06/005964 A1 I TR 0O 0 A OO OO0 0

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

B

G
)

2
&

(19) World Intellectual Property Organization (3
International Bureau

(43) International Publication Date
19 January 2006 (19.01.2006)

) I OO A0 O O

(10) International Publication Number

WO 2006/005964 Al

(51) International Patent Classification : GOGF 9/38, 9/46

(21) International Application Number:
PCT/GB2005/002804

(22) International Filing Date: 15 July 2005 (15.07.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

0415851.5 15 July 2004 (15.07.2004) GB

(71) Applicant (for all designated States except US): IMAG-
INATION TECHNOLOGIES LIMITED [GB/GB];
Home Park Estate, Kings Langley, Hertfordshire WD4
817 (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): WEBBER, Andrew
[GB/GB]; 17 Fields End, Tring, Hertfordshire HP3 9AT
(GB).

(74) Agent: ROBSON, Aidan, John; Reddie & Grose, 16
Theobalds Road, London WC1X 8PL (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: MICROPROCESSOR OUTPUT PORTS AND CONTROL OF INSTRUCTIONS PROVIDED THEREFROM

A TYPICAL MICROPROCESSOR
CO-PROCESSORS
1 »| CO-PROCESSORCOREO [~3
MICROPROCESSOR .
[]
»| CO-PROCESSORCOREn [>3
A
A
2 CACHE

(57) Abstract: A method and apparatus are provided for controlling instructions provided by a microprocessor output port to other
= execution units. A microprocessor pipeline of instructions is provided for each execution unit. These are scheduled via the micropro-
&\ cessor unit. For each execution unit, a determination is made as to whether or not the execution unit can receive further instructions.
If it cannot, it’s associated pipeline is said to be stalled and instructions are deleted from the microprocessor pipeline. Its thread can
then be restarted at a later time with the instruction corresponding to the instruction which was unable to execute.

WO 2006/005964 PCT/GB2005/002804

MICROPROCESSOR OUTPUT PORTS AND
CONTROL OF INSTRUCTIONS PROVIDED
THEREFROM

Field of the Invention

This invention relates to microprocessor output ports and in particular to the

control of instructions provided via these output ports for other execution units.
Background of the Invention

In our British patent application no. 9607153.5 there is described a data
processing management system for executing independent instruction threads an
multi-threaded processor. This describes a microprocessor system having a
priority of data inputs and outputs and a priority of data processing means. Each
data processing means performs operations to execute instructions from at least
one of a plurality of instruction threads. The control means selectively routes
data between the data inputs and outputs via a selected one of the data |
processing means. The external interfaces (inputs and outputs) may be
interfaces to co-processors which are used to perform other operations. These
co-processors and the external interfaces in the microprocessor have to be
integrated into the system so that they can be efficiently accessed by instructions

running on the microprocessor.

Normally a microprocessor schedules instructions using knowledge about the
capabilities of external units or co-processors. However, if a microprocessor is
attached to another module with unpredictable behaviour this will not necessarily
be possible. lt is quite common for co-processors attached to microprocessors
not to provide data to the controlling microprocessor about their operation and
behaviour. Therefore, a microprocessor sending instructions to a co-processor
has no knowlodge as to whether or not the co-processor is capable of receiving

those instrucfions. In the case of a multi-threaded system where more than one

WO 2006/005964 PCT/GB2005/002804

10

15

20

25

30

set of instructions may be provided to more than one co-processor this is
particularly important since situations may arise where a number of co-
b?ocessors are executing their instructions without a problem but another one is
fbr some internal reason blocked and therefore unabie to receive further
iriétructions.

Summary of the Invention

Preferred embodiments provide a system in which complex co-processors can be

“attached to a microprocessor with a minimum quantity of buffering between the

microprocessor and any co-processor.

