
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0233136A1

Benhase, JR. et al.

US 20120233.136A1

(43) Pub. Date: Sep. 13, 2012

(54)

(75)

(73)

(21)

(22)

(63)

DELETING RELATIONS BETWEEN
SOURCES AND SPACE-EFFICIENT TARGETS
IN MULT-TARGET ARCHITECTURES

Inventors: Michael T. Benhase, JR., Tucson,
AZ (US); Theresa M. Brown,
Tucson, AZ (US); Lokesh M.
Gupta, Tucson, AZ (US); Rivka
Mayraz Matosevich, Zikhron
Ya'akov (IL); Carol S. Mellgren,
Tucson, AZ (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Appl. No.: 13/456,188

Filed: Apr. 25, 2012

Related U.S. Application Data

Continuation of application No. 13/043,409, filed on
Mar. 8, 2011.

N e t W O r k 1 O 4.

SAN

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/692; 707/E17.002

(57) ABSTRACT

A method for deleting a relation between a source and a target
in a multi-target architecture is described. The multi-target
architecture includes a source and multiple space-efficient
(SE) targets mapped thereto. In one embodiment, such a
method includes initially identifying a relation for deletion
from the multi-target architecture. A space-efficient (SE) tar
get associated with the relation is then identified. A mapping
structure maps data in logical tracks of the SE target to physi
cal tracks of a repository. The method then identifies a sibling
SE target that inherits data from the SE target. Once the SE
target and the sibling SE target are identified, the method
modifies the mapping structure to map the data in the physical
tracks of the repository to the logical tracks of the sibling SE
target. The relation is then deleted between the source and the
SE target.

112

1 108 O

110C 110C

Patent Application Publication Sep. 13, 2012 Sheet 1 of 15 US 2012/0233.136A1

NetWOrk 1 104. 4.

O O

106 106 106

SAN 108 Sr. s er?

110C 110C

Patent Application Publication Sep. 13, 2012 Sheet 2 of 15 US 2012/0233.136A1

Storage Controller

200 Host Adapter(s)
208

Server 206a Server 206b

Processor(s) Processor(s)
212 212

y 21

Patent Application Publication Sep. 13, 2012 Sheet 3 of 15

Storage System
110

Fig. 3

Target
Volume 1
304a

Target
Volume 2
3O4b

Target
Volume 3
304C

Target
Volume n

3O4C

US 2012/0233.136A1

Patent Application Publication Sep. 13, 2012 Sheet 4 of 15 US 2012/0233.136A1

Find Higher Source
and Read from Read from Volume
Higher Source

500

502

Copy from Source to
506 Youngest Child Do Nothing

Fig. 5

Patent Application Publication Sep. 13, 2012 Sheet 5 of 15 US 2012/0233.136A1

600

6O2 604

Copy from Higher Source to
Closest Older Sibling

TBMS
for Target X and
Closest Older
Sibling Set

TBM for
Target X not Set, and
TBM for COSest Older

Sibling Set
2

Do Nothing

Copy from Target X to
Closest Older Sibling

Fig. 6

Patent Application Publication Sep. 13, 2012 Sheet 6 of 15 US 2012/0233.136A1

700

-

704

Read from Volume

Next
Relation With
Higher GN
FOUnd?

712

Read from SOUrCe

718

Read from Target

Fig. 7

Patent Application Publication Sep. 13, 2012 Sheet 7 of 15 US 2012/0233.136A1

800

-

804

No Copy Required

Next
Relation with
Higher GN
FOUnd?

812

Copy from Source

818

Copy from Target

Fig. 8

Patent Application Publication Sep. 13, 2012 Sheet 8 of 15 US 2012/0233.136A1

Storage System
110

Fig. 9

Patent Application Publication Sep. 13, 2012 Sheet 9 of 15 US 2012/0233.136A1

Data Data

| 1 || 0 | SvData O TV2 Data
| 2 || 1 || || 0 | SvData
3		1				1	
4		1				1	
5		1				1	
6		1				1	

Fig. 10

Data Data Data

| 1 || 0 || SvData || 0 | TV2 Data 1
| 2 || 1 || || 0 | SvData 1
| 3 || 1 || || 1 || || 0 | SvData
| 4 || 0 | SvData || 0 | TV2 Data 1
| 5 || 0 | TV Data 1 || || 1 |
| 6 || 1 || || 0 | SvData o TV3 Data

Fig.11

Patent Application Publication Sep. 13, 2012 Sheet 10 of 15

Storage System
110

Fig. 12A

Target
Volume 1
304a

Target
Volume 2

304b.

