US 20240211291A1

a2y Patent Application Publication (o) Pub. No.: US 2024/0211291 A1

a9y United States

Shen et al.

43) Pub. Date: Jun. 27, 2024

(54) BUDGET-BASED TIME SLICE ASSIGNMENT
FOR MULTIPLE VIRTUAL FUNCTIONS

(71) Applicants: ADVANCED MICRO DEVICES,
INC., SANTA CLARA, CA (US); ATI
TECHNOLOGIES ULC, MARKHAM
(CA)

(72) Inventors: Yuping Shen, Orlando, FL. (US); Min
Zhang, Toronto (CA); Yinan Jiang,
Richmond Hill (CA); Jeffrey G.
Cheng, Markham (CA)

(21) Appl. No.: 18/088,962

Publication Classification

(51) Int. CL
GOGF 9/455
GOGF 9/50

(52) US.CL
CPC GOGF 9/45558 (2013.01); GOGF 9/5077

(2013.01); GOGF 2009/4557 (2013.01)

(57) ABSTRACT

A host processing system assigns unequal time slices at a
parallel processor to virtual functions based on profiles of
applications executing at the virtual functions and an avail-
able budget of the parallel processor. The host processing
system calculates a world switch cycle interval and assesses
an available processing budget of the parallel processor. The
available budget indicates the amount of graphics processing
time the parallel processor has not yet allocated to virtual

(2006.01)
(2006.01)

(22) Filed: Dec. 27, 2022 functions for each world switch cycle interval.
‘{"‘*‘_LQ.
A
W » CPU 302
AR
MEMORY 104
HYPERVISOR 110
WORLD
SWITCH
VM(1) 122 VM(2) 124 VM(N) 126 (30‘?15;&
N " APPLICATION APPLICATION APPLICATION =
® 8 3 Vi MANAGER
UMD UMD UMD
PEDRIVER 120
. y 3 B
h 4 kA k 4 kA
PHYSICAL
B N VF(1) 142 VF{Z) 144 PR VF(N) 146 FUNCTION
% B 128
PARALLEL PROCESSOR 106

US 2024/0211291 A1

Jun. 27,2024 Sheet 1 of 5

Patent Application Publication

GOT HOSSHOOH T veY
8l - o e
NOLLONMA 7T (N)3A . TIRARI AAREN
TOIBAH
FX A A &,
.
TZT MAARG 4d - g
51 ST 8T
. awn awn N
7ii
HIADYNYIN A ¥ -
) m T 7T
NOLLY O S NC
.m.m :m.,m% ddv : ,mw 3 lddv NOLLYO , iddv *
LN 57T (NJNA ARl 22V (WA
18,%@
THOM
OIT HOSIAYAGAH
POT ASMOW=RN

801
"\

)

Patent Application Publication Jun. 27, 2024 Sheet 2 of 5 US 2024/0211291 A1

VE()

5

N

VF(2) 244 VF(3) 246 VF{4) 248

St

APPLICATION APPLICATION APPLICATION APPLICATION 3

PROFILE PROFILE PROFILE PROFILE

BUBGET MINIVUM TIVE |
REQUIREMEN SLCE |
WORLD SWITCH A
CONTROL AVAILABLE JUNP
i BUDGET \,JE\,?.;,%E;AK;E\

204 “uk

VE MANAGER 114

PFDRIVER 120

Patent Application Publication

2300

, [
N i, O
4 -
+
=
AR
g
Cgl e
= 00 L
o
&
o
<F o
[
=&
<5
o8
e
v ST
—
o
oSt
Li oo
s
18]
Ll =S
=] o o
o
-
L
==
==
-3

Jun. 27,2024 Sheet 3 of 5

o A
Y
&
A
AN
\
A
4
— N
Li. (“«'{ *:}:‘
s
wt O
= o
=
oo
(.
N =
Le o
T O
o
o
o
= N
Y =
W c{
=&
& &
o
i
W
e T
&
Ul
o=

US 2024/0211291 A1

326

Patent Application Publication Jun. 27, 2024 Sheet 4 of 5 US 2024/0211291 A1

400

430

TIME

Patent Application Publication Jun. 27, 2024 Sheet 5 of 5

BET WORLD SWITCH INTERVAL

-~ 502

PROCESSCR

504
/

RECENVE REQUEST FROM VIRTUAL FUNCTION
FOR TIME SLICE

506
Ya

COMPARE PROFILE TO AVAILABLE BUDGET
AND MINIMUM TIME SUICE

k4

BUDGET REQUIREMENT = AVAILABLE
BUDGET?

" BUDGET REQUIREMENT > MINIMUM TIME
SLICE?

ASSIGN TIME SLICE BASED ONPROMLE

500

-

DECLINE REQUEST

ASSIGN MINIMUM TIME
SLICE

US 2024/0211291 A1

512

516

US 2024/0211291 A1l

BUDGET-BASED TIME SLICE ASSIGNMENT
FOR MULTIPLE VIRTUAL FUNCTIONS

BACKGROUND

[0001] Processing units such as graphics processing units
(GPUs) and other parallel processors support virtualization
that allows multiple virtual machines to use the hardware
resources of the GPU. Each virtual machine executes as a
separate process that uses the hardware resources of the
GPU. Some virtual machines implement an operating sys-
tem that allows the virtual machine to emulate an actual
machine. Other virtual machines are designed to execute
code in a platform-independent environment. A hypervisor
creates and runs the virtual machines, which are also
referred to as guest machines or guests. The virtual envi-
ronment implemented on the GPU provides virtual functions
to other virtual components implemented on a physical
machine. A single physical function implemented in the
GPU is used to support one or more virtual functions. Using
temporal partitioning, the physical function allocates the
virtual functions to different virtual machines on the physi-
cal machine on a time-sliced basis. The single root input/
output virtualization (SR-IOV) specification allows multiple
virtual machines (VMs) to share a GPU interface to a single
bus, such as a peripheral component interconnect express
(PCle) bus. Components access the virtual functions by
transmitting requests over the bus.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The present disclosure may be better understood,
and its numerous features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings. The use of the same reference symbols in different
drawings indicates similar or identical items.

