404, an example idle
count signal 406, an example byte count signal 408, an
example packet length signal 410, and an example rate
counter signal 412.

[0052] The example timeline 400 shows results of an
example simulation of the example computer circuitry 100.

Dec. 14, 2023

The portion of the example timeline 400 between 5100
nanoseconds (ns) and 6950 ns is illustrated in FIG. 4. FIG.
4 also includes a zoomed in section of the example timeline
from 5100 ns to 5103 ns for visual clarity.

[0053] The example command signal 402 indicates when
a rate limiter circuitry 104A implementation transmits a
memory transaction to the memory controller circuitry 108.
The example command signal 402 includes a first memory
transaction transmission at 5103 ns and a second memory
transaction transmission at 6923 ns.

[0054] The example throttle signal 404 indicates the state
of'the example gate circuitry 206. For example, the example
gate circuitry 206 is in the open state when the throttle signal
404 is low (i.e., a digital ‘0’) and the example gate circuitry
206 is in the closed state when the throttle signal 404 is high
(i.e., a digital ‘1”). The timeline 400 shows that example
throttle signal 404 transitions from low to high at approxi-
mately 5101 ns and transitions from high to low at approxi-
mately 6875 ns.

[0055] The example idle count signal 406 indicates the
allocated bandwidth for the transaction source circuitry
102A, and may provide a step size for a bandwidth-based
counter. In the example simulation illustrated in FIG. 4, a
system level software application (such as an operating
system) determined the example transaction source circuitry
102A should not send more than approximately 0.25 bytes
to the memory controller circuitry 108 each clock cycle. In
the example simulation of FIG. 4, the programmed value of
O0xFC51 corresponds to 0.25 bytes per clock cycle.

[0056] The example byte count signal 408 indicates the
transacted bandwidth of a given memory transaction. From
5100 ns to 5103 ns, the example byte count signal 408 shows
that the first memory transaction includes of 0x099 (153 in
decimal) bytes of data to be written into the example
memory 110.

[0057] The example packet length signal 410 indicates the
estimated bandwidth of a given memory transaction. From
5101 ns to 5103 ns, the example packet length signal 410
shows that the consumed bandwidth is estimated to be
0xOEO (224 in decimal) bytes of data.

[0058] The example rate counter signal 412 represents a
counter value that may be used by the transaction limiter
circuitry 204 to determine whether to change gate states. The
example rate counter signal 412 may be at an original value
before a memory transaction is transmitted. When the
memory transaction is transmitted to the memory controller
circuitry 108, the example rate counter signal 412 is decre-
mented by the consumed bandwidth value. The example rate
counter signal 412 then increments by the programmed
value in the idle count signal 406 (e.g., 0xFC51 in FIG. 4)
each clock cycle. When the example rate counter signal 412
is back to its original value, the example transaction limiter
circuitry 204 instructs the example gate circuitry 206 to
change from a closed state to an open state.

[0059] Inthe example simulation of FIG. 4, the transaction
source circuitry 102A is throttled after the first memory
transaction for 224/0.25=896 clock cycles. A conversion of
units based on the clock speed of the example memory
controller circuitry 108 used in the example simulation
shows that the example rate limiter circuitry 104 A throttled
the transaction source circuitry 102A for 1820 ns.

[0060] The example simulation described in connected to
FIG. 4 also includes a previous solution to throttle memory
transactions. The previous solution, which is simulated to



US 2023/0401164 Al

only use the transacted bandwidth as an input, throttled the
transaction source circuitry 102A after the first memory
transaction for 153/0.25=612 clock cycles. A conversion of
units based on the clock speed of the example memory
controller circuitry 108 used in the example simulation
shows that the previous solutions throttled the transaction
source circuitry 102A for 1380 ns.

[0061] The simulation of FIG. 4 shows that, in some
examples, the example rate limiter circuitry 104A, 104B,
104C may throttle for longer periods of time than previous
solutions. In some examples, the increased throttle time may
reduce the risk of a memory controller becoming overloaded
and/or a bus becoming overutilized.

[0062] FIG. 5 is a flowchart representative of an example
process that may be performed using machine readable
instructions that can be executed and/or hardware configured
to implement the rate limiter circuitry of FIG. 2, and/or,
more generally, the computer circuitry of FIG. 1 to throttle
memory transactions. While the example machine readable
instructions and/or operations 500 describe one rate limiter
circuitry 104 A implementation for simplicity, the flowcharts
of FIGS. 5, 6 may apply to any rate limiter circuitry 104B,
104C, . . ., 104-n implementation. The example machine
readable instructions and/or operations 500 begin when the
example rate limiter circuitry 104A obtains a memory trans-
action from the transaction source circuitry 102A. (Block
502).