Target
Volume 3
304C

Target
Volume in
304d

US 2012/0233.136A1

Patent Application Publication Sep. 13, 2012 Sheet 11 of 15 US 2012/0233.136A1

Storage System

Repository
1200

SE Target
Volume 3

SE Target
Volume r

Fig. 12B

Patent Application Publication Sep. 13, 2012 Sheet 12 of 15 US 2012/0233.136A1

Relationship Table
13OO

SOUrCe
Relationship Entry

1302a

Target
Relationship Entry

1302b

Fig. 13

Patent Application Publication Sep. 13, 2012 Sheet 13 of 15 US 2012/0233.136A1

Request
to Withdraw
Received

Relation
Already in
PrOCeSS

Place Relation in Queue (Sort
1408 Oueue from Oldest to

Youngest)

Patent Application Publication Sep. 13, 2012 Sheet 14 of 15 US 2012/0233.136A1

1500

Modify Mapping Structure to Map
Track in Repository to COS.

ReSet TBM Of COS

Last Track
Reached?

Examine Next Track of SE Target
and COS

Fig. 15

1514

Patent Application Publication Sep. 13, 2012 Sheet 15 of 15 US 2012/0233.136A1

ldentify Next Track Range of
1600 SE Target

1602

Target?
1604

Examine Next Track Of Track
1606 Range and COS

TBM
of SE Target

Set?

Another
Track in Track

Range?

Y

Modify Mapping Structure to
Map Track in Repository to
COS. ReSet TBM Of COS

Fig. 16

US 2012/0233.13.6 A1

DELETING RELATIONS BETWEEN
SOURCES AND SPACE-EFFICIENT TARGETS

IN MULT-TARGET ARCHITECTURES

BACKGROUND

0001 1. Field of the Invention
0002 This invention relates to data replication, and more
particularly to apparatus and methods for creating point-in
time copies of data while minimizing data duplication.
0003 2. Background of the Invention
0004 Data replication functions such as IBM's Flash
Copy, Hitachi’s ShadowImage, or the like, may be used to
generate nearly instantaneous point-in-time copies of logical
Volumes or datasets. Among other uses, these point-in-time
copies may be used for disaster recovery and business conti
nuity purposes. IBM's Flash Copy in particular creates a
point-in-time copy by establishing a relation (or "mapping)
between a source Volume and a target Volume. Once this
relation is established, data may be read from either the
Source Volume or target Volume. A target bit map associated
with a target Volume keeps track of which data tracks have
actually been copied from the source Volume to the target
Volume. In certain cases, Volumes may be arranged in a cas
caded configuration Such that certain Volumes function as
both targets and Sources. In other cases, Volumes may be
arranged in a flat (or “multi-target') configuration Such that a
Source Volume has relations with multiple target Volumes.
0005 Nevertheless, I/O performance can be impacted sig
nificantly as the number of volumes increases in either a
cascaded or multi-target configuration. For example, in a
cascaded configuration, a write to a source Volume may need
to wait for data to be copied between various volumes in the
cascade before the write can be performed. Thus, the larger
number of Volumes in the cascade, the larger number of
copies that need to occur before data can be written to the
Source Volume. Similarly, in a multi-target configuration, a
write to a source volume may need to wait for data to be
copied to each connected target before the write can be per
formed. The larger number of volumes in the multi-target
configuration, the larger number of copies that need to occur
before data can be written to the source Volume. This can
make a write to a source Volume very slow. For this reason,
current Flash Copy implementations typically only allow a
limited number of targets in a multi-target configuration to
keep the performance impact within an acceptable range.
0006. In view of the foregoing, what are needed are meth
ods to reduce the performance impact of having large num
bers of Volumes in cascaded or multi-target configurations.
For example, methods are needed to reduce data duplication
in cascaded or multi-target configurations when performing
reads and writes thereto. Further needed are methods to effi
ciently delete relations in cascaded or multi-target configura
tions.