[0003] FIG. 1 is a block diagram of a processing system
configured to assign time slices at a parallel processor to
virtual functions based on profiles of applications executing
at the virtual functions and an available budget of the
parallel processor in accordance with some embodiments.
[0004] FIG. 2 is a block diagram illustrating a virtual
function manager of a physical function driver selectively
assigning time slices at a parallel processor to virtual func-
tions in accordance with some embodiments.

[0005] FIG. 3 illustrates cross-frame inconsistency and
underutilization of a parallel processor by multiple virtual
functions.

[0006] FIG. 4 is an illustration of unequal time slices
assigned to multiple virtual functions for cross-frame con-
sistency and increased utilization of a parallel processor in
accordance with some embodiments.

[0007] FIG. 5 is a flow diagram illustrating a method for
assigning time slices at a parallel processor to virtual func-
tions based on profiles of applications executing at the
virtual functions and an available budget of the parallel
processor in accordance with some embodiments.

DETAILED DESCRIPTION

[0008] Temporal partition-based SR-IOV solutions typi-
cally configure virtual functions sharing a parallel processor
identically, with uniform time slices and memory allocations
across all virtual functions. Although allocating time slices
and memory identically across virtual functions provides
fairness and simple cost management, identical allocations

Jun. 27, 2024

can lead to increased latency and underutilization of the
parallel processor in some circumstances.

[0009] For example, if a uniform time slice has a duration
that is shorter than a rendering time for a frame of an
application running at a virtual function, the parallel pro-
cessor will not complete rendering the frame in a single time
slice. When the time slice ends, a world switch preempts the
virtual function and switches use of the parallel processor to
the next virtual function. Only after a world switch interval
cycle has completed and the virtual function regains the
parallel processor does rendering of the frame continue.
Thus, the rendering time for the frame exceeds not only the
time slice but also the world switch interval cycle, leading
to increased latency and lagging which could negatively
impact the user experience. Conversely, if the world switch
interval cycle is evenly divided among a smaller number of
virtual functions such that each time slice is longer and can
accommodate longer rendering times, in some cases the time
slice will be longer than the rendering time, resulting in
underutilization of the parallel processor.

[0010] FIGS. 1-5 illustrate systems and techniques for
assigning time slices at a parallel processor of a host
processing system to virtual functions based on profiles of
applications executing at the virtual functions and an avail-
able budget of the parallel processor. A physical function
driver for the parallel processor calculates a world switch
cycle interval and assesses an available processing budget of
the parallel processor (referred to herein as the “available
budget”). The available budget indicates the amount of
graphics processing time the parallel processor has not yet
allocated to virtual functions for each world switch cycle
interval. In some embodiments, the available budget is based
on a target frame rate for each virtual function configured for
the processing system. For example, if the target frame rate
is 60 frames per second (fps), in some embodiments the host
sets the world switch cycle to 1000/60 fps=16.67 ms. Thus,
the available budget before any time slices have been
allocated to virtual functions is 16.67 ms.

[0011] A virtual function manager (VF manager) at the
physical function driver evaluates requests from virtual
functions for time slices at the parallel processor in the order
in which the requests are received. Each request includes a
profile of an application running at the virtual function
indicating a budget requirement of the application. For
example, the profile of an application indicates an amount of
rendering time per frame for the application in some
embodiments. The VF manager selectively assigns a first
time slice to a first virtual function based on the available
budget and the profile of the application executing at the first
virtual function. Thus, in a first example, if the available
budget is 100% of the world switch cycle interval and the
profile of the application executing at the first virtual func-
tion indicates that the application requires 20% of the world
switch cycle interval to render each frame, the VF manager
assigns a time slice that is 20% of the world switch cycle
interval to the first virtual function and subtracts the
assigned time slice to calculate an updated current available
budget of 80% of the world switch cycle interval.

[0012] In response to a request from a second virtual
function for a time slice, the VF manager selectively assigns
a second time slice based on the updated current available
budget and a profile of an application executing at the
second virtual function. Thus, if the profile indicates that the
application executing at the second virtual function requires

US 2024/0211291 A1l

40% of the world switch cycle interval, the VF manager
determines that 40% of the world switch cycle interval is
less than the 80% of the world switch cycle interval that is
currently available and assigns the second virtual function a
time slice that is 40% of the world switch cycle interval. The
updated current available budget after the first and second
virtual functions have been assigned time slices is 40% of
the world switch cycle interval.