Preferably, the main execution unit pipelines of the microprocessor are stretched
to be at least a minimum Iength which is at least as long as the length of the
pipeline to any uncontrolled interfaces (co-processors). Thereafter, all pipelined
operations are tagged with a time stamp which is used to control whether or not
instructions which are being executed are able to complete. [f they are not

completed then they are effectively rewound and restarted. Certain instructions
_ such as writing to a co-processor increment the time stamp and if such an
instruction is found to cause an output port to indicate that it is blocked, the

following instructions with different time stamps will be caused to disappear so
that the instruction stream is then pointing to the correct next instruction and the

state of the machine correctly reflects the state of the co-processor write.

In essence, therefore, preferred embodiments provide a microprocessor pipeline
with a time stamp on instructions. Output ports have a register and if that register
becomes full, any following dependent instructions are removed (rewound) and
restarted when the blockage has cleared.

In accordance with one embodiment there is provided a method for controlling

instructions provided by a microprocessor output port to at least one of their
execution units comprising the steps of providing a thread of instructions via a

microprocessor pipeline for the execution unit, time stamping the instructions,

providing the instructions in turn by via an output port to the execution unit,

2

WO 2006/005964 PCT/GB2005/002804

10

15

20

25

30

detecting whether or not the execution unit is able to receive further instructions,
and if the result of the detection is that the execution unit cannot receive further
instr&cﬁons, deleting instructions still present in the microprocessor pipeline for
the thread, and restarting the thread with the instruction corresponding to the time
stamped instructions which encountered the stalled execution unit.

In accordance with another embodiment of the invention there is provided a
method for controlling instructions provided via a microprocessor output port to a
plurality of execution units comprising the steps of scheduling a plurality of
instruction threads for different ones of the execution units through
microprocessor pipeline, for each executing thread, detecting whether or not it's
execution unit is able to receive further insfructions, deleting instructions still
present in the microprocessor pipeline for that thread if it's execution unit is
unable to receive further instructions, and restarting execution of that thread at a

later time.

Brief Description of the Drawings

A preferred embodiment of the invention will now be described in detail by way of
example with reference to the accompanying drawings in which:

Figure 1 shows a diagram of a typical microprocessor coupled to a number of co-
processors;

Figure 2 shows a buffered co-processor interface;

Figure 3 shows a typical processor instruction pipeline; and

Figure 4 shows a time stamp comparison circuit for use in an embodiment of the
invention.

In figure 1 there as shown a typical microprocessor 1. This connects to the rest
of system in which it resides via either one or more caches 2 or via one or more
co-processors 3. In most situations the ability to send data to a cache or to one
of the co-processors is wholly determined by the microprocessor itself using
information regarding the flow of instructions recently sent to the cache or to a co-
processor.

WO 2006/005964 PCT/GB2005/002804

10 .

15

20

25

30

35

Further, the co-processors may themselves be similar to or in fact be
microprocessors and will run instructions and display unpredictable behaviour.
The ability of the microprocessor 1 to schedule data to be sent to a co-processor
which has unpredictable behaviour is greatly reduced in such a situation as it no
longer knows enough about the state of the system to determine whether or not
that co-processor is able to take the data.

One solution to this problem is fo insert a buffer between the microprocessor and
any attached co-processor. In such a situation it is possible for the
microprocessor to retain data concerning the capacity of the buffer to take future
data and hence be able to schedule data transfers to it which do not overload the
buffer. This approach, hoWever, may be inefficient since when the interface is
free flowing the gates associated with the buffer are not utilised. Furthermore,
when the buffer fills up or drains out gaps may appear in the co-processor data
stream due to extra latency resulting from the additional scheduling into the
buffer, even though the microprocessor may be capable of streaming data into
the co-processor on every cycle.