SUMMARY

0007. The invention has been developed in response to the
present state of the art and, in particular, in response to the
problems and needs in the art that have not yet been fully
solved by currently available methods. Accordingly, the
invention has been developed to provide methods for deleting
relations between Sources and space-efficient targets in multi
target architectures. The features and advantages of the inven
tion will become more fully apparent from the following

Sep. 13, 2012

description and appended claims, or may be learned by prac
tice of the invention as set forth hereinafter.
0008 Consistent with the foregoing, a method for deleting
a relation between a source and a target in a multi-target
architecture is disclosed. The multi-target architecture
includes a source and multiple space-efficient (SE) targets
mapped thereto. In one embodiment, such a method includes
initially identifying a relation for deletion from the multi
target architecture. A space-efficient (SE) target associated
with the relation is then identified. A mapping structure maps
data in logical tracks of the SE target to physical tracks of a
repository. The method then identifies a sibling SE target that
inherits data from the SE target. Once the SE target and the
sibling SE target are identified, the method modifies the map
ping structure such that the data in the physical tracks of the
repository is mapped to the logical tracks of the sibling SE
target. The relation is then deleted between the source and the
SE target.

BRIEF DESCRIPTION OF THE DRAWINGS

0009. In order that the advantages of the invention will be
readily understood, a more particular description of the inven
tion briefly described above will be rendered by reference to
specific embodiments illustrated in the appended drawings.
Understanding that these drawings depict only typical
embodiments of the invention and are not therefore to be
considered limiting of its scope, the invention will be
described and explained with additional specificity and detail
through use of the accompanying drawings, in which:
0010 FIG. 1 is a high-level block diagram showing one
example of a network architecture comprising various types
of storage systems;
0011 FIG. 2 is a high-level block diagram showing one
example of a storage system where a methodology in accor
dance with the invention may be implemented;
0012 FIG. 3 is a high-level block diagram showing one
example of a multi-target architecture comprising a source
Volume mapped to multiple target Volumes;
0013 FIG. 4 is a high-level block diagram showing one
embodiment of a method for reading a track from a target
Volume;
0014 FIG. 5 is a flow diagram showing one embodiment
of a method for copying a data track in response to a write to
a source Volume;
0015 FIG. 6 is a flow diagram showing one embodiment
of a method for copying a data track in response to a write to
a target Volume;
0016 FIG. 7 is a flow diagram showing one embodiment
of a method for finding a higher source (HS) volume in
response to a read to a Volume;
0017 FIG. 8 is a flow diagram showing one embodiment
of a method for finding a higher source (HS) volume in
response to a write to a Volume;
0018 FIG.9 is a high-level diagram showing one example
of a multi-target architecture showing the use of generation
numbers;
(0019 FIGS. 10 and 11 are tables showing data and TBM
values for the volumes illustrated in FIG. 9 after various
writes are made thereto;
0020 FIG. 12A is a high-level block diagram showing the
deletion of a relation between a source Volume and a target
Volume;

US 2012/0233.13.6 A1

0021 FIG.12B is a high-level block diagram showing the
deletion of a relation between a source Volume and a space
efficient (SE) target volume:
0022 FIG. 13 is a high-level block diagram showing in
memory source and target relationship entries;
0023 FIG. 14 is a flow diagram showing one embodiment
of a method for deleting a relation between a source and a SE
target in a multi-target architecture;
0024 FIG. 15 is a flow diagram showing one embodiment
of a method for processing a deleted relation; and
0025 FIG. 16 is a flow diagram showing another embodi
ment of a method for processing a deleted relation.

DETAILED DESCRIPTION

0026. It will be readily understood that the components of
the present invention, as generally described and illustrated in
the Figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of the invention, as
represented in the Figures, is not intended to limit the scope of
the invention, as claimed, but is merely representative of
certain examples of presently contemplated embodiments in
accordance with the invention. The presently described
embodiments will be best understood by reference to the
drawings, wherein like parts are designated by like numerals
throughout.
0027. As will be appreciated by one skilled in the art, the
present invention may be embodied as an apparatus, system,
method, or computer program product. Furthermore, the
present invention may take the form of a hardware embodi
ment, a Software embodiment (including firmware, resident
Software, micro-code, etc.) configured to operate hardware,
or an embodiment combining software and hardware aspects
that may all generally be referred to herein as a “module” or
“system.” Furthermore, the present invention may take the
form of a computer-usable storage medium embodied in any
tangible medium of expression having computer-usable pro
gram code stored therein.
0028. Any combination of one or more computer-usable
or computer-readable storage medium(s) may be utilized to
store the computer program product. The computer-usable or
computer-readable storage medium may be, for example but
not limited to, an electronic, magnetic, optical, electromag
netic, infrared, or semiconductor system, apparatus, or
device. More specific examples (a non-exhaustive list) of the
computer-readable storage medium may include the follow
ing: an electrical connection having one or more wires, a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, or a magnetic
storage device. In the context of this document, a computer
usable or computer-readable storage medium may be any
medium that can contain, store, or transport the program for
use by or in connection with the instruction execution system,
apparatus, or device.
0029 Computer program code for carrying out operations
of the present invention may be written in any combination of
one or more programming languages, including an object
oriented programming language Such as Java, Smalltalk,
C++, or the like, and conventional procedural programming
languages. Such as the “C” programming language or similar
programming languages. Computer program code for imple

