NL B1 2029673

Octrooicentrum ® 2029673

Nederland

(2 B1 OCTROOI

() Aanvraagnummer: 2029673 G Int.Cl.:
HO04B 10/70 (2022.01) GO6N 10/80 (2022.01) GO6F
(z2) Aanvraag ingediend: 8 november 2021 9/46 (2022.01) HOAL 9/08 (2022.01)

Voorrang: (z3) Octrooihouder(s):
- Technische Universiteit Delft te Delft
Aanvraag ingeschreven:
5 juni 2023 (2 UVitvinder(s):
Ingmar te Raa te Delft
Aanvraag gepubliceerd: Erik Axel Dahlberg te Delft

Carlo Delle Donne te Delft
Bart van der Vecht te Delft
Wojciech Kozlowski te Delft

Octrooi verleend: Matthew Daniel Skrzypczyk te Delft

5 juni 2023 Stephanie Dorothea Christine Wehner te Delft
Octrooischrift uitgegeven: Gemachtigde:

7 juni 2023 ir. A.R. Aalbers te Amsterdam

Operating system for quantum network nodes and execution of quantum network applications using
such operating system

@ A method for executing quantum network applications comprising
classical code blocks and quantum code blocks on a quantum

network node is described. Each quantum network node may include
one or more communication qubits and one or more storage qubits.
Further, the method comprises the steps of: receiving a quantum
code block associated with a first quantum network application by an
operating system of a first quantum network node, the quantum code
block comprising quantum operations, the quantum operations i
including local quantum operations not related to entanglement
generation and at least an entanglement generation operation for 142, -
entanglement generation between the first quantum network node
and a second quantum network node; executing at least part of the
guantum operations on the quantum computing system via a first R
subsystem of the operating system, wherein if a quantum operation is
relates to an entanglement generation operation, sending the
entanglement generation operation to a second subsystem of the
operating system, the second subsystem preparing execution of the
entanglement generation operation as a background process of the
operating system, while the first subsystem continues executing local
guantum operations; blocking the execution of the local quantum
operations associated with a first quantum network application by the
first subsystem, if a first local quantum operation requires access to
an entanglement associated with the entanglement generation
operation; executing the entanglement generation operation by the
second subsystem based on a timeslot in a network schedule
provided to the first and second quantum network node; unblocking
execution of the quantum operations by the first subsystem if
entanglement between the first and second quantum network node is
established; and, providing the local quantum operation access to a
communication qubit of the quantum computing system of the first
guantum network node that is entanglement with a communication
qubit of the quantum computing system of the second quantum
network node.

GNueds Rbio

Vo Buachan

HR
Rarowmrs “4- 07

Dit octrooi is verleend ongeacht het bijgevoegde resultaat van het onderzoek naar de stand van de techniek en
schriftelijke opinie. Het octrooischrift komt overeen met de oorspronkelijk ingediende stukken.

10

15

I
o

Operating system for quantum network nodes and execution of quantum network
applications using such operating system

Field of the invention

The embodiments relate to an operating system for a quantum network nodes
and execution of quantum network applications using such operating system, and, in
particular, though not exclusively, to methods and systems for executing one or more
guantum network applications on one or more quantum network nodes forming a quantum
network and a software program product using such methods.

Background of the invention

Quantum network architectures are based on quantum devices, i.e. quantum
network nodes, that are capable of connecting over large distances in order provide new
applications that are impossible to achieve using a classical communication network or that
are better {e.g. more secure, more efficient) than their purely classical implementation.
Examples of such quantum network applications include security enhancing applications
such as quantum key distribution (QKD), improved clock synchronization, support for
distributed sensing and distributed systems, as well as secure quantum computing in the
cloud. To run a general quantum network application on a quantum network of connected
quantum network nodes, the quantum network nodes need to be capable of producing
guantum entanglement between quantum end nodes, or in short end nodes. Entanglement is
a special property of at least two quantum bits (qubits), one held by each end node. Such
entanglement can be consumed by an application as is, or be used to transmit qubits from
one end node to the other using teleportation.

Additionally, a quantum network node needs be capable of executing local
guantum operations on the qubits held by a quantum network node. For simple quantum
applications such as secure communication these operations can be just a single
measurement. For more complex quantum network applications at a higher stage of
guantum internet development, however, these operations can include the execution of
guantum gates and indeed full quantum computation on a quantum processor. Next to such
guantum actions, many quantum network applications known to date require significant local
classical processing, as well as classical communication between the end nodes Wehner et
al, Quantum internet: A vision for the road ahead. Science, 362(6412) :eaam9288, Oct
2018.. Different types of end node hardware has been realized by experimental physics
ranging from simple photonic devices on which the only operation is a measurement, to fully
fledged quantum processors with a network interface.

N

10

20

Quantum network applications should be distinguished from quantum
computing applications Cross, et al. OpenQASM 3: A broader and deeper quantum
assembly language. arXiv preprint arXiv:2104.14722, 2021 in which quantum operations are
sequentially executed on a hybrid computing systems. Up to now, demonstrations of
quantum networking beyond QKD focused on hardware realizations Pompili et al. Realization
of a Multinode Quantum Network of Remote Solid-State Qubits. Science 372, no. 8539 (April
16, 2021): 259-64. Up to three quantum processors have been connected into a network at
the hardware level, and demonstrations of quantum network applications beyond QKD have
been performed using several photonic devices. Central to all these experiments is that the
software to control the hardware was programmed in an ad-hoc fashion specific to the
experiment into low-level control devices.

In order to advance quantum networks from a physics experiment to a fully-
fledged quantum network system, quantum network nodes and an operating system for
controlling such quantum network nodes are desired that allow a programmer to realize
guantum network applications based on high-level software, and control entanglement
generation over long distances in a scalable way. The high-level parts of the software for
realizing such quantum network applications need to be platform independent, in order to be
able to interact with a variety of potential candidates for future quantum network hardware
technology. When designing such quantum network nodes and associated operating system,
many challenges and design considerations arise, which can be roughly classified into three
areas. A first challenge relates to the fundamental differences between classical and
guantum information. A good example of this, is the phenomenon of quantum entanglement,
which already at the physical layer forms a “connection” between two qubits held by different
nodes. A second challenge relates to the technological limitations of so-called near-term
guantum devices impose stringent demands on the performance of such a system. One
example of such a limitation are limited lifetimes of quantum memories (microseconds up to
seconds for network capable devices), which impose scheduling constraints on the execution
of quantum operations. A third challenge relate to the fact that unlike in the study of classical
operating systems today which take advantage of the existence of advanced computer
architectures defining a specific interaction of software and hardware, there exists no general
low-level quantum processor architecture.

Hence, from the above it follows that there is a need in the art for methods and
systems for enabling the realization of a programmable quantum network. In particular, there
is a need in the art for quantum nodes for a programmable quantum network and an
operating system for controlling and programming such quantum nodes.

N

10

20

Summary of the invention

As will be appreciated by one skilled in the art, aspects of the present
invention may be embodied as a system, method or computer program product. Accordingly,
aspects of the present invention may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that may all generally be referred to
herein as a "circuit," "module” or "system." Functions described in this disclosure may be
implemented as an algorithm executed by a microprocessor of a computer. Furthermore,
aspects of the present invention may take the form of a computer program product embodied
in one or more computer readable medium(s) having computer readable program code
embodied, e.q., stored, thereon.

Any combination of one or more computer readable medium(s) may be
utilized. The computer readable medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable storage medium may be, for
example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
More specific examples {(a non-exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical
fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a
magnetic storage device, or any suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any tangible medium that can
contain, or store a program for use by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propagated data signal
with computer readable program code embodied therein, for example, in baseband or as part
of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but
not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer
readable signal medium may be any computer readable medium that is not a computer
readable storage medium and that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system, apparatus, or device.

Program code embodied on a computer readable medium may be transmitted
using any appropriate medium, including but not limited to wireless, wireline, optical fiber,
cable, RF, etc., or any suitable combination of the foregoing. Computer program code for
carrying out operations for aspects of the present invention may be written in any

N

10

20

combination of one or more programming languages, including an object-oriented
programming language such as Java(TM), Smalltalk, C++ or the like and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. The program code may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software package, partly on the user's
computer and partly on a remote computer, or entirely on the remote computer or server. In
the latter scenario, the remote computer may be connected to the user's computer through
any type of network, including a local area network {LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for example, through the Internet
using an Internet Service Provider).

Aspects of the present invention are described below with reference to
flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the invention. It will be understood that each
block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be implemented by computer program
instructions. These computer program instructions may be provided to a processor, in
particular a microprocessor or central processing unit (CPU), of a general purpose computer,
special purpose computer, or other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the processar of the computer, other
programmable data processing apparatus, or other devices create means for implementing
the functions/acts specified in the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer
readable medium that can direct a computer, other programmable data processing
apparatus, or other devices to function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of manufacture including
instructions which implement the function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other programmable apparatus or other
devices to produce a computer implemented process such that the instructions which
execute on the computer or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart and/or block diagram block or
blocks. Additionally, the Instructions may be executed by any type of processors, including
but not limited to one or more digital signal processors (DSPs), general purpose
microprocessors, application specific integrated circuits (ASICs), field programmable logic

N

10

20

arrays (FPGASs), System-on-Chip (SoC) or other equivalent integrated or discrete logic
circuitry.

The flowchart and block diagrams in the figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods and computer
program products according to various embodiments of the present invention. In this regard,
each block in the flowchart or block diagrams may represent a module, segment, or portion
of cade, which comprises one or more executable instructions for implementing the specified
logical function(s). It should also be noted that, in some alternative implementations, the
functions noted in the blocks may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block diagrams and/or flowchart
illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations,
can be implemented by special purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hardware and computer instructions.

In a first aspect, the invention may relate to a computer-implemented method
for executing one or more quantum network applications comprising classical code blocks
and quantum code blocks on one or more quantum network nodes, wherein each quantum
network node may include a classical computer system and a quantum computing system,
wherein the quantum computing system may comprise one or more communication qubits
and one or more storage qubits.

In an embodiment, the method may include receiving a quantum code block
associated with a first quantum network application by an operating system of a first quantum
network node, the quantum code block comprising quantum operations, the quantum
operations including local quantum operations not related to entanglement generation and at
least an entanglement generation operation for entanglement generation between the first
guantum network node and a second quantum network node, the first and second quantum
network nodes being part of a quantum network; and, executing at least part of the quantum
operations on the quantum computing system via a first subsystem of the operating system,
wherein if a quantum operation is relates to an entanglement generation operation, sending
the entanglement generation operation to a second subsystem of the operating system, the
second subsystem preparing execution of the entanglement generation operation as a
background process of the operating system, while the first subsystem continues executing
local quantum operations.

In an embodiment, the method may further include blocking the execution of
the local quantum operations associated with a first quantum network application by the first

N

10

20

subsystem, if a first local quantum operation requires access to an entangled qubit
associated with the entanglement generation operation.

In an embodiment, the method may include executing the entanglement
generation operation by the second subsystem based on a timeslot in a network schedule
provided to the first and second quantum network node.

In an embodiment, the the entanglement generation operation may be
executed as a kernel process of the operating system.

In an embodiment, the method may include unblocking execution of the
guantum operations by the first subsystem if entanglement between the first and second
guantum network node is established.

In a further embodiment, the method may include providing access to a
communication qubit of the quantum computing system of the first quantum network node
that is entanglement with a communication qubit of the quantum computing system of the
second quantum network node.

Hence, the invention relates to executing a quantum network application by an
operating system of a quantum network node which is configured to separately process local
guantum operations using a first subsystem of the operating system and entanglement
generation requests using a second subsystem of the operating system, wherein the
entanglement generation requests are processed by the operating system based on a
network schedule to coordinate entanglement generation between quantum network nodes.

In an embodiment, the local quantum operations may be part of a user
process and the entanglement generation operation by the second subsystem part of a
network process. The user process and network process associated with a quantum network
application define logical entities that can be scheduled and processed by the operation
system of the quantum network node. It provides the ability to implement scheduling policies
which can be used to address the issue of scheduling user processes and network
processes to optimize fidelity and throughput. The strict separation between local user
processes and network processes enable execution of quantum network applications on
multiple quantum network nodes of a quantum network through scheduling mechanisms and
scheduling policies. Further, the user processes and the network processes can be
scheduled such that they can generate entanglement between to quantum network nodes
and consume that entanglement as fast as possible to ensure the highest fidelity.

In an embodiment, the preparation of the execution of the first entanglement
generation operation may include: sending a request for entanglement over a classical
communication link to the second quantum network node; or, receiving a request for
entanglement over a classical communication link from the second quantum network node.

N

10

20

Hence, a quantum network node may be a node requesting entanglement generation or a
node receiving an entanglement generation request from another node.

In an embodiment, the first and second quantum network nodes may be
connected to each other via an optical medium, preferably an optical fibre. In this
embodiment, entanglement between communication bits of different nodes may be achieved
via an optical interface such as an optical fibre.

In an embodiment, the network schedule may include one or more time slots
for coordinating entanglement generation between the one or more quantum network nodes.

In an embodiment, the one or more time slots of the network schedule may
signal the operating system at what time the second subsystem has access to the quantum
hardware of the quantum network node.

In an embodiment, the network schedule may be a time division multiplexing
schedule. In another embodiment, the network schedule may be a time-division multiple
access TDMA schedule. In yet another embodiment, the network schedule may be statistical
multiplexing schedule.

In an embodiment, the network schedule may be used by the operating
system to schedule the user process and the network process based on a scheduling policy.
In an embodiment, in a scheduling policy, a higher priority network process may take
precedence over a lower-priority user process, if the user process and the network process
become ready at the same time instance..

In an embodiment, the executing of the entanglement generation operation
may include: allocating the ownership of the communication that is used in the entanglement
generation to the network process. In ancother embodiment, the executing the entanglement
generation operation may include: transferring ownership of the communication qubit to the
user process if entanglement between the communication qubit and a communication qubit
of the second quantum network node is established.

Ownership transfer of a qubit from a user process to a network process (or viz
versa) may be implemented logically by updating the qubit owner and allocating a new virtual
address in the new process' virtual address space rather than physically moving quantum
data in the memory in order to minimize fidelity losses due to imperfect hardware operations
and additional latency.

In an embodiment, a central network controller may provide the one or more
guantum network nodes with a network schedule for coordinating entanglement between the
quantum network nodes.

In an embodiment, the quantum network application may include classical
code blocks and quantum code blocks wherein the classical code blocks include classical

N

10

20

operations of a high-level computer language and wherein the quantum code blocks include
quantum operations of a quantum assembly language.

In an embodiment, the quantum assembly language may include one or more
operations for entanglement generation.

In an embodiment, the method may further include during the blocking of the
execution of the local quantum operations associated with a first quantum network
application, executing local quantum operations associated with a second quantum network
application or sending a further entanglement generation request associated with a second
guantum network application to the second subsystem.

Thus, in contrast to the executing of quantum applications that are executed
on a conventional quantum computer which executes programs sequentially, the execution
of quantum network applications according to this embodiment, allow multitasking as a
quantum network application may have to wait for some classical message exchange to
happen between the programs running on different end-nodes to proceed. Such idle time will
leave spare capacity that can be potentially used to execute other applications. Such
multitasking will lead to increased application throughput when compared to sequential
execution without a significant impact on the quantum execution quality.

In an embodiment, executing the entanglement generation operation may
include: after execution of the first code block sending a notification message to the quantum
network application the end of execution, preferably the notification message comprising
results of the execution, the results of the execution including at least one of. a measurement
of an entangled communication qubit and/or information on one or more stored entangled
communication qubits.

In a further aspect, the invention may relate to a computer-implemented
method for executing a quantum network application comprising classical code blocks and
gquantum code blocks wherein the method may comprise: executing a first classical code
block, the execution including registering the quantum network application with an operating
system of a first quantum network node, the registration including registration information for
resource requirements for the quantum network application, preferably registration
information including resource requirements such as a bandwidth for entanglement
generation, a socket identifying a second quantum network node and a fidelity associated
with the execution of the quantum network application; sending a first quantum code block to
the first quantum network node, the first quantum code block comprising quantum operations
including local quantum operations not related to entanglement generation and one or more
entanglement generation requests for entanglement generation between the first quantum
network node and the second quantum network node; receiving a notification from the first
quantum network node, that the execution of the first quantum code block has ended, the

N

10

20

notification including one or more execution results of the execution of the code block, the
one or more execution results including information about one or more measured
communication qubits and/or information about one or more stored entangled qubits;
executing a second classical code block of the quantum network based on the execution
results.

In an embodiment, the classical code blocks may include classical operations
of a high-level computer language and wherein the quantum code blocks include quantum
operations of a quantum assembly language, preferably quantum assembly language
comprising instructions for entanglement generation.

In a further aspect, the invention may relate to a quantum network node
system for executing one or more quantum netwaork applications comprising classical code
blocks and quantum code blocks, the quantum network node system may comprise a
classical computer system and a quantum computing system comprising one or more
communication qubits and, optionally, one or more storage qubits system.

In an embodiment, the classical computer system comprising a memory
device including computer-executable instructions and a processor connected to the memory
device, wherein the processor is configured to perform executable operations.