[0063] The example bandwidth estimator circuitry 202
estimates the consumed bandwidth for the memory transac-
tion. (Block 504). The consumed bandwidth value repre-
sents a prediction of the amount of data the memory con-
troller circuitry 108 will read and/or write to process the
memory transaction of block 502. The prediction includes
data used internally by the memory controller circuitry 108
and data exchanged between the memory controller circuitry
108 and the transaction source circuitry 102A. Block 504 is
discussed further in connection with FIG. 6.

[0064] The example gate circuitry 206 forwards the
memory transaction to the example memory controller cir-
cuitry 108. (Block 506). In examples where the gate cir-
cuitry 206 is in an open state when the example machine
readable instructions and/or operations 500 begin, the
example gate circuitry 206 may forward the memory trans-
action immediately after block 504. In other examples where
the gate circuitry 206 is in a closed state when the example
machine readable instructions and/or operations 500 begin,
the example gate circuitry 206 may wait for instructions
from the transaction limiter circuitry 204 to change to an
open state before forwarding the memory transaction.
[0065] The example transaction limiter circuitry 204
determines whether the consumed bandwidth exceeds a
threshold. (Block 508). The threshold of block 508 may refer
to an allocated bandwidth value that a system level software
application determines for the example transaction source
circuitry 102A. To make the determination of block 508, the
example transaction limiter circuitry 204 may compare the
consumed bandwidth of block 504 to the allocated band-
width of the transaction source circuitry 102A. If the
example transaction limiter circuitry 204 determines the
consumed bandwidth does not exceed the threshold (Block
508: No), the example machine readable instructions and/or
operations proceed to block 514. When the estimated con-
sumed bandwidth of block 504 does not exceed the thresh-
old, the value of estimated consumed bandwidth is suffi-

Dec. 14, 2023

ciently small such that the transaction source circuitry 102A
can immediately transmit an additional memory transaction
without exceeding the allocated bandwidth.

[0066] As an example, suppose the allocated bandwidth
for the example transaction source circuitry 102A is 500
bytes/millisecond (ms), the consumed bandwidth of block
504 is 400 bytes/ms, and the memory transaction is a first
transaction generated by the transaction source circuitry
102A after being powered on. In such examples, the
example estimated consumed bandwidth of block 504 does
not exceed the threshold.

[0067] If the example transaction limiter circuitry 204
determines the consumed bandwidth does exceed the thresh-
old (Block 508: Yes), the example transaction limiter cir-
cuitry 204 determines an amount of time based on the
exceeded threshold. (Block 510). The example transaction
limiter circuitry 204 makes the determination of 510 based
on both the exceeded threshold and the consumed band-
width. The amount of time determined in block 510 may be
referred to as the throttle time.

[0068] In the foregoing example, suppose the transaction
source circuitry 102A generates a second memory transac-
tion at the same time as the first transaction, and that the
second transaction has an estimated consumed bandwidth of
200 bytes. Because the example rate limiter circuitry 104A
did not throttle the first transaction (Block 508: No during a
first iteration of the flowchart of FIG. 5), there is no
intentional delay between when the rate limiter circuitry
104 A sends the first transaction (at block 506 of the first
iteration of the flowchart of FIG. 5) and when the example
rate limiter circuitry 104A sends the second transaction (at
block 506 of a second iteration of the flowchart of FIG. 5).
As such, after block 506 of the second iteration of the
flowchart of FIG. 5 in the foregoing example, the rate limiter
circuitry 104A has sent a total of 600 bytes in less than a
millisecond. Therefore, in the foregoing example, the
example transaction limiter circuitry 204 determines the
consumed bandwidth of the second transaction has exceeded
the threshold of 500 bytes/millisecond (at block 508 of the
second iteration of the flowchart of FIG. 5). In the foregoing
example, the example transaction limiter circuitry 204 then
determines the amount of time (for block 510 of the second
iteration of the flowchart of FIG. 5) to be 1.2 ms, as

600 bytes X 1.2 ms.