[0013] In some embodiments, the VF manager defines a
minimum time slice based on a ratio of world switch
overhead to usable time of the parallel processor. If a profile
of an application running at a virtual function requesting a
time slice requires less than the minimum time slice to
render a frame, the VF manager assigns a time slice that is
no shorter than the minimum time slice, if the available
budget permits. Thus, if a third virtual function has a profile
indicating that the application executing at the third virtual
function requires 10% of the world switch cycle interval and
the VF manager has defined the minimum time slice as
12.5% of the world switch cycle interval, the VF manager
assigns a time slice that is 12.5% of the world switch cycle
interval, leaving an available budget of 27.5%.

[0014] If a fourth virtual function has a profile indicating
that the application executing at the fourth virtual function
requires 20% of the world switch cycle interval, the VF
manager determines that 20% is within the remaining avail-
able budget of 27.5%. However, if the VF manager assigns
a time slice that is 20% of the world switch cycle interval to
the fourth virtual function, only 7.5% of the world switch
cycle interval will remain in the available budget. Because
7.5% of the world switch cycle interval is less than the
minimum time slice, the VF manager assigns the fourth
virtual function a time slice that is the entire remaining
available budget of 27.5% of the world switch cycle interval,
as the 7.5% of the world switch cycle interval would
otherwise go unassigned.

[0015] In the preceding example, all four requesting vir-
tual functions are able to be accommodated by the VF
manager, with the first virtual function receiving a time slice
that is 20% of the world switch cycle interval, the second
virtual function receiving a time slice that is 40% of the
world switch cycle interval, the third virtual function receiv-
ing a time slice that is 12.5% of the world switch cycle
interval, and the fourth virtual function receiving a time slice
that is 27.5% of the world switch cycle interval. The time
slices assigned to the four virtual functions are not equal in
duration, and 90% of the parallel processor capacity is
expected to be used, based on the profiles of the applications
executing at each of the virtual functions.

[0016] In a second example, four virtual functions request
time slices at the parallel processor, but only three can be
accommodated within the available budget. In the second
example, if the available budget is 100% of the world switch
cycle interval and the profile of the application executing at
the first virtual function indicates that the application
requires 20% of the world switch cycle interval to render
each frame, the VF manager assigns a time slice that is 20%
of the world switch cycle interval to the first virtual function
and subtracts the assigned time slice to calculate an updated
current available budget of 80% of the world switch cycle
interval.

[0017] If a second virtual function requesting a time slice
at the parallel processor has a profile indicating that the
application executing at the second virtual function requires

Jun. 27, 2024

10% of the world switch cycle interval and the VF manager
has defined the minimum time slice as 12.5% of the world
switch cycle interval, the VF manager assigns a time slice
that is 12.5% of the world switch cycle interval, leaving an
available budget of 67.5%.

[0018] If a third virtual function requesting a time slice at
the parallel processor has a profile indicating that the appli-
cation executing at the third virtual function requires 60% of
the world switch cycle interval and the VF manager has
defined the minimum time slice as 12.5% of the world
switch cycle interval, the VF manager assigns a time slice
that is the entire remaining budget of 67.5% of the world
switch cycle interval to the third virtual function. The VF
manager assigns more than the 60% of the world switch
cycle interval that would accommodate the profile of the
application executing at the third virtual function because
assigning 60% would leave 7.5% of the world switch cycle
interval-which is less than the minimum time slice-unas-
signed.

[0019] In the second example, the first virtual function
receives a time slice that is 20% of the world switch cycle
interval, the second virtual function receives a time slice that
is 12.5% of the world switch cycle interval, and the third
virtual function receives a time slice that is 67.5% of the
world switch cycle interval, leaving no available budget for
the fourth virtual function. Thus, the VF manager declines a
request from the fourth virtual function for a time slice at the
parallel processor. The time slices assigned to the first three
virtual functions are not equal in duration, and 90% of the
parallel processor capacity is expected to be used, based on
the profiles of the applications executing at each of the
virtual functions.

[0020] By assigning time slices at the parallel processor to
virtual functions based on profiles of applications executing
at the virtual functions and an available processing budget of
the parallel processor, the VF manager allocates time slices
that accommodate the processing requirements of the appli-
cations and efficiently uses the processing resources of the
parallel processor. The unequal time slices reduce latency
and lagging for frames having longer rendering times and
reduce unused processing capacity of the parallel processor.

[0021] FIG. 1 is a block diagram of a processing system
100 configured to assign time slices at a parallel processor
to virtual functions based on profiles of applications execut-
ing at the virtual functions and an available budget of the
parallel processor in accordance with some embodiments.
The processing system 100 includes a central processing
unit (CPU) 102 for executing instructions such as draw calls
and a parallel processor 106 such as a GPU for performing
graphics processing and, in some embodiments, general
purpose computing. The processing system 100 also
includes a memory 104 such as a system memory, which is
implemented as dynamic random access memory (DRAM),
static random access memory (SRAM), nonvolatile RAM,
or other type of memory. The CPU 102, the parallel pro-
cessor 106, and the memory 104 communicate over an
interface 108 that is implemented using a bus such as a
peripheral component interconnect (PCI, PCI-E) bus. How-
ever, other embodiments of the interface 108 are imple-
mented using one or more of a bridge, a switch, a router, a
trace, a wire, or a combination thereof. The processing
system 100 is implemented in devices such as a computer,
a server, a laptop, a tablet, a smart phone, and the like.