Sep. 13, 2012

menting the invention may also be written in a low-level
programming language such as assembly language.
0030 The present invention may be described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus, systems, and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions or code. These
computer program instructions may be provided to a proces
sor of a general-purpose computer, special-purpose com
puter, or other programmable data processing apparatus to
produce a machine. Such that the instructions, which execute
via the processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

0031. The computer program instructions may also be
stored in a computer-readable storage medium that can direct
a computer or other programmable data processing apparatus
to function in a particular manner, such that the instructions
stored in the computer-readable storage medium produce an
article of manufacture including instruction means which
implement the function/act specified in the flowchart and/or
block diagram block or blocks. The computer program
instructions may also be loaded onto a computer or other
programmable data processing apparatus to cause a series of
operational steps to be performed on the computer or other
programmable apparatus to produce a computer implemented
process Such that the instructions which execute on the com
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.
0032 Referring to FIG.1, one example of a network archi
tecture 100 is illustrated. The network architecture 100 is
presented to show one example of an environment where a
point-in-time-copy methodology in accordance with the
invention may be implemented. The network architecture 100
is presented only by way of example and not limitation.
Indeed, the methodology disclosed herein may be applicable
to a wide variety of different computers, servers, storage
devices, and network architectures, in addition to the network
architecture 100 shown.

0033. As shown, the network architecture 100 includes
one or more computers 102,106 interconnected by a network
104. The network 104 may include, for example, a local-area
network (LAN) 104, a wide-area-network (WAN) 104, the
Internet 104, an intranet 104, or the like. In certain embodi
ments, the computers 102, 106 may include both client com
puters 102 and server computers 106 (also referred to herein
as “host systems' 106). In general, the client computers 102
initiate communication sessions, whereas the server comput
ers 106 wait for requests from the client computers 102. In
certain embodiments, the computers 102 and/or servers 106
may connect to one or more internal or external direct-at
tached storage systems 112 (e.g., arrays of hard-disk drives,
solid-state drives, tape drives, etc.). These computers 102.
106 and direct-attached storage systems 112 may communi
cate using protocols such as ATA, SATA, SCSI, SAS, Fibre
Channel, or the like. One or more of the storage systems 112
may utilize the point-in-time-copy methodology disclosed
herein.