In an embodiment the executable operations may include: receiving a
guantum code block associated with a first quantum network application by an operating
system of a first quantum network node, the quantum code block comprising quantum
operations, the quantum operations including local quantum operations not related to
entanglement generation and at least an entanglement generation operation for
entanglement generation between the first quantum network node and a second quantum
network node.

In an embodiment, the executable operations may include: executing at least
part of the quantum operations on the quantum computing system via a first subsystem of
the operating system, wherein if a quantum operation is relates to an entanglement
generation operation, sending the entanglement generation operation to a second subsystem
of the operating system, the second subsystem preparing execution of the entanglement
generation operation as a background process of the operating system, while the first
subsystem continues executing local quantum operations;

In an embodiment, the executable operations may include blocking the
execution of the local quantum operations associated with a first quantum network
application by the first subsystem, if a first local quantum operation requires access to an
entanglement associated with the entanglement generation operation.

In further embodiment, the executable operations may include executing the
entanglement generation operation by the second subsystem based on a timeslotin a

N

10

20

10

network schedule provided to the first and second quantum network node, preferably the
entanglement generation operation being executed as a kernel process of the operating
system.

In yet a further embodiment, the executable operations may include
unblocking execution of the quantum operations by the first subsystem if entanglement
between the first and second quantum network node is established.

The executable operations may also include providing the local quantum
operation access to a communication qubit of the quantum computing system of the first
guantum network node that is entanglement with a communication qubit of the quantum
computing system of the second quantum network node.

In an embodiment, the executable operations may further comprise any of the
methods steps as described above.

In a further aspect, the invention may relate to a computer-implemented
method for executing a quantum network application comprising classical code blocks and
guantum code blocks comprising: executing a first classical code block, the execution
including registering the quantum network application with an operating system of a first
guantum network node, the registration including registration information for resource
requirements for the quantum network application, preferably registration information
including a context, a bandwidth for entanglement generation, a socket identifying a second
quantum network node and a fidelity associated with the execution of the quantum network
application; sending a first quantum code block to the first quantum network node, the first
guantum code block comprising quantum operations including local quantum operations not
related to entanglement generation and one or more entanglement generation requests for
entanglement generation between the first quantum network node and the second quantum
network node; receiving a notification from the first quantum network node, that the execution
of the first quantum code block has ended, the notification including one or more execution
results of the execution of the code block, the one or more execution results including
information about one or more measured communication qubits and/or information about one
or more stored entangled qubits; and, executing a second classical code.

In an embodiment, the method may further include sending a second quantum
code block to the first quantum network node, wherein the second quantum code block
comprises quantum operations for measuring one or more stored entangled qubits that were
stored during the execution of the first quantum code block.

In an embodiment, the classical code blocks may be executed by a host
system and the quantum code blocks may be executed by the operating system of a
quantum network node.

N

10

20

11

The execution results may include measurements of one or more qubits or
information about a communication qubit that is not measured and stored in the quantum
memeory. In an embodiment, the execution results may include qubit metadata. For example,
in an embodiment, the qubit metadata may include at least part of the qubit metadata that is
managed by a quantum memory management unit (QMMU) of the operating system of the
guantum network node, such as ownership of a qubit and/or transfer of ownership of a qubit.

In an embodiment, the classical code blocks may include classical operations
of a high-level computer language and the quantum code blocks may include quantum
operations of a quantum assembly language, preferably quantum assembly language
comprising instructions for entanglement generation.

The invention relates to an architecture for a quantum networked operating
system that is executed on quantum nodes forming a quantum network. The quantum
networked operating system includes methods and systems for quantum memory
management, scheduling different types of quantum operations, as well as an interface to
different drivers addressing several possible quantum hardware architectures. The quantum
networked operation system may be implementation of quantum nodes that use quantum
hardware based on Nitrogen-Vacancy Centers in Diamond.

Quantum network applications should be distinguished from quantum
computing applications in that a programmer may ask for an arbitrary interleaving of such
quantum and classical actions at different quantum network nodes that may depend on each
other. Moreover, in order to implement such applications, independent programs may be
written for each quantum network node, which only interact with each other by passing
classical or quantum messages using e.g. entanglement of qubits. This way, security
sensitive network applications may be realized just as in the classical domain, but prohibits a
global orchestration of the quantum execution.

As a consequence of the need to for continuous interaction between the
classical parts (the classical code blocks) and quantum parts (the quantum code blocks) of a
quantum network application, both the classical and quantum state needs to be kept alive,
i.e. stored in a quantum memory, such that for example quantum instructions can be
executed depending on messages from a remote quantum network node. This is in sharp
contrast to conventional quantum computing applications, wherein the quantum part of a
program is compiled and sent to the quantum processor to be executed in one batch,
concluding in a measurement terminating the quantum execution.

Further, guantum network nodes may be configured as end-nodes or as
intermediary nodes, e.g. quantum repeater nodes, in order to generate entanglement
between end nodes separated by long distances. Such repeater nodes can be simple
automated nodes, or controllable nodes capable of - for example - on demand entanglement

N

10

20

12

generation or higher-level decision making. In the latter case, quantum repeater nodes are
capable of executing similar actions as end nodes - without the need to realize universal
guantum computation. A typical quantum repeater protocol may include actions such as:
producing entanglement with neighbouring repeater nodes, executing a restricted class of
local quantum operations, and basic classical communication and computation in order to
control entanglement generation. From a hardware perspective, possible realizations of
guantum repeaters have been suggested using the same type of quantum processors that
are also used for end nodes, or simpler devices not capable of universal quantum
computation.

Hence, in that case the invention may relate to a computer-implemented
method for executing a quantum repeater application comprising quantum code blocks on
one or more quantum network nodes, each quantum network node including classical
computer system and a quantum computing system comprising one or more communication
gubits and one or more storage qubits, the method comprising:,

executing a quantum code block by an operating system of a first quantum
network node, the quantum code block comprising quantum operations, the quantum
operations including local quantum operations not related to entanglement generation and at
least an entanglement generation operation for entanglement generation between the first
guantum network nocde and a second gquantum network node, the first and second quantum
network nodes being part of a quantum network;

executing at least part of the quantum operations on the quantum computing
system via a first subsystem of the operating system, wherein if a quantum operation is
relates to an entanglement generation operation, sending the entanglement generation
operation to a second subsystem of the operating system, the second subsystem preparing
execution of the entanglement generation operation as a background process of the
operating system, while the first subsystem continues executing local quantum operations;

blocking the execution of the local quantum operations associated with a first
quantum network application by the first subsystem, if a first local quantum operation
requires access to an entanglement associated with the entanglement generation operation;

executing the entanglement generation operation by the second subsystem
based on a timeslot in a network schedule provided to the first and second quantum network
node, preferably the entanglement generation operation being executed as a kernel process
of the operating system;

unblocking execution of the quantum operations by the first subsystem if
entanglement between the first and second quantum network node is established; and,

providing the local quantum operation access to a communication qubit of the
quantum computing system of the first quantum network node that is entanglement with a

N

10

20

13

communication qubit of the quantum computing system of the second quantum network
node.

The invention may also relate to a computer program product comprising
software code portions configured for, when run in the memory of a computer, executing the
method steps according to any of process steps described above.

The invention will be further illustrated with reference to the attached
drawings, which schematically will show embodiments according to the invention. It will be
understood that the invention is not in any way restricted to these specific embodiments.

Brief description of the drawings

Fig. 1 depicts a high-level scheme of a quantum network application executed
in a quantum network;

Fig. 2 depicts a quantum network node according to an embodiment of the
invention;

Fig. 3 illustrates the execution of a quantum network application on a quantum
network node according to an embodiment of the invention;

Fig. 4 and 4B illusirate a quantum network and a network schedule for a
guantum network according to an embodiment of the invention;

Fig. 5A and 5B depict a schematic of quantum network node and an
execution model for executing an quantum application on a quantum network node according
to an embodiment of the invention;

Fig. 6 depicts an example of an ownership transfer using a quantum memory
management unit according to an embodiment of the invention;

Fig. 7A and 7B illustrate a user process and the network process according to
an embodiment of the invention;

Fig. 8 illustrates the execution of a quantum routine associated with quantum
network application according to an embodiment of the invention;

Fig. 9 illustrates the execution of a quantum routine associated with quantum
network application according to an embodiment of the invention;

Fig. 10 illustrates the execution of a quantum routine associated with quantum
network application according to an embodiment of the invention;

Fig. 11 depicts a schematic of network schedule according to an embodiment
of the invention;

Fig. 12 illustrates an example of execution of multiple user processes by a
quantum network node operation system according to an embodiment of the invention;

N

10

20

14

Fig. 13 illustrates another example of execution of multiple user processes by
a quantum network node operation system according to an embodiment of the invention.

Fig. 14 depicts a quantum network node system according to an embodiment
of the invention;

Fig. 15 depicts a schematic of a quantum network node operating system
stack according to an embodiment of the invention;

Fig. 16 depicts a schematic of the core layer of a quantum network node
operation system according to an embodiment of the invention.

Detailed description

The embodiments it this disclosure refale to an operating system for a
programmable quantum network node. Such operating system will be referred to as a
guantum node operating system or in short QNodeOS. Whilst operating systems for quantum
computers already exist, introducing quantum communications between quantum network
nodes require new challenges in memory and process management for the quantum network
nodes. In particular, a quantum node operating system needs to be able to run quantum
network applications, while maintaining the quality of the quantum execution in terms of its
fidelity. As will be described hereunder in more detail, this problem can be solved through
close cooperation between networking, process management and memory management.
Although a quantum network protocol stack including a link layer and network layer is known
from Dahlberg et al, A link layer protocol for quantum networks, in ACM SIGCOMM 2019
Conference, SIGCOMM ’19, page 15, New York, NY, USA, 2019. ACM and Kozlowski, et al,
2020, Designing a quantum network protocol. In Proceedings of the 16th International
Conference on emerging Networking Experiments and Technologies (CONEXT '20).
Association for Computing Machinery, New York, NY, USA, 1-16. These schemes assume
coexistence within a more advanced software system however do not describe how the
protocol stack is integrated with a local resource management nor do they consider any
application execution model. Hence, substantial challenges for quantum hardware resource
management both on a fundamental and technical level still exist in the prior art.

A first challenge relates to memory management, which is necessarily more
complicated on a quantum network node in a quantum network as compared to a single
guantum computing node executing only local applications. For example, a quantum network
node needs the quantum memory to persist between separate quantum code blocks. In a
guantum computer that is not connected to a network, the most optimal quantum memory
management strategy is to execute blocks of code in batches such that no quantum memory
needs to persist between them. Such strategy is possible in a non-networked scenario as

N

10

20

15

one can include all classical logic within such a block a priori, but not for distributed quantum
network applications. Quantum network applications, in general, need to wait, with a live
guantum state being held in memary, for classical input from the other node. Even in the
simple case of teleportation Bennett, et al. Teleporting an unknown quantum state via dual
classical and Einstein-Podolsky-Rosen channels, Physical review letters 70.13 (1993): 1895,
the receiver needs to hold its qubit waiting for the two bits of information that will indicate the
required Pauli correction. It is not, in general, possible to include all such input a priori.
Therefore, a quantum node operating system requires a quantum memory manager that
allows for a quantum memory to persist between quantum code blocks of the same
application.

A second challenge relates to resource scheduling. Quantum networks will
require a lot of coordination between the quantum network nodes. Nodes have finite
resources so carefully allocation is desired to execute users' applications. The resource
management strategy needs to be coordinated so that end-nodes have access to the right
resources at the right time to execute the application successfully and efficiently.
Furthermore, classical communication between quantum network nodes is needed to
synchronize and schedule resources. This will remain a challenge even in the long-term
wherever resources are limited, but it is particularly challenging in the near-term where the
resource constraints are significant.

For example, current networked hardware is limited to very few qubits (for
example fewer than ten qubits) and only a few (e.g. only one qubit on currently employed NV
platforms) of the qubits can actually be used for computation or communication (the rest is
for storage only). The communication qubit limitation is particularly challenging as it is shared
between local computation and network demands. In that case, only one of these activities
can execute at any time per communication qubit and if a platform only has one such qubit,
computation and networking are mutually exclusive activities. This may be further
complicated by the fact that the network schedule requires accurate synchronization with
other nodes of the network. This means that networking cannot be arbitrarily scheduled and
if a node misses its allocated networking time, the other nodes will have wasted their
resources.

Furthermore, the lifetime of the quantum memories is currently very short (e.g.
around 300 ms). This means that distributed resources must be allocated carefully as it is
easy to starve an application if its remote peer allocates its resources elsewhere in that small
window of time. This is even more likely to happen when running multiple independent
applications on each node. Additionally, the network itself will be significantly resource
constrained and will require its own careful and time-sensitive resource management. This

N

10

20

16

means that in the near-term, resource scheduling must be carefully coordinated between all
end-nodes involved as well as the network itself.

A third challenge relates to the decoherence, i.e. the process that limits the
lifetime of quantum memories. Decoherence is the gradual process of losing information due
to uncontrolled environmental interactions. A lifetime is often stated as an upper bound, but it
is important to note that the quality, i.e. fidelity, is not constant throughout this time. The
number usually cited as a lifetime is the time after which the quantum state can no longer be
considered quantum at all, but the fidelity degrades steadily the entire time. This means, that
for practical applications, qubits, in particular when they are entangled, must be consumed
very quickly. Depending on the quality of execution required by the application, this time may
be longer or shorter. Therefore, not only is the memory lifetime finite and short, the practically
usable timescales are even shorter if the user requires very good quantum fidelity.

The invention aims to provide a quantum node operating system for quantum
network nodes in a quantum network that provide solutions to the above-mentioned technical
challenges.

In particular, the embodiments described in this application relates to a
guantum node operating system that provides the user with the useful resource abstractions
and manages the hardware resources for efficient application execution by a quantum
network node that is part of a quantum network. In addition to standard classical
performance metrics such as latency and throughput, the performance of a quantum
application is also determined by the quality of quantum execution. This quantum quality is
generally measured by the fidelity 0 < F < 1, where a higher value corresponds to higher
quality. For a quantum state, F measures the quality with respect to an ideal state. For a
quantum gate or measurement, it measures the quality of execution, averaged over all
possible states that it could be applied to. For a specific application, F can be translated into
its performance (e.g. how much key could be produced in QKD, or the success probability of
the application). Thus, efficient execution of a quantum network application means that a
quantum network node operating system is capable of delivering a fidelity (minimize
decoherence) that satisfies the application's requirements whilst optimizing for the
conventional metrics like latency and throughput across multiple applications from multiple
independent users.

The embodiments in this disclosure aim to provide a quantum network node
operating system which enables a quantum network application to achieve sufficient fidelity
of quantum execution and decoherence can be minimized. To that end, the embodiments
provide schemes for co-scheduling of local operations with network operations such that
decoherence can be minimized. Additionally, the embodiments provide an execution model
for a quantum network wherein the quantum network application includes classical code

N

10

20

17

blocks and quantum code blocks. Even though perfect quantum fidelity is not required, poor
fidelity will lead to poor performance or even cause the application to abort. However, if that
was the only requirement all resources at all the nodes in the network could be reserved for a
single application at a time and execute them sequentially just like one would execute
applications on a quantum computer. Therefore, the secondary goal of the quantum node
operating system is to optimize application latency and throughput across multiple
applications from multiple independent users. This will require careful resource management
mechanisms and policies, both local and distributed, to address the challenges outlined
above.

Further, the quantum node operating system is configured to abstract the
underlying quantum hardware resources from the user's applications. Preferably, these
abstractions are useful for a programmer. Firstly, this means that they are independent from
the quantum hardware platform they are running on. However, just like in classical devices, it
may sometimes be useful to expose platform specific details if this enables platform-specific
optimizations that would be otherwise unavailable (similar to the march option available in
classical compilers). Secondly, in light of the challenges, in particular the significantly
constrained resources and short timescales, useful also means that the quantum node
operating system provides options to the programmer to help optimize resource usage whilst
maintaining platform independence. For example, different applications may have different
fidelity thresholds for operation and quantum network protocols on some platforms can
achieve higher entanglement generation rates at lower fidelities and thus the operation
system may be configured to expose this protocol stack option directly to the application.

Fig. 1 depicts a high-level scheme of a quantum network application executed
on a quantum network. In particular, the figure depicts a quantum network 100 comprising
network nodes, including two end nodes 102, 2. Each node in the network may be
implemented as a hybrid network node including a quantum node operating system 1044,
(QNodeOS) running on classical hardware wherein the classical hardware is configured to
establish classical communication channels, i.e. a classical connection 108 between the
nodes. Each node may further include quantum hardware 1064,z configured to perform local
guantum computations on the node and to establish a quantum communication channel, i.e.
a quantum connection 110 between nodes. The quantum hardware may include a quantum
processing device including storage qubits for local storage of quantum information and for
executing local quantum computation operations, e.g. gate based operations, and
communication qubits for establishing a quantum connection with a quantum processing
device of another end node based on quantum entanglement of the communication qubits.
Based on this quantum communication channel nodes can exchange quantum information,
e.g. quantum messages.