US 2024/0211291 A1l

[0022] The CPU 102 executes processes such as one or
more applications 132, 134, 136 that generate commands, a
user mode driver 116, and other drivers. The applications
132, 134, 136 include applications that utilize the function-
ality of the parallel processor 106, such as applications that
generate work in the processing system 100 or an operating
system (OS). Some embodiments of the applications 132,
134, 136 generate commands that are provided to the
parallel processor 106 over the interface 108 for execution.
For example, the applications 132, 134, 136 can generate
commands that are executed by the parallel processor 106 to
render a graphical user interface (GUI), a graphics scene, or
other image or combination of images for presentation to a
user.

[0023] Some embodiments of the applications 132, 134,
136 utilize an application programming interface (API) (not
shown) to invoke the user mode driver 116 to generate the
commands that are provided to the parallel processor 106. In
response to instructions from the API, the user mode driver
116 issues one or more commands to the parallel processor
106, e.g., in a command stream or command buffer. The
parallel processor 106 executes the commands provided by
the API to perform operations such as rendering graphics
primitives into displayable graphics images. Based on the
graphics instructions issued by applications 132, 134, 136 to
the user mode driver 116, the user mode driver 116 formu-
lates one or more graphics commands that specify one or
more operations for the parallel processor 106 to perform for
rendering graphics. In some embodiments, the applications
132, 134, 136 each have a process that has an instance of the
user mode driver 116 that communicates with the guest OS
and kernel mode driver to utilize the parallel processor 106.

[0024] The processing system 100 comprises multiple
virtual machines (VMs), VM(1) 122, VM(2) 124, . . .,
VM(N) 126 that are configured in memory 104 on the
processing system 100. Resources from physical devices of
the processing system 100 are shared with the VMs 122,
124, 126. The resources can include, for example, a graphics
processor resource from the parallel processor 106, a central
processing unit resource from the CPU 102, a memory
resource from memory 104, a network interface resource
from a network interface controller, or the like. The VMs
122, 124, 126 use the resources for performing operations on
various data (e.g., video data, image data, textual data, audio
data, display data, peripheral device data, etc.). In one
embodiment, the processing system 100 includes a plurality
of resources, which are allocated and shared amongst the
VMs 122, 124, 126.

[0025] The processing system 100 also includes a hyper-
visor 110 that is represented by executable software instruc-
tions stored in memory 104 and manages instances of VMs
122, 124, 126. The hypervisor 110 is also known as a
virtualization manager or virtual machine manager (VMM).
The hypervisor 110 controls interactions between the VMs
122, 124, 126 and the various physical hardware devices,
such as the parallel processor 106. The hypervisor 110
includes software components for managing hardware
resources and software components for virtualizing or emu-
lating physical devices to provide virtual devices, such as
virtual disks, virtual processors, virtual network interfaces,
or a virtual parallel processor as further described herein for
each virtual machine 122, 124, 126. In one embodiment,
each virtual machine 122, 124, 126 is an abstraction of a
physical computer system and may include an operating

Jun. 27, 2024

system (OS), such as Microsoft Windows® and applica-
tions, which are referred to as the guest OS and guest
applications, respectively, wherein the term “guest” indi-
cates it is a software entity that resides within the VMs.

[0026] The VMs 122, 124, 126 generally are instanced,
meaning that a separate instance is created for each of the
VMs 122, 124, 126. One of ordinary skill in the art will
recognize that a host system may support any number N of
virtual machines. As illustrated, the hypervisor 110 provides
N virtual machines 122, 124, 126, with each of the guest
virtual machines 122, 124, 126 providing a virtual environ-
ment wherein guest system software resides and operates.
The guest system software includes applications 132, 134,
136 and VF kernel mode drivers (KMDs) (not shown)
typically under the control of a guest OS. The VF KMDs
control operation of the parallel processor 106 by, for
example, providing an API to software (e.g., applications
132, 134, 136) executing on the CPU 102 to access various
functionality of the parallel processor 106.

[0027] In various virtualization environments, single-root
input/output virtualization (SR-IOV) specifications allow
for a single Peripheral Component Interconnect Express
(PCle) device (e.g., parallel processor 106) to appear as
multiple separate PCle devices. A physical PCle device
(such as parallel processor 106) having SR-IOV capabilities
may be configured to appear as multiple functions. The term
“function” as used herein refers to a device with access
controlled by a PCle bus. SR-IOV operates using the con-
cepts of physical functions (PF) and virtual functions (VFs),
where physical functions are full-featured functions associ-
ated with the PCle device. A virtual function (VF) is a
function on a PCle device that supports SR-IOV. The VF is
associated with the PF and represents a virtualized instance
of the PCle device. Each VF has its own PCI configuration
space. Further, each VF also shares one or more physical
resources on the PCle device with the PF and other VFs.

[0028] In the example embodiment of FIG. 1, SR-IOV
specifications enable the sharing of parallel processor 106
among the virtual machines 122, 124, 126. The parallel
processor 106 is a PCle device having a physical function
128. The virtual functions VF(1) 142, VF(2) 144, . . .,
VF(N) 146 are derived from the physical function 128 of the
parallel processor 106, thereby mapping a single physical
device (e.g., the parallel processor 106) to a plurality of
virtual functions 142, 144, 146 that are shared with the guest
virtual machines 122, 124, 126. In some embodiments, the
hypervisor 110 maps (e.g., assigns) the virtual functions 142,
144, 146 to the guest virtual machines 122, 124, 126. In
another embodiment, the hypervisor 110 delegates the
assignment of virtual functions 142, 144, 146 to a physical
function (PF) driver 120 (also referred to as a host physical
driver) of the parallel processor 106. For example, VF(1)
142 is mapped to VM(1) 122, VF(2) 144 is mapped to
VM(2) 122, and so forth. The virtual functions 142, 144, 146
appear to the OS of their respective virtual machines 122,
124, 126 in the same manner as a physical parallel processor
would appear to an operating system, and thus, the virtual
machines 122, 124, 126 use the virtual functions 142, 144,
146 as though they were a hardware device. In some
embodiments, the PF driver 120 is implemented at the
hypervisor 110. In some embodiments, the PF driver 120 is
implemented at the host kernel space or host user mode
space (not shown).