US 2012/0233.13.6 A1

0034. The network architecture 100 may, in certain
embodiments, include a storage network 108 behind the serv
ers 106, such as a storage-area-network (SAN) 108 or a LAN
108 (e.g., when using network-attached storage). This net
work 108 may connect the servers 106 to one or more storage
systems 110, such as arrays 110a of hard-disk drives or solid
state drives, tape libraries 110b, individual hard-disk drives
110c or solid-state drives 110c, tape drives 110d, CD-ROM
libraries, or the like. To access a storage system 110, a host
system 106 may communicate over physical connections
from one or more ports on the host 106 to one or more ports
on the storage system 110. A connection may be through a
Switch, fabric, direct connection, or the like. In certain
embodiments, the servers 106 and storage systems 110 may
communicate using a networking standard Such as Fibre
Channel (FC). One or more of the storage systems 110 may
utilize the point-in-time-copy methodology disclosed herein.
0035 Referring to FIG. 2, one embodiment of a storage
system 110b containing an array of hard-disk drives 204
and/or solid-state drives 204 is illustrated. The internal com
ponents of the storage system 110b are shown since the point
in-time-copy methodology disclosed herein may, in certain
embodiments, be implemented within Such a storage system
110b, although the methodology may also be applicable to
other storage systems 110. As shown, the storage system 110b
includes a storage controller 200, one or more switches 202,
and one or more storage devices 204. Such as hard disk drives
204 or solid-state drives 204 (such as flash-memory-based
drives 204). The storage controller 200 may enable one or
more hosts 106 (e.g., open system and/or mainframe servers
106) to access data in the one or more storage devices 204.
0036. In selected embodiments, the storage controller 200
includes one or more servers 206. The storage controller 200
may also include host adapters 208 and device adapters 210 to
connect the storage controller 200 to host devices 106 and
storage devices 204, respectively. Multiple servers 206a,
206b may provide redundancy to ensure that data is always
available to connected hosts 106. Thus, when one server 206a
fails, the other server 206b may pick up the I/O load of the
failed server 206a to ensure that I/O is able to continue
between the hosts 106 and the storage devices 204. This
process may be referred to as a “failover.”
0037. One example of a storage system 110b having an
architecture similar to that illustrated in FIG. 2 is the IBM
DS8000TM enterprise storage system. The DS8000TM is a
high-performance, high-capacity storage controller provid
ing disk storage that is designed to Support continuous opera
tions. Nevertheless, the methods disclosed herein are not
limited to the IBM DS8000TM enterprise storage system
110b, but may be implemented in any comparable or analo
gous storage system 110, regardless of the manufacturer,
product name, or components or component names associ
ated with the system 110. Furthermore, any storage system
that could benefit from one or more embodiments of the
invention is deemed to fall within the scope of the invention.
Thus, the IBM DS8000TM is presented only by way of
example and is not intended to be limiting.
0038. In selected embodiments, each server 206 may
include one or more processors 212 and memory 214. The
memory 214 may include Volatile memory (e.g., RAM) as
well as non-volatile memory (e.g., ROM, EPROM,
EEPROM, hard disks, flash memory, etc.). The volatile and
non-volatile memory may, in certain embodiments, store
Software modules that run on the processor(s) 212 and are

Sep. 13, 2012

used to access data in the storage devices 204. The servers 206
may host at least one instance of these software modules.
These software modules may manage all read and write
requests to logical Volumes in the storage devices 204.
0039. In selected embodiments, the memory 214 includes
a cache 218. Whenever a host 106 (e.g., an open system or
mainframe server 106) performs a read operation, the server
206 that performs the read may fetch data from the storages
devices 204 and save it in its cache 218 in the event it is needed
again. If the data is requested again by a host 106, the server
206 may fetch the data from the cache 218 instead of fetching
it from the storage devices 204, saving both time and
resources. Similarly, when a host 106 performs a write, the
server 106 that receives the write request may store the write
in its cache 218. The server 106 may then destage the write to
the storage devices 204 as time and resources allow.
0040. Referring to FIG. 3, one example of a multi-target
architecture 300 for creating point-in-time copies is illus
trated. Such an architecture 300 may be implemented within
a storage system 110. Such as the storage system 110b illus
trated in FIG. 2. As shown, the multi-target architecture 300
includes a source Volume 302 and one or more target Volumes
304a-d. Each of the target volumes 304a-d contains a point
in-time copy of data in the source volume 302. In selected
embodiments, such as in Flash Copy implementations, a
point-in-time copy is created by establishing a relation (or
“mapping') between a source volume 302 and a target vol
ume 304. Once this relation is established, data may be read
from either the source volume 302 or target volume 304 even
though data may still not be copied from the Source Volume
302 to the target volume 304. A target bit map (TBM) 306
associated with a target volume 304 keeps track of which data
tracks have actually been copied from the source volume 302
to the target volume 304. For example, a “0” in the TBM 306
may indicate that a data track has been copied (i.e., the target
volume 304 has its own data), whereas a “1” may indicate that
a data track has not yet been copied. In cases where the TBM
306 contains a “1,” a read to a track on the target volume 306
may be directed to the corresponding track on the source
volume 302. For the purposes of this disclosure, a bit in a
TBM 304 is said to be “set if it contains a “1” and “reset if
it contains a “0” although this could be reversed in other
embodiments. Although the source 302 and targets 304 are
labeled as “volumes” in the illustrated embodiment, it should
be recognized that the source 302 and targets 304 could also
be datasets or other collections of data.

