05/111768 A 2 IR 0 000N OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

24 November 2005 (24.11.2005)

(10) International Publication Number

WO 2005/111768 A2

(51) International Patent Classification’: GOGF 3/00
(21) International Application Number:
PCT/US2004/023643

(22) International Filing Date: 22 July 2004 (22.07.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/838,462 3 May 2004 (03.05.2004) US
(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, WA 98052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ODINS-LUCAS,
Zeke, B. [US/US]; 1517 16th Avenue E., Seattle, WA
98112 (US). MILLER, Marc, M. [US/US]; 18640 NE
62nd Way #303, Redmond, WA 98052 (US). GUS-
MORINO, Paul, A., III [US/US]; 1301 First Avenue,
Seattle, WA 98101 (US).

(74) Agents: LEE, Lewis, C. et al.; Lee & Hayes, PLLC, 421
W. Riverside Avenue, Suite 500, Spokane, WA 99201 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: GENERIC USER INTERFACE COMMAND ARCHITECTURE

& (57) Abstract: Certain aspects of a generic user interface command architecture allow an application to host commands for presen-
tation on a computing device. The commands can be written by the same designer or author as the application, or alternatively by
other parties (e.g., by a third-party developer). Other aspects of the generic Ul command architecture describe an application pro-
gramming interface (API) that can be used to allow the application to host the commands. Other aspects of the generic Ul command
architecture describe an activation mechanism by which registered commands can be activated by an application.

WO 2005/111768 PCT/US2004/023643

GENERIC USER INTERFACE COMMAND ARCHITECTURE

TECHNICAL FIELD

This invention relates to computers and user interfaces, and particularly to a

generic user interface command architecture.

BACKGROUND OF THE INVENTION

As computer technology has advanced and evolved, so too have the user
interfaces (Uls) that computers present to users. Graphical user interfaces (GUIs)
have become commonplace, resulting in user interfaces that are typically easier for
users to interact with. Many different presentation models can be used with GUIs
that allow command options to be presented to users in different ways, such as
menus, toolbars, buttons, links, and so forth.

One problem faced when designing such GUIs is the different presentation
models that can be used with the GUIs. Typically, a provider of a command must
write a separate description and interface for each different presentation model
supported by the GUI that the command is to be included in. This results in
additional and duplicative work on the part of the provider of the command.
Additional problems can result in situations where new presentation models are
developed subsequent to the provider writing the command — as the provider
writing the command does not know of the new presentation model, he or she
typically cannot write the command to support the new presentation model.

Thus, it would be beneficial to have a way to implement commands that

reduces these problems.

WO 2005/111768 PCT/US2004/023643

SUMMARY OF THE INVENTION

A generic user interface command architecture is described herein.

In accordance with certain aspects, a generic architecture is described that
allows an application to host commands for presentation on a computing device.
The architecture includes a command host and a command broker. The command
host provides a workspace where a plurality of user interface commands can be
presented. The command broker identifies a plurality of supported modes for a
command, and further negotiates with the command host to determine which of the
plurality of supported modes is to be used for the command.

In accordance with certain aspects, an application programming interface
(API) is described that can be used to allow the application to host the commands.
The API includes, for example, a command broker component that exposes a modes
enumeration. In response to a requestor, such as a command host, invoking the
modes enumeration, the command broker component returns a list of a plurality of
different presentation models supported by the component for a particular command
associated with the component.

In accordance with certain aspects, an activation mechanism is discussed that
describes a way in which commands can be registered for activation by an
application. The activation mechanism creates a command broker by identifying an
object definition that includes one or more arguments. For each of the one or more
arguments that is a non-literal argument, one or more additional object definitions
based on the argument are recursively identified. The command broker is then

created as the objects defined by the identified object definitions.

WO 2005/111768 PCT/US2004/023643

BRIEF DESCRIPTION OF THE DRAWINGS

The same numbers are used throughout the document to reference like
components and/or features.

Fig. 1 illustrates an example computing device in which the generic user
interface command architecture is used.

Figs. 2 and 3 each illustrate an example generic Ul command architecture in
additional detail.

Fig. 4 is a flowchart illustrating an example process for presenting a
command using the generic Ul command architecture.

Fig. 5 is a block diagram illustrating example components for creating a
command broker.

Fig. 6 illustrates an example data structure for an object definition.

Fig. 7 is a flowchart illustrating an example process for creating a command
broker.

Fig. 8 illustrates a general computer environment, which can be used to

implement the techniques described herein.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A generic user interface command architecture is described herein. In
accordance with certain aspects, a generic architecture is described that allows an
application to host commands for presentation on a computing device. The
commands can be written by the same designer or author as the application, or
alternatively by other parties (e.g., by a third-party developer). Additionally, an
application programming interface (API) is described that can be used to allow the

application to host the commands. Furthermore, an activation mechanism is

WO 2005/111768 PCT/US2004/023643
4

discussed that describes a way in which commands can be registered for activation

by an application.

General UL Command Architecture

Fig. 1 illustrates an example computing device 102 in which the generic user
interface command architecture is used. Computing device 102 includes multiple
(x) applications 104 each supporting a generic Ul command architecture 106. Ul
command architecture 106 allows an application 104 to host different commands in
a generic way, as discussed in more detail below. The commands can be authored
by the same party (or parties) as authored the applications 104, or alternatively by
different parties.

Computing device 102 represents any of a ‘Variety of different devices having
a processor or controller that presents a user interface. Examples of such devices
include a desktop computer, server computer, notebook computer, handheld or
portable computer, entertainment device, game console, personal digital assistant
(PDA), cellular or mobile telephone, and so forth. Applications 104 represent any
of a variety of applications. Examples of such applications include operating
systems, recreational programs, utility programs, educational programs,
productivity programs, financial programs, and so forth.

Fig. 2 illustrates an example generic Ul command architecture 106 in
additional detail. The command architecture 106 includes a command host 130 and
multiple (y) command brokers 132. Any number of command brokers 132 can be
included in command architecture 106. Additionally, although multiple command
brokers 132 are illustrated in Fig. 2, alternatively only a single command broker

may be included in command architecture 106.

WO 2005/111768 PCT/US2004/023643

5

Command architecture 106 is referred to as a Ul command architecture
because the architecture 106 is designed for use with Ul commands, which are
commands that are presented for user selection via the UL. Command architecture
106 allows commands to be authored or written for presentation to, and selection
by, a user via a user interface. Any type of commands can be supported by
command architecture 106, such as commands to access resources (e.g., such as a
file, storage device, input device, output device, etc.), commands to present content
to a user (e.g., play back an audio file or an audio/video file, print out a hard copy
of data, etc.), commands to allow the user to navigate to particular locations (e.g.,
files, network locations, control panels, etc.), and so forth.