US 2024/0211291 A1l

[0029] Initialization of a VF involves configuring hard-
ware registers of the parallel processor 106. The hardware
registers (not shown) store hardware configuration data for
the parallel processor 106. A full set of hardware registers is
accessible to the physical function 128. The hardware reg-
isters are shared among multiple VFs 142, 144, 146 by using
context save and restore to switch between and run each
virtual function. Therefore, exclusive access to the hardware
registers is required for the initializing of new VFs. As used
herein, “exclusive access” refers to the parallel processor
106 registers being accessible by only one virtual function at
a time during initialization of VFs 142, 144, 146. When a
virtual function is being initialized, all other virtual func-
tions are paused or otherwise put in a suspended state where
the virtual functions and their associated virtual machines do
not consume parallel processor 106 resources. When paused
or suspended, the current state and context of the VF/VM are
saved to a memory location. In some embodiments, exclu-
sive access to the hardware registers allows a new virtual
function to begin initialization by pausing other running
functions. After creation, the VF is able to be directly
assigned an [/O domain. The hypervisor 110 assigns a VF
142, 144, 146 to a corresponding VM 122, 124, 126 by
mapping configuration space registers of the VFs 142, 144,
146 to the configuration space presented to the VM by the
hypervisor 110. This capability enables the VF 142, 144, 146
to share the parallel processor 106 and to perform I/O
operations without CPU 102 and hypervisor 110 software
overhead.

[0030] In some embodiments, after a new virtual function
finishes initializing, a world switch control 112 triggers
world switches between all already active VFs (e.g., previ-
ously initialized VFs) which have already finished initial-
ization such that each VF is allocated a time slice on the
parallel processor 106 to handle any accumulated com-
mands. In operation, in various embodiments, the world
switch control 112 manages time slices for the VFs 142, 144,
146 that share the parallel processor 106. That is, the world
switch control 112 is configured to manage time slices by
tracking the time slices, stopping work on the parallel
processor 106 when a time slice for a VF 142, 144, 146 that
is being executed has expired, and starting work for the next
VF 142, 144, 146 having the subsequent time slice.

[0031] To more efficiently allocate time slices at the par-
allel processor 106 to the VFs 142, 144, 146, the processing
system includes a VF manager 114 to assign time slices
based on profiles of the applications 132, 134, 136 executing
at each of the respective VFs 142, 144, 146 and an available
budget of the parallel processor 106. The VF manager 114
evaluates requests from the VFs 142, 144, 146 for time slices
at the parallel processor 106 in the order in which the
requests are received. Each request includes a profile (not
shown) of the application 132, 134, 136 running at the
respective VF 142, 144, 146 indicating a budget requirement
of the application. The VF manager 114 determines whether
the budget requirement of each application 132, 134, 136
can be accommodated by the available budget of the parallel
processor 106. If the parallel processor 106 has sufficient
available budget to accommodate the budget requirement of
the application, the VF manager 114 assigns a time slice to
the virtual function with a duration that is based on the
budget requirement of the application.

[0032] Insome embodiments, the VF manager 114 defines
a minimum time slice that is a function of the ratio of

Jun. 27, 2024

switching overhead to usable time of the time slice. If a
profile of an application executing at a VF 142, 144, 146
indicates a budget requirement that is less than the minimum
time slice and at least the minimum time slice remains in the
available budget of the parallel processor 106, the VF
manager 114 assigns the VF 142, 144, 146 the minimum
time slice. In some embodiments, if a VF 142, 144, 146
requests a time slice at the parallel processor 106 and the
remaining available budget is less than the sum of a budget
requirement of an application executing at the VF 142, 144,
146 and the minimum time slice, the VF manager 114
assigns a time slice having a duration of the entire remaining
available budget to the VF 142, 144, 146.

[0033] FIG. 2 is a block diagram 200 illustrating the VF
manager 114 assigning time slices at the parallel processor
106 to virtual functions in accordance with some embodi-
ments. In the illustrated example, application 232 is execut-
ing at VF(1) 242, application 234 is executing at VF(2) 244,
applications 236 is executing at VF(3) 246, and application
238 is executing at VF(4) 248. Each application has an
associated profile indicating the budget requirements for
each frame of the application. Thus, application 232 has
profile 222, application 234 has profile 224, application 236
has profile 226, and application 238 has profile 228.
[0034] The PF driver 120 initializes the VF(1) 142, VF(2)
144, VF(3) 146, VF(4) 148 and receives their corresponding
profiles 222, 224, 226, 228. The world switch control 112
sets the world switch cycle interval as a function of the target
frame rate of the applications 232, 234, 236, 238 as indicated
in their respective profiles 222, 224, 226, 228. For example,
if the target frame rate is 60 fps, in some embodiments the
world switch control 112 sets the world switch cycle interval
as 1000/60 fps=16.67 milliseconds.