0041 As previously mentioned, in conventional multi
target architectures 300, a write to a source volume 302 may
need to wait for data in the source volume 302 to be copied
(i.e., destaged) to each connected target Volume 304a-d not
containing its own data before the write can be completed to
the source volume 302. That is, before a write is performed on
a data track of the source volume 302, the existing data track
needs to be copied to target volumes 304a-d that do not
already contain the data track before the data track on the
source volume 302 is overwritten. The larger the number of
target volumes 304a-d in the multi-target architecture 300,
the larger number of copies that need to occur before data can
be successfully written to the source volume 302. This can
make a write to the source volume 302 very slow. For this
reason, conventional point-in-time-copy technologies may
only support a limited number (e.g., twelve) of targets 304 in
multi-target architectures 300 to keep the performance
impact within an acceptable range.

US 2012/0233.13.6 A1

0042. As will be explained in more detail hereafter, an
improved methodology in accordance with the invention may
be used reduce the performance impact of having multiple
target volumes 304a-d mapped to a source volume 302.
Instead of copying data to multiple targets 304a-d when a
write is performed on the source volume 302, the improved
methodology copies the data to a single target 304 or a Subset
of the targets 304. An inheritance scheme then enables other
targets 304 to inherit the data from the single target 304 or
subset of targets 304 that contain the data. In this way, a write
to a source Volume 302 may only need to copy data to a single
target 304 or a subset of the targets 304 before the write can be
completed on the source volume 302. The flow diagrams
illustrated in FIGS. 4 through 8 show various specific
examples of methods to implement Such a methodology.
0043 Referring to FIG. 4, one example of a method 400
for reading a track from a target volume 304 is illustrated.
Upon receiving a request to read a data track from a target
volume 304, the method 400 determines 402 whether the
TBM of the target volume 304 is set. If the TBM is not set
(indicating that the target Volume 304 contains the requested
data), the method 400 simply reads 406 the requested data
track from the target volume 304. On the other hand, if the
TBM is set (indicating that the target volume 304 does not
contain the requested data), the method 400 finds 404 a higher
source (HS) volume from which to read the data, and reads
404 from the HS volume. One method 700 for finding the HS
volume is described in association with FIG. 7. For the pur
poses of this disclosure, the HS Volume is the volume that
contains the requested data and from which the target Volume
304 inherits.

0044) Referring to FIG. 5, one embodiment of a method
500 for destaging a data track in response to a write to a source
volume 302 is illustrated. As shown, the method 500 initially
finds 502 the youngest child (YC) of the source volume 302.
For the purposes of this disclosure, the YC is the target vol
ume 304 that was last mapped to the source volume 302. In
selected embodiments, generation numbers (GNs) may be
used to determine the order in which target volumes 304 were
added to the source volume 302 in order to generate point-in
time copies. The manner in which GNs are used to determine
the order the targets 304 were mapped to the source volume
302 will be discussed in association with FIG. 9.

0045. Once the method 500 finds the YC, the method 500
determines 504 whether the TBM of the YC is set. If the TBM
is not set (indicating that the YC 304 contains its own copy of
the data), the method 500 does nothing 508 since the YC 304
already has a copy of the data. On the other hand, if the TBM
is set (indicating that the YC 304 does not contain its own
copy of the data), the method 500 copies 506 the data from the
source volume 302 to the YC 304. In this way, when a write
occurs to the Source Volume 302, a single copy is made
between the source volume 302 and the YC304 as opposed to
copying the data to all target Volumes 304 not containing the
data. The other target volumes 304 (not the YC304) may then
inherit this data from theYC 304, such as when a read is made
to the other volumes 304 or when data is copied from the other
Volumes 304.

0046 Referring to FIG. 6, one embodiment of a method
600 for destaging a data track in response to a write to a target
volume 304 (target X) is illustrated. As shown, the method 600
initially determines 602 whether the TBMs for the target X
304 and the closest older sibling (COS) 304 are set for the
track that is being written to. For the purposes of this disclo