N

10

20

18

Each end-node may be configured to execute single-node application 11242,
which may include classical information processing and quantum information processing.
This way, during execution of a single-node application by a first end-node, a quantum
connection between the first-end node and another second end-node may be established so
that at least part of the quantum information processing may be performed by the second
end-node. To establish quantum connections between nodes in the network, the classical
communication channels between end nodes may be used to exchange signalling
information 114 for setting up and tear down quantum connections between the nodes. This
way, applications executed on different end-nodes of the quantum network may
communicate with each based on exchanging classical messages over the classical
connections and quantum {entanglement) messages over the quantum connections. The
transmission and processing of quantum messages between nodes in the network are
managed by a quantum node operating system 104+ also referred to in short as QNodeOS.

Fig. 2 depicts a quantum network node according to an embodiment of the
invention. As shown in this figure, a quantum network node 200 may be configured as a
hybrid network node comprising one or more quantum node subsystems. A first quantum
node subsystem may be configured as a classical processing unit 202 for executing one or
more quantum network applications 2044.; and a second quantum node subsystem may be
configured as a quantum processing unit 206, comprising classical contral hardware 208 and
quantum hardware, i.e. one or more quantum devices 210, for example qubits, which are
configured to execute quantum operations in dependence of the execution of an application.

The qubits may be controlled using a variety of signals depending on the
physical platform used. For example, for nitrogen vacancies NV in diamond, qubits may be
controlled using microwave pulses and laser pulses. The chip-level control of the qubits
obeys hard real time constraints and timing precision (nanosecond precision with sub-
nanosecond jitter}, and may be implemented using waveform generators driving the
microwave sources and lasers to interact with the qubits. In turn, custom electronics assisted
by a dedicated microcontroller, for example FPGA-based controllers, may be used to control
the waveform generators and lasers.

The quantum network node further comprises a quantum node operating
system 212 running on the classical processing unit, which provides an interface between
the quantum network applications and the low-level quantum hardware of the quantum
processing unit. Further, the one or more applications, the quantum network protocol stack of
the quantum network node operating system, and the classical control hardware of the
quantum hardware are connected to their peers over classical channels (CC). The quantum
hardware is connected to its peers over quantum channels (QC).

N

10

20

19

In this application, a quantum network application may comprise several
programs, each running at a different quantum network node as shown in Fig. 1. The
programs may communicate based on the transmission and reception of classical messages
and quantum (entanglement) messages.

Fig. 3 illustrates the execution of a quantum network application on a quantum
network node as described with reference to the embodiments in this application in more
detail. As illustrated in the figure, execution of a quantum network application 300 may
include execution of classical code blocks 3024 . and quantum code blocks 304, .. Classical
code blocks include operations associated with any form of local classical processing, or
classical communication with remote nodes, executed by a classical (part of) the system.

Results of this processing are used as input to the quantum code blocks which
are handled by the quantum node operating system and executed on the quantum hardware.
Quantum code blocks include low-level operations associated with local quantum
computations, quantum measurements or quantum entanglement generation with remote
quantum nodes, executed by the quantum hardware. The output of the quantum code blocks
(e.g. measurement outcomes or entanglement information) may be returned to the
application to be used in further classical processing, which, in turn may provide new input to
the next quantum block.

For example, a first classical code block 3021 may represent classical
operations including: setting up application parameters, agree on application and
entanglement parameters with remote end-node by exchanging classical messages, execute
any time-intensive classical logic that precedes the quantum code blocks and prepare inputs
for the quantum code block (which may depend on information received from a remote end-
node). A first quantum code block 304+ may include quantum operations including: initialized
qubits, generate entanglement, execute local quantum operations on qubit in memory
(quantum gates, measurements); return measurement outcomes (if qubits were measured)
or entanglement information (if qubits are to be stored in quantum memory). A second
classical code block 302; may represent classical operations including: process output from
quantum code block (which may be time-intensive if there are no live quantum states in the
guantum memory) and exchange classical message with remote end-node to prepare input
for next code block {which may be measurement parameters, e.g. basis, for a quantum state
currently stored in the quantum memory). A second quantum code block 304; may include
guantum operations including: execute local operations based on input from classical code
block on qubits that were stored in memory from the previous quantum code block and
generate more entangled qubits if required. The processing of the classical and quantum
code blocks associated with a quantum network application may continue until the
application has finished.

N

10

20

20

Hence, the example of Fig. 3 shows that execution of a classical code block
may depend on the execution of a quantum code block by accessing classical state,
including measurement results, or information about the entanglement that was been
produced. Similarly, execution of a quantum code block may depend on the execution of a
classical code block, for example preparing certain classical variables including classical
messages from remote nodes. Different quantum code blocks may depend on each other by
sharing a quantum state (acting on the same qubits inside the device), or sharing a classical
state (classical variables). Moreover, a quantum state of the program should persist from one
guantum code block to a further quantum code block.

Thus, during the execution of a quantum network application, quantum node
operating system 212 controls the execution of the quantum code blocks. To that end, the
quantum node operating system may include a local processing stack 214 (a local
subsystem) for managing local quantum operations and classical operations and a quantum
network stack 216 (a network subsystem) for managing quantum communication
(entanglement) between nodes.

Fig. 4A and 4B depict a schematic of a quantum network comprising quantum
network nodes and a network schedule for coordinating quantum network nodes in the
gquantum network according to an embodiment of the invention. Fig. 4A illustrates a quantum
network 400 including a central controller 402 configured to collect information, metrics,
about the network (e.g. the topology of the network, the resources of the network nodes,
network traffic, etc.) and to generate network schedules 408, based on the collected
information. The central controller may be configured to generate network schedules for
coordinating the assignment of quantum network resources to quantum network nodes that
require establishment a quantum communication link through entanglement. To that end, in
an embodiment, a stack including a link layer and network layer as known from the above-
cited articles by Dahlberg et al, and Kozlowski, et al respectively may be used.

Fig. 4B depicts an example of a network schedule generated by the central
controller and provided to quantum network nodes. The schedule may include a sequence of
time slots 4144 ; wherein different parts of the time slot can be assigned to specific quantum
network operations tasks.

Given that generating an EPR pair on a link, i.e. a pair of entangled qubits that
are in a Bell state, requires that both quantum network nodes start an entanglement attempt
simultaneously, the network schedule may be configured such that the quantum network
node operation system assigns a higher priority to a quantum network process than any
other process. For example, as shown in Fig. 4B, at the start of a time slot of the network
schedule, a block 4164.; may be reserved for quantum network processes. In some
embodiments, during this block processes other than quantum network processes are

N

10

20

21

blocked. Hence, during the reserved block, the quantum hardware can only be accessed by
gquantum network processes that are executed by the quantum network stack. This way, a
guantum network process can be executed on the quantum hardware as soon as a
communication qubit is available. Moreover, as other quantum network nodes will execute
processes based on the same network schedule, coordination of the quantum network
processes between neighbouring nodes is assured. This way, a quantum network node can
start attempting entanglement with its neighbouring quantum network node as soon as
possible and minimize wasted attempts on the neighbour node. This is important as
entanglement should be realized within the characteristic coherence times of the quantum
hardware to ensure quantum network operations of sufficiently high fidelity.

The central controller may transmit network schedules to quantum network
nodes 404+, so that pairs of nodes are able to establish an entangled quantum
communication link in a synchronized way. To that end, a network schedule may be provided
to the quantum network stack 4061 of the quantum node operating system that runs on the
gquantum network node. The quantum network stack may subsequently manage
entanglement generation between different quantum nodes based on the network schedule.

Resource coordination for entanglement generation between two quantum
network nodes in a network of quantum network nodes requires time synchronization of
processes between quantum network nodes at different levels. To schedule and coordinate
resources for quantum communication to different quantum network nodes, the network
scheduling protocol, may be used to achieve the required synchronization of processes on
the application level and link level. The scheduling protocol requires clocks of the quantum
network nodes that are being used to be synchronized, wherein the accuracy of the
synchronization will depend on the application and network protocol requirements.

Additionally, the physical layer entanglement generation protocols require
timing synchronization between neighbouring quantum nodes that engage in a qubit
entanglement generation process. These physical layer protocols require synchronisation
with much higher precision, e.g. of the order of nanoseconds with sub-nanosecond jitter, so
that a further synchronization process will take place during the process of establishing an
entanglement. Synchronization schemes for achieving accurate synchronization at the
physical layer of the quantum network node are known. For example, the white rabbit
synchronization protocol https://white-rabbit.web.cern.ch/ may be used.

Fig. 5A and 5B depict a schematic of quantum network node system and an
execution model for executing a quantum application on a quantum network node system
according to an embodiment of the invention. In particular, Fig. SA depicts a schematic of a
host 602, e.g. a classical computer for executing classical code blocks of a quantum network
applications (user applications) 508+, and a quantum network node operation system 504

N

10

20

22

running on a quantum network processing unit QNPU connected to a host configured to
execute quantum code blocks of the user application.

As already briefly described with reference to Fig. 3, a quantum network
application may include programs (single-node applications) running on different end-nodes.
These single-node applications may include of blocks of quantum real-time code (quantum
instructions and time-sensitive classical control that is needed for executing the quantum
instructions), and blocks of fully-classical code {classical communication with other end-
nodes and elaborate processing that is not time-sensitive). To process a quantum network
application that comprises quantum and classical code blocks with completely different
processing requirements, the host may be configured as a classical computer running a
classical operating system (such as Linux). In contrast, the quantum network processing unit
QNPU may be configured as a co-processor of the host, wherein quantum network
processing unit runs the quantum network node operating system. Typically, the QNPU may
be implemented in a SoC containing a microprocessor/microcontroller integrated with either
FPGA fabric or custom hardware.

In an embodiment, a network quantum assembly language comprising
instructions for entanglement generations may be used as an interface language which the
host layer applications may use to interact with quantum network node operating system. In
another embodiment, executable machine code may be used to by the host layer application
to interact with the quantum network operating system. The quantum assembly language
may include an instruction set including operations for local quantum computing and
operations for quantum networking. Further, the quantum assembly language may provide a
useful set of OS abstractions for a networked quantum OS. The quantum assembly language
may be platform-independent with the option to use a flavour for hardware platform specific
optimizations. Furthermore, the quantum assembly language may expose several options for
the programmer to help optimize resource usage. In addition to exposing the option to
choose the fidelity of network entanglement, the quantum assembly language may also allow
the programmer to combine classical control logic with quantum instructions to minimize
back-and-forth communication when no external input is required. This feature is particularly
valuable when a program is waiting for entanglement to be generated. The quantum
assembly language instruction set and its execution by the quantum network node operating
system is described hereunder in greater detail with reference to Fig. 14 and further.

To run gquantum code blocks of a quantum network application on the
guantum network node operating system, the host layer may first reqgister a quantum network
application 5084, with the operating system. Upon registration, the operating system may
create a user process and a context which will be used to store state (e.g. metadata) for that
process and returns a new application ID, which may be used by the host layer to identify

N

10

20

23

instructions belonging to the quantum network application. Once registered, the application
network application may execute the fully classical code blocks locally on the host layer
CPU(s) and may transform the quantum real-time code blocks in a format suitable for
processing by the quantum network node operating system. In an embodiment, the quantum
real-time code blocks may be transformed into instructions of a quantum assembly language
routine 510, which are forwarded to the quantum network node operating system running on
the QNPU. In another embodiment, the quantum real-time code blocks may be transformed
into operations of executable machine code. A first subsystem, a local subsystem, of the
guantum network node operating system may execute the instructions, wherein instructions
related to entanglement generation are forwarded to quantum network stack 522, a second
subsystem of quantum network node operating system. Local quantum operations, such as
quantum gate operations, associated with the user process and entanglement generation
operations, associated with a network process and handled by a quantum network stack, are
then issued to the quantum hardware 5086 via a suitable quantum hardware driver 526 for
that particular quantum hardware platform, wherein the scheduling of the user and network
processes are based on a network schedule that is provided to the quantum network node.

The quantum network node operating system provides an OS abstraction
layer for the QNPU that is capable of communicating to the quantum hardware 506. It may
be implemented entirely in software running on a classical CPU, or parts of its functionality
may be implemented in classical hardware. An interface 528 may be used to connect the
processor 516 to a low-level electronic control system that controls the qubits. In another
embodiment, the processor may be integrated with the quantum hardware, so that the
processor can directly operate on the quantum hardware.

The quantum real-time code blocks 510 may be offloaded by the host to the
operating system via host communication handler 512, which links the routine to the
application's user process, which is created when the host layer first registered the
application. The user process may be associated with context information, such as the
process |ID, parent application ID, scheduling state and priority, program counter, and
pointers to the process data structures and instructions. The user process is then handed
over to a scheduler 514 of the operating system. The scheduler's responsibility is to schedule
processes based on scheduling information, e.g. a network schedule, which may be provided
by a central controller of the quantum network to which the quantum network node belongs
to. In addition to user processes, the operating system also has a persistent kernel network
process. Once the user process is selected by the scheduler, it is handed over to the
processor 516 which executes the instructions of the user process, wherein the processor
may step through the instructions and perform one of the following actions:

N

10

20

24

i. for quantum logic operations (e.g. apply a quantum gate or perform a quantum
measurement), issue a suitable hardware instruction to the quantum hardware via
platform-specific quantum hardware driver;

ii. for classical logic operations, execute the instructions locally, or

iii. for entanglement instructions, submit a request to the quantum network stack.

The user process does not execute any networked instructions itself. Instead,
when the processor is running the kernel network process, it will fetch instructions from the
guantum network stack, issue them to the quantum hardware, and return the results back to
the stack as will be explained hereunder in more detail with reference to Fig. 7-10.

The quantum network node operating system also has a quantum memory
management unit 626 (QMMU) for persistent memory management. The QMMU may
implements basic memory management functionality, including identification of virtual
address spaces for different processes, allocation of qubits to these processes, and
ownership transfer of a physical qubit from ane processes to another process. The virtual
quantum memory address space may isolate the qubit address spaces of different operating
system processes, e.g. different user processes and different network processes. Ownership
transfer is an inter-process communication (IPC) mechanism for passing qubits between
different processes, for example between a user process and a network process. Since
quantum states cannot be copied due to the no-cloning theorem, this is the only valid IPC for
passing quantum data between address spaces. Ownership transfer of a qubit from a user
process to a network process (or viz versa) may be implemented logically by updating the
qubit owner and allocating a new virtual address in the new process' virtual address space
rather than physically moving quantum data in the memory in order to minimize fidelity losses
due to imperfect hardware operations and additional latency.

Fig. 5B depicts the execution model for executing a quantum application on a
guantum network node system, for example a quantum network node system as described
with reference to Fig. 5A. The model includes a step (step 554) of a host system 550
reqgistering a quantum network application, including classical code blocks and quantum code
blocks with a quantum network node 552, wherein the quantum network node comprises
quantum hardware for local quantum operations and for quantum network operations.

Thereafter, the host system may execute the quantum network application by
executing a first classical code block at the host system and by providing a first quantum
code block to the quantum network node (step 556). Here, the classical code blocks may
represent software routines which may be written in a high-level programming language
which may be executed on a classical computer of the host system. The quantum code
blocks may include quantum operations and time-critical classical operations. Quantum code

N

10

20

25

operations may include local quantum operations not related to entanglement generation
and/or at least an entanglement generation operation for entanglement generation between
the quantum network node and a further quantum network node. Here, the quantum network
nodes may be part of a network of quantum network nodes, which may be provided with a
network schedule that can be used for coordinating entanglement generation between
guantum network nodes. In an embodiment, the quantum code block may include
instructions of a quantum assembly language that include operations for generating
entanglement, which can be processed by a processor of the quantum network node. In an
embodiment, the processor may be part of a quantum network node operating system as
described with reference to the embodiments in this application. In another embodiment, the
guantum code block may be executable code, e.g machine code, which can be executed by
a processor of the quantum network node.

When receiving the quantum code block, the quantum network node may
execute quantum operations on the quantum hardware which may include communication
qubits for entanglement generation and storage qubits, on which quantum gates can be
applied. The qubits can be measured and the resulting outcome may be stored in a classical
memory by the processor. When entangled, a communication qubit of the quantum network
node may be connected through a quantum channel (a quantum communication link) to a
further quantum network node. The quantum channel may also include classical
communication which is needed for synchronization, phase stabilization or other
mechanisms.

When the execution of the quantum operations of the first quantum code block
is finished, the quantum network node may send a notification message back to the quantum
network application (step 560). The notification message may include first execution results,
e.g. information on the outcome of the execution of the first quantum code block. These first
execution results may be used when executing a second classical code block. The first
execution results may include measurements of ane or more qubits or infarmation about a
communication qubit that is not measured and stored in the quantum memory. In an
embodiment, the execution results may include qubit metadata. For example, in an
embodiment, the qubit metadata may include at least part of the qubit metadata that is
managed by a quantum memory management unit (QMMU), such as ownership of a qubit
and/or transfer of ownership of a qubit. These metadata are described in greater detail with
reference to Fig. 6.