[0035] The VF manager 114 includes a comparator 208
configured to compare a budget requirement 202 of each
application 232, 234, 236, 238 indicated by each profile 222,
224, 226, 228 to a current available budget 204 of the
parallel processor 106 and a minimum time slice 206. For
each request to assign a time slice to a virtual function, the
comparator 208 determines if the budget requirement 202 is
less than the available budget 204 and more than the
minimum time slice 206. If the budget requirement 202 is
less than the available budget 204 and more than the
minimum time slice 206, the VF manager 114 assigns the
requested time slice budget 202 to the requesting VF. If the
budget requirement 202 is less than the available budget 204
and also less than the minimum time slice 206, the VF
manager 114 assigns the minimum time slice 206 to the
requesting VF.

[0036] Forexample, if VF(1) 242 is the first VF to request
a time slice, then the entire world switch cycle interval of
16.67 ms is in the available budget 204. If the profile 222
indicates that the budget requirement 202 of application 232
is 3.33 ms per frame (i.e., approximately 20% of the world
switch cycle interval of 16.67 ms) and the minimum time
slice is 2 ms per frame (i.e., approximately 12% of the world
switch cycle interval), the VF manager 114 assigns a time
slice of 3.33 ms, or 20% of the world switch cycle interval,
to VF(1) 242.

[0037] If VF(2) 244 is the second VF to request a time
slice, then approximately 80% of the world switch cycle
interval is left in the available budget 204. If the profile 224
indicates that the budget requirement 202 of the application
234 is 1.6 ms per frame (approximately 10% of the world

US 2024/0211291 A1l

switch cycle interval), the comparator 208 determines that
there is sufficient available budget 204 to accommodate
VF(2) 244’s request. However, because the budget require-
ment 202 is less than the minimum time slice 206, the VF
manager 114 assigns VF(2) 244 a time slice of the minimum
time slice 206 duration of 2 ms, or approximately 12% of the
world switch cycle interval, leaving an available budget 204
of 68% of the world switch cycle interval.

[0038] If VF(3) 246 is the third VF to request a time slice
and the profile 226 indicates that the budget requirement 202
of'the application 236 is 6.5 ms per frame, or approximately
39% of the world switch cycle interval, the comparator 208
determines that the available budget 204 of 68% can accom-
modate VF(3) 246 and that the budget requirement 202
exceeds the minimum time slice 206. The VF manager 114
therefore assigns VF(3) 246 a time slice having a duration of
6.5 ms, or 39% of the world switch cycle interval, leaving
an available budget 204 of 29% of the world switch cycle
interval.

[0039] The fourth VF to request a time slice is VF(4) 248.
The profile 228 indicates that the budget requirement 202 of
the application 238 is 3.33 ms per frame, or approximately
20% of the world switch cycle interval. The comparator 208
determines that the available budget of 29% of the world
switch cycle interval can accommodate VF(4) 248. How-
ever, the remaining available budget 204 would be less than
the minimum time slice 206 if the VF manager 114 assigns
a time slice having a duration of 3.33 ms per frame. To avoid
leaving a portion of the world switch cycle interval unas-
signed, in some embodiments the VF manager 114 assigns
VF(4) 248 a time slice having a duration of 4.84 ms, or the
remaining available budget 204 of 29% of the world switch
cycle interval.

[0040] FIG. 3 illustrates cross-frame inconsistency and
underutilization of a parallel processor by multiple virtual
functions. In example 300, a world switch cycle interval 314
is evenly divided among four VFs: VF1 is assigned time
slice 302, VF2 is assigned time slice 304, VF3 is assigned
time slice 306, and VF4 is assigned time slice 308. In the
illustrated example, the world switch cycle interval 314 is
16.67 ms, each time slice 302, 304, 306, 308 has a duration
316 0f 4.167 ms, and the applications running on the VFs are
held to a maximum of 60 fps. VF1 is running an application
with frames that require approximately 6 ms to render at the
parallel processor 106, which is longer than the assigned
time slice 302 of 4.167 ms. Accordingly, a frame N 310 is
not able to be fully rendered in a single time slice 302 and
must wait until VF1 regains the time slice after a full world
switch cycle interval 314 to complete rendering. Once frame
N 310 completes rendering, a next frame N+1 312 begins
rendering, but is likewise unable to complete rendering in a
single time slice 302. Rendering the frame N 310 takes a
time 318, resulting in lagging and a frame rate that is less
than 60 fps.

[0041] In example 320, the same world switch cycle
interval 314 is evenly divided among two VFs: VF1 is
assigned time slice 322, and VF2 is assigned time slice 324.
Thus, each time slice 322, 324 has a duration 326 of 8.34 ms.
In a two-VF configuration, the parallel processor 106 is able
to complete rendering frame N 310 for VF1 in a single time
slice 322. However, because the duration 326 of the time
slice 322 is greater than the time the rendering time for the
time slice 322 and the application is held to a maximum
frame rate of 60 fps, the parallel processor 106 experiences

Jun. 27, 2024

idle cycles in each time slice. Thus, equal time slice assign-
ments can result in increased latency, as illustrated in
example 300, and in underutilization of the parallel proces-
sor 106, as illustrated in example 320.