Command host 130 is at least a portion of any application (such as an
application 104 of Fig. 1) that provides a shell or workspace where commands can
be placed for presentation. A command host can provide a single such shell or
workspace, and multiple different command hosts can concurrently provide
different shells or workspaces. Examples of such workspaces include a window or
other portion of a display, an audible list, and so forth.

Command host 130 supports one or more modes, also referred to as one or
more presentation models, for the presentation of commands. These different
modes or presentation models refer to different ways in which commands can be
presented to a user via a user interface. Examples of modes or presentation models
include menus, menu lists, context menus, task bars, buttons, links (e.g.,
hyperlinks), and so forth. These different modes or presentation models typically
include displaying commands visually, such as in a GUI, although other manners of
presentation may also be used (e.g., presenting commands audibly).

Each command broker 132 is an intermediary that sits between command

host 130 and a final handler for the command (referred to as a command provider,

WO 2005/111768 PCT/US2004/023643

6

as discussed in more detail below). Each command broker 132 is associated with a
particular command. Command broker 132 enumerates the modes that are
supported by the command and negotiates with command host 130 as to which
mode will be used for the command. If a particular mode is supported by command
broker 132, then command broker 132 can create and give to command host 130 a
particular command provider associated with the mode. This negotiation is
performed via an interface 134. In certain embodiments, an application
programming interface (API) is exposed by each command broker 132. This API
can be called by command host 130 during the negotiation process. An example of
such an API is discussed in more detail below.

Ul command architecture 106 is referred to as generic because of this
negotiation process and the variety of modes that a single command broker can
support for its associated command. The same command broker can be used to
allow the command to be presented in a variety of different presentation models,
and thus can be viewed as generic.

Command host 130 negotiates with command broker 132 each time
execution of the command host begins. Different command brokers 132 can be
made accessible to command host 130, allowing their associated commands to be
presented via the Ul by command host 130. One way in which command brokers
132 can be made accessible to command host 130 is by way of a command broker
activation mechanism, discussed in more detail below. Command host 130 may
also negotiate with command broker 132 at different times, such as whenever there
is a change in selection (e.g., which item(s) in the Ul are selected), whenever there
is a change in the context of the command, such as a change in the type of UI (e.g.,
a change from a visual to an audible UI), a change in the format of the UI (e.g., a

window being resized), a change in the content of the Ul (e.g., a different

WO 2005/111768 PCT/US2004/023643

7

application being executed from a command host that is an operating system), and
so forth.

As an example of this negotiation, assume that an application may present a
user interface having both menu and button modes. In this example, command host
130 would negotiate with command broker 132 to determine which of the two
modes (menu and/or button) to use. Assume that command broker 132 is
associated with the print command, which generates a hard copy of selected data
using a printer. Further assume that command broker 132 supports the button mode
as well as a list mode. Command host 130 would negotiate with command broker
132 and determine that the only mode that both host 130 and broker 132 support is
the button mode (broker 132 does not support the menu mode, and host 130 does
not support the list mode). Thus, the negotiation would result in selection of the
button mode.

It should be noted that in certain embodiments command host 130 may
support additional modes than those supported by command broker 132.
Additionally, command host 130 may have access to a program oOr other resource
that can convert commands from one mode to another. Following the preceding
example, command host 130 may have access to a program that can convert the
information for a command in button mode to be useable for a command in menu
mode. Thus, dliring the negotiation process command host 130 can select the
button mode, and then convert the information received regarding the print
command in button mode into menu mode. Such a process allows, for example,
command broker 132 to be used with modes that are created after generation of
command broker 132 and that command broker 132 had no knowledge of.

It should also be noted that command broker 132 can enumerate its modes in

different orders. In certain embodiments, command broker 132 enumerates its

WO 2005/111768 PCT/US2004/023643

8

modes in order of preference (e.g., the order in which command broker 132 or the
author of command broker 132 would prefer that the modes are selected by
command host 130). However, in certain implementations command host 130 can
choose to ignore the order preferred by command broker 132. Other orderings
could alternatively be used, such as a random order, alphabetical order, and so
forth.

Command broker 132 can also enumerate different groups of commands.
These groups are an indication to command host 130 that particular commands
should be located close to one another. Typically, in certain embodiments
command host 130 is not required to follow the guidance provided by these
indications, but oftentimes tries to follow the guidance.

In certain embodiments, command broker 132 may also be a container for
one or more other command brokers. For example, a command broker may support
one presentation mode which is a menu item, in which the command would be
presented as a single menu item in the UL. The command broker may also support a
presentation mode which is a menu list, in which the command broker is a container
for multiple additional command brokers, each of which is displayed in a list of
menu items in the Ul

Fig. 3 illustrates an example generic Ul command architecture 106 in
additional detail. Command host 130 negotiates a mode(s) with command broker
132 as discussed above. Additionally, a command context 140 and command
provider 142 are illustrated in Fig. 3. In certain embodiments, each of command
host 130, command broker 132, command context 140, and command provider 142
are communicatively coupled to one another, allowing them to communicate with

one another. In certain implementations, each of command host 130, command

WO 2005/111768 PCT/US2004/023643

9

broker 132, command context 140, and command provider 142 is an object, and can
invoke methods, enumerations, properties, etc. of the others.

Command provider 142 is the final handler for the particular command.
Command provider 142 controls the various actions that are followed when a
command is invoked (e.g., the actions involved in response to user-selection of a
command, such as a print command). Command provider 142 typically contains
the instructions that are executed whenever the particular command is invoked.
Command provider 142 is an object that is instantiated by command broker 132
upon completion of the mode negotiation with command host 130. A different
command provider is associated with each mode supported by command broker
132. Thus, when the mode negotiation has resulted in a particular mode(s),
command broker 132 instantiates an object for that particular mode(s).. The
instantiated object is also passed to command host 130, allowing command host 130
to interact with command provider 142.

It should be noted that in certain situations command host 130 may negotiate
with command broker 132 for multiple presentation models or modes. In such
situations, command broker 132 instantiates multiple command providers 142, one
for each of the multiple presentation models or modes, and passes each such
instantiated command provider 142 to command host 130.

In alternate embodiments, command broker 132 may be combined with one
or more command providers 142. In such embodiments, a separate command
provider 142 need not be instantiated. Rather, after command host 130 negotiates
the mode with command broker 132, command host 130 can interact with command
host 130 as the final handler for the command rather than a command provider 142.

Command context 140 is a list of context information that is supplied by

command host 130 and that can be accessed by command broker 132. The context

WO 2005/111768 PCT/US2004/023643

10

information included in command context 140 can vary. The context information
refers to, for example information describing the user interface, information
describing command host 130, information describing what is currently being
displayed and/or how it is being displayed in the user interface, informatién about
available resources, and so forth. Specific examples of context information include
what items (if any) being presented in the Ul are currently selected, the size (e.g., in
pixels) of the area in which commands will be located, whether a particular item or
feature is currently being presented in the UI, whether particular resources are
available on the computing device, what other components the computing device is
coupled to (e.g., whether a printer is currently coupled to the computing device),
and so forth. Different command brokers 132 may be interested in different context
information, and some command brokers 132 may not be interested in any context
information. When a particular command broker 132 desires to be aware of
particular context information, the particular command broker 132 will interact with
command context 140 to obtain the desired context information.