The second classical code block may be executed and a second quantum
code block may be sent by the application to the quantum network node (step 562), which
may start executing the quantum operations of the second quantum code block (step 564).
These operations may include local operations on communication qubits that are stored

N

10

20

26

during the execution of the first quantum code block. In some embodiments, a memory
update message may be sent to the quantum network application (step 566) to signal for
example, that a particular stored communication qubit has been measured and to provide the
measured value to the application. This message may be sent to the application during the
execution of the second quantum code block. Thereafter, when the execution of the quantum
operations of the second quantum code block is finished, the quantum network node may
send second execution results back to the quantum network application (step 568),

Fig. 6 depicts an example of an ownership transfer of a qubit by a quantum
memory management unit according to an embodiment of the invention. In particular, the
figure depicts first qubit metadata 6024 indicating that a qubit associated with a first physical
address 0 606 is owned by a network process 610 associated with a first virtual address 2
608 that is managed by the quantum network stack. Once the network process has
successfully generated an entanglement, ownership of the physical qubit G may be
transferred to a first user process 1 which is associated with virtual address 4. Thus, a qubit
ownership transfer is a logical update 604 to qubit metadata that is managed by the QMMU.
In an ownership transfer, the process that owns the physical qubit is updated and a new
virtual address is allocated in the new process' virtual address space. This way, execution of
a quantum hardware instruction which would cause degradation in fidelity due to hardware
imperfections and additional processing time can be avoided.

As can be seen from Fig. 5A, the use of processes, user processes and
network processes, as logical entities that can be scheduled by the scheduler and processed
by the processor and the use of the quantum network stack as a quantum network
subsystem for entanglement generation, provides the ability to implement scheduling
policies which can be used to address the issue of scheduling user processes and network
processes. This enables the quantum node operation system to meet the challenges as
discussed previously.

Hence, the ability to control the scheduling of resources between user
processes and network processes is achieved by assigning a kernel process exclusively to
network processes and by limiting user processes to local quantum instructions only. Thus, if
an application needs entanglement from the network, the user process executed by
processor 512 will submit an entanglement request 518 to the quantum network stack 522. In
some embodiments, this request may be included in the instruction set of a quantum
assembly language, which assumes a quantum network stack that handles all entanglement
generation requests asynchronously with respect to other local quantum operations of the
user process. The network process will then coordinate the requested entanglement
generation, with the rest of the network and eventually return an entangled qubit to the user

N

10

20

27

process. Examples of such coordinated entanglement generation will be described
hereunder with reference to Fig. 8-10.

Hence, the quantum network node operating system defines user processes
including local quantum operations and associated context and network operations which are
scheduled by the scheduler and processed by the processor. If during the processing of a
user process, a request for entanglement generation is requested, the request is forwarded
to the quantum network stack which handles the entanglement generation request
independently from the processing of the user process. The handling of the entanglement
generation request by the quantum network stack may be referred to as a quantum network
process or in short a network process. This network process may be executed by the
scheduler based on information in the network schedule that is provide to the different
quantum network nodes. The network schedule signals the scheduler at what time instance
the processor may optimally execute the network process as described with reference to Fig.
4 and 5. This way, the network process allows for entanglement generation to be executed
asynchronously of local quantum instructions of the user process.

Thus, a user process can continue executing local instructions even after a
entanglement generation request has been forwarded to the quantum network stack. The
entanglement generation request does not block execution of the user process, which
increases instruction throughput during times when the network process cannot proceed. At
the same time, network processes may be executed by the quantum network stack based on
the network schedule. This is important because entanglement generation requires careful
synchronization with a neighbouring node (and possibly the rest of the network) and thus
requires execution at precise moments in time which are not controlled or even known by the
user process. By separating the quantum network process from the user process,
synchronization may be centrally controlled by the network stack for all of the entanglement
requests that are pending at that particular node. Further, the process status of the
entanglement generation rests allows the scheduler 514 to schedule it based on the network
schedule while accounting for the local scheduling requirements of the other applications
running on that quantum network node. Additionally, it gives the option to use scheduling
policies to change its behaviour.

Fig. 7A and 7B illustrate the execution of a quantum code according to an
embodiment of the invention. In particular, Fig. 7A illustrates a user process 7044 associated
with a quantum network application 706, which is executed by the processer 702 of the
quantum network node operation system. Here, the execution of a user process may include
one or more of the following operations:

0 execute local quantum operations via the quantum device driver 710;

N

10

20

28

(i) execute classical operations on a classical CPU 714;

(i) allocate/free quantum memory via the QMMU 712;

(iv) issue a network request, e.g. entanglement requests, to the quantum
network stack 708.

A user process cannot directly issue an entanglement generation request to the quantum
device. Instead, it has to request the quantum network stack to process the entanglement
generation request instruction. Hence, user processes are free to execute any non-
networked instructions independently of the network process and other user processes. A
user process may choose to do this processing of the non-networked instructions prior to
issuing an entanglement generation request, to the quantum network stack. Alternatively, it
may choose to submit the entanglement generation request first and then execute some
other local instructions. However, once the application reaches a point in its execution where
an entangled qubit is required, the user process enters into a blocked state and is flagged as
waiting for the network process to execute entanglement generation.

Fig. 7B illustrates a network process 704;, which is executed by the processer
702 of the quantum network node operating system and which is dedicated to entanglement
generation. The scheduler of the quantum network node operating system may schedule a
network kernel process based on a network schedule as described with reference to Fig. 4,
which may include reserved blocks in time slots that are reserved for executing quantum
network operations. As shown in the figure, a network process 704, may be executed by the
processor 702 of the quantum network node operating system by fetching instructions 703
from the quantum network stack 706. These instructions may include entanglement
generation requests and a limited set of local gate operations. During execution of a network
process, execution of the user process is blocked so that only the quantum network
operations have access to the quantum hardware. The logic behind the quantum network
operations may be opaque to the rest of operating system, which allows the network protocol
stack 706 to evolve independently of the rest of the operating system as long as it keeps
providing the same service. In an embodiment, the Quantum Entanglement Generation
Protocol (QEGP) or an adapted version thereof may be used as the link layer protocol and
the Quantum Network Protocol (QNP) may be used as the network layer protocol. The
physical layer protocol may be implemented in the hardware layer below the layer of the
guantum network node operating system.

If an entangled qubit pair is generated by the network process, the entangled
gqubit may be handed over to the blocked user process. Entanglement requires metadata
(entanglement metadata), which is generated by the quantum network stack to account for
the non-local nature of entanglement. For example, an entanglement identifier allows an

N

10

20

29

application to identify which qubits at two separate nodes are entangled with each other.
Various other entanglement parameters such as the goodness, i.e. the estimated fidelity,
may be used as well. This information may be provided by the network protocol stack.

Thus, to hand an entangled qubit over to a user process, two steps are
executed:

entanglement metadata is copied to the user process metadata; and,
2. the entangled qubit is transferred between virtual address spaces using the
ownership transfer mechanism of the QMMU 712.

Once all the entangled pairs that the user process was waiting for have been
delivered, the scheduler will wake the user process and allow it to execute up to completion
or until the next entangled qubit is required.

The quantum network nodes in the quantum network may be provided with a
network schedule for coordinating entanglement generation between quantum network
nodes in the quantum network. Further, a quantum network node may include a quantum
network node operating system comprising a local subsystem for executing local quantum
operations which are not related to entanglement generation and a quantum network
subsystem for executing operations relating to entanglement generation.

A quantum network application may be executed on by an application layer
running on a host computer, which may send quantum routines represented by quantum
code blocks to the operating system of a quantum network node, which may executed the
quantum code blocks based on user processes executed by a local subsystem and network
processes executed by a quantum network subsystem (the quantum network stack). Fig. 8-
10 illustrate various embodiments of execution of quantum routines represented by quantum
code blocks by the quantum network node operating system.

Fig. 8 illustrates the execution of a quantum network application according to
an embodiment of the invention. In particular, the figure includes a step 802 of starting a
scheduled user process by a local subsystem of the quantum network node operating
system, wherein the user process may include executing the quantum routine represented by
a quantum code black. During execution of the user process, the processor may of the
operating system may forward entanglement generation requests to a quantum network
subsystem (a quantum network stack) of the operating system (step 804).

The quantum network subsystem, which has a persistent kernel process
associated with it, may start preparing the requested entanglement generation as a
background task in order to coordinate the entanglement generation with the other quantum
nodes before the network process is scheduled to run, i.e. execute the entanglement

N

10

20

30

generation. This processing may include generating entanglement metadata and sending a
request for entanglement over a classical communication link to a quantum network node to
notify the quantum network node that entanglement is desired. During the preparation of the
entanglement generation by the quantum network subsystem, the local subsystem of the
operating system may continue processing local operations associated with the user process
until an operation requires the entanglement, e.g. a measurement of an entangled qubit pair.
At that moment, the user process may be blocked (step 806} and the processor may wait for
the scheduler to signal that the network process can be started. The scheduler may then use
a time slot as defined in the network schedule to start the network process (step 808) so that
the entanglement between both quantum network nodes can be realized.

The processor may then start executing the quantum network operations of
the network process based on the entanglement metadata to establish entanglement with the
other quantum network node (step 810). When starting the network process, the QMMU may
transfer ownership of a communication qubit that is going to be used in the entanglement
generation to the network process (step 812). From that moment on, only the network
process has access to the quantum hardware (in particular the communication qubit that is
going to be used in the entablement generation) so that execution of the network process
does not collide with the execution of the user process.

The network process for establishing entanglement may require multiple
attempts. Hence, the network process will repeat the process in a loop until entanglement is
generated (step 814) within a predetermined time as signalled by the network schedule to
the scheduler of the operating system. If entanglement generation does not succeed in the
allocated time, the network process has to wait for the next time slot (step 816). In that case,
the communication qubit is released from the ownership by the network process.

If entanglement generation succeeds, the entangled communication qubit may
be transferred by the QMMU to the user process (step 818). This unblocks the user process
{step 820), which may consume the qubit (step 822), e.g. measure the qubit or apply another
operation to the qubit. After consumption of the qubit, the ownership of the qubit by the user
process is released. Thereafter, the user process may continue until the end of the quantum
code block and return a result to the quantum network application.

Fig. 9 illustrates the execution of a quantum routine associated with quantum
network application according to another embodiment of the invention. This flow is similar to
the flow of Fig. 8 with the difference that when the user process is executed, it may process
another entanglement operation, in this case a receive entanglement operation, i.e. an
operation wherein the quantum network node waits for a request for entanglement from
another quantum network node (a requesting network node). During the processing of the
operations of the user process by the local subsystem of the operating system, the processor

10

20

31

may forward the quantum network operation to a quantum network subsystem (the quantum
network stack) of the quantum network node operating system (step 904).

The quantum network subsystem, which has a persistent kernel process
associated with it, may start processing the receive entanglement operation as a background
task in order to prepare entanglement generation with the other quantum nodes before the
network process is scheduled to run the entanglement generation. This processing may
include sending a response over a classical communication link to the requesting quantum
network node to notify the requesting quantum network node that the request for
entanglement has been received. The processing may further include receiving
entanglement metadata from the requesting quantum network node.

During the preparation of the entanglement generation by the quantum
network subsystem, the local subsystem of the operating system may continue processing
the user process until access to the entanglement is required, e.g. a measurement of an
entangled qubit pair. At that moment, the user process may be blocked (step 906) and the
processor may wait for the scheduler to signal that the network process can be started. The
scheduler may then use a time slot as defined in a network schedule to start the network
process (step 908) so that the generation of the entanglement between both quantum
network nodes is coordinated.

The processor may start executing the entanglement generation by the
network process based on the entanglement metadata to establish entanglement with the
other quantum network node (step 910) in a similar way as described with reference to Fig.
8. When starting the network process, the QMMU will transfer ownership of a communication
qubit that is going to be used in the entanglement generation to the network process (step
912). From that moment on, only the network process has access to the quantum hardware.
The network process will repeat the process in a loop until entanglement is generated (step
914) within a predetermined time as signalled by the network schedule to the scheduler of
the operating system. If entanglement generation does not succeed within the allocated time,
the network process has to wait for the next time slot (step 916). In that case, the
communication qubit is released from the ownership by the network process. If entanglement
generation succeeds, the entangled communication qubit may be transferred by the QMMU
to the user process (step 918). This unblocks the user process (step 920), which may
consume the qubit (step 922), e.g. measure the qubit or apply another operation to the qubit.
After consumption of the qubit, the ownership of the qubit by the user process may be
released. Thereafter, the user process may continue until the end of the quantum code block
and return a result to the quantum network application.

Fig. 10 illustrates the execution of a quantum routine associated with quantum
network application according to yet another embodiment of the invention. This figure depicts

N

10

20

32

an alternative embodiment of the flow described with reference to Fig. 9, wherein the
quantum network subsystem of the quantum network node operating system receives a
request for entanglement from another quantum network node over a classical
communication link (step 1002). Then, the scheduler may then use a time slot as defined in a
network schedule to start a network process so that the generation of the quantum
communication link between both quantum network nodes is coordinated.

The processor may start executing the quantum network operations of the
network process based on entanglement metadata to establish a quantum communication
link with the other quantum network node based on entanglement (step 1004). When starting
the network process, the QMMU will transfer ownership of a communication qubit that is
going to be used in the entanglement generation to the network process (step 1006) so that
only the network process has access to the quantum hardware. The network process will
repeat the process in a loop until entanglement is generated (step 1010) within a
predetermined time as allocated by the network schedule. If entanglement generation fails in
the allocated time allocated, the network process will release the ownership of the
communication qubit (step 1008). If entanglement succeeds, the communication qubit is
stored and the quantum network process keeps the ownership of the qubit (step 1012).

Then, at a certain moment, the local subsystem of the quantum network node
may start executing operations of a user process (step 1014), wherein the processor may
forward a receive entanglement operation to a quantum network subsystem (a quantum
network stack) of the quantum network node operating system (step 1016), which may
determine the entanglement identified by the receive entanglement operation is stored. The
execution of the user process may continue until a quantum operation requires access to the
entanglement. In that case, the scheduler may block the user process and start execution of
the network process (step 1018). As the entanglement is already generated and stored, the
network process will only transfer ownership of a communication qubit that participates in the
entanglement (step 1020). Thereafter, the scheduler may unblock the user process (step
1022) and continue its execution wherein a quantum operation that requires access to the
entangled qubit may consume the qubit. After consumption of the qubit, the ownership of the
communication qubit by the user process may be released (step 1024). \When the execution
of the user process is finished, the results may be returned to the quantum network
application to which the quantum code block belongs.

The strict separation between local user processes and network processes as
explained with reference to Fig. 8-10 enable execution of quantum network applications on
multiple quantum network nodes of a quantum network through scheduling mechanisms and
scheduling policies. Further, the user processes and the network processes can be

N

10

20

33

scheduled such that they can generate entanglement between to quantum network nodes
and consume that entanglement as fast as possible to ensure the highest fidelity.

In an embodiment, a cooperative scheduling policy may be selected that
determines how the user process and the network processes are executed by the operating
system. That is, once a first quantum routine represented by a first quantum code block is
scheduled by the scheduler of the quantum network node operating system, the processor of
the operating system may run it until either instructions are completed, or it is blocked
because it has to wait for entanglement of the quantum network node with another quantum
network node. The routine may finish while the process still holds a live quantum state in
memory which can be processed in a subsequent second quantum routine represented by a
second quantum code block {e.g. after the host exchanges some classical information with
its peer). During the processing of the quantum bode blocks, the QMMU will keep track of the
ownership of the qubit by either a user process or a network process.

A cooperative scheduler may be used if it is not allowed to the move live
quantum states into storage to free up the communication qubit for an incoming process.
This may be the case if the quantum state would suffer from significant fidelity degradation
due to hardware quality and/or additional sources of decoherence (nuclear dephasing noise).
This may be the case for current NISQ type quantum platforms like NV centers. Furthermore,
due to the limited number of qubits (just one or two or several) there is little room for more
complex strategies. Therefore, once a quantum network application acquires the
communication qubit, it is allowed to proceed uninterrupted until it is freed. If the process is
currently waiting for a further routine, other processes are free to execute classical
instructions such as issuing entanglement requests to the network stack, but otherwise
require waiting for the communication qubit to become available. In case memory size and/or
lifetimes of the qubits increase, this strategy may be adapted to full optimize the use of the
increased capabilities.

The quantum network node operating system uses the concept of user
processes and kernel processes, including the quantum network stack (kernel) process. User
processes are released (i.e., they become ready) asynchronously, i.e. when a process
routine is loaded, or when they leave the waiting state, while the quantum network stack
process may be released pericdically or repeatedly, at the start of each time slot of the
network schedule. Given that entanglement generation on a link requires that both nodes
attempt entanglement simultaneously, the operating system assigns the quantum network
stack process a priority higher than any user process. This ensures that, at the start of each
time slot of the network schedule, the priority-based scheduler can assign the quantum
network node process as soon as the processor is available, and thus a node can start

N

10

20

34

attempting entanglement with its neighbour as soon as possible and minimize wasted
attempts on the neighbouring node.

Fig. 11 illustrates an example of a network schedule for a user process and an
associated quantum network process according to an embodiment of the invention. The
quantum network process may be activated at the start 110445 of a time slot 110243, and
may be scheduled as soon as the processor is available. For example, as shown in Fig. 11,
at time instances 0 and 4, quantum network processes 110642 may be scheduled
immediately at the start of a time slot, while at time instance 8 quantum network process
11063 may be scheduled after one time unit, as soon as a running user process 1108 has
ended. Further, user process 1110 may be ready to start at time instance 0, at which the
{prioritized) quantum network process is ready as well and thus takes precedence.
Therefore, the user process 1110 is scheduled at time instance 2, as soon as quantum
network process 11064 is completed. Thereafter, the quantum network process goes into a
waiting state at time instance 3 and becomes ready again at time instance 7. At that time
instance, user process 1108 is scheduled immediately because no other processes are
running.