[0042] FIG. 4 is an illustration 400 of unequal time slices
assigned to multiple virtual functions for cross-frame con-
sistency and increased utilization of a parallel processor in
accordance with some embodiments. In the illustrated
example, a world switch cycle interval 430 is unevenly
divided among four VFs based on the profiles of applications
executing at each of the VFs. VF1 and VF3 are running
applications that have profiles indicating a relatively small
budget requirement (e.g., 15% of the world switch cycle
interval 430), while VF2 and VF4 are running applications
that have profiles indicating a relatively large budget
requirement (e.g., 35% of the world switch cycle interval
430).

[0043] Accordingly, the VF manager 114 assigns VF1 and
VF3 time slices 402, 406 that are each approximately 15%
of'the world switch cycle interval 430, and assigned VF2 and
VF4 time slices 404, 408 that are each approximately 35%
of the world switch cycle interval 430. During time slice
402, the parallel processor 106 renders frame 410 for VF1.
During time slice 404, the parallel processor renders frame
412 for VF2. During time slice 406, the parallel processor
renders frame 414 for VF3, and during time slice 408, the
parallel processor renders frame 416 for VF4. Because each
time slice is tailored to the budget requirements of the
applications executing at the VFs, the parallel processor 106
completes rendering each frame within the assigned time
slices. Thus, in the next world switch cycle interval, the
parallel processor renders frame 418 for VF1, frame 420 for
VE2, frame 422 for VF3, and frame 424 for VF4. With one
frame being rendered per world switch cycle interval, the
applications are able to maintain a steady frame rate (e.g., 60
fps). Additionally, the full capacity of the parallel processor
106 during world switch cycle interval 430 is used by the
VFs.

[0044] FIG. 5 is a flow diagram illustrating a method 500
for assigning time slices at a parallel processor to virtual
functions based on profiles of applications executing at the
virtual functions and an available budget of the parallel
processor in accordance with some embodiments. Although
the operations of FIG. 5 are described with respect to the
system of FIGS. 1-2, it should be appreciated that the
method 500, performed by any like system, with steps as
illustrated or any other feasible order, falls within the scope
of the present disclosure.

[0045] The method flow begins at block 502, at which the
world switch control 112 sets the world switch cycle interval
based on the number of virtual functions initialized at the
parallel processor 106 and the target frame rate of the
applications. At block 504, the VF manager 114 calculates
an available budget 204 of the parallel processor 106.

[0046] At block 506, the VF manager 114 receives a
request from a virtual function for a time slice at the parallel
processor 106. At block 508, the VF manager 114 compares
a budget requirement 202 indicated by a profile 222 of an
application 232 executing at the virtual function (e.g., VF(1)
242) to the available budget 204. At block 510, the com-
parator 208 determines if the budget requirement 202 is less
than the available budget 204. If the budget requirement
exceeds the available budget 204, the method flow continues

US 2024/0211291 A1l

to block 512. At block 512, the VF manager 114 declines the
request to assign a time slice to the VF.

[0047] If, at block 510, the comparator determines that the
budget requirement 202 is less than the available budget
204, the method flow continues to block 514. At block 514,
the comparator 208 determines if the budget requirement
202 is greater than the minimum time slice 206. If, at block
514, the comparator 208 determines that the budget require-
ment 202 is not greater than the minimum time slice 206, the
method flow continues to block 516. At block 516, the VF
manager 114 assigns the VF a minimum time slice. If, at
block 514, the comparator 208 determines that the budget
requirement 202 is greater than the minimum time slice 206,
the method flow continues to block 518. At block 518, the
VF manager 114 assigns the VF a time slice having a
duration based on the budget requirement 202 indicated by
the profile 222.

[0048] In some embodiments, the apparatus and tech-
niques described above are implemented in a system includ-
ing one or more integrated circuit (IC) devices (also referred
to as integrated circuit packages or microchips), such as the
processing system described above with reference to FIGS.
1-5. Electronic design automation (EDA) and computer
aided design (CAD) software tools may be used in the
design and fabrication of these IC devices. These design
tools typically are represented as one or more software
programs. The one or more software programs include code
executable by a computer system to manipulate the com-
puter system to operate on code representative of circuitry of
one or more [C devices so as to perform at least a portion of
a process to design or adapt a manufacturing system to
fabricate the circuitry. This code can include instructions,
data, or a combination of instructions and data. The software
instructions representing a design tool or fabrication tool
typically are stored in a computer readable storage medium
accessible to the computing system. Likewise, the code
representative of one or more phases of the design or
fabrication of an IC device may be stored in and accessed
from the same computer readable storage medium or a
different computer readable storage medium.

[0049] A computer readable storage medium may include
any non-transitory storage medium, or combination of non-
transitory storage media, accessible by a computer system
during use to provide instructions and/or data to the com-
puter system. Such storage media can include, but is not
limited to, optical media (e.g., compact disc (CD), digital
versatile disc (DVD), Blu-Ray disc), magnetic media (e.g.,
floppy disc, magnetic tape, or magnetic hard drive), volatile
memory (e.g., random access memory (RAM) or cache),
non-volatile memory (e.g., read-only memory (ROM) or
Flash memory), or microelectromechanical systems
(MEMS)-based storage media. The computer readable stor-
age medium may be embedded in the computing system
(e.g., system RAM or ROM), fixedly attached to the com-
puting system (e.g., a magnetic hard drive), removably
attached to the computing system (e.g., an optical disc or
Universal Serial Bus (USB)-based Flash memory), or
coupled to the computer system via a wired or wireless
network (e.g., network accessible storage (NAS)).