It should also be noted that the presentation models supported by command
broker 132 may change based on command context 140. For example, command
broker 132 may support one particular presentation model in situations where a
particular component (such as a printer, personal audio player, speaker, etc.) is
coupled to the computing device, but not support that particular presentation model
in situations where the particular component is not coupled to the computing
device. By way of another example, command broker 132 may support different
presentation models based on the size of the workspace provided by command host
130.

The generic Ul command architecture 106 facilitates authoring of

commands. One way in which this facilitation is accomplished is by using

WO 2005/111768 PCT/US2004/023643

11

command broker 132. Rather than requiring the author to register the same
command multiple different times for multiple different presentation models, all of
the handlers for the command can be accessed via the same command broker 132.
Additionally, common functionality such as a display name or icon to be displayed
for the command, or the invocation action to be taken when the user selects the
command, can be shared for different modes. This sharing can be accomplished,
for example, by each command provider 142 referring to the same object that
contains the set of instructions that are executed when the command associated with
the command provider 142 is selected by a user. Alternatively, some common
functionality can be made available to command host 130 by command provider
132, rather than being implemented in or accessed through the associated command
provider 142.

Fig. 4 is a flowchart illustrating an example process 180 for presenting a
command using the generic Ul command architecture 106. Process 180 is
performed in software, although alternatively aspects of process 180 may be
performed in firmware, hardware, or a combination of firmware, hardware, and/or
software.

Initially, the command host and the command broker negotiate a mode (act
182). In certain embodiments, this negotiation is performed by the command
broker identifying the modes it supports to the command host, and the command
host comparing those modes to the modes that the command host supports, and then
the command host selecting one of the modes that both the command host and the
command broker support. Alternatively, this negotiation may take other forms in
other embodiments. For example, the command host may identify the modes it
supports to the command broker, and the command broker compare those modes to

the modes that the command broker supports, and then the command broker

WO 2005/111768 PCT/US2004/023643

12

selecting one of the modes that both the command host and command broker
support. By way of another example, the command host may go through the list of
modes that it supports and, for each such mode, query the command broker as to
whether the command broker supports the mode — as soon as the command host
identifies one of the modes that it supports that is also supported by the command
broker, the command host can stop querying the command broker.

Once the mode is negotiated, the command broker instantiates or otherwise
creates a command provider associated with the negotiated mode (act 184). In
certain implementations, the command provider is instantiated by the command
host invoking a GetProvider method exposed by the command broker. The
GetProvider method is discussed in additional detail below.

The command host then places the command in the user interface based on
the command provider instantiated or otherwise created in act 184 (act 186). This
placing of the command refers to positioning an icon, name, and/or other identifier
of the command in the user interface. As discussed above, the negotiated mode
may not be the mode actually used by the command host for presentation of the
command (rather, the command host may use the information obtained from the
command provider for the negotiated mode to present the command using a
different mode).

The command host then interacts with the command provider (act 188). This
interaction includes, for example, presenting the command’s user interface as well
as invoking the command’s behavior as appropriate (e.g., in the event of a user

invoking the command).

WO 2005/111768 PCT/US2004/023643

13

Example API Implementation

The following is an example API that implements the generic Ul command
architecture 106 discussed above.

A ProviderCategory and ContextObjectDescription are listed in Table I.
The ContextObjectDescription serves as the name for an individual piece of context
data, held by the CommandContext object and provided by the host. = The
ProviderCategory is used to determine the volatility of the context data described.
A volatile context value leaves the command context when any host context value is

changed. A nonvolatile value stays in the context.
Table I

pubTic enum ProviderCategory

Host,
NonvolatiTe,
volatile

public class ContextoObjectDescription

public virtual ProviderCategory Providercategory { get; }

Retrieves the provider category for the piece of context information
represented by this ContextObjectDescription. The provider
category helps the CommandContext manage the lifetime of this
context value. If the category is volatile, then the context erases the
value whenever some host value is set. If the category is
nonvolatile, the value is not removed from the context.

public Contextobjectbescription(Providercategory
providercCategory);

Constructs a ContextObjectDescription.

A ContextObjects class is listed in Table II. In certain embodiments, a

predefined set of ContextObjectDescriptions are kept in the ContextObjects static

WO 2005/111768 PCT/US2004/023643

14

class. The CommandContext can also hold an extensible set of

ContextObjectDescriptions that are not part of this predefined list.

Table II

pubTic static class ContextObjects

// _(ItemCollection) Getobject(ContextObjects.SelectedItems)
public static ContextobjectDescription SelectedItems;

The object that the CommandContext maps to is of type
ItemCollection, and represents the current selected items in the
host. These items are the ones the command should apply to when
invoked.

// _(Item) GetObject(ContextObjects.FolderItem)
public static ContextObjectDescription FolderItem;

The object that the CommandContext maps to is of type Item, and
represents the currently viewed folder in the command host.

// _(COM Object) GetObject(ContextObjects.viewSite)
public static ContextObjectDescription ViewSite;

This allows the command to talk directly to its command host (e.g.,
it provides a pointer directly to the command host
implementation). Note that using the ViewSite breaks
encapsulation, since ideally a command implementation should not
depend on a specific command host implementation.

A CommandContext is listed in Table III. The CommandContext is an
indexer that maps ContextObjectDescriptions to object values. The
CommandContext also has an event that fires when the context has changed. The
CommandContext class includes properties, methods, and enumerations that are
exposed by command context 140 of Fig. 3, and which can be invoked by command

host 130 and/or command broker 132.

WO 2005/111768 PCT/US2004/023643

15
Table I1T

public delegate void] .
CommandcontextHandler(ContextobjectDescription)

This is the event type for a “context changed” event. The
ContextObjectDescription parameter specifies which object in the
context actually changed.

public class CommandContext

public event CommandContextHandler ContextChanged;

Fired when the context changes.

protected virtual void L
onContextChanged(Contextobjectbescription);

Fired when the context changes; derived classes should call this
base implementation.

E{)ub'h'c object this[ContextobjectDescription name]

get;
set;

This is the “property bag” for the CommandContext; it maps a
ContextObjectDescription to a managed object. The type of the
managed object is a convention established by the provider of the
ContextObjectDescription.

A ModeDescription is listed in Table IV. A ModeDescription is a string
naming the mode and a managed type. The managed type refers to a requirement,
in this example, that the broker return the command provider via the

CommandBroker.GetProvider method.

WO 2005/111768 PCT/US2004/023643

16

Table IV

pubTic cTass ModeDescription

public ModeDescription(string name, Type provider);
public string Name { get; }

The name of the mode.

public Type Provider { get; }

This is the type that is returned from
CommandBroker.GetProvider() when a broker supports this mode.