An example of this buffering approach is shown in figure 2. In order for the buffer
arrangement to work efficiently the microprocessor needs to know how much

. capacity will be left in the buffer once any transactions already in the pipeline

arrive to be stored in the buffer. This capacity estimation is handled by logic 5
within the microprocessor that is supplied with data advising it how many
transactions are in the pipeline and also how many are currently in the buffer.
From this, the microprocessor can compute how many more data words can be
issued without overloading the buffer 4. As can be seen, the logic 5 receives
data from the microprocessor concerning transfers in the pipeline and also
information from the buffer about its free capacity.

Removal of data from the buffer 4 is controlied by the co-processor which is
linked to the opposite side of the buffer. This sends flow control data to the buffer
which determines the rate at which data is read out from the buffer.

The amount of time from issuing an instruction on the microprocessor that sends

data to a co-processor to that data being taken by the co-processor consists of

4

WO 2006/005964 PCT/GB2005/002804

10

15

20

25

30

the length of the microprocessor pipeline plus the amount of time taken to pass
through the buffer. This time can be significant as it dictates the minimum size
the buffer must be if it is to support the issuing of data words to the co-processor
on every cycle. Therefore, for such an arrangement a buffer must typicafly hold
as many fransactions as may be outstanding in the whole round trip time. This is
because the microprocessor does not receive any data about the impact of it's
actions until after the round-trip time has elapsed. If the co-processor were to
stop taking in data there could be a whole buffer full of data still in the pipeline.

The alternative to this would be to reduce the buffer size but this would impact on

the rate at which transfers to the co-processor could occur.

A preferred embodiment of the current invention overcomes this problem by
removing the buffer and making the microprocessor only dependent upon its
internal state for the purposes of scheduling new instructions. This change
requires a different approach to the problem of supporting externally controlled
flow control to co-processors. A typical processor pipeline flow of instructions is
shown in figure-3. This comprises a fetch instruction unit 6, decode instruction
unit 7, a fetch operand unit 8, an Arithmetic Logic Unit 9 and a write to destination
unit 10.

The embodiment of this invention uses the microprocessor’s pipeline itself as the
primary means of communicating with the co-processors. This therefore reduces
the number of additional links which are required. In the embodiment, each co-
processor is attached to the microprocessor using a single buffer register.
Transactions from the microprocessor to the co-processor flow down the
microprocessor’s pipeline and into the buffer register which holds a single word of
data. If the flow control from the register to the co-processor is found to be
stalled then the microprocessor may choose to abandon instructions that followed
and were destined for the co-processor by selectively deleting parts of the
following instructions that control the “write to destination” unit of the pipeline

(10). A decision as to whether or not instructions need to be abandoned is made
based upon a time stamping of every instruction. They may also be based upon
the effect of the instruction.

WO 2006/005964 PCT/GB2005/002804

10

15

20

25

30

The majority of instructions that are issued have no dependency on the state of
the co-processor interface. However, in the case of certain instructions such as
co-processor transfer instructions or memory loads and stores there may be a

need to depend upon the flow control of the co-processor interface.

Embodiment of this invention changes the time stamp of a current instruction if it
depends upon something that may cause a rewind of instructions that have
entered the pipeline. The time stamps themselves will have a range (e.g. 0-n),
which should be at least twice the length of the microprocessor pipeline (or the
longest pipeline available if the microprocessor has pipelines of varying lengths).
If an external interface such as a co-processor output port is caused to stall then
aflagis broadcast including the time stamp of the instruction going through that
output port to all the pipelines indicating that any instructions with a more recent
time stamp than that given in the broadcast should be prevented from reaching
their destinations. This is done by preventing‘ the write to destination unit 10 from

operating, i.e. the write flag for those instructions is cleared.

Every destination update in the pipeline is tagged with the time stamp of its
source instruction and for the given range of 0-n, each time stamp will have log 2
n bits. When a broadcast is made a test is made on each of these tags to decide
whether the time stamp it includes is more recent or not. This test is performed
by establishing whether the two time stamps are in the bottom or top half of the
range of time stamp values. The test is performed by testing to see if the
broadcast time stamp excluding the top bit is greater than the end time stamp in
the pipeline. Then if the top two bits of the two time stamps match, a rewind is
deemed to be necessary if the pipeline is not greater than the broadcast time
stamp, otherwise when the top differs a rewind is necessary if the pipeline time
stamp is not greater than the broadcast time stamp. This is usually a less than or
equal to test.