Thus, in an embodiment, a scheduling policy as depicted in Fig. 11, may be
used, resulting in the activation of higher-priority network processes at the start of each time
slot of the network schedule, as is assigned to the processor operating system as soon as it
is available. Lower-priority user processes gives precedence to the network processes when
they become ready at the same time. However, when a user process is running on the
processor, it is not pre-empted if a network process becomes ready during execution of the
user process is.

Fig. 12 and 13 illustrate the concurrent execution of multiple user processes
by a quantum network node operation system according to an embodiment of the invention.
In particular, the figure illustrates executing multiple user applications concurrently by the
operating system. Here, the different user processes may be relate to different quantum
network applications. In particular, Fig. 12 depicts a first example of a process flow wherein a
first user process associated with a quantum code block is executed by the local subsystem
of the quantum network node operating system (step 1202). During execution, a request for
entanglement with a further quantum network node may be sent to the quantum network
subsystem of the operating system (step 1204), which will start preparing the entanglement
generation as a background process, while the first user process is continued until it is
blocked (step 12086) because the first user process needs access to the entanglement.

While waiting for moment that the entanglement generation can be started, the
scheduler may start the local subsystem to start execution of local quantum operations (step
1208), i.e. operations not related to an entanglement generated, of a second user process,

10

20

35

until the second user process has ended (step 1210). When the scheduler determines that
the further quantum network node is ready for the entanglement generation, then the
scheduler may schedule execution of a network process (not shown) by the quantum
network subsystem based on a timeslot of the network schedule in a similar way as
described with reference to Fig. 8. After establishment of the entanglement (step 1212), the
scheduler gives the processor back to the first user process, which may consume the
entanglement, e.g. measure the communication qubit and release the communication qubit
(step 1214).

Fig. 13 depicts a second example of example of a process flow which may
start with a first user process associated with a first quantum code block associated with a
first quantum network application is executed by the local subsystem of the quantum network
node operating system (step 1302). During execution, a request for a first entanglement with
a further second quantum network node may be sent to the quantum network subsystem of
the operating system (step 1304), which will start preparing the first entanglement generation
as a background process, while the first user process is continued until it is blocked (step
1306) because the first user process needs access to the first entanglement.

While waiting for the first entanglement, the scheduler may start the local
subsystem to start execution operations (step 1308) of a second user process of a second
guantum code block associated with a second quantum network application, which may
include sending a request for a second entanglement with a further third quantum network
node to the quantum network subsystem of the operating system (step 1310), which will start
preparing the second entanglement generation as a background process,

When the scheduler determines that the further second quantum network
node is ready for the entanglement generation, then the scheduler may start a first network
process (not shown) based on a first timeslot of the network schedule in a similar way as
described with reference to Fig. 8. After establishment of the first entanglement (step 1312),
the scheduler may give the processor back to the first user process, which may consume the
first entanglement, e.g. measure the communication bit, and release of the communication
qubit (step 1314).

After release of the communication qubit, the scheduler may determine that
the further third quantum network node is ready for the entanglement generation. In that
case, the scheduler may start a second network process (not shown) based on a second
timeslot of the network schedule and after establishment of the second entanglement (step
13186), the scheduler gives the processor back to the second user process, which may
consume the second entanglement, e.g. measure the communication bit, and release of the
communication qubit (step 1318).

N

10

20

36

The execution of the quantum network applications as described with
reference to Fig. 12 and 13 is in stark contrast to the executing of quantum applications that
are executed on a conventional quantum computer which executes programs sequentially.
For a conventional quantum computer without any networking capabilities, it is always better
to execute all programs sequentially in batches to maximize the quantum execution quality.
Any context switching or idle time will cause decoherence to visibly impact the qubit quality.
However, a quantum network application may have to wait for some classical message
exchange to happen between the programs running on different end-nodes to proceed. Such
idle time will leave spare capacity that can be potentially used to execute other applications.

Further, it is noted that for multitasking to be useful, the quantum network
nodes do not need to have much quantum memory available. For example, a “client”
quantum network node may want to execute a computation on a remote “server” quantum
network node for which it needs entanglement. However, if the “server’ quantum network
node is busy, the “client” quantum network node will have to wait for its turn. Meantime, other
gquantum network applications which may use the communication qubit to execute some local
computation. Once it is time for entanglement to be generated with the server, the operating
system may stop scheduling the local computations and schedules the network process.
Such multitasking will lead to increased application throughput when compared to sequential
execution without a significant impact on the quantum execution quality.

Within a quantum network, two types of node may be distinguished: end
nodes, that run quantum networking user applications, and intermediate nodes, that perform
those routines necessary to connect two or more end nodes. Both types of nodes are
capable of executing quantum physical operations, as well as classical computing and
networking tasks. The quantum network node operating system described with reference to
the embodiments in this application may be used on both types of nodes. On intermediate
nodes, its main responsibility is to multiplex the various quantum network requests, also
called entanglement generation requests, originating from its neighbors into its underlying
quantum physical hardware. End nodes may be configured to both manage the quantum
hardware and to interface to the users of the node.

In an embodiment, a host system may be used to provide an interface to the
user of the node. Typically, a host system may include a conventional computer including a
conventional operating system for executing quantum network applications in a high-level
programming language, e.g. Python or the like. Hence, the host system is only present on
end nodes and represent an user environment where quantum networking applications
are developed and compiled, and where application results are stored. The quantum network
node operating system receives programs from the host system and entanglement
generation requests from peer nodes, and arbitrates access to the quantum hardware, i.e.

N

10

20

37

the physical quantum device, to multiplex quantum network applications and entanglement
generation requests.

Fig. 14 depicts a quantum network node system according to an embodiment
of the invention. In particular, the figure depicts a quantum network node system comprising
a number of modules including: a host system 1402, which represents the user environment
where quantum networking applications 1408 are developed, compiled, and run on a host
runtime system. Further it may include storage memory for storing application results. A host
system may be present if a quantum network node is configured as an end-node.

The system may further include quantum network node operating system
1404, which may be configured to communicate with the host system through a host
communication handler 1416 wherein the communication may include receiving quantum
routines 1418, in the form of a plurality of quantum code blocks. The quantum code blocks
may be executed by the core 1418 which may include a quantum network subsystem 1424
{a quantum network stack) and a local subsystem 1426 (a local processor), The quantum
network system is configured to prepare and execute entanglement generation requests,
which also requires classical communication 1422 with other quantum network nodes. The
operating system may be configured arbitrate access to the quantum physical device and to
multiplex host applications and entanglement generation requests.

Further, the system may include a quantum device 1406, the quantum device
may include a processor configured to execute a quantum device processing stack 1430 for
controlling the qubits which may include communication qubits and storage qubits and for
controlling the interface to the qubits, such as a classical channel interface 1432 and
guantum channel interface 1434.

In an embodiment, the host system and the quantum network node operating
system - while both being capable of performing non-quantum operations — may be separate
components, wherein the quantum network node operating system is expected to meet real-
time requirements and perform its arbitration tasks within set deadlines, whereas the host
system does not need to provide such strict requirements. In an embodiment, the host
system, quantum node operating system and quantum device may be implemented as
physically different systems. Alternatively, some of these elements may be implemented or
integrated on the same chip or board. In an embodiment, the host system may run one a
general-purpose computer, while the quantum network node operation system may be
implemented on a system on a chip SoC and a multitude of digital and analog controllers for
the quantum device.

As shown in Fig. 2 and 14, the quantum network node system may be part of
a larger node system, and comprising interfaces to other components. In particular, the
quantum network node system may include different external interfaces. For example, a

N

10

20

38

guantum networking application running on a first host associated with a first quantum
network node may communicate via host interface 1412 with another quantum network
application running on a second host associated with second quantum network node.
Similarly, entanglement generation requests originating from other nodes in the quantum
network may be received on the quantum network stack through the interface of the quantum
network stack interface 1422, a subsystem of the operating system. Further, quantum
instructions may be sent to the quantum device through the quantum device interface 1423.
Hence, an application may be processed at different levels including the host, the quantum
network node operating system and on the quantum device.

A quantum networking user application, or program, may be written and
programmed by programmer in a high-level language on the host, through the use of some
SDK. Quantum network applications may include quantum routines - with real-time execution
constraints - and possibly non-real-time pre- and postprocessing routines. A compiler may be
used to split a user application into these two kinds of routines. The real-time quantum
routines may form a quantum code block for execution by the quantum network node
operating system, while other routines may be part of the host application.

The quantum code blocks may be expressed in a lower-level network
gquantum assembly language which the quantum network node operating system
understands, wherein the instruction set of the quantum assembly language may include
both computational and networking quantum instructions, as well as simple classical
arithmetic and branching instructions which can be used for real-time processing by the
operating system. It is the task of the compiler to transform high-level routines into quantum
code blocks which can be executed by the quantum network node operating system. A
quantum code block may be loaded onto quantum network node operating system through a
host interface 1413. On the other hand, classical routines belonging to the host application
may be executed locally on the host. To that end, coordination between the quantum network
node and the host of the user application may be required as well as (some) post-processing
of the results.

Upon receiving quantum code block, the quantum network node operating
system may create a user process to store application data and execution state. A process of
the operating system is defined by the application routines - as produced by the compiler -
and other run-time data analogous to what a typical process control block contains, useful for
the execution of the application. Further, as depicted in Fig. 14, a quantum routine may
include different classes of instructions, including (but not limited to):

1. quantum operations 1419+: quantum physical operations, to
be performed on the underlying quantum device;

10

20

39

2. classical logic 1419;: arithmetic and branch instructions, to be
executed in-between quantum operations, useful to store
results of quantum operations and to perform responsive
decision-making;

3. entanglement generation requests 1419; , i.e. requests to generate an
entangled qubit pair with a remote node in the network.

The quantum operations may be sent to the quantum device through the
quantum device driver 1428, which provides an abstraction of the quantum device interface
1423. The classical logic may be processed locally on the quantum network node operating
system, and potentially results in the update of a process’s data. Entanglement generation
requests may be forwarded to the quantum network stack 1424, which in turn forwards them
to the next hops, e.g. neighbouring quantum network nodes, on the path, and which stores
them together with other requests coming from network peers.

Quantum physical operations may be executed on the quantum device 1406
which is configured as a quantum processing and networking unit. The implementation of the
guantum device processing stack 1430 may depend on the underlying physical platform - for
instance, nitrogen-vacancy (NV) centres, ion traps (IT), atomic ensembles (AE). Such
platforms should be able to process both local quantum operations and entanglement
generation requests. The quantum device may include (at least) two communication
channels with its neighbours: a classical channel 1432, used for low-level synchronization of
the entanglement generation procedure and other configuration routines, and a quantum
channel 1434, where qubits - encoded in a physical medium like an electromagnetic wave—
travel.

Fig. 15 depicts a schematic of a quantum network node operating system
stack according to an embodiment of the invention. In particular, the figure depicts layers of a
guantum network node operating system 1500 which may define the stack of the quantum
network node operating system, including the host communication handlers 1502, an AIP
handler 1504, an operating system core 1506 and a quantum device driver 1508.

The Host communication handler 1504 translates protocol-specific messages from the Host
into API calls, which are subsequently processed by the AIP handler 15086 of the quantum
network node operating system. The API handler is responsible for listening to system calls
made to the operating system and to relay these calls to the appropriate component inside of
the core of the operating system, which is a central engine that multiplexes user processes
and network processes and manages the hardware resources of the quantum device. The
API| may be configured to execute the following steps:

N

10

20

40

register and deregister an application
add an application routine to the database of the process manager

3. open an entanglement generation socket, also referred to as EPR socket, with
a remote node

The EPR socket may define the endpoint of an entanglement generation
request, and is used by the quantum network stack to set up network tables and to establish
connections with its peers.

The host communication handler may communicate with the host system
based on a communication protocol and is configured to translate protocol-specific
messages into API calls for the operating system. Similarly, the quantum device driver layer
provides an abstraction of the quantum device, and its implementation depends on the
nature of the quantum device and on the physical communication interface between the
operating system and the quantum device.

Further, a vertical platform layer may provide SoC-specific abstractions for the
operating system to access the physical resources of the platform it is implemented on,
including I/O peripherals, interrupts controllers and timers. Additionally, if the quantum
network node operating system is implemented on top of a lower-level operating system, this
layer may give access to system calls to the underlying OS. The Platform layer is vertical in
the sense that it can be accessed by all other layers of the.

As mentioned previously, the operating system receives and processes
guantum network applications, wherein each quantum network application corresponds a
user process, which is associated with an execution context, which may comprise quantum
assembly language routines and other context information —t he process control block —
including process ID, ownership of qubits, process state, scheduling priority, program
counter, and pointers to process data structures. Here, process state and scheduling priority
determine how processes are scheduled the operating system.

A kernel process is similar to a user process, but is created by the operating
system statically, and its routines are generated at the operating system level as well. The
network process associated with the quantum network stack is a kernel process that issues
guantum instructions to satisfy entanglement requests coming from the network and from
user applications.

Communication between the user process and the network includes the
signalling of qubit ownership transfer, which is used when a process produces a qubit state
which is to be consumed by another process. Typically, the network process transfers
ownership of the entangled qubits that it produces to the user process which requested the
EPR pairs.

N

10

20

41

Most of the process handling of the operating system happens inside of the
core layer of the operating system. Fig. 16 depicts a schematic of the core layer of a
guantum network node operation system according to an embodiment of the invention.
As shown in the figure, the core layer 1602 may include:

a process manager 1604 (ProcMgr), configured to manages access to processes;
a scheduler 1606 configured to select the next process to be run;
a processor 1608, configured to processes routines’ instructions;

a0 oTow

an entanglement management unit 1610 (EMU), configured to maintain a list of

entanglement requests and available entangled qubits;

e. aquantum network stack 1612 (QNetStack), configured to coordinate with peer
nodes to schedule quantum networking instructions;

f. aquantum memory management unit 1614 (QMMU), configured to administer qubits

allocated to processes.

The process manager marshals accesses to all user processes and kernel processes. The
scheduler assigns ready processes to the processor, which runs quantum instructions
through the underlying quantum device, processes (time critical} classical instructions locally,
and registers entanglement generation requests with the entanglement management unit.
The EMU maintains a list of EPR sockets and entanglement generation requests, forwards
the entanglement generation requests to the quantum network stack, which, in turn, registers
available entangled qubits with the EMU. The quantum memory management unit keeps
track of used qubits, and transfers qubit ownership across processes when requested.

The process manager owns processes and marshals accesses to those.
Creating a process, adding a routine to it and accessing the process’s data must be done
through the process manager. Additionally, the process manager is used by other
components to notify events that occur inside the operating system, upon which the state of
one of more processes is updated. Process state updates result in a notification to the
scheduler. The process manager may include interfaces for the following services:

1. process management interface (interface 1 in Fig. 16) configured to create and
remove processes, and to add routines to them. When a user registers an
application, the APl handler uses the program manager to create a user process. The
program manager includes a database describing processes that are handled by the
operating system, wherein each process is identified by an process ID. The returned
process |D can be later used to add a routine to that process, or to remove the
process once all its routines are fully processed.

N

10

20

42

2. event notification interface (interface 2 in Fig. 16) configured to notify an event
occurred inside operating system, including the addition of a routine, the completion
of a routine, the scheduling of the process, the hitting of a Wait condition, and the
generation of an entangled qubit destined to the process. Some events may trigger
follow-up actions - for instance, when a process that was waiting for an event
becomes ready, it gets added to the queue of ready processes maintained by the
scheduler.

3. process data access interface (interface 3 in Fig. 16) configured to access a
process’s routines and its classical memory space, mostly used while running the
process (through the processor).

The scheduler registers processes that are ready to be scheduled, and
assigns them to the processor when the latter is available. Ready processes are stored in a
prioritized ready queue, and processes of the same priority may be scheduled with a first-
come-first-served policy. The scheduler has one interface (interface 4 in Fig. 16) for process
state notifications (idle, running, ready, waiting). When a process transitions to the ready
state, it is directly added to the scheduler’s prioritized ready queue. When a process
becomes idle, or is waiting for an event to happen, the scheduler simply registers that the
processor has become available.

The processor handles the execution of user and network processes, by
running classical instructions locally and issuing quantum instructions to the quantum device
driver. While executing a process, the processor reads its routines and accesses (reads and
writes) its classical memory. The processor implements a specific instruction set architecture
dictated by a quantum assembly language of choice. The processor exposes one interface
for processor assignment (interface 5 in Fig. 16), used by the scheduler to activate the
processor, when it is idling, and assign it to a process.

The entanglement management unit (EMU) contains a list of open EPR
sockets and a list of entanglement generation requests, and keeps track of the available
entangled qubits produced by the quantum network stack. Received entanglement
generation requests may be considered valid only if an EPR socket associated to such
requests exists. Valid requests are forwarded to the quantum network stack. Entangled qubit
generations are notified as events to the process manager. The EMU has interfaces for the
following services:

10

20

43

1. EPR socket registration (interface 6 in Fig. 16): to register and open EPR sockets
belonging to an application, and to set up internal classical network tables and to
establish classical network connection.