A StandardModes class is listed in Table V. In certain embodiments, a list
of “standard” modes is available for a command broker to implement. In addition

to these standard modes, the set of modes is extensible to include additional modes.

Table V

pubTic static class StandardModes

static public ModeDescription collection; // IEnumerable

static public ModeDescription Command; /7 Icommand
static public ModeDescription TaskButton; //
ITaskButtonProvider

A CommandBroker class is listed in Table V1. The CommandBroker class
includes properties, methods, and enumerations that are exposed by command

broker 132, and which can be invoked by command host 130 of Fig. 3.

WO 2005/111768 PCT/US2004/023643

17
Table VI

public abstract class CommandBroker
public virtual string Identity { get; }
Defaulting to the name of the most-derived type, this is the identity

of the command broker. The identity should be unique and the
command host can determine how its used.

public virtual CommandContext Context

get;
set;

Gets or sets the command context on the command broker. The
command context is described above.

public class Group { }
static public Group Ungrouped;

In certain implementations, there is just one standard group, the
“ungrouped” group. Though the command broker and command
host can extend this list and create new groups with their own
semantic meaning.

public virtual IEnumerable Groups { get; }
The list of groups, in order of preference, that the command broker
supports.

public virtual IEnumerable Modes { get; }
The list of modes, in order of preference, that a command broker
supports.

public virtual object GetProvider(ModeDescription mode);
The command provider is the actual command implementation for
the mode. The command host calls this with a mode description
supported by this broker, and the broker must fulfill the contract

by returning the correct type (determined by the mode
description’s “type” field).

?rotected CommandContextHandler ContextChangedHandler

get;
set;

This handler processes context-changed events on the command
broker’s context.

WO 2005/111768 PCT/US2004/023643

18

An example of a command provider interface is listed in Table VII. This is
the interface for an example command provider 142 of Fig. 3. The example listed
is the interface for commands that support the “task button” mode,
ITaskButtonProvider. The ITaskButtonProvider includes two strings (ShortTitle
and LongTitle) which can be accessed and used by the command host. The
ImageSource is the set of instructions that are executed when the command
associated with this task button provider is selected by a user. When the command
is selected, the set of instructions are invoked by the command host invoking
ITaskButtonProvider.Invoke().

IProviderChanges is an interface that the command provider can implement
to give cPange notifications to the command host. ProviderChangeHandler is a
managed delegate that declares the type of the ProviderChanged event that is fired
from within IProviderChanges. The command host can use the ProviderChanged
event to tell when it should re-query certain state from the command provider.

For example, if the “ShortTitle” of an ITaskButtonProvider changes (e.g.,
because the selection changed), then the command provider can inform the
command host that its state has changed via the ProviderChanged event. In this
example, in response to the user changing the selection by interacting with the UI,
the command host changes the “selected” state inside the command context, which
causes the command context to fire a change notification to the command provider.
The command provider decides that, as a result of this context changed event, it
would like to change its ShortTitle, so it fires a ProviderChanged event, which the
command host is listening to. The command host receives the ProviderChanged
event via a method it has of the type ProviderChangeHandler. The command host,

as a result of this event, re-queries the command provider for its ShortText,

WO 2005/111768 PCT/US2004/023643

19
LongText, IsEnabled, and so forth, obtaining enough information to re-present the
command given its new state. The command host uses the new information to

update the UI associated with the command.

Table VII

pubTic delegate void ProviderchangeHandTler();
public interface IProviderchanges

event ProviderchangeHandler Providerchanged;

v

public interface ITaskButtonProvider

IProviderchanges Changes { get; }
boo' IsEnabled { get; }
string shortTitle { get; }
string LongTitle { get; }
ImageData ImageSource { get; }

void Invoke(Q);

Additionally, a “helper” class can optionally be included that implements the
standard logic for writing a command intended to be used in the generic UI
command architecture discussed herein. The helper class includes various ones of
the interfaces discussed above in a single class to facilitate authoring commands
using the generic Ul command architecture discussed herein. Command broker
authors can then derive from this helper class and override any desired parts of its
functionality. Table VIII lists an example helper class ExplorerCommand, which
can be used, for example, with the Explorer in. different versions of the Windows®

operating system.

WO 2005/111768 PCT/US2004/023643

20
Table VIII

pubTic abstract class ExpTorerCommand : CommandBroker,
IProviderchanges

public override IEnumerable Modes { get; }

public override object GetProvider(ModeDescription mode);
public virtual event ProviderchangeHandler Providerchanged;
protected virtual void onBrokerchanged();

protected virtual void Invoke(InvokeDirectives opt, object
args);

protected virtual verbDescription verb

get;
set;
}
grotected virtual string ShortTitle
get;
set;

protected virtual ImageData ImageSource
get;
set;
protected virtual bool IsEnabled
get;
set;
protected virtual string LongTitle
get;
set;
}
protected ItemCollection SelectedItems { get; }

) protected Item FolderItem { get; }

Command Broker Activation Mechanism

Command broker 132 of Figs. 2 and 3 can be created in any of a variety of
conventional manners. In certain embodiments, a particular command broker

activation mechanism that employs an activator is used to create command broker

WO 2005/111768 PCT/US2004/023643

21
132, as discussed below. This creation is also referred to as instantiation or
construction.

Fig. 5 is a block diagram illustrating example components for creating a
command broker. Fig. 5 illustrates an activator 202 and a definition source 204.
Definition source 202 includes a command broker definition 204, which defines
how a particular command broker 132 is to be implemented. Activator 202
accesses definition source 202 to retrieve command broker definition 204, then
creates command broker 132 as defined in definition 204.

Definition source 202 can be any of a variety of different sources. For
example, definition source 202 may be a registry of a Windows® operating system,
a database, a file (e.g., in an XML (eXtensible Markup Language) file or some
other format), and so forth.

Command broker definition 204 can also take a variety of different forms.
In certain embodiments, command broker definition 204 describes one or more
objects in terms of their constructor arguments. These object descriptions (which
are also referred to herein as key names) describe the objects that are to be
instantiated or otherwise created to create command broker 132. Each object
description can have zero or more constructor arguments. A constructor argument
can be a literal (e.g., a string, a number, an XML document, or a byte array) or a
non-literal (e.g., another object description). In situations where an object
description has one or more mnon-literal arguments, each of those non-literal
arguments is also instantiated or otherwise created recursively, until all of the
objects have been instantiated or otherwise created.

Fig. 6 illustrates an example data structure for an object definition 220. One
or more such object definitions together make up a command broker definition 204

of Fig. 5. Thus, an example data structure of the command broker is a collection of

WO 2005/111768 PCT/US2004/023643

22

one or more object definition 200 data structures. Object definition 220 includes an
assembly field or portion 222, a type field or portion 224, an argument(s) field or
portion 226, and a literal definition(s) field or portion 228. Each of these portions
222, 224, 226, and 228 store various data representing different aspects of the
object being defined, as discussed below.