1 ms
500 bytes

[0069] The example gate circuitry 206 prevents additional
transmissions to the example memory controller circuitry
108 for the amount of time determined in block 510. (Block
512). Specifically, the example gate circuitry 206 transitions
from an open state to a closed state to prevent additional
memory transactions generated by the example transaction
source circuitry 102A from being transmitted.

[0070] In the foregoing example, the gate circuitry 206 is
in a closed state for 1.2 ms (at block 512 of the second
iteration of the flowchart of FIG. 5). As a result, the example
rate limiter circuitry 104A sends only 600 bytes of estimated
consumed memory bandwidth to the example memory con-
troller circuitry 108 for the first 1.2 ms after the transaction
source circuitry 102A is powered on. Therefore, the trans-



US 2023/0401164 Al

action source circuitry 102A meets its allocated bandwidth
by sending, on average, 500 bytes/ms to the memory con-
troller circuitry 108.

[0071] The example statistics collector circuitry 208 logs
the memory transaction (Block 514). To log the memory
transaction, the example statistics collector circuitry 208
may store the memory transaction in the example memory
210. The logged memory transaction may be used by the
bandwidth estimator circuitry 202 to determine the con-
sumed bandwidth of a subsequent memory transaction.
[0072] The example bandwidth estimator circuitry 202
determines whether there is another memory transaction
from the transaction source circuitry 102A that requires
transmission. (Block 516). The transaction source circuitry
102A may generate the additional memory transaction at any
point during the machine readable instructions and/or opera-
tions 500. For example, the additional memory transaction
may be generated concurrently with the memory transaction
of'block 502, may be generated while the gate circuitry is in
the closed state at 512, etc. If the example bandwidth
estimator circuitry 202 determines there is another memory
transaction (Block 516: Yes), the example machine readable
instructions and/or operations 500 proceed to block 504
where the example bandwidth estimator circuitry 202 esti-
mates the consumed bandwidth of the additional memory
transaction. If the example bandwidth estimator circuitry
202 determines there are no further memory transactions
(Block 516: No), the example machine readable instructions
and/or operations 500 end.

[0073] FIG. 6 is a flowchart representative of an example
process that may be performed using machine readable
instructions that can be executed and/or hardware configured
to implement the rate limiter circuitry of FIG. 2, and/or,
more generally, the computer circuitry of FIG. 1 to estimate
consumed bandwidth as described in FIG. 5. Specifically,
FIG. 6 describes how the example machine readable instruc-
tions and/or operations 500 implement block 504 of FIG. 5.
[0074] Execution of block 504 begins when the example
bandwidth estimator circuitry 202 parses the memory trans-
action. (Block 602). By parsing the memory transaction, the
example bandwidth estimator circuitry 202 may obtain
information that may include, but is not limited to, the type
of requested operation (e.g., a read or a write), the memory
address range to be read from or written to, the transacted
bandwidth, etc.

[0075] The example bandwidth estimator circuitry 202
obtains the memory burst length value. (Block 604). The
memory burst length value refers to the minimum number of
bytes that the example memory controller circuitry 108 can
access from the example memory 110 in a memory burst.
For example, the memory burst length in the illustrative
example of FIG. 3 is 64 bytes. As used above and herein, a
memory burst refers to when the memory controller circuitry
108 reads a section of data from memory 110 or writes a
section of data to memory 110, where a section of data refers
to the memory addresses between two consecutive burst
boundaries.

[0076] The example bandwidth estimator circuitry 202
determines a number of bytes used by the memory controller
circuitry 108 to obtain primary values from memory 110.
(Block 606). Primary values refer to data stored in the
sections of memory that are referenced in the current
memory transaction. For example, primary values may be
stored within the example primary memory addresses 302 of

Dec. 14, 2023

FIG. 3. The example bandwidth estimator circuitry 202 may
make the determination of block 606 based on information
that includes but is not limited to the memory address listed
in the memory transaction of block 502, the memory burst
length, and the burst boundaries of the primary memory
values.

[0077] In one example of the determination of block 606,
the example bandwidth estimator circuitry 202 uses a byte
enable signal to determine whether a memory transaction
with a write command will require a burst operation to read
data from primary values. In some examples, such as the
example second transaction 308 and example fourth trans-
action 312, the write commands are partial writes. In such
examples, the example memory controller circuitry 108
performs a burst operation to read a section of primary
values before writing any transacted write data to the
example memory 110. In other examples, the current
memory transaction is a full write. In such examples, the
example memory controller circuitry 108 may not read any
sections of primary value data before writing transacted
write data.