2. Entanglement request registration (interface 7 in Fig. 16): to add entanglement
requests to the list of existing ones, to be used when matching produced entangled
qubits with a process that requested them.

3. Entanglement notification (interface 8 in Fig.16): to register the availability of an
entangled qubit, produced by the QNetStack, and to link it to an existing
entanglement request.

A data link layer and network layer protocols may be part of the quantum
network stack. The physical layer may be implemented on the quantum device and the
application layer may be part of the host. The quantum network stack has an associated
kernel process, created statically on the operating system. However, this process’s routine is
dynamic: the instructions to be executed on the processor may depend on the outstanding
entanglement generation requests received from EMU and network peers. The quantum
network stack has interfaces for the following services:

1. Entanglement request registration (interface 9 in Fig.16): to add entanglement
requests coming from the EMU to the list of existing ones, which are used to fill in the
QNetStack process'’s routine with the correct quantum instructions to execute.

2. Entanglement request synchronization (interface 10 in Fig. 16): similar to the
entanglement request registration interface, but to be used to synchronize (send and
receive) requests with QNodeOS network peers.

The quantum memory management unit (QMMU) may receive requests for qubit allocations
from processes such as user processes and network processes, and manages the
subsequent usage of those. It may also translates virtual qubit addresses into physical
addresses for the quantum device, and keeps track of which process is using which qubit at
a given time. A QMMU may take into account that the topology of a quantum memory
determines what operations can be performed on which qubits, and thus allow processes to
allocate qubits of a specific type upon request. A more advance QMMU may also include
algorithms to move qubits in the background—that is, without an explicit instruction from a
process’s routine—to accommodate an application’s topology requirements while not
trashing the qubits being used by other processes. Such a feature could prove crucial to
increase the number of processes that can be using the quantum memory at the same time,
and to enhance multitasking performances. The QMMU may include the following interfaces:

N

10

20

44

1. qubit allocation and deallocation (interface 11 in Fig.18): a running process can ask
for one or more qubits, which, if available, are allocated by the QMMU, and the
physical addresses of those are mapped to the virtual addresses provided by the
requesting process.

2. virtual address translation (interface 12 in Fig. 18): before sending quantum
instructions to the quantum device driver, the processor may use virtual qubit
addresses to retrieve physical addresses from the QMMU, and then replaces virtual
addresses with physical addresses in the instructions for the quantum device driver.

3. Qubit ownership transfer (interface 13 in Fig. 16): qubits may only be visible to the
process that allocates them. In some embodiments, however, a process may transfer
some of its qubits to another process. A notable example is the quantum network
process transferring an entangled qubit to the process that will use it.

The terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting of the invention. As used herein, the

singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further understood that the terms "comprises"
and/or "comprising," when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps, operations, elements, components,
and/or groups thereof.

The corresponding structures, materials, acts, and equivalents of all means or
step plus function elements in the claims below are intended to include any structure,
material, or act for performing the function in combination with other claimed elements as
specifically claimed. The description of the present invention has been presented for
purposes of illustration and description, but is not intended to be exhaustive or limited to the
invention in the form disclosed. Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope and spirit of the invention. The
embodiment was chosen and described in order to best explain the principles of the
invention and the practical application, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with various modifications as are suited to

the particular use contemplated.

10

15

20

25

30

45

CONCLUSTIES

1. Fen op een computer geimplementeerde werkwijze voor het
uitvoeren van één of meer kwantumnetwerkapplicaties die
klassieke codeblokken en kwantumcodeblokken omvatten op één
of meer kwantumnetwerknodes, waarbij elke kwantumnetwerknode
een klassiek computersysteem en een kwantumcomputersysteem
omvat, welk kwantumcomputersysteem één of meer
communicatiequbits en, optioneel, één of meer opslaggubits
omvat, de werkwijze omvattende:

het ontvangen van een kwantumcodeblok dat geassocieerd
is met een eerste kwantumnetwerkapplicatie door een
besturingssysteem van een eerste kwantumnetwerknode, welk
kwantumcodeblok kwantumoperaties omvat, welke
kwantumoperaties lokale kwantumoperaties die niet gerelateerd
zijn aan verstrengelingsgeneratie en ten minste een
verstrengelingsgeneratie-operatie voor
verstrengelingsgeneratie tussen de eerste kwantumnetwerknode
en een tweede kwantumnetwerknode omvatten, waarbij de eerste
en tweede kwantumnetwerknodes onderdeel zijn van een
kwantumnetwerk;

het uitveoeren van tenminste een deel van de
kwantumoperaties op het kwantumcomputersysteem via een eerste
subsysteem van het besturingssysteem, waarbij als een
kwantumoperatie gerelateerd is aan een
verstrengelingsgeneratie-operatie, de
verstrengelingsgeneratie-operatie verstuurd wordt naar een
tweede subsysteem van het besturingssysteem, waarbij het
tweede subsysteem uitvoering van de verstrengelingsgeneratie-
operatie voorbereidt als een achtergrondproces van het
besturingssysteem, terwijl het eerste subsysteem doorgaat met

de uitvoering van lokale kwantumoperaties;

10

15

20

25

30

46

het blokkeren van de uitvoering van de lokale
kwantumoperaties die geassocieerd zijn met een eerste
kwantumnetwerkapplicatie door het eerste subsysteem, als een
eerste lokale kwantumoperatie toegang vereist tot een
verstrengeling die geassocieerd is met de
verstrengelingsgeneratie-operatie;

het uitvoeren van de verstrengelingsgeneratie-operatie
door het tweede subsysteem gebaseerd op een tijdsslot in een
netwerkschema dat verschaft is aan de eerste en tweede
kwantumnetwerknodes, waarbij de verstrengelingsgeneratie-
operatie bij voorkeur uitgevoerd wordt als een kernelproces
van het besturingssysteem;

het deblokkeren van uitvoering van de kwantumoperaties
door het eerste subsysteem als verstrengeling tussen de
eerste en tweede kwantumnetwerknodes tot stand is gebracht;
en,

het verschaffen van de lokale kwantumoperatietoegang aan
een communicatiequbit van het kwantumcomputersysteem wvan de
eerste kwantumnetwerknode die verstrengeld is met een
communicatiequbit van het kwantumcomputersysteem van de

tweede kwantumnetwerknode.

2. De werkwijze volgens conclusie 1, waarbij het
voorbereiden van uitvoering van de eerste
verstrengelingsgeneratie-operatie omvat:

het zenden van een verzoek voor verstrengeling over een
klassieke communicatieverbinding naar de tweede
kwantumnetwerknode; of,

het ontvangen van een verzoek voor verstrengeling over
een klassieke communicatieverbinding vanuit de tweede

kwantumnetwerknode.

10

15

20

25

30

47

3. De werkwijze volgens conclusie 1 of 2, waarbij de eerste
en tweede kwantumnetwerknodes met elkaar verbonden zijn via

een optisch medium, bij voorkeur glasvezel.

4, De werkwijze volgens één der conclusies 1-3, waarbij het
netwerkschema één of meer tijdssloten omvat voor het
codrdineren van verstrengelingsgeneratie tussen de één of
meer kwantumnetwerknodes, waarbij de één of meer tijdssloten
van het netwerkschema bij voorkeur aan het besturingssysteem
seinen bij welk tijdstip het tweede subsysteem toegang heeft

tot de kwantumhardware van de kwantumnetwerknode.

5. De werkwijze volgens één der conclusies 1-4, waarbij de
lokale kwantumoperaties onderdeel zijn van een
gebruikersproces en de verstrengelingsgeneratie-operatie door

het tweede subsysteem onderdeel is van een netwerkproces.

6. De werkwijze volgens conclusie 5, waarbij het uitvoeren
van de verstrengelingsgeneratie-operatie omvat:

het toewijzen van eigenaarschap van de communicatie die
in de verstrengelingsgeneratie gebruikt wordt aan het
netwerkproces; en,

het overdragen van het eigenaarschap van de
communicatiequbit aan het gebruikersproces als verstrengeling
fussen de communicatiequbit en een communicatiegubit van de

tweede kwantumnetwerknode tot stand is gebracht.

7. De werkwijze volgens één der conclusies 1-6, waarbij het
netwerkschema een time division multiplexing schema is, =zoals
een TDMA-schema, of waarbij het netwerkschema een statistisch
multiplexing schema is, waarbij het netwerkschema bij

voorkeur gebruikt wordt door het besturingssysteem om het

10

15

20

25

30

43

gebruikersproces en het netwerkproces te plannen volgens een
planningsbeleid, waarbij het planningsbeleid bij voorkeur een
netwerkproces voorrang geeft over een gebruikersproces, als
het gebruikersproces en het netwerkproces gereed zijn op

dezelfde tijdsinstantie.

8. De werkwijze volgens één der conclusies 1-7, waarbij een
centrale netwerkbestuurder een netwerkschema verschaft aan de
één of meer kwantumnetwerknodes voor het codrdineren van

verstrengeling tussen de kwantumnetwerknodes.

9. De werkwijze volgens één der conclusies 1-8, waarbij de
kwantumnetwerkapplicatie klassieke codeblokken en
kwantumcodeblokken omvat, waarbij de klassieke codeblokken
klassieke operaties van een computertaal op hoog niveau
omvatten en waarbij de kwantumcodeblokken kwantumoperaties
van een kwantumassembleertaal omvatten, waarbij de
kwantumassembleertaal bij voorkeur één of meer operaties voor

verstrengelingsgeneratie omvat.

10. De werkwijze volgens één der conclusies 1-9, waarbi]]
gedurende het blokkeren van de uitvoering van de lokale
kwantumoperaties die geassocieerd zijn met een tweede
kwantumnetwerkapplicatie, lokale kwantumoperaties uitgevoerd
worden die geassocieerd zijn met een tweede

kwantumnetwerkapplicatie.

11. De werkwijze volgens é&én der conclusies 1-10 waarbij het
uitvoeren van de verstrengelingsgeneratie-operatie omvat:

het zenden, na de uitvoering van het eerste codeblok,
van een notificatiebericht naar de kwantumnetwerkapplicatie
over het einde van de uitveering, waarbij het

notificatiebericht bij voorkeur resultaten van de uitvoering

10

15

20

25

30

49

omvat, waarbij de resultaten van de uitvoering ten minste é&én
omvatten van: een meting van een verstrengelde
communicatiequbit en/of informatie betreffende één of meer

opgeslagen verstrengelde communicatiequbits.

12. Een kwantumnetwerknodesysteem voor het uitvoeren van één
of meer kwantumnetwerkapplicaties die klassieke codeblokken
en kwantumcodeblokken omvatten, waarbij het
kwantumnetwerknodesysteem een klassiek computersysteem en een
kwantumcomputersysteem omvat, welk kwantumcomputersysteem é&én
of meer communicatiequbits en, optioneel, één of meer
opslaggqubits omvat, waarbij het klassieke computersysteem een
geheugeninrichting die door een computer uitvoerbare
instructies omvat en een processor die verbonden is met de
geheugeninrichting omvat, waarbij de processor ingericht is
voor het uitvoeren van uitvoerbare operaties omvattende:

het ontvangen een kwantumcodeblok dat geassocieerd is
met een eerste kwantumnetwerkapplicatie door een
besturingssysteem van een eerste kwantumnetwerknode, welk
kwantumcodeblok kwantumcperaties omvat, welke
kwantumoperaties lokale kwantumoperaties die niet gerelateerd
Zijn aan verstrengelingsgeneratie en fen minste een
verstrengelingsgeneratie-operatie voor
verstrengelingsgeneratie tussen de eerste kwantumnetwerknode
en een tweede kwantumnetwerknode omvatten, waarbij de eerste
en tweede kwantumnetwerknodes onderdeel zijn van een
kwantumnetwerk;

het uitvoeren van ftenminste een deel van de
kwantumoperaties op het kwantumcomputersysteem via een eerste
subsysteem van het besturingssysteem, waarbij als een
kwantumoperatie gerelateerd is aan een

verstrengelingsgeneratie-operatie, de

10

15

20

25

30

50

verstrengelingsgeneratie-operatie verstuurd wordt naar een
tweede subsysteem van het besturingssysteem, waarbij het
tweede subsysteem uitvecering van de verstrengelingsgeneratie-
operatie voorbereidt als een achtergrondproces van het
besturingssysteem, terwijl het eerste subsysteem doorgaat met
de uitvoering van lokale kwantumoperaties;

het blokkeren van de uitvoering van de lokale
kwantumoperaties die geassocieerd zijn met een eerste
kwantumnetwerkapplicatie door het eerste subsysteem, als een
eerste lokale kwantumoperatie toegang vereist tot een
verstrengeling die geassocieerd is met de
verstrengelingsgeneratie-operatie;

het uitveoeren van de verstrengelingsgeneratie-operatie
door het tweede subsysteem gebaseerd op een tijdsslot in een
netwerkschema dat verschaft i1is aan de eerste en tweede
kwantumnetwerknodes, waarbij de verstrengelingsgeneratie-
operatie bij voorkeur uitgevoerd wordt als een kernelproces
van het besturingssysteem;

het deblokkeren van uitveoering van de kwantumoperaties
door het eerste subsysteem als verstrengeling tussen de
eerste en tweede kwantumnetwerknodes tot stand is gebracht;
en,

het verschaffen van de lokale kwantumoperatietoegang aan
een communicatiequbit van het kwantumcomputersysteem van de
eerste kwantumnetwerknode die verstrengeld is met een
communicatiequbit van het kwantumcomputersysteem van de

tweede kwantumnetwerknode.

13. Een systeem volgens conclusie 12 waarbij de uitvoerbare
operaties verder één of meer werkwijzestappen volgens

conclusies 2-11 omvatten.

10

15

20

25

30

51

14. Een op een computer geimplementeerde werkwijze voor het
uitvoeren van een kwantumnetwerkapplicatie die klassieke
codeblokken en kwantumcodeblokken omvat, omvattende:

het uitvoeren van een eerste klassiek codeblok, waarbij
de uitvoering het registreren van de kwantumnetwerkapplicatie
bij een besturingssysteem van een eerste kwantumnetwerknode
omvat, waarbij de registratie registratie-informatie omvat
betreffende vereiste middelen voor de
kwantumnetwerkapplicatie, waarbij de registratie-informatie
bij voorkeur een context, een bandbreedte voor
verstrengelingsgeneratie, een socket die een tweede
kwantumnetwerknode identificeert, en een getrouwheid die
geassocieerd is met de uitvoering van de
kwantumnetwerkapplicatie omvat;

het zenden van een eerste kwantumcodekblok naar de eerste
kwantumnetwerknode, welk eerste kwantumcodeblok
kwantumoperaties omvat, die lokale kwantumoperaties die niet
gerelateerd zijn aan verstrengelingsgeneratie en één of meer
verstrengelingsgeneratieverzoeken voor
verstrengelingsgeneratie tussen de eerste kwantumnetwerknode
en de tweede kwantumnetwerknocde omvatten;

het ontvangen van een notificatie vanuit de eerste
kwantumnetwerknode, dat de uitvoering van het eerste
kwantumcodeblok beé&indigd is, waarbij de notificatie één of
meer ultvoeringsresultaten van de uitvoering van het codeblok
omvat, waarbij de één of meer uitvoeringsresultaten
informatie betreffende één of meer gemeten communicatiequbits
en/of informatie betreffende één of meer opgeslagen
verstrengelde qubits omvatten;

het uitveoeren van een tweede klassiek codebleok van het

kwantumnetwerk gebaseerd op de uitvoeringsresultaten.

10

15

20

25

52

15. De werkwijze volgens conclusie 14, waarbij de klassieke
codeblokken klassieke operaties van een computertaal op hoog
niveau omvatten en waarbij de kwantumcodeblokken
kwantumoperaties van een kwantumassembleertaal omvatten,
waarbij de kwantumassembleertaal bij voorkeur instructies

voor verstrengelingsgeneratie omvat.

16. De werkwijze volgens één der conclusies 14 of 15, verder
omvattende:

het zenden van een tweede kwantumcodeblok naar de eerste
kwantumnetwerknode, waarbij het tweede kwantumcodeblok
kwantumoperaties omvat voor het meten van één of meer
opgeslagen verstrengelde qubits die opgeslagen waren

gedurende de uitvoering van het eerste kwantumcodeblok.

17. Een computerprogramma of een suite van
computerprogramma's die ten minste één softwarecodeportie
omvatten of een computerprogrammaproduct dat ten minste één
softwarecodeportie opgeslagen heeft, waarbij de
softwarecodeportie, wanneer deze uitgevoerd wordt op een
hybride gegevensverwerkingssysteem dat een klassiek
computersysteem en kwantumcomputersysteem omvat, ingericht is
voor het uitvoeren van de werkwijzestappen volgens één der

conclusies 1-11 of 14-16.