Assembly portion 222 indicates an assembly from which this command
broker can be instantiated. In certain implementations, assembly portion 222
indicates the “strong name” of the managed assembly (dll) which contains the code
61’ the command broker to be instantiated. A strong name refers to a name that
uniquely identifies an assembly (e.g., on disk) by name, VCI;SiOIl, public key token,
and culture.

Type portion 224 includes an identifier of the object defined by object
definition 220. Typically this identifier is an alphanumeric string, although other
characters or symbols can alternatively be used as the identifier. Different object
definitions within different assemblies can have the same identifier in their
respective type portions 224. The identifier in type portion 224, in combination
with the assembly in assembly portion 222, allows objects to be uniquely identified.

Arguments portion 226 is included to identify arguments for the object
defined by object definition 220. A particular object may not have any arguments,
in which case arguments portion 226 need not be included (or may be included but
be empty or include an indication that there are not arguments). Arguments, as
discussed above, can be literals or non-literals. For each non-literal argument, there
is another object definition 220 that defines the object that is that non-literal
argument. For each literal argument, there is a definition in literal definitions field
228 that defines that literal (e.g., identifies a particular string, a particular number, a

particular XML document, or a particular byte array). If the object defined by

WO 2005/111768 PCT/US2004/023643

23

object definition 220 does not have any arguments, then literal definitions portion
226 need not be included (or may be included but be empty or include an indication
that there are no literals).

Fig. 7 is a flowchart illustrating an example process 240 for creating a
command broker. Process 240 is implemented by activator 200 of Fig. 5, and is
typically performed in software (although at least a portion of process 240 may
alternatively be performed in hardware, firmware, or a combination of hardware,
firmware, and software).

Initially, a top-level object definition is identified (act 242). The identified
object definition is then accessed (act 244) and any arguments of the identified
object definition are identified (act 246). A check is then made as to whether there
are any arguments identified in act 246 that are non-literals (act 248). If there are
no such arguments (e.g., there are no arguments or all arguments are literals), then
process 240 is finished analyzing the identified object definition (act 250).
However, if there is at least one argument which is a non-literal, then each of the
non-literal arguments is identified (act 252). Each of these non-literal arguments is
another object definition. Process 240 then returns to act 244 to analyze each of the
identified non-literal arguments. Thus, process 240 continues recursively to
analyze each object definition in the command broker definition, until all object
definitions are defined in terms of literals (or no arguments). After all object
definitions are defined in terms of literals (or no arguments), the individual objects
defined by these object definitions, and thus the command broker, are instantiated
by calling the constructor for each object (act 254).

Each object thus defined can then be instantiated or otherwise created by
working back up through the object definitions. For example, activator 200 can

instantiate or otherwise create the objects defined in terms of only literals (or those

WO 2005/111768 PCT/US2004/023643

24

with no arguments), then use those objects to instantiate or otherwise create other
objects that are defined in terms of those objects just instantiated or otherwise
created, and so forth. When the top-level object definition has been instantiated,
the command broker has been instantiated.

An example of a command definition for a command broker named

“FooBroker” is listed in Table IX.

Table IX
Key Name: \Test
Assembly REG_SZ FooAssembly
Type REG_SZ FooBroker
Arguments REG_MULTI_SZ title, bar
titTe REG_SZ Hello, world!
Key Name: \Test\bar
Assembly REG_SZ FooAssembly
Type REG_SZ Barobject
Arguments REG_MULTI_SZ count, snoo
count REG_DWORD 0x38
Key Name: \Test\bar\snoo
Assembly REG_SZ FooAssembly
Type REG_SZ SnooObject

As can be seen in the example of Table IX, a top-level object definition (or
key name) \Test is defined with an assembly portion, a type portion, an arguments
portion, and a literals portion (identified as the title line). Each of these portions is
a separate line in the top-level object definition example in Table IX. The assembly
portion indicates an assembly (FooAssembly) from which to instantiate this
command broker. The type portion indicates the object type (FooBroker) defined
by this object definition. The arguments portion identifies two arguments (title and
bar) for this object definition. Title is a string that is defined in the literal

definitions portion, which is the title line of the \Test object definition, as “Hello,

WO 2005/111768 PCT/US2004/023643

25
World!”. The bar argument is another object, which is defined in the next object
definition.

During instantiation of the objects, activator 200 of Fig. 5 searches definition
source 202 to identify another object definition which is below the top-level object
definition \Test, and also is the object definition for the bar object. This object
definition is the \Test\bar key name.

The \Test\bar key name is also defined with an assembly portion, a type
portion, an arguments portion, and a title portion (each of which is a line in Table
IX). The assembly portion indicates an assembly (FooAssembly) from which to
instantiate this command broker. This is the same command host as was identified
in the top-level key name \Test. The type portion indicates the object type
(BarObject) defined by this object definition. The arguments portion identifies two
arguments (count and snoo) for this object definition. Count is an integer that is
defined in the literal definitions portion, which is the count line of the \Test\bar
object definition, as the hexadecimal value “38”. The snoo argument is another
object, which is defined in the next object definition.

During instantiation of the objects, activator 200 of Fig. 5 searches definition
source 202 to identify another object definition which is below the \Test\bar object
definition, and also is the object definition for the snoo object. This object
definition is the \Test\bar\snoo key name.

The \Test\bar\snoo key name is also defined with an assembly portion and a
type portion. The object definition for the snoo object has no arguments, so no
arguments portion or literal definitions portion is included in the object definition.
The assembly portion indicates an assembly (FooAssembly) from which to

nstantiate this command broker. This is the same command host as was identified

WO 2005/111768 PCT/US2004/023643

26
in the top-level key name \Test and the \Test\bar key name. The type portion

indicates the object type (SnooObject) defined by this object definition.

Table X lists an example API that supports the command broker activation
discussed herein. Each object definition or key name discussed above is
encapsulated by an IActivationDefinition interface listed in Table X. The assembly
field and type field are both properties of the IActivationDefinition interface. Each

argument and literal definition, when present, is an IDefinitionElement.

Table X

pubTic interface IDefinitionAnaTlyzer

def) IDefinitionElement AnalyzeDefinition(IActivationDefinition
ef) >

IpefinitionElement AnalyzeObject(object 0);

object GetObject(IDefinitionElement activated);

public interface IActivationbefinition

string Assembly { get; }
string Type { get; }

; IDefinitionElement [] ActivateArguments(IDefinitionAnalyzer
al;
}

public interface IDefinitionElement

/7

// empty interface to serve as an encapsulating
/y/ mechanism for the analyzers to have their own
;? set of object definitions

};

Example Computer Environment

Fig. 8 illustrates a general computer environment 300, which can be used to
implement the techniques described herein. The computer environment 300 is only
one example of a computing environment and is not intended to suggest any

limitation as to the scope of use or functionality of the computer and network

WO 2005/111768 PCT/US2004/023643

27

architectures. Neither should the computer environment 300 be interpreted as
having any dependency or requirement relating to any one or combination of
components illustrated in the exemplary computer environment 300.