If both time stamps are in the same half of the range then the tagged time stamp
is newer if it is greater than the broadcast time stamp. Otherwise the tagged time

stamp is newer if it is less than or equal to the broadcast time stamp.

WO 2006/005964 PCT/GB2005/002804

10

15

20

25

30

35

A diagram of the logic for time stamp comparison for a pipeline with up to eight
states (and therefore a time stamp range of 0-15) is shown in figure 4. Figure 4
shows the bits of a broadcast time stamp 12 being compared against each
pipeline tag 13 via a greater than comparison unit 16. This comparison unit 16
uses all of the bits of the broadcast tag and each pipeline tag 13 apart from the

most significant bit. The most significant bits are compared to each other in an

-exclusive OR gate 11 and are used to control a multiplexer 15. If the top bits are

the same the output of the exclusive OR gate 11 is zero and the output of the
multiplexer 15 is tied to the output of the comparison unit 16 and a rewind is
invoked. If the top bits are not the same then the multiplexer switches to the
inverted output of the comparison means 16 via inverter 14. The inverter

. effectively provides an output which means the pipeline tag is not greater than

the broadcast tag. Thus, if both the most significant bits are the same the
pipeline tag will have a greater value than the broadcast tag. The output of the
comparison will therefore be directly to the multiplexer 15 and a rewind will be
implemented.

If the MSB of the pipeline tag is greater than broadcast tag then the first three bits
of the pipeline tag will be of a lower value than the first three bits of the broadcast
tag, thereby giving the output “not greater than” which will be inverted by inverter
14 to cause the multiplexer 15 to pass this as a rewind signél. If it is determined
that an instruction has to be abandoned then there are a number of problems to
be resolved to ensure that the software running on the microprocessor remains

correct.

The first of these is the issue of determining what is the next instruction to run on
the microprocessor. Essentially, once a co-processor causes a pipeline stall, that
in turn causes a microprocessor pipeline rewind. Therefore it is necessary fo
determine whether or not the current instruction to be issued is the correct next
instruction. The main decision here relates to a determination as to whether
intermediate instructions between the one that sent data to the co-processor and
caused the rewind and the current instruction were themselves rewound. This
decision can be made by comparing the time stamp of the current instruction
against the broadcast rewind causing time stamp. If intermediate instructions

were rewound then the current instruction’s time stamp will have been moved on

7

WO 2006/005964 PCT/GB2005/002804

10

15

20

25

30

35

from the broadcast rewinding time stamp. Using the same test logic as that
shown in figure 4, these time stamps can be compared.

If the time stamp is found to have changed then restarting the instruction stream
at the correct point consists of aborting the current instruction and restarting the
instruction fetch from the correct program counter address. Because any
abandoned transactions have been removed from the pipeline it is possible to be
sure that the current program counter address after the rewind will correctly
reflect the point at which the program needs to restart. The current program
counter value comes from the program counter execution unit pipeline. When a
pipeline still occurs, actions still to do that are in the pipeline are discarded and
the restart program counter address is retrieved from the program counter
register. This is then used to restart the pipeline at the appropriate point.

The remaining task for restarting the program is determined by whether or not the
co-processor port will be ready to accept more transactions. This can be
determinéd by monitoring when the single buffering register is allowed to empty
itself. Once this register is empty it can be assumed that the co-processor will be
ready to accept data and that the flow of instructions may be restarted. So far we
have established that co-processor transfers are sent down the processor
pipelines to a single buffer register which is attached to the co-processor. A
detection is made when a co-processor has stopped accepting transfers, i.e.
when data has to be held in a single buffer register until the Co-processor is
prepared to take it. What happens next depends on whether or not the next
instruction is planning to send any co-processor transfer down the pipeline.