[0078] The example bandwidth estimator circuitry 202
determines whether a previous memory transaction corre-
sponds to the same section of ECC values as the current
memory transaction. (Block 608). To make the determina-
tion of block 608, the example bandwidth estimator circuitry
202 may access the example memory 210 to compare the
address listed in the previous memory transaction to the
address listed in the current memory transaction. If the
example bandwidth estimator circuitry 202 determines a
previous memory transaction corresponds to the same sec-
tion of ECC values as the current memory transaction,
(Block 608: Yes), the example machine readable instructions
and/or operations 500 continue to block 612.

[0079] If the example bandwidth estimator circuitry 202
determines a previous memory transaction does not corre-
spond to the same section of ECC values as the current
memory transaction, (Block 608: No), the example band-
width estimator circuitry 202 determines a number of bytes
used by the memory controller circuitry 108 to access ECC
values from memory 110. (Block 610). ECC values refer to
data stored in the sections of memory that are used to
identify and/or correct errors in the current memory trans-
action. For example, ECC values may be stored within the
example ECC memory addresses 304 of FIG. 3. The
example bandwidth estimator circuitry 202 may make the
determination of block 610 based on information that
includes but is not limited to the memory address listed in
the memory transaction of block 502, the memory burst
length, and the burst boundaries of the ECC memory values.
If the example bandwidth estimator circuitry 202 determines
a previous memory transaction does not correspond to the
same section of ECC values as the current memory trans-
action, (Block 608: No), the example memory controller
circuitry 108 may access a non-zero amount of ECC values
from memory, regardless of whether the current memory
transaction is a read operation, partial write operation, or full
write operation.

[0080] The example bandwidth estimator circuitry 202
determines whether the current memory transaction is a
write operation. (Block 612). If the current memory trans-
action is not a write operation, (Block 612: No), the example
machine readable instructions and/or operations 500 pro-
ceed to block 616.



US 2023/0401164 Al

[0081] If the current memory transaction is a write opera-
tion, (Block 612: Yes), the example bandwidth estimator
circuitry 202 determines a number of bytes used to store
modified primary and ECC values in memory 110. (Block
614). To store the modified primary and ECC values in
memory 110, the example memory controller circuitry 108
may write one or more sections of data to the primary
memory addresses 302 where each section has a size
described by the memory burst length value of block 604.
The example memory controller circuitry 108 may also
write one or more sections of data to the ECC memory
addresses 304.

[0082] The bandwidth estimator circuitry 202 estimates
the total consumed bandwidth as a sum of the determina-
tions of blocks 606, 610, and blocks 614. (Block 616). That
is, the consumed bandwidth is based on at least the amount
of data required to access primary values from memory, the
amount of data required to access ECC values from memory,
and the amount of data required to store modified primary
and ECC values in memory. The example machine readable
instructions and/or operations 500 return to block 506 after
block 616.

[0083] In this description, the term “and/or” (when used in
a form such as A, B and/or C) refers to any combination or
subset of A, B, C, such as: (a) A alone; (b) B alone; (c) C
alone; (d) A with B; (e) A with C; (f) B with C; and (g) A
with B and with C. Also, as used herein, the phrase “at least
one of A or B” (or “at least one of A and B”) refers to
implementations including any of: (a) at least one A; (b) at
least one B; and (c) at least one A and at least one B.
[0084] Example methods, apparatus and articles of manu-
facture described herein improve the accuracy of memory
transactions throttle times. Example rate limiter circuitry
104A, 104B, 104C prevent the transmission of additional
memory transactions based on a consumed bandwidth that
represents the amount of data required for memory control-
ler circuitry to process a first memory transaction. As a
result, the example rate limiter circuitry 104A, 104B, 104C
may reduce the risk of memory controller overload and/or
bus utilization when compared to a previous solution that
throttles memory transactions based on a transacted band-
width.

[0085] A device that is “configured to” perform a task or
function may be configured (e.g., programmed and/or hard-
wired) at a time of manufacturing by a manufacturer to
perform the function and/or may be configurable (or re-
configurable) by a user after manufacturing to perform the
function and/or other additional or alternative functions. The
configuring may be through firmware and/or software pro-
gramming of the device, through a construction and/or
layout of hardware components and interconnections of the
device, or a combination thereof.