Computer environment 300 includes a general-purpose computing device in
the form of a computer 302. Computer 302 can be, for example, a computing
device 102 of Fig. 1. Computer 302 can also be an encoder device that is the source
of a multimedia presentation. The components of computer 302 can include, but
are not limited to, one or more processors or processing units 304, a system memory
306, and a system'bus 308 that couples various system components including the
processor 304 to the system memory 306.

The system bus 308 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a peripheral bus, an
accelerated graphics port, and a processor or local bus using any of a variety of bus
architectures. By way of example, such architectures can include an Industry
Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA) bus, an
Enhanced ISA (EISA) bus, a Video Electronics Standards Association (VESA)
local bus, and a Peripheral Component Interconnects (PCI) bus also known as a
Mezzanine bus.

Computer 302 typically includes a variety of computer readable media. Such
media can be any available media that is accessible by computer 302 and includes
both volatile and non-volatile media, removable and non-removable media.

The system memory 306 includes computer readable media in the form of
volatile memory, such as random access memory (RAM) 310, and/or non-volatile
memory, such as read only memory (ROM) 312. A basic input/output system
(BIOS) 314, containing the basic routines that help to transfer information between

elements within computer 302, such as during start-up, is stored in ROM 312.

WO 2005/111768 PCT/US2004/023643

28
RAM 310 typically contains data and/or program modules that are immediately
accessible to and/or presently operated on by the processing unit 304.

Computer 302 may also include other removable/non-removable,
volatile/non-volatile computer storage media. By way of example, Fig. 8 illustrates
a hard disk drive 316 for reading from and writing to a non-removable, non-volatile
magnetic media (not shown), a magnetic disk drive 318 for reading from and
writing to a removable, non-volatile magnetic disk 320 (e.g., a “floppy disk™), and
an optical disk drive 322 for reading from and/or writing to a removable, non-
volatile optical disk 324 such as a CD-ROM, DVD-ROM, or other optical media.
The hard disk drive 316, magnetic disk drive 318, and optical disk drive 322 are
each connected to the system bus 308 by one or more data media interfaces 326.
Alternatively, the hard disk drive 316, magnetic disk drive 318, and optical disk
drive 322 can be connected to the system bus 308 by one or more interfaces (not
shown).

The disk drives and their associated computer-readable media provide non-
volatile storage of computer readable instructions, data structures, program
modules, and other data for computer 302. Although the example illustrates a hard
disk 316, a removable magnetic disk 320, and a removable optical disk 324, it is to
be appreciated that other types of computer readable media which can store data
that is accessible by a computer, such as magnetic cassettes or other magnetic
storage devices, flash memory cards, CD-ROM, digital versatile disks (DVD) or
other optical storage, random access memories (RAM), read only memories
(ROM), electrically erasable programmable read-only memory (EEPROM), and the
like, can also be utilized to implement the exemplary computing system and

environment.

WO 2005/111768 PCT/US2004/023643

29

Any number of program modules can be stored on the hard disk 316,
magnetic disk 320, optical disk 324, ROM 312, and/or RAM 310, including by way
of example, an operating system 326, one or more application programs 328, other
program modules 330, and program data 332. Each of such operating system 326,
one or more application programs 328, other program modules 330, and program
data 332 (or some combination thereof) may implement all or part of the resident
components that support the distributed file system.

A user can enter commands and information into computer 302 via input
devices such as a keyboard 334 and a pointing device 336 (e.g., a “mouée”). Other
input devices 338 (not shown specifically) may include a microphone, joystick,
game pad, satellite dish, serial port, scanner, and/or the like. These and other input
devices are connected to the processing unit 304 via input/output interfaces 340 that
are coupled to the system bus 308, but may be connected by other interface and bus
structures, such as a parallel port, game port, or a universal serial bus (USB).

A monitor 342 or other type of display device can also be connected to the
system bus 308 via an interface, such as a video adapter 344. In addition to the
monitor 342, other output peripheral devices can include components such as
speakers (not shown) and a printer 346 which can be connected to computer 302 via
the input/output interfaces 340.

Computer 302 can operate in a networked environment using logical
connections to one or more remote computers, such as a remote computing device
348. By way of example, the remote computing device 348 can be a personal
computer, portable computer, a server, a router, a network computer, a peer device
or other common network node, and the like. The remote computing device 348 is
illustrated as a portable computer that can include many or all of the elements and

features described herein relative to computer 302.

WO 2005/111768 PCT/US2004/023643

30

Logical connections between computer 302 and the remote computer 348 are
depicted as a local area network (LAN) 350 and a general wide area network
(WAN) 352. Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, and the Internet.

When implemented in a LAN networking environment, the computer 302 is
connected to a local network 350 via a network interface or adapter 354. When
implemented in a WAN networking environment, the computer 302 typically
includes a modem 356 or other means for establishing communications over the
wide network 352. The modem 356, which can be internal or external to computer
302, can be connected to the system bus 308 via the input/output interfaces 340 or
other appropriate mechanisms. It is to be appreciated that the illustrated network
connections are exemplary and that other means of establishing communication
link(s) between the computers 302 and 348 can be employed.

In a networked environment, such as that illustrated with computing
environment 300, program modules depicted relative to the computer 302, or
portions thereof, may be stored in a remote memory storage device. By way of
example, remote application programs 358 reside on a memory device of remote
computer 348. 'For purposes of illustration, application programs and other
executable program components such as the operating system are illustrated herein
as discrete blocks, although it is recognized that such programs and components
reside at various times in different storage components of the computing device
302, and are executed by the data processor(s) of the computer.

Various modules and techniques may be described herein in the general
context of computer-executable instructions, such as program modules, executed by
one or more computers or other devices. Generally, program modules include

routines, programs, objects, components, data structures, etc. that perform particular

WO 2005/111768 PCT/US2004/023643

31
tasks or implement particular abstract data types. Typically, the functionality of the
program modules may be combined or distributed as desired in various
embodiments.

An implementation of these modules and techniques may be stored on or
transmitted across some form of computer readable media. Computer readable
media can be any available media that can be accessed by a computer. By way of
example, and not limitation, computer readable media may comprise “computer
storage media” and “communications media.”

“Computer storage media” includes volatile and non-volatile, removable and
non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program
modules, or other data. Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium
which can be used to store the desired information and which can be accessed by a
computer.

“Communication media” typically embodies computer readable instructions,
data structures, program modules, or other data in a modulated data signal, such as
carrier wave or other transport mechanism. Communication media also includes any
information delivery media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication
media includes wired media such as a wired network or direct-wired connection,

and wireless media such as acoustic, RF, infrared, and other wireless media.