In one embodiment, when the processor is caused to rewind for a CO-processor
transfer, the affected thread is caused to rewind and also caused to hold off for a
fixed period of time (usually a short but arbitrary number of cycles, e.g. eight
cycles). If the instructions stream at the point at which restart occurs does not
depend upon the readiness of the co-processor, it may restart and carry on as
before independently of whether or not the co-processor is still busy. The
instructions will continue to be issued until such time as something is to be sent
to the co-processor. If the thread has to issue a co-processor transfer as its first

action after restart then this point will be reached immediately. Thus, it can be

8

WO 2006/005964 PCT/GB2005/002804

10

15

20

25

30

35

seen that cessation of only the affected thread in a muitithreaded system is
preferable. Other unaffected threads can preferably continue to execute as
normal.

Therefore, execution has stopped for a while, restarted and the system now
wishes to send something to the co-processor that is busy. In such a situation
the processor effectively uses the mechanisms described in our British patent
application no. 9607153.5, the contents of which are incorporated herein by
reference. What this means is that the instruction scheduler knows the resources
required and the avéilability of those resources. Therefore, the system has an

. instruction to transfer to a co-processor. The scheduler looks at the status of the

buffer register between it and the co-processor. [f data is already held in the

register then the co-processor is busy and instruction does not issue because the

required resource is not yet available. When the system is freely sending data to

a co-processor it is available to receive it, this blockage never arises (i.e. the
resource test is effectively a test of whether the register is blocked whilst waiting
for the co-processor claims).

As an example, we should consider a stream of instructions that are always trying
to send data to a co-processor that takes only one item of data every one
thousand cycles. The program commences sending data without problem. The
first word sent is taken by the co-processor. The second word gets held in the
buffer register, at which point the rewind logic gets triggered and deletes the third
word which is still in the pipeline. The thread will then stall for a short period of
time to return to a known good state, i.e. the right instruction is ready to run, and
will then be held by the scheduler as a result of the resource
requirements/availability test. The situation will remain in this state until the
second word is removed from the buffer. This will be after one thousand cycles
when it is read to the co-processor, at which point the buffer register becomes

free. The program then starts issuing instructions again and the third word is

‘held in the buffer register and causes a further rewind. This process carries on

until the end of the stream of instructions.

Therefore, embodiments of the invention return the processor back to a ready-to-

run state and then wait until the buffer register is cleared at which point running

9

WO 2006/005964 PCT/GB2005/002804

10

15

20

25

30

35

can recommence. The example given above of one word taken over one
thousand cycles is extreme. A more realistic situation with an intelligent co-
processor would be that the co-proceésor takes a series of commands until it has
enough to go and commence a process at which point it may become busy and
cause following commands to hold off until it has finished its initial process.

The system may operate for microprocessors with one or more output ports and
with one or more coprocessors connected.

In the case of multi-threaded systems where one of more microprocessors is
each handling a pipeline of instructions for a plurality of execution units, the
threads of instructions are scheduled to pass through the microprocessor pipeline
in dependence on their priority, or other criteria which may apply. For each
thread which is executed, a determination is made as to whether or not its
execution unit is capable of receiving further instructions. If it is not, that thread is
stalled. If instructions are simply left sitting in the microprocessor, no further
threads can be scheduled. Therefore, the embodiment, as described above,
discards the instructions from the microprocessor pipeline thereby enabling other
non-stalled threads to continue to execute. The stalled thread will then be
restarted after a predetermined amount of time. It can continue to be restarted
until such time as it's associated execution unit is ready to receive instructions
again. When the instructions in the microprocessor are discarded, this is done

using the time stamp method described above.