100

102, 102,

U s
X 108 e ™

N

112, —[_ appication \s\:m(Apptication —_ 11 2,

104, ~4— GNodeC$ <—-—- QNode0s —— 104,
Quanium

Cuaniam
106, "4— Hardware _ 106,

\\
\
I} wWardware T

FIG. 1

GLIL

200

win Nogde

i

LJRay

3 <"’<} i‘k

2/15

» 208,
208,

&
<5 3 .
4 Z %
2 s oz k
L) e i <
2 A 22 = &
AR % %
7 &] W
Sh [7 . 2
gl kA A - s
g e 45 poe . 4
7, 4 I o P
2P % Z 2o
o - & PR
I 4 it 5)
P P o B
d \\n il mx\.
(I a hd)
Y,
%
4 ™y
| ©
A | —
i | N ol
% [I
<, 1 g ",
o e/ i '
7 . | 21
o 7~ i o
Roid ~ i T
e ey | "
¥l o i 5
] 24] P
Srs 4 1 ¥4
ooy, i iy
pod S < N %7
L o 1 Dol tadd
- e ol
i e [N e o
o = i (e
N m «m

W

1
i
K

LA

Applics

(P

Mrrerccerercnred

<

S %

AN .
dt 4
< m g
A s
= iy AN
o P < 7
g b~ Rt
\n | N toed

A

NN

FIG. 2

300

3

R REOCERAS

.

ped

WP Ny

i

7

S EHIIS

ook

Tuiantuny code bl

304,

ock

Lasntum code Bl

304,

400

i

3

414,

416,

time slot 2

R

o

\ 3{ B

b3
AP

R

3

414,

»

time slot 1
416,

410,
414,

time slot O
416,

network
schedule
quantum
network
stack

FIG. 4A

12

10

=

time

FIG. 4B

5/15

©
N
Xe]

1
N

¢ ave d

D

st 520

Hiload qua

asier

L srrrrrsl,

i
518

3

§NV 1w e

e
I
Food
Fosd :
- Fra
40
L 5 oo
Eoes - "

e
s,

CF
2%

andsngd
2%

£
i

3
3

Respuest

L Qi

FIG. 5A

6/15

600

% %
- 7
4 L
% T W
i P bk
. 22

o woo
o] P @z
i [I
L i
g A
s 44
27)
2 4 o b
AN i g %)
w0 i sy e
S i
w0 pert o
P
S
v £y

602,

wecute guantum code hiogk 558
xecute gusnbim code block 564

«

f

568

B

x 3
[“r .
LAl B = &

oV e -) z

S B @ & = %

- oo) e o .. ~

= nlet Nt o b4 a L3 i

£ w 2 = o = 2ot 95

= g [= k3 s~ = Joed Kgodt

= & 5 2 e o

2= &l g & o3 5

oo w o - = MM\ i

o B N = g o %

e m,«u T~ = = rris
& il BT = = o 75
o el < o e 7
[t = = jand Yoo
= or " e

bl et
~ *
o= . A%
z y %
= /4
b i
&
o= o O
3 S Q ® © ©
: ' b R 1 s
[T} [T}

550 ! App

FIG. 5B
FIG. 6

7115

712

Network process

Proceasor

714
712

User process
704,

Procassor

702

FIG. 7B

FIG. 7A

W A e e W e e e e e W e’ iy e e A e R A We e A e e W %

4 k
¢ }
N : H
; :
; :
o H Z
; :
; :
<%} B ;
; :
; :
e b Z
% ; : :
7 Z z %
4 2 7 B
H ; : H
FE 2 z z b
3 g z 4 7
[: 7 H
IRt Z z Z
[K H b
[; ; H
“, 7 . g
- ogor tooesessocsises
4 7 7
4 2 :
% '
:
! 7
3 K
~ A e e A e e v
(
;
f

FIG. 8

918

VAR A W AR N W AR N W A A

A,

s

r it
7

T S S L S L s s s s s s g

3
3
: ;
2] ! 32
Gg N2 : M
Y i o
i 5 < N e W S e W W R W e Aa A AR A I
[V) . i :
4 R
L)
$he

FIG. 9

ST

3
H
3
3

P

A
pERS R

Y

Y

N R

3

L

FIG. 10

1115

1102,

1108,

ISe
N
*

wrnss,

E a2
4 Ca ey
§ AURIW

X

23
VY

G
5

3

s

s
o

o
enndt
P2 d

W..\.”w.

w1y

ok

srvna,
£

FIG. 11

D

AR,
sy

§

1304

riesttesticn,

n

R

=
L

=
S0

AT
SR

oy e
BE
o Bt

£

D v

orrorr sl

a3 :
P o v e o e 0 e e e e A e e A e e A
ey b2
e

£y
ey b
8y 7
o B N A e e W e A A e
(RSO ¥ 4
ol i

ot

£

1214

AR

prerid

s AR AN,
re "

i
43
e
e
s
-
29

AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR

Snanaaanannasass”

~

‘2
3

7
b H
- b
4
5. ¥

FIG. 13

FIG. 12

FIG. 14

—
n
w
(]

Hosi

I $iser appliog

Host interfacs 1413

{INedeON Stack

th 1419,

U operatios

T next hinp's
{ndelis

1420 QNodeOS core 1424

civiereciored

1422

11428

To noxt hop's

Qhevies

GLICL

14/15

FRERER
&
o=
Bl
b2
et
PN

200
P
N

ALFIT pUe £y

%

xx\\\\vm\\\.& \\W\\\\s.

,,,,,,,,,,, Pl T

1512

1514
X
3

R 7 e iy e z e E
A R A R

15

FIG.

]

JE T ———

Lomm e

1

E

et

1614

FIG. 16

SAMENWERKINGSVERDRAG (PCT)

RAPPORT BETREFFENDE NIEUWHEIDSONDERZOEK VAN INTERNATIONAAL TYPE

IDENTIFICATIE VAN DE NATIONALE AANVRAGE KENMERK VAN DE AANVRAGER OF VAN DE GEMACHTIGDE
Nederlands aanvraag nr. Indieningsdatum
2029673 08-11-2021

Ingeroepen voorrangsdatum

Aanvrager (Naam)

Technische Universiteit Delft

Datum van het verzoek voor een onderzoek van Door de Instantie voor Internationaal Onderzoek aan

internationaal type het verzoek voor een onderzoek van internationaal type

toegekend nr.

05-02-2022 SN80629

I. CLASSIFICATIE VAN HET ONDERWERP (bij toepassing van verschillende classificaties, alle classificatiesymbolen opgeven)

Volgens de internationale classificatie (IPC)

Zie onderzoeksrapport

Il. ONDERZOCHTE GEBIEDEN VAN DE TECHNIEK

Onderzochte minimumdocumentatie

Classificatiesysteem Classificatiesymbolen

IPC Zie onderzoeksrapport

Onderzochte andere documentatie dan de minimum documentatie, voor zover dergelijke documenten in de onderzochte gebieden

zijn opgenomen

GEEN ONDERZOEK MOGELIJK VOOR BEPAALDE CONCLUSIES (opmerkingen op aanvullingsblad)

Iv.

GEBREK AAN EENHEID VAN UITVINDING (opmerkingen op aanvullingsblad)

Form PCT/ISA 201 A (11/2000)

ONDERZOEKSRAPPORT BETREFFENDE HET

RESULTAAT VAN HET ONDERZOEK NAAR DE STAND Nummer van het verzoek om een onderzoek naar
de stand van de techniek

VAN DE TECHNIEK VAN HET INTERNATIONALE TYPE NL 2029673

A. CLASSIFICATIE VAN HET ONDERWERP

INV. GO6N10/80 GO6F9/46 HO04B10/70 HO04L9/08

ADD.

Volgens de Internationale Classificatie van octrooien (IPC) of zowel volgens de nationale classificatie als volgens de IPC.

B. ONDERZOCHTE GEBIEDEN VAN DE TECHNIEK

Onderzochte miminum documentatie (classificatie gevolgd door classificatiesymbolen)
GO6N GO6F HO04B HO4L

Onderzochte andere documentatie dan de mimimum documentatie, voor dergelijke documenten, voor zover dergelijke documenten in de onderzochte
gebieden zijn opgenomen

Tijdens het onderzoek geraadpleegde elektronische gegevensbestanden (naam van de gegevensbestanden en, waar uitvoerbaar, gebruikte trefwoorden)

EPO-Internal

C. VAN BELANG GEACHTE DOCUMENTEN

Categorie °| Geciteerde documenten, eventueel met aanduiding van speciaal van belang zijnde passages Van belang voor
conclusie nr.
X AXEL DAHLBERG ET AL: "A link layer 1-17

protocol for quantum networks",

DATA COMMUNICATION, ACM, 2 PENN PLAZA,
SUITE 701NEW YORKNY10121-0701USA,

19 augustus 2019 (2019-08-19), bladzijden
159-173, xP058440118,

DOI: 10.1145/3341302.3342070

ISBN: 978-1-4503-5956-6

* bladzijde 159 - bladzijde 168 *

-/—

|__K| Verdere documenten worden vermeld in het vervolg van vak C. |:| Leden van dezelfde octrooifamilie zijn vermeld in een bijlage

° Speciale categorieén van aangehaalde documenten "T" na de indieningsdatum of de voorrangsdatum gepubliceerde

literatuur die niet bezwarend is voor de octrooiaanvrage,
maar wordt vermeld ter verheldering van de theorie of
het principe dat ten grondslag ligt aan de uitvinding

"A" niet tot de categorie X of Y behorende literatuur die de stand van de
techniek beschrijft
"D" in de octrooiaanvrage vermeld
"X" de conclusie wordt als niet nieuw of niet inventief beschouwd

"E" eerdere octrooi aanvrage), gepubliceerd op of na de indieningsdatum, ten opzichte van deze literatuur
waarin dezelfde uitvinding wordt beschreven

"Y" de conclusie wordt als niet inventief beschouwd ten opzichte
van de combinatie van deze literatuur met andere geciteerde
"O" niet-schriftelijke stand van de techniek literatuur van dezelfde catggorie, waarbij de combinatie voor
de vakman voor de hand liggend wordt geacht
"P" tussen de voorrangsdatum en de indieningsdatum gepubliceerde literatuur "&" lid van dezelfde octrooifamilie of overeenkomstige octrooipublicatie

"L" om andere redenen vermelde literatuur

Datum waarop het onderzoek naar de stand van de techniek van Verzenddatum van het rapport van het onderzoek naar de stand van
internationaal type werd voltooid de techniek van internationaal type

21 juni 2022

Naam en adres van de instantie De bevoegde ambtenaar
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, .
Fax: (+31-70) 340-3016 Bohn, Patrice

Formulier PCT/ISA/201 (tweede blad) (Januari 2004)

bladzijde 1 van 2

ONDERZOEKSRAPPORT BETREFFENDE HET

RESULTAAT VAN HET ONDERZOEK NAAR DE STAND Nummer van het verzoek om een onderzoek naar
de stand van de techniek
VAN DE TECHNIEK VAN HET INTERNATIONALE TYPE NL 2029673
C.(Vervolg). VAN BELANG GEACHTE DOCUMENTEN
Categorie °| Geciteerde documenten, eventueel met aanduiding van speciaal van belang zijnde passages Van belang voor
conclusie nr.
A XIAOLIANG WU ET AL: "SeQUeNCe: A 7

Customizable Discrete—-Event Simulator of
Quantum Networks",

ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY
14853,

25 september 2020 (2020-09-25),
XpP081770613,

* alinea [4.1.1] *

A ANDREW W CROSS ET AL: "OpenQASM 3: A 9,15
broader and deeper quantum assembly
language",

ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY
14853,

30 april 2021 (2021-04-30), XP081946440,

* bladzijde 13 *

* bladzijde 19 - bladzijde 20 *

A Anonymous: "Computer multitasking - 1,10
Wikipedia",

7 februari 2017 (2017-02-07), XP055343262,
Gevonden op het Internet:
URL:https://en.wikipedia.org/wiki/Computer
_multitasking

[gevonden op 2017-02-07]

* bladzijde 1 - bladzijde 3 *

Formulier PCT/ISA/201 (vervolg tweede blad) (Januari 2004)

bladzijde 2 van 2

WRITTEN OPINION

File No.

SN80629

Filing date (day/monthiear)
08.11.2021

Priority date (day/month/ear)

Application No.
NL2029673

International Patent Classification (IPC)

INV. GO6N10/80 GO6F9/46 H04B10/70 HO4L9/08

Applicant

Technische Universiteit Delft

This opinion contains indications relating to the following items:

o000 XOOOK

Box No.
Box No.

Box No

Box No.
Box No.

Box No.
Box No.

Box No

I

Il
al
v
\

\
\il
. VIl

Basis of the opinion
Priority

Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

Lack of unity of invention

Reasoned statement with regard to novelty, inventive step or industrial
applicability; citations and explanations supporting such statement

Certain documents cited

Certain defects in the application

Certain observations on the application

Examiner

Bohn, Patrice

Form NL237A (Dekblad) (July 2006)

Application number

WRITTEN OPINION NL2029673

Box No.| Basis of this opinion

. This opinion has been established on the basis of the latest set of claims filed before the start of the search.

. With regard to any nucleotide and/or amino acid sequence disclosed in the application and necessary to the
claimed invention, this opinion has been established on the basis of:

a. type of material:
O asequence listing
[1 table(s) related to the sequence listing
b. format of material:
O on paper
O in electronic form
c. time of filingfurnishing:
L1 contained in the application as filed.
O filed together with the application in electronic form.

1 furnished subsequently for the purposes of search.

. O In addition, in the case that more than one version or copy of a sequence listing and/or table relating thereto
has been filed or furnished, the required statements that the information in the subsequent or additional
copies is identical to that in the application as filed or does not go beyond the application as filed, as
appropriate, were furnished.

. Additional comments:

Box No.V Reasoned statement with regard to novelty, inventive step or industrial applicability;
citations and explanations supporting such statement

. Statement
Novelty Yes: Claims 6,7,9,15,16
No: Claims 1-5, 8, 10-14, 17
Inventive step Yes: Claims
No: Claims 1-17
Industrial applicability Yes: Claims 1-17

No: Claims

. Citations and explanations

see separate sheet

NL237B (July 2006)

WRITTEN OPINION Application number
(SEPARATE SHEET) NL2029673

Re ltem V

Reasoned statement with regard to novelty, inventive step or industrial
applicability; citations and explanations supporting such statement

D1 AXEL DAHLBERG ET AL: "A link layer protocol for quantum networks",
DATA COMMUNICATION, ACM, 2 PENN PLAZA, SUITE 701NEW
YORKNY10121-0701USA, 19 augustus 2019 (2019-08-19), bladzijden
159-173, XP058440118,

DOI: 10.1145/3341302.3342070
ISBN: 978-1-4503-5956-6

D2 XIAOLIANG WU ET AL: "SeQUeNCe: A Customizable Discrete-Event
Simulator of Quantum Networks",
ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY
CORNELL UNIVERSITY ITHACA, NY 14853, 25 september 2020
(2020-09-25), XP081770613,

D3 ANDREW W CROSS ET AL: "OpenQASM 3: A broader and deeper
quantum assembly language”,
ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY
CORNELL UNIVERSITY ITHACA, NY 14853, 30 april 2021 (2021-04-30),
XP081946440,

D4 Anonymous: "Computer multitasking - Wikipedia",
, 7 februari 2017 (2017-02-07), XP055343262,
Gevonden op het Internet:
URL:https://en.wikipedia.org/wiki/Computer_multitasking
[gevonden op 2017-02-07]

1. The present application does not meet the criteria of patentability, because the
subject-matter of claim 1 is not new.

Independent claim 1 is directed towards a computer-implemented method for executing
one or more quantum network applications:

"Een op een computer geimplementeerde werkwijze voor het uitvoeren van één of meer
kwantumnetwerkapplicaties die klassieke codeblokken en kwantumcodeblokken
omvatten op één of meer kwantumnetwerknodes, waarbij elke kwantumnetwerknode
een klassiek computersysteem en een kwantumcomputersysteem omvat, welk

Form NL237-3 (separate sheet) (July 2006) (sheet 1)

WRITTEN OPINION Application number
(SEPARATE SHEET) NL2029673

kwantumcomputersysteem één of meer communicatiequbits en, optioneel, één of meer
opslagqubits omvat, de werkwijze omvattende:

het ontvangen van een kwantumcodeblok dat geassocieerd is met een eerste
kwantumnetwerkapplicatie door een besturingssysteem van een eerste
kwantumnetwerknode, welk kwantumcodeblok kwantumoperaties omvat, welke
kwantumoperaties lokale kwantumoperaties die niet gerelateerd zijn aan
verstrengelingsgeneratie en ten minste een verstrengelingsgeneratie-operatie voor
verstrengelingsgeneratie tussen de eerste kwantumnetwerknode en een tweede
kwantumnetwerknode omvatten, waarbij de eerste en tweede kwantumnetwerknodes
onderdeel zijn van een kwantumnetwerk;

het uitvoeren van tenminste een deel van de kwantumoperaties op het
kwantumcomputersysteem via een eerste subsysteem van het besturingssysteem,
waarbij als een kwantumoperatie gerelateerd is aan een verstrengelingsgeneratie-
operatie, de verstrengelingsgeneratie-operatie verstuurd wordt naar een tweede
subsysteem van het besturingssysteem, waarbij het tweede subsysteem uitvoering van
de verstrengelingsgeneratie-operatie voorbereidt als een achtergrondproces van het
besturingssysteem, terwijl het eerste subsysteem doorgaat met de uitvoering van lokale
kwantumoperaties;

het blokkeren van de uitvoering van de lokale kwantumoperaties die geassocieerd zijn
met een eerste kwantumnetwerkapplicatie door het eerste subsysteem, als een eerste
lokale kwantumoperatie toegang vereist tot een verstrengeling die geassocieerd is met
de verstrengelingsgeneratie-operatie;

het uitvoeren van de verstrengelingsgeneratie-operatie door het tweede subsysteem
gebaseerd op een tijdsslot in een netwerkschema dat verschaft is aan de eerste en
tweede kwantumnetwerknodes, waarbij de verstrengelingsgeneratie-operatie bij
voorkeur uitgevoerd wordt als een kernelproces van het besturingssysteem;

het deblokkeren van uitvoering van de kwantumoperaties door het eerste subsysteem
als verstrengeling tussen de eerste en tweede kwantumnetwerknodes tot stand is
gebracht; en,

het verschaffen van de lokale kwantumoperatietoegang aan een communicatiequbit van
het kwantumcomputersysteem van de eerste kwantumnetwerknode die verstrengeld is
met een communicatiequbit van het kwantumcomputersysteem van de tweede
kwantumnetwerknode."