WO 2005/111768 PCT/US2004/023643

32

Combinations of any of the above are also included within the scope of computer
readable media.

Although the description above uses language that is specific to structural
features and/or methodological acts, it is to be understood that the invention defined
in the appended claims is not limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as exemplary forms of

implementing the invention.

WO 2005/111768 PCT/US2004/023643

33
CLAIMS

1. One or more computer readable media having' stored thereon a
plurality of instructions that, when executed by one or more processors, causes the
One or more processors to:

negotiate, with a command broker, for a presentation model to be used in
presenting a command via a user interface; and

obtain, based on the negotiated presentation model, a command provider

associated with the command.

2. One or more computer readable media as recited in claim 1, wherein
the imstructions further cause the one or more processors to interact with the
command provider in response to the command being subsequently invoked by a

user.

3. One or more computer readable media as recited in claim 1, wherein
the instructions further cause the one or more processors to make context

information available to the command broker.

4. One or more computer readable media as recited in claim 1, wherein
the instructions that cause the one or more processors to negotiate for the
presentation model further cause the one or more processors to:

obtain, from the command broker, a list of one or more presentation models
supported by the command broker; and

select at least one of the one or more presentation models supported by the

command broker.

WO 2005/111768 PCT/US2004/023643

34

5. One or more computer readable media as recited in claim 4, wherein
the instructions that cause the one or more processors to negotiate for the
presentation mode! further cause the one or more processors to:

notify the command broker of the selected presentation model.

6. One or more computer readable media as recited in claim 5, wherein
the instructions that cause the one or more processors to notify the command broker
of the selected presentation model further cause the one or more processors to
invoke a GetProvider method exposed by the command broker, and include the

selected presentation model as a parameter of the GetProvider method.

7. One or more computer readable media as recited in claim 1, wherein
the plurality of instructions further cause the one or more processors to:

negotiate, with a plurality of additional command brokers, for presentation
models to be used in presenting a plurality of additional commands associated with
the plurality of additional command brokers; and

obtain, based on the negotiated presentation models, identifiers of a plurality
of additional command providers associated with the plurality of additional

commands.

8. One or more computer readable media as recited in claim 1, wherein
the plurality of instructions are part of a command host that supports one or more

presentation models not supported by the command broker.

WO 2005/111768 PCT/US2004/023643

35

9. One or more computer readable media as recited in claim 1, wherein
the instructions that cause the one or more processors to negotiate with the
command broker further cause the one or more processors to:

access a modes enumeration exposed by a component; and

receive, in response to accessing the modes enumeration, a list of a plurality
of different presentation models supported by the command broker for the

command.

10. One or more computer readable media as recited in claim 1, wherein
the instructions further cause the one or more processors to create the command
broker by:

identifying an object definition that includes one or more arguments;

for each of the one or more arguments that is a non-literal argument,
recursively identifying one or more additional object definitions based on the
argument; and

creating, as the command broker, the objects defined by the identified object

definitions.

11. One or more computer readable media having stored thereon a
plurality of instructions that implement a command broker, the plurality of
instructions, when executed by one or more processors, causes the one or more
processors to:

identify, to a requestor, a plurality of presentation models supported by the
command broker, the command broker being associated with a particular command;

and

WO 2005/111768 PCT/US2004/023643

36

negotiate, with the requestor, which of the plurality of presentation models is

to be used to present the command via a user interface.

12. One or more computer readable media as recited in claim 11, wherein
the plurality of instructions further cause the one or more processors to:

create, based on the negotiated presentation model, a command provider for
the command; and

notify the requestor of the command provider.

13. One or more computer readable media as recited in claim 12, wherein
the instructions that cause the one or more processors to create the command
provider comprise instructions that cause the one or more processors to instantiate

the command provider.

14. One or more computer readable media as recited in claim 11, wherein
the plurality of instructions further cause the one or more processors to:

access a command context; and

determine, based at least in part on the command context, which of the
plurality of presentation models supported by the command broker to identify to the

requestor.

WO 2005/111768 PCT/US2004/023643

37

15. One or more computer readable media as recited in claim 11, wherein
the instructions that cause the one or more processors to negotiate which of the
plurality of presentation models is to be used to present the command comprise
instructions which cause the one or more processors to receive, from the requestor,

an identification of one of the plurality of presentation models.

16. One or more computer readable media as recited in claim 11, wherein

the requestor comprises a command host.

17. One or more computer readable media as recited in claim 11, wherein
the plurality of instructions further cause the one or more processors to:

expose a modes enumeration; and

identify the plurality of presentation models supported by the command
broker by returning to the requestor, in response to the requestor invoking the
modes enumeration, a list of the plurality of presentation models supported by the

command broker.

18. A system comprising:

a command host to provide a workspace where a plurality of user interface
commands can be presented; and

a command broker, communicatively coupled to the command host, to
identify a plurality of supported modes for a command, and further to negotiate
with the command host to determine which of the plurality of supported modes is to

be used for the command.

WO 2005/111768 PCT/US2004/023643

38

19. A system as recited in claim 18, further comprising:

a plurality of additional command brokers communicatively coupled to the
command host, each of the plurality of additional command brokers to identify
multiple supported modes for one of a plurality of different commands, and each of
the plurality of additional command brokers further to negotiate with the command
host to determine which of the multiple supported modes is to be used for the

particular command.

20. A system as recited in claim 18, further comprising:
a command provider, created by the command broker based on the
determined mode to be used for the command, to control actions that are followed

when the command is invoked.

21. A system as recited in claim 18, further comprising:
a command context, communicatively coupled to the command broker,
identifying information regarding the system that can be used by the command

broker.

22. One or more computer readable media having stored thereon a
plurality of instructions that describe a component, wherein the component, when
created, is to:

expose a modes enumeration; and

return to a requestor, in response to the requestor invoking the modes
enumeration, a list of one or more presentation models supported by the component

for a particular command associated with the component.

WO 2005/111768 PCT/US2004/023643

39

23. One or more computer readable media as recited in claim 22, wherein

the component is created by being instantiated.

24. One or more computer readable media as recited in claim 22, wherein
the component, when created, is further to have an identity property that identifies

the component.

25. One or more computer readable media as recited in claim 22, wherein
the component, when created, is further to:
expose a first property that allows a command context for the component to

be set.

26. One or more computer readable media as recited in claim 22, wherein
the component, when created, is further to have a group property that allows

identification of one or more groups to which the particular command belongs.

27. One or more computer readable media as recited in claim 22, wherein
the component, when created, is further to:

expose a groups enumeration; and

return to the requestor, in response to the requestor invoking the groups

enumeration, a list of one or more groups supported by the component.

28. One or more computer readable media as recited in claim 22, wherein
the component, when created, is further to:
expose a get provider property, the get provider property having a parameter

that is an identifier of a presentation model; and

WO 2005/111768 PCT/US2004/023643

40

create, in response to the requestor invoking the get provider property, a
command provider component that implements the particular command for the

identified presentation model.