[0086] As used herein, the terms “terminal”, “node”,
“interconnection”, “pin” and “lead” are used interchange-
ably. Unless specifically stated to the contrary, these terms
are generally used to mean an interconnection between or a
terminus of a device element, a circuit element, an integrated
circuit, a device or other electronics or semiconductor com-
ponent.

[0087] A circuit or device that is described herein as
including certain components may instead be adapted to be
coupled to those components to form the described circuitry
or device. For example, a structure described as including
one or more semiconductor elements (such as transistors),

Dec. 14, 2023

one or more passive elements (such as resistors, capacitors,
and/or inductors), and/or one or more sources (such as
voltage and/or current sources) may instead include only the
semiconductor elements within a single physical device
(e.g., a semiconductor die and/or integrated circuit (IC)
package) and may be adapted to be coupled to at least some
of the passive elements and/or the sources to form the
described structure either at a time of manufacture or after
a time of manufacture, for example, by an end-user and/or
a third-party.

[0088] Modifications are possible in the described
embodiments, and other embodiments are possible, within
the scope of the claims.

What is claimed is:

1. A device comprising:

bandwidth estimator circuitry configured to:

obtain a first memory transaction; and
determine a consumed bandwidth associated with the
memory transaction; and

gate circuitry configured to:

permit transmission of the memory transaction to a
memory controller circuitry;

determine whether to gate a second memory transaction
generated by a source of the first memory transaction
based on the consumed bandwidth of the first
memory transaction; and

when it is determined to gate the second memory
transaction, prevent transmission of the second
memory transaction for an amount of time based on
the consumed bandwidth.

2. The device of claim 1, wherein the bandwidth estimator
circuitry is further configured to determine the consumed
bandwidth based on an amount of data accessed in a memory
burst.

3. The device of claim 2, wherein:

the memory transaction is to include a transacted amount

of data and a memory address; and

the bandwidth estimator circuitry is further configured to:

determine whether the transacted amount of data and
memory address are misaligned with a boundary of
the memory burst; and

determine the consumed bandwidth based on the deter-
mination.

4. The device of claim 2, wherein:

the memory transaction is a partial write operation;

to process the memory transaction, the memory controller

circuitry is configured to:

read a first amount of data in a first memory burst;

modify, in response to a determination the memory
transaction describes a write operation, the first
amount of data; and

write, in response to a determination the memory
transaction describes a write operation, the modified
first amount of data in a second memory burst; and

the bandwidth estimator circuitry is further configured to

determine the consumed bandwidth based on both the

first memory burst and the second memory burst.

5. The device of claim 4, wherein:

to process the memory transaction, the memory controller

circuitry is configured to:

read a second amount of data in a third memory burst,
the second amount of data to obtain an Error Cor-
rection Code (ECC) corresponding to the memory
transaction;



US 2023/0401164 Al

modify, in response to a determination the memory
transaction describes a write operation, the second
amount of data to update the ECC; and
write, in response to a determination the memory
transaction describes a write operation, the modified
second amount of data in a fourth memory burst; and
the bandwidth estimator circuitry is further configured to
determine the consumed bandwidth based on both the
third memory burst and the fourth memory burst.
6. The device of claim 5, wherein:
the memory transaction is a first memory transaction;
the source of the first memory transaction is further
configured to generate a second memory transaction;
and
the bandwidth estimator circuitry is further configured to:
log the first memory transaction;
determine, based on the log, that an ECC corresponding
to the first memory transaction and an ECC corre-
sponding to the second memory transaction are both
included in the second amount of data accessed by
the memory controller circuitry in the third memory
burst; and
determine the consumed bandwidth of the second
memory transaction based on information other than
the second amount of data.
7. The device of claim 1, further including transaction
limiter circuitry configured to:
obtain the consumed bandwidth;
obtain an allocated number of bytes per unit of time that
the source of the memory transaction is permitted to
transmit to the memory controller circuitry;
determine the amount of time based on the consumed
bandwidth and the allocated number of bytes per unit of
time; and
provide the amount of time to the gate circuitry.
8. A method comprising:
obtaining a first memory transaction;

determining a consumed bandwidth associated with the

memory transaction;

permitting transmission of the memory transaction;

determining whether to gate a second memory transaction

generated by a source of the first memory transaction
based on the consumed bandwidth of the first memory
transaction; and

when it is determined to gate the second memory trans-

action, preventing transmission of the second memory
transaction for an amount of time determined by the
consumed bandwidth.

9. The method of claim 8, further including determining
the consumed bandwidth based on an amount of data
accessed in a memory burst.