[0050] In some embodiments, certain aspects of the tech-
niques described above may implemented by one or more
processors of a processing system executing software. The
software includes one or more sets of executable instructions
stored or otherwise tangibly embodied on a non-transitory

Jun. 27, 2024

computer readable storage medium. The software can
include the instructions and certain data that, when executed
by the one or more processors, manipulate the one or more
processors to perform one or more aspects of the techniques
described above. The non-transitory computer readable stor-
age medium can include, for example, a magnetic or optical
disk storage device, solid state storage devices such as Flash
memory, a cache, random access memory (RAM) or other
non-volatile memory device or devices, and the like. The
executable instructions stored on the non-transitory com-
puter readable storage medium may be in source code,
assembly language code, object code, or other instruction
format that is interpreted or otherwise executable by one or
more processors.

[0051] Note that not all of the activities or elements
described above in the general description are required, that
a portion of a specific activity or device may not be required,
and that one or more further activities may be performed, or
elements included, in addition to those described. Still
further, the order in which activities are listed are not
necessarily the order in which they are performed. Also, the
concepts have been described with reference to specific
embodiments. However, one of ordinary skill in the art
appreciates that various modifications and changes can be
made without departing from the scope of the present
disclosure as set forth in the claims below. Accordingly, the
specification and figures are to be regarded in an illustrative
rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present
disclosure.

[0052] Benefits, other advantages, and solutions to prob-
lems have been described above with regard to specific
embodiments. However, the benefits, advantages, solutions
to problems, and any feature(s) that may cause any benefit,
advantage, or solution to occur or become more pronounced
are not to be construed as a critical, required, or essential
feature of any or all the claims. Moreover, the particular
embodiments disclosed above are illustrative only, as the
disclosed subject matter may be modified and practiced in
different but equivalent manners apparent to those skilled in
the art having the benefit of the teachings herein. No
limitations are intended to the details of construction or
design herein shown, other than as described in the claims
below. It is therefore evident that the particular embodiments
disclosed above may be altered or modified and all such
variations are considered within the scope of the disclosed
subject matter. Accordingly, the protection sought herein is
as set forth in the claims below.

What is claimed is:

1. A method comprising:

selectively assigning a first time slice at a parallel pro-
cessor to a first virtual function based on a current
available budget of the parallel processor and a profile
of a first application executing at the first virtual
function;

updating the current available budget; and

selectively assigning a second time slice at the parallel
processor to a second virtual function based on the
updated current available budget and a profile of a
second application executing at the second virtual
function.

2. The method of claim 1, wherein a duration of the first
time slice differs from a duration of the second time slice.

US 2024/0211291 A1l

3. The method of claim 1, wherein the current available
budget of the parallel processor is a world switch cycle
interval minus a sum of assigned time slices.

4. The method of claim 1, wherein the profile of the first
application comprises a parallel processor budget require-
ment of the first application and the profile of the second
application comprises a parallel processor budget require-
ment of the second application.

5. The method of claim 4, wherein selectively assigning
comprises assigning the second time slice in response to the
updated current available budget exceeding the parallel
processor budget requirement of the second application.

6. The method of claim 4, wherein selectively assigning
comprises assigning time slices having at least a minimum
duration.

7. The method of claim 6, wherein the minimum amount
is based on a ratio of world switch overhead to usable time
of the parallel processor.

8. A method comprising:

assigning time slices at a parallel processor to a plurality

of virtual functions, wherein a duration of each time
slice is based on a profile of an application executing at
each of the virtual functions and an available budget of
the parallel processor.

9. The method of claim 8, wherein a duration of a first
time slice of the time slices differs from a duration of a
second time slice of the time slices.

10. The method of claim 8, wherein the available budget
of the parallel processor is a world switch cycle interval
minus a sum of assigned time slices.

11. The method of claim 8, wherein the profile of the
application comprises a parallel processor budget require-
ment of the application.

12. The method of claim 8, further comprising:

declining a request from a virtual function for a time slice

in response to the parallel processor budget require-

Jun. 27, 2024

ment of the application executing at the virtual function
exceeding the available budget of the parallel proces-
SOr.

13. The method of claim 8, wherein the duration of each
time slice is not less than a minimum amount.

14. The method of claim 13, wherein the minimum
amount is based on a ratio of world switch overhead to
usable time of the parallel processor.

15. A device comprising:

a parallel processor configured to execute requests from

virtual functions; and

a virtual function manager configured to assign time slices

at the parallel processor to a plurality of virtual func-
tions, wherein a duration of each time slice is based on
a profile of an application executing at each of the
virtual functions and an available budget of the parallel
processor.

16. The device of claim 15, wherein a duration of a first
time slice of the time slices differs from a duration of a
second time slice of the time slices.

17. The device of claim 15, wherein the available budget
of the parallel processor is a world switch cycle interval
minus a sum of assigned time slices.

18. The device of claim 15, wherein the profile of the
application comprises a parallel processor budget require-
ment of the application.

19. The device of claim 18, wherein the virtual function
selector is further configured to:

decline a request from a virtual function for a time slice

in response to the parallel processor budget require-
ment of the application executing at the virtual function
exceeding the available budget of the parallel proces-
SOr.

20. The device of claim 18, wherein the duration of each
time slice is not less than a minimum amount.

#* #* #* #* #*