29. One or more computer readable media as recited in claim 28, wherein
the component is to create the command provider component by instantiating the

command provider component.

30. One or more computer readable media as recited in claim 22, wherein
the component, when created, is further to have a command context handler

property that is fired whenever a context for the particular command changes.

31. A method comprising:

accessing a modes enumeration exposed by a component; and

receiving, in response to accessing the modes enumeration, a list of one or
more presentation models supported by the component for a particular command

associated with the component.

32. A method as recited in claim 31, further comprising:
accessing an identity property of the component to retrieve the identity of the

component.

33. A method as recited in claim 31, further comprising:
accessing a first property of the component that allows a command context

for the component to be set.

WO 2005/111768 PCT/US2004/023643

41
34. A method as recited in claim 31, further comprising:
accessing a groups enumeration of the component; and
receiving, in response to accessing the groups enumération, a list of one or

more groups supported by the component.

35. A method as recited in claim 31, further comprising:

accessing a get provider property of the component;

including, as a parameter in the accessing of the get provider property, an
identifier of one of the one or more presentation models supported by the
component; and

receive, in response to accessing the get provider property, an identifier of a
command provider component that implements the particular command for the

presentation model identified as the parameter.

36. One or more computer readable media having stored thereon a
plurality of instructions to create a command broker, the plurality of instructions,
when executed by one or more processors, causes the one or more processors to:

identify an object definition that includes one or more arguments;

for each of the one or more arguments that is a non-literal argument,
recursively identify one or more additional object definitions based on the
argument; and |

create, as the command broker, the objects defined by the identified object

definitions.

WO 2005/111768 PCT/US2004/023643

42
37. One or more computer readable media as recited in claim 36, wherein
the plurality of instructions further cause the one or more processors to identify, as
the object definition, a top-level object definition associated with the command

broker.

38. One or more computer readable media as recited in claim 36, wherein
the plurality of instructions that cause the one or more processors to create the
objects defined by the identified object definitions further cause the one or more

processors to instantiate the objects defined by the identified object definitions.

39. One or more computer readable media as recited in claim 36, wherein
the plurality of instructions further cause the one or more processors to identify the

object definition within a registry of a Windows® operating system.

40. One or more computer readable media as recited in claim 36, wherein
the object definition includes a type field storing data representing an identifier of
an object defined by the first object definition, and an arguments field storing data

representing one or more additional object definitions.

41. A computer-readable medium having stored thereon a data structure,
comprising:

a first object definition including a type field storing data representing an
identifier of an object defined by the first object definition, and an arguments field

storing data representing one or more additional object definitions; and

WO 2005/111768 PCT/US2004/023643

43

a second object definition identified by the arguments field, wherein during a
processing operation on the first object definition, the arguments field is examined

to identify the second object definition.

42. A computer-readable medium as recited in claim 41, wherein the data

structure includes data defining a command broker.

43. A computer-readable medium as recited in claim 41, wherein the first
object definition further comprises an assembly field to store data representing an

identifier of a command host to create the first object definition.

WO 2005/111768 PCT/US2004/023643
1/6

102
[COMPUTING DEVICE w
104(1) ~ - 104(x)
106(1) APPLICATION(1) APPLICATION(X) L 106(x)
Ul COMMAND ¢ o o Ul COMMAND
ARCHITECTURE ARCHITECTURE
J
106 ~
130
COMMAND HOST INTERFACE
e —_— — 7134
()
| l
l l
\— —)
COMMAND . o o COMMAND
BROKER (1) BROKER (y)
132(1) 132(y)

WO 2005/111768 PCT/US2004/023643
2/6

140

COMMAND CONTEXT }\

COMMAND HoST MODE NEGOTIATION ‘% COMMAND BROKER

COMMAND PROVDER}—J
142

WO 2005/111768 PCT/US2004/023643
3/6

18

182

COMMAND HOST AND COMMAND BROKER
NEGOTIATE MODE

A — 184
COMMAND BROKER INSTANTIATES
COMMAND PROVIDER ASSOCIATED WITH
NEGOTIATED MODE

Y 186

[COMMAND HOST PLACES COMMAND IN LT(-

BASED ON INSTANTIATED COMMAND
PROVIDER

y

y 188
f
COMMAND HOST INTERACTS WITH
COMMAND PROVIDER

Fig. 4

WO 2005/111768 PCT/US2004/023643
4/6

202
200 204\(DEFINITION SOURCE R
ACTIVATOR > COMMAND BROKER
DEFINITION
N y
132
COMMAND BROKER
< 220 -
ASSEMBLY é
TYPE ~ 224
ARGUMENT(S) d izg
LITERAL DEFINITION(S) a8

Fig. 6

WO 2005/111768 PCT/US2004/023643
5/6

240
242
~
IDENTIFY ToP LEVEL OBJECT DEFINITION
4
244 k
\
ACCESS IDENTIFIED OBJECT DEFINITION
y
246 ¢
\
IDENTIFY ARGUMENT(S), IF ANY, OF
IDENTIFIED OBJECT DEFINITION
4

IS ANY ARGUMENT A NON-LITERAL?

250

YES

FINISHED WITH IDENTIFIED OBJECT
DEFINITION

252 Y

WHEN FINISHED WITH ALL IDENTIFY EACH NON-LITERAL ARGUMENT
OBJECT DEFINITIONS

FOR EACH NON-
RAL Al N
054 v LITE RGUMENT

<

INSTANTIATE THE OBJECT BY CALLING ITS
CONSTRUCTOR

Zig. 7

WO 2005/111768 PCT/US2004/023643
6/6

300 318
N 3m H 320 224 248 REMOTE
_ | | compuTinG
342
-E 356
EeReHsysT
MONITOR ' l:, MODEM
|l | T
| — 0000000 N 458 REMOTE
' = 7N 35 APPLICATION
/ N
) 7 . 302 306 — \ROCRAMS W
308 , A .
354 SYSTEM MEMORY
o e 1
EIJ\JE:;DDD , OPERATING
ORK :
VIDEO ADAPTER ADAPTER — SYSTEM, 326

326
\ APPLICATION

’ N

Y
DATA MEDIA SYSTEM BuS § PROGRAMS 328
INTERFACES N

OTHER PROGRAM

& |

: OPERATING 326 ‘ - = PROGRAM

~_svstem _—| |/ %1 iﬂ}\m = DATA 332
APPLICATION328 -

~—Proorws 1 PROCESSING | 310 RAM_
PrROGRAM 330! || [ooTZoomoomomom-
PROGRAM 332 314

DATA 3

1/O INTERFACES

|
_ /m _ 338

o] [oooooo] [o0]
PRINTER \ MoUSE KEYBOARD \ OTHER DEVICE(S)
346 336 334 ?é? g
. .

i

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