10. The method of claim 9, wherein:

the memory transaction is to include a transacted amount

of data and a memory address; and

the method further includes:

determining whether the transacted amount of data and

memory address are misaligned with a boundary of
the memory burst; and

determining the consumed bandwidth based on the
determination.

Dec. 14, 2023

11. The method of claim 9, further including:
reading a first amount of data in a first memory burst;
modifying, in response to a determination the memory
transaction describes a write operation, the first amount
of data;
writing, in response to a determination the memory trans-
action describes a write operation, the modified first
amount of data in a second memory burst; and
determining the consumed bandwidth based on both the
first memory burst and the second memory burst.
12. The method of claim 11, further including:
reading a second amount of data in a third memory burst,
the second amount of data to obtain an Error Correction
Code (ECC) corresponding to the memory transaction;
modifying, in response to a determination the memory
transaction describes a write operation, the second
amount of data to update the ECC;
writing, in response to a determination the memory trans-
action describes a write operation, the modified second
amount of data in a fourth memory burst; and
determining the consumed bandwidth based on the third
memory burst and the fourth memory burst.
13. The method of claim 12, wherein:
the memory transaction is a first memory transaction;
the source of the first memory transaction is to further
generate a second memory transaction; and
the method further includes:
logging the first memory transaction;
determining, based on the log, that an ECC correspond-
ing to the first memory transaction and an ECC
corresponding to the second memory transaction are
both included in the second amount of data accessed
in the third memory burst; and
determining the consumed bandwidth of the second
memory transaction based on information other than
the second amount of data.
14. The method of claim 8, further including:
obtaining an allocated number of bytes per unit of time
that the source of the memory transaction is permitted
to transmit to a memory controller circuitry; and
determining the amount of time based on the consumed
bandwidth and the allocated number of bytes per unit of
time.
15. A device comprising:
transaction source circuitry configured to generate a
memory transaction;
bandwidth estimator circuitry configured to:
obtain a first memory transaction; and
determine a consumed bandwidth associated with the
memory transaction; and
gate circuitry configured to:
permit transmission of the memory transaction to a
memory controller circuitry; and
determine whether to gate a second memory transaction
generated by a source of the first memory transaction
based on the consumed bandwidth of the first
memory transaction;
when it is determined to gate the second memory
transaction, prevent transmission of the second
memory transaction for an amount of time deter-
mined by the consumed bandwidth; and



US 2023/0401164 Al
11

the memory controller circuitry configured to:
process the memory transaction; and
provide results of the memory transaction to the trans-
action source circuitry.

16. The device of claim 15, wherein the transaction source
circuitry is an Intellectual Property core.

17. The device of claim 15, wherein the bandwidth
estimator circuitry is further configured to determine the
consumed bandwidth based on an amount of data accessed
in a memory burst.

18. The device of claim 17, wherein:

the memory transaction is to include a transacted amount

of data and a memory address; and

the bandwidth estimator circuitry is further configured to:

determine whether the transacted amount of data and
memory address are misaligned with a boundary of
the memory burst; and

determine the consumed bandwidth based on the deter-
mination.

19. The device of claim 15, wherein:

the memory transaction is a partial write operation;

to process the memory transaction, the memory controller

circuitry is configured to:

obtain a first amount of data in a first memory burst;

modify the first amount of data based on data within the
memory transaction;

write the modified first amount of data in a second
memory burst;

Dec. 14, 2023

obtain a second amount of data in a third memory burst,
the third amount of data to obtain an Error Correc-
tion Code (ECC) corresponding to the memory trans-
action;
modify the second amount of data to update the ECC;
and
write the modified second amount of data in a fourth
memory burst; and
the bandwidth estimator circuitry is further configured
determine the consumed bandwidth based on the first
memory burst, the second memory burst, the third
memory burst, and the fourth memory burst.
20. The device of claim 15, wherein:
the memory transaction is a full write operation;
to process the memory transaction, the memory controller
circuitry is configured to:
write data within the memory transaction to memory in
a first memory burst; and
obtain a first amount of data in a second memory burst,
the second amount of data to obtain an Error Cor-
rection Code (ECC) corresponding to the memory
transaction;
modify the first amount of data to update the ECC; and
write the modified first amount of data in a third
memory burst; and
the bandwidth estimator circuitry is further configured to
determine the consumed bandwidth based on the first
memory burst, the second memory burst, and the third
memory burst.