Sep. 13, 2012

sure, the COS is the target volume 304 that was mapped just
before the targetx304. If both of the TBMs are set (indicating
that neither volume contains the data in the track being writ
ten to), the method 600 copies 604 the data track from the
higher source (HS) volume to the COS 3.04. A method for
finding the HS Volume will be discussed in association with
FIG.8. On the other hand, if the TBM for the target X is not set
and the TBM for the COS is set (indicating that the target X
304 contains data in the data track being overwritten), as
determined at step 606, the method 600 copies 608 the data
track from the target X to the COS304 i.e., the data track is
destaged from the target x 304 to the COS 3.04. On the other
hand, if the TBM of the COS is not set (indicating that the
COS contains the data), or there is no COS, the method 600
does nothing 610 since no copy is needed. Once the end of the
method 600 is reached, the write may be performed on the
target X.
0047. It should be recognized that the methods 500, 600
described above could be modified in various ways without
departing from the essence of the invention. For example, the
youngest child (YC) could be replaced by the oldest child,
and the closest older sibling (COS) could be replaced by the
closest younger sibling. Thus, for the purposes of this disclo
sure, embodiments that utilize the YC and the COS are also
deemed to encompass embodiments that utilize the oldest
child and closest younger sibling. Other variations are also
possible and within the scope of the invention.
0048 Referring to FIG. 7, one embodiment of a method
700 for finding the HS volume for a read is illustrated. Sucha
method 700 may be used in association with step 404 of FIG.
4. As shown, the method 700 initially determines 702 whether
the volume being read is a target volume 304. If not, the
method 700 reads 704 from the volume since it is a source
volume 302. If the volume is a target volume 304, the method
determines 706 whether the TBM of the volume is set. If the
TBM is not set, the method 700 reads 704 from the volume
304. If the TBM of the volume is set, the method 700 finds 708
the source volume 302 associated with the target volume 304.
The method 700 then finds 710 the next relation with a gen
eration number (GN) just higher than that of the subject target
Volume 304. The manner in which the GNs are used will be
explained in more detail in the example of FIG. 9.
0049. In general, the decision step 710 finds the relation on
the source volume 302 that is just younger than the relation
associated with the subject target volume 304 (as identified at
step 702). The method 700 then finds 714 the target 304 of this
relation. If the TBM of this target 304 is set 716, the method
700 reads from the target 304. If the TBM of this target 304 is
not set 716, the method 700 repeats steps 710,714 to find the
next younger target 304 and determine 716 whether its TBM
is set. In this way, the method 700 traverses through the
younger siblings of the target volume 304 identified at step
702 until the target volume 304 containing the desired data is
found. Once this data is found, the method 700 reads 718 from
the target 304. If no younger sibling target 304 containing the
desired data is found, the method 700 simply reads 712 from
the source volume 302. In this way, a target volume 304 is able
to inherit data from a sibling 304 when a read is performed
thereto.

0050 Referring to FIG. 8, one embodiment of a method
800 for finding the HS Volume from which to copy data is
illustrated. Such a method 800 may be used in association
with step 604 of FIG. 6. As shown, the method 800 initially
determines 802 whether the volume being written to is a

US 2012/0233.13.6 A1

target volume 304. If not, no copy is required as reflected at
step 804. If the volume is a target volume 304, the method
determines 806 whether the TBM of the volume is set. If the
TBM is not set, no copy is required. If the volume is a target
Volume 304 and the TBM of the volume is set, the method
finds 808 the source volume 302 associated with the target
Volume 304. The method 800 then finds the next relation with
a higher generation number (GN) in the manner previously
discussed.

0051. Upon finding the next higher GN, the method 800
finds 814 the target 304 of this relation, which is a sibling of
the target 304 identified at step 802. If the TBM of this sibling
target 304 is not set 816 (indicating that it contains the desired
data), the method 800 copies 818 the data from the sibling
target 304 to the COS 3.04. If the TBM of this sibling target
304 is set 816 (indicating that it does not contain the desired
data), the method 800 repeats steps 810, 814 to find the next
younger sibling target 304 and determine 816 whether its
TBM is set. In this way, the method 800 traverses through the
younger siblings of the target volume 304 identified at step
802 until the sibling target volume 304 containing the desired
data is found. Once this data is found, the method 800 copies
818 the data from the sibling target 304 to the COS. If no
sibling target 304 containing the desired data is found, the
method 800 copies 812 the data from the source volume 302
to the COS. Once the data is copied, the write may be per
formed on the target 304 identified at step 802.
0052 Referring to FIG. 9, one example of a multi-target
architecture 300 showing the use of generation numbers
(GNs) is illustrated. In this example, assume that the relation
between the source volume (SV)302 and a first target volume
(TV1) 304a was created first, followed by the relation
between the source volume 302 and a second target volume
(TV2) 304b, followed by the relation between the source
volume 302 and a third target volume (TV3)304c. Each time
a new relation is added to the source volume 302, the genera
tion number is incremented. Thus, as shown on the Source
volume 302, the first relation is associated with a generation
number of “1,” the second relation is associated with a gen
eration number of “2, and the third relation is associated with
a generation number of “3.”
0053 Assume that relations are initially established
between the source volume 302 and the first and second target
Volumes 304a, 304b, but the relation between the source
volume 302 and the third target volume 304c is not yet estab
lished. In this scenario, to perform a write to track 1 of the
second target volume 304b, the data in track 1 is copied from
the source volume 302 (the higher source) to the first target
volume 304a (the closest older sibling, or COS) and the TBM
of the first target volume 304a is reset. The write is then
performed to track 1 of the second target volume 304b and the
TBM of the second target volume 304b is reset. Similarly, to
perform a write to track 2 of the source volume 302, the data
in track 2 is copied from the source volume 302 to the second
target volume 304b (the youngest child, orYC) and the TBM
of the second target volume 304b is reset (indicating that it
now contains the data). The write is then performed to track 2
of the source volume 302. The data residing in the first target
volume (TV 1) 304a and the second target volume (TV2)
304b after the two writes described above is shown in FIG. 10.
The values in the TBMs are also shown.