10

WO 2006/005964 PCT/GB2005/002804

10

15

20

25

30

35

CLAIMS

1. A method for controlling instructions provided via a microprocessor output
Yport to at least one other execution unit comprising the steps of providing a
thread of instructions via a microprocessor pipeline for an execution unit, time
stamping the instructions, providing instructions in turn via an output port to the
execution unit detecting whether or not the execution unit is able to receive
further instructions, and if the result of the detection is that the execution unit
cannot receive further instructions, deleting instructions for that thread still
present in the microprocessor pipeline, and restarting the thread with an
instruction corresponding to the time stamped instruction which was unable to

execute.

2. A method according to claim 1 in which each execution unit is connected

to the microprocessor output port via a register.

3. A method according to claim 1 or 2 including the step of comparing the
time stamp of a current instruction unable to be received by the execution unit
with the time stamps of instructions in the pipeline and discarding instructions in

the pipeline in dependence on the result of the comparison.

4. A method according to claim 3 in which the instructions in the pipeline are
discarded if their time stamps are greater in value than those on the current

instruction.

5. A method according to any preceding claim including the step of restarting
a stalled thread by reading instructions from memory from an address
corresponding to the address in which the current instruction unable to be

executed is stored.

6. A method according to any preceding claim including the step of
scheduling multiple threads of instructions for execution units through the
microprocessor and continuing to execute non-stalled threads in the event that

one of threads is unable to execute.

11

WO 2006/005964 PCT/GB2005/002804

7. A method for controlling instructions provided via a microprocessor output
port to a plurality of execution units comprising the step of scheduling a plurality
of instruction threads for different ones of the éxecution units through the
microprocessor pipeline, for each executing thread, detecting whether or not it's

5 execution unit it is able to receive further instructions, deleting instructions still
present in the microprocessor pipeline for that thread, if its execution unit is
unable to receive further instructions and rescheduling and restarting execution of
that thread at a later time. |

10 8. A method according to claim 7 in which the thread which is unable to
execute is restarted after a predetermined period of time.

9. A system for controlling instructions via a microprocessor output port to at
least one other execution unit comprising a microprocessor pipeline supplying a

15 thread of instructibns for an execution unit, means for time stamping the '
ihstructions, means for providing instructions in turn via the output port to the
execution unit, means for detecting whether or not the execution unit is able to
receive further instructions, means for deleting instructions still present in the
microprocessor pipeline if the result of the detection is that the execution unit

20 cannot receive further instructions, and means for restarting the thread with an
instruction corresponding to the time stamped instruction which was unable to

execute.

10. Apparatus according to claim 9 including a register coupling each
25 execution unit to the microprocessor output port.

11. Apparatus according to claim 9 or 10 including the step of comparing the
time stamp of a current instruction unable to be received by the execution unit
with the time stamps of instruction in the pipeline, and means for discarding the

30 instructions in the pipeline in dependence on the result of the comparison.

12. Apparatus according to claim 11 in which the means for discarding
instructions in the pipeline does so if their time stamps are greater in value than
that of the current instruction.

35

12

WO 2006/005964 PCT/GB2005/002804

10

15

20

25

30

35

13. Apparatus according to any of claims 9 to 12 in which the means for
restarting a stalled thread includes means for reading an instruction memory from
an address corresponding to the address in which the current instruction which
was unable to execute is stored.

14. Apparatus according to any of claims 9 to 13 including means for
scheduling multiple threads of instructions for execution units through the
microprocessor and means for continuing to execute non-stalled instruction

threads in the event that one of the threads is unable to execute.

15. Apparatus for controlling instructions provided by a microprocessor output
port to a plurality of execution units comprising means for scheduling a plurality of
instruction threads for different ones of the execution units through a
microprocessor pipeline, means for detecting for each executing thread whether

or not its execution unit is able to receive further instructions, means for deleting

instructions still present in the microprocessor bipeline for that thread if it's

execution unit is unable to receive further insfructions, means for rescheduling
and restarting execution of that thread at a later time.

16. Apparatus according to claim 15 in which the thread which is unable to
execute is restarted after a predetermined period of time.