Document D1 discloses the following features of claim 1:

A computer-implemented method for executing one or more quantum network
applications comprising classical code blocks and quantum code blocks on one or more
quantum network nodes,

Form NL237-3 (separate sheet) (July 2006) (sheet 2)

WRITTEN OPINION Application number
(SEPARATE SHEET) NL2029673

(abstract, "a functional allocation of a quantum network stack, and construct the first
physical and link layer protocols that turn ad-hoc physics experiments producing
heralded entanglement between quantum processors into a well-defined and robust
service.",

Section 3.4,"Network Stack", "Requests can be made by higher layers to the link layer
fo produce entanglement" implies corresponding quantum code blocks,

Section 5.2.4, "physical gate instructions”,

Section 5.2.6, "Protocol”, "an OK message is propagated to higher layers", implies also
classical code blocks)

wherein each quantum network node includes a classical computer system and a
guantum computing system,

n.n

(Section 3.2, "Quantum Network Devices", "a controllable quantum node, offers the
possibility to perform controllable quantum operations as well as storing qubits.
Specifically, these nodes enable decision making, e.g. which nodes to connect by
entanglement swapping. Such nodes can act as quantum repeaters and decision
making routers in the network (e.g. NV platform or other quantum memories combined
with auxiliary optics), and if they support the execution of gates and measurements
function as end nodes [90] on which we run applications (e.g. NV centers in diamond or
lon Traps).",

Section 4.5, "Hardware Considerations”, "This imposes hard real time constraints at the
lowest level, with dedicated timing control (AWG) and software running on a dedicated
microcontroller (Adwin Proll).".

control operations are performed by classical computer system, quantum operations
are performed by a quantum computing system),

wherein the quantum computing system may comprise one or more communication
qubits and one or more storage qubits,

(Section 4.4, "Physical Entanglement Generation", "Each node can have two types of
qubits: memory qubits as a local memory, and communication qubits with an optical
interface, that can be entangled with a photon.")

receiving a quantum code block associated with a first quantum network application by
an operating system of a first quantum network node,

the quantum code block comprising quantum operations,

Form NL237-3 (separate sheet) (July 2006) (sheet 3)

WRITTEN OPINION Application number
(SEPARATE SHEET) NL2029673

the quantum operations including local quantum operations not related to entanglement
generation and

at least an entanglement generation operation for entanglement generation between the
first quantum network node and a second quantum network node,

(Section 3.3, "we may wish to perform joint operations on multiple qubits, and perform
quantum gates that depend on back and forth communication between two nodes while
keeping the qubits in local quantum storage”,

Section 4.4, "physical entanglement”, " local quantum gates")

the first and second quantum network nodes being part of a quantum network; and,

(abstract)

executing at least part of the quantum operations on the quantum computing system via
a first subsystem of the operating system,

(Section 4.4, "local quantum gates")

wherein if a quantum operation is related to an entanglement generation operation,

sending the entanglement generation operation to a second subsystem of the operating
system,

(fig.4, 5,
Section 4.1.1, "Requesting entanglement”,

Section 5.2.6, "The scheduler then constructs a "yes" response to the MHP containing a
from the FEU, along with an ID containing the unique queue ID of the request in the
distributed queue, and number of pairs already produced for the request. This response
is then forwarded to the local MHP upon its next poll to the QEGP",

the entanglement request is sent to the local physical layer MHP of the quantum
network stack as a second subsystem of the operating system, distinct from the
subsystem performing classical operations and via which local quantum operations are
executed)

the second subsystem preparing execution of the entanglement generation operation as
a background process of the operating system,

Form NL237-3 (separate sheet) (July 2006) (sheet 4)

WRITTEN OPINION Application number
(SEPARATE SHEET) NL2029673

(Fig.4, 5, Section 5.1.1, " Note that the REPLY may be received many MHP cycles
later”)

while the first subsystem continues executing local quantum operations

(Section 4.5, "depending on the number of communication qubits, and parallelism of
quantum operations that the platforms allows, a node also needs a global scheduler for
the entire system and not only the actions of the link layer.”,

i.e. the quantum operations are performed in parallel and thus also while waiting for a
reply;

Section 5.1.1, "Note that the REPLY may be received many MHP cycles later, allowing
the potential for emission multiplexing (Section 5.2).",

Section 5.2.6, "The QEGP can be polled by the MHP before receiving a response from
the MHP for the previous cycle. This allows the choice to attempt entanglement
generation multiple times in succession before receiving a reply from the midpoint”,

i.e. asynchronous and interleaved processing of requests and responses, which implies
also receiving a response for a previous request and performing local quantum
operations mentioned in sections 3.3 and 4.4 , "entangled states may be produced,
which can however be converted to one other using local quantum gates at A", "memory

qubits as a local memory", "post-processing such as moving to memory" during the idle
time, while waiting for a reponse to a lastest request),

blocking the execution of the local quantum operations associated with a first quantum
network application by the first subsystem, if a first local quantum operation requires
access to an entangled qubit associated with the entanglement generation operation.

(fig.5, implicit from waiting for "OK" message , see also unblocking step below)

executing the entanglement generation operation by the second subsystem based on a
timeslot in a network schedule provided to the first and second quantum network node.

(Section 4.4, " a time synchronized trigger is used at both A and B to create
entanglement between each communication qubit, and a corresponding traveling qubit
(photon)”

Section 5.1, " Protocol execution is divided into time slots, which are synchronized
between the two neighboring nodes (Section 4.4).")

Form NL237-3 (separate sheet) (July 2006) (sheet 5)

WRITTEN OPINION Application number
(SEPARATE SHEET) NL2029673

the entanglement generation operation is executed as a kernel process of the operating
system,

(fig.4, 5; the entanglement generation operation is executed by the physical layer which
is a basic service process of the operating system, i.e. a kernel process; it is not part of
the higher layers comprising user processes)

unblocking execution of the quantum operations by the first subsystem if entanglement
between the first and second quantum network node is established

(Section 4.4, "Success or failure is then transmitted back from H to the nodes A and B
over a standard classical channel (e.g. I00Base-T). In the case of success, one of
several entangled states may be produced, which can however be converted to one

other using local quantum gates at A or B.", "post-processing such as moving to
memory),"”

5.1.1, "This REPLY and the ID is forwarded fo the link layer for post-processing.”

Section 5.2, "Whenever a REPLY and ID is received from the MHP, the QEGP uses the
ID to match the REPLY to an outstanding request, and evaluates the REPLY for
correctness. Should the attempt be successful, the number of outstanding pairs in the
request is decremented, and an OK message is propagated to higher layers containing
the information specified in Section 4.1.2, where the Goodness is obtained from the
FEU.")

providing access to a communication qubit of the quantum computing system of the first
quantum network node that is in entanglement with a communication qubit of the
quantum computing system of the second quantum network node.

(Section 4.1, "The link layer offers a robust entanglement creation service between a
pair of controllable quantum nodes A and B that are connected by a quantum link").

D1 discloses all the features of claim 1.

The subject-matter of claim 1 is not new.

2. An hypothetical difference related to code of the application executed before the
entanglement generation operation is sent, while the entanglement operation is
executed in background, or once entanglement is established would not involve an

Form NL237-3 (separate sheet) (July 2006) (sheet 6)

WRITTEN OPINION Application number
(SEPARATE SHEET) NL2029673

inventive step for the following reason: the operations executed (classical or local
quantum operations) are chosen arbitrarily by a programmer, the activity of
programming is an intellectual, non-technical activity.

3. The same reasoning applies, mutatis mutandis, to the subject-matter of the
corresponding independent claims 12, 17, which therefore is also considered not new.

4. The subject-matter of claim 14 is not new.

Independent claim 14 is directed towards a further computer-implemented method for
executing a quantum network application comprising classical code blocks and quantum
code blocks:

"Een op een computer geimplementeerde werkwijze voor het uitvoeren van een
kwantumnetwerkapplicatie die klassieke codeblokken en kwantumcodeblokken omvat,
omvattende:

het uitvoeren van een eerste klassiek codeblok, waarbij de uitvoering het registreren
van de kwantumnetwerkapplicatie bij een besturingssysteem van een eerste
kwantumnetwerknode omvat, waarbij de registratie registratie-informatie omvat
betreffende vereiste middelen voor de kwantumnetwerkapplicatie, waarbij de registratie-
informatie bij voorkeur een context, een bandbreedte voor verstrengelingsgeneratie,
een socket die een tweede kwantumnetwerknode identificeert, en een getrouwheid die
geassocieerd is met de uitvoering van de kwantumnetwerkapplicatie omvat;

het zenden van een eerste kwantumcodeblok naar de eerste kwantumnetwerknode,
welk eerste kwantumcodeblok kwantumoperaties omvat, die lokale kwantumoperaties
die niet gerelateerd zijn aan verstrengelingsgeneratie en één of meer
verstrengelingsgeneratieverzoeken voor verstrengelingsgeneratie tussen de eerste
kwantumnetwerknode en de tweede kwantumnetwerknode omvatten;

het ontvangen van een notificatie vanuit de eerste kwantumnetwerknode, dat de
uitvoering van het eerste kwantumcodeblok beéindigd is, waarbij de notificatie één of
meer uitvoeringsresultaten van de uitvoering van het codeblok omvat, waarbij de één of
meer uitvoeringsresultaten informatie betreffende één of meer gemeten
communicatiequbits en/of informatie betreffende één of meer opgeslagen verstrengelde
qubits omvatten;

het uitvoeren van een tweede klassiek codeblok van het kwantumnetwerk gebaseerd op
de uitvoeringsresultaten.”

D1 discloses

Form NL237-3 (separate sheet) (July 2006) (sheet 7)

WRITTEN OPINION Application number
(SEPARATE SHEET) NL2029673

a computer-implemented method for executing a quantum network application
comprising classical code blocks and quantum code blocks wherein the method
comprises:

executing a first classical code block, the execution including

registering the quantum network application with an operating system of a first quantum
network node,

the registration including registration information for resource requirements for the
quantum network application, preferably registration information including a context, a
bandwidth for entanglement generation, a socket identifying a second quantum network
node and a fidelity associated with the execution of the quantum network application;

(Section 4.1, "Desired service", "4.1.1 Requesting entanglement”, "parameters”, "remote

nonmn

node", "type of request”, "desired minimum fidelity")

sending a first quantum code block to the first quantum network node, the first quantum
code block comprising quantum operations including local quantum operations not
related to entanglement generation and one or more entanglement generation requests
for entanglement generation between the first quantum network node and the second
quantum network node;

receiving a notification from the first quantum network node, that the execution of the
first quantum code block has ended, the notification including one or more execution
results of the execution of the code block, the one or more execution results including
information about one or more measured communication qubits and/or information
about one or more stored entangled qubits;

(Section 4.1.2, "Response to entanglement requests. If entanglement has been
produced successfully, an OK message should be returned. In addition, the use cases
specified in Section 3.3 desire several other pieces of information, which may also be
fracked at higher layer: (1) An entanglement identifier Entw unique in the network during
the lifetime of the entanglement. This allows both nodes to immediately process the
entanglement without requiring an additional round of communication degrading the
entanglement due to limited memory lifetimes. (2) A qubit ID for K-type (create and
keep) requests which identifies where the local qubit is in the quantum memory device.
(3) The "Goodness" G, which for K requests is an estimate (see Appendix) of the fidelity
- where G :?: Fmin should hold - and for M an estimate of the QBER (see Appendix).

(4) The measurement outcome for M type requests. ")

Form NL237-3 (separate sheet) (July 2006) (sheet 8)

WRITTEN OPINION Application number
(SEPARATE SHEET) NL2029673

executing a second classical code block of the quantum network based on the
execution results

(Section 5.2, "Whenever a REPLY and ID is received from the MHP, the QEGP uses
the ID to match the REPLY to an outstanding request, and evaluates the REPLY for
correctness. Should the attempt be successful, the number of outstanding pairs in the
request is decremented, and an OK message is propagated to higher layers containing
the information specified in Section 4.1.2, where the Goodness is obtained from the
FEU.").

D1 discloses all the features of claim 14.

The subject-matter of claim 14 is not new.

5. Dependent claims do not contain any features which, in combination with the features
of any claim to which they refer, meet the requirements of novelty and/or inventive step,
for the following reasons:

claim 2: disclosed in D1 (Section 5.1.1, "Entanglement generation is then triggered at
the start of the next time interval, using the generation parameter a, and a GEN
message is sent to H which includes a timestamp, and the given ID");

claim 3: disclosed in D1 (Section 4.4);
claim 4: disclosed in D1 (Section 4.4, Section 5.1, fig.5);

claim 5: disclosed in D1 (fig.4, 5, the higher layers including local quantum operations
correspond to user processes, the entanglement generation operation is executed by
the physical layer of the network stack);

claim 6: the mere concept of ownership transfer is a cognitive distinction corresponding
to the state of progress of the entanglement operation: entanglement being executed in
the background or entanglement being achieved,;

this cognitive distinction does not achieve any further technical effect serving a technical
purpose, e.g. with respect to how processes or quantum memory are technically
managed;

Form NL237-3 (separate sheet) (July 2006) (sheet 9)

WRITTEN OPINION Application number
(SEPARATE SHEET) NL2029673

claim 7: time division multiplexing is a schedule within common general knowledge
allowing to increase the number of participating nodes and used in quantum network
applications, see D2(Section 4.1.1);

it is also common general knowledge that user processes have lower priority than
operating system processes such as network processes;

claim 8: disclosed in D1 (Section 5.2, "Both nodes that wish to establish entangled
link(s) must trigger their MHP devices in a coordinated fashion", "we let one node hold
the master copy of the queue and use a simple twoway handshake for enqueing items,
and a windowing mechanism to ensure fairness.", "An alternative design choice
worthwhile exploring would be to employ the heralding midpoint as the master of the
distributed queue");

claim 9, 15: standard form of code, see D3(p.13, "standard gate library", p.19-20,
“classical control flow");

claim 10: disclosed in D1(Section 4.5, "depending on the number of communication
qubits, and parallelism of quantum operations that the platforms allows, a node also
needs a global scheduler for the entire system and not only the actions of the link
layer.”,

Section 5.2.6, "The QEGP can be polled by the MHP before receiving a response from
the MHP for the previous cycle. This allows the choice to attempt entanglement
generation multiple times in succession before receiving a reply from the midpoint");

it is also noted that multi-tasking is within common general knowledge, see D4(p.1
paragr.1);

claim 11: disclosed in D1 (Section 4.1.2, "Response to entanglement requests”).

claim 13: see reasoning for claims 2-11;

claim 16: measuring qubits is an operation within common general knowledge.

Form NL237-3 (separate sheet) (July 2006) (sheet 10)

	Page 1 - BIBLIOGRAPHY
	Page 2 - DESCRIPTION
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - CLAIMS
	Page 47 - CLAIMS
	Page 48 - CLAIMS
	Page 49 - CLAIMS
	Page 50 - CLAIMS
	Page 51 - CLAIMS
	Page 52 - CLAIMS
	Page 53 - CLAIMS
	Page 54 - DRAWINGS
	Page 55 - DRAWINGS
	Page 56 - DRAWINGS
	Page 57 - DRAWINGS
	Page 58 - DRAWINGS
	Page 59 - DRAWINGS
	Page 60 - DRAWINGS
	Page 61 - DRAWINGS
	Page 62 - DRAWINGS
	Page 63 - DRAWINGS
	Page 64 - DRAWINGS
	Page 65 - DRAWINGS
	Page 66 - DRAWINGS
	Page 67 - DRAWINGS
	Page 68 - DRAWINGS
	Page 69 - SEARCH_REPORT
	Page 70 - SEARCH_REPORT
	Page 71 - SEARCH_REPORT
	Page 72 - SEARCH_REPORT
	Page 73 - SEARCH_REPORT
	Page 74 - SEARCH_REPORT
	Page 75 - SEARCH_REPORT
	Page 76 - SEARCH_REPORT
	Page 77 - SEARCH_REPORT
	Page 78 - SEARCH_REPORT
	Page 79 - SEARCH_REPORT
	Page 80 - SEARCH_REPORT
	Page 81 - SEARCH_REPORT
	Page 82 - SEARCH_REPORT
	Page 83 - SEARCH_REPORT