13

WO 2006/005964

PCT/GB2005/002804

FIG. 1

A TYPICAL MICROPROCESSOR

CO-PROCESSORS

1 » CO-PROCESSOR COREOQ [~—3
MICROPROCESSOR .
[]
» CO-PROCESSORCOREn [~>3
A 4
2 CACHE
A BUFFERED CO-PROCESSOR INTERFACE
5 4
)) DATA
CAN TAKE
MORE DATA 7a

VIICROPROCESSOR

TRANSFERS IN
THE PIPELINE

BUFFER (FIFO) CO-PROCESSOR

-
.‘—

FLOW
CONTROL

SUBSTITUTE SHEET (RULE 26)

WO 2006/005964 PCT/GB2005/002804
2/2
A TYPICAL PROCESSOR PIPELINE
OPERAND WRITE TO
FETCH DECODE FETCH ALU DESTINATION
6 7 8 9 10
TIMESTAMP COMPARISON
3 2 0
I —
12—~ BROADCAST TAG MUX
| 1 1 INV \
XOR e
A\ 4 \4
>
C) 14 REWIND
A F 3
11 I —
13— PIPELINE TAG
32 0

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intermmeona Application No

PCT/GB2005/002804

A. CLA?SIFICATION OF SUBJECT MATTER
IPC

GO6F9/38 GO6F9/46

According to Intemnational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

WO 02/067116 A (IMAGINATION TECHNOLOGIES
LIMITED; ANDERSON, ADRIAN, JOHN; WOODHEAD,
MA) 29 August 2002 (2002-08-29)

page 2, line 19 - Tine 23

page 3, Tine 14 - last line

page 5, line 3 - page 6, Tine 28

page 9, line 22 - Tine 28

page 13, line 27 - line 31

US 6 349 297 Bl (SHAW VENSON M ET AL)

19 February 2002 (2002-02-19)

‘column 6, Tine 33 - Tine 42

column 17, 1ine 47 - 1ine 60

column 18, 1ine 19 - line 38

US 2003/163589 Al (BUNCE ROBERT MICHAEL ET
AL) 28 August 2003 (2003-08-28)

paragraphs ‘0025!, °0026!; figures 2B,2C

_____ L

1-16

1-16

1-16

Further documents are listed inthe continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but publishad on or after the international
filing date

"L" document which may throw doubts on priority claim({s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an Inventive step when the document Is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document Is combined with one or more other such docu-
meﬂts, such combination being obvious to a person skilled
inthe art.

'&" document member of the same patent family

Date of the actual completion of the intemational search

18 October 2005

Date of mailing of the international search report

27/10/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340~2040, Tx. 31 651 eponl,
Fax: (+31-70) 340-3016

Authorized officer

Thibaudeau, J

Form PCT/ISA/210 (second sheet) (January 2004)

page 1 of 2

INTERNATIONAL SEARCH REPORT intermenz Application No
PCT/GB2005/002804
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT
Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A GB 2 387 932 A (* MOTOROLA, INC; * 1-6,9-14

MOTOROLA INC; * FREESCALE SEMICONDUCTOR
INC) 29 October 2003 (2003-10-29)
page 2, Tine 13 - 1ine 21

Form PCT/ISA/210 {continuation of second sheet) (January 2004)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

M

nnenweondl Application No

PCT/GB2005/002804
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 02067116 A 29-08-2002 EP 1412855 A2 28-04-2004
GB 2372847 A 04-09-2002
GB 2372349 A 21-08-2002
GB 2372350 A 21-08-2002
JP 2004532444 T 21-10-2004
US 2005021931 Al 27-01-2005
US 6349297 Bl 19-02-2002 NONE
US 2003163589 Al 28-08-2003 NONE
GB 2387932 A 29-10-2003 AU 2003219125 Al 10-11-2003
WO 03091877 A2 06-11-2003

Form PCT/ISA/210 (patent family annex) {January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