0054 Assume that the third relation is now established
between the source volume 302 and the third target volume
304c. To perform a write to track 3 of the source volume 302,

Sep. 13, 2012

the data in track 3 is copied from the source volume 302 to the
third target volume 304c (the youngest child, or YC) and the
TBM of the third target volume 304c is reset. The write is then
performed to track 3 of the source volume 302. To perform a
write to track 4 of the second target volume 304b, the data in
track 4 is copied from the source volume 302 (the higher
source) to the first target volume 304a (the closest older
sibling, or COS) and the TBM of the first target volume 304a
is reset. The write is then performed to track 4 of the second
target volume 304b and the TBM of the second target volume
304b is reset.

0055. To perform a write to track 5 of the first target
volume 304a, no copy is made since there is no closest older
sibling, or COS. The write is then performed to track 5 of the
first target volume 304a and the TBM of the first target vol
ume 304a is reset. To perform a write to track 6 of the third
target volume 304c, the data in track 6 is copied from the
source volume 302 (the higher source) to the second target
volume 304b (the closest older sibling, or COS) and the TBM
of the second target volume 304b is reset. The write is then
performed to track 6 of the third target volume 304c and the
TBM of the third target volume 304c is reset. The data resid
ing in the first target volume (TV1) 304a, the second target
volume (TV2)304b, and the third target volume (TV3)304c
after all six writes described above is shown in FIG. 11. The
values in the TBMs are also shown.

0056 Referring to FIG. 12A, in certain circumstances, a
relation between a source volume 302 and a target volume
304, or several relations between a source Volume 302 and
several target volumes 304, may be deleted from a multi
target architecture 300. When a relation is deleted from a
multi-target architecture 300, the point-in-time-copy rela
tionship between the source volume 302 and the target vol
ume 304 associated with the relation is terminated. In certain
embodiments, this may terminate the ability of other sibling
target volumes 304 to inherit data from the target volume 304
for which the relation was deleted. Thus, in certain embodi
ments, prior to deleting a relation, data on the target Volume
304 associated with the relation may be copied to one or more
sibling target volumes 304 so that the data is still accessible to
the sibling target volumes 304.
0057 For example, assume that the relation between the
source volume 302 and the target volume 304c is identified
for deletion (as indicated by the dotted arrow). Prior to delet
ing the relation, data that is stored on the target volume 304c
and inherited by other sibling target volumes 304 may be
copied from the target volume 304c to one or more sibling
target volumes 304 so that the data is still accessible to the
sibling target volumes 304. For example, in certain embodi
ments, such as when using the point-in-time-copy methodol
ogy described in FIGS. 4 through 8, the data will be copied to
the closest older sibling (COS). Using other point-in-time
copy methodologies, the data may be copied to other sibling
target volumes 304 other than the COS. Nevertheless, for the
purposes of this disclosure, it will be assumed that the data is
copied to the COS. Once all the data that is stored in the target
volume 304c and inherited by other sibling target volumes
304 is copied to the COS, the relation between the source
volume 302 and the target volume 304c may be deleted,
thereby terminating the point-in-time copy relationship
between the source volume 302 and the target volume 304c.
0.058 Referring to FIG. 12B, in certain cases, a relation
may be deleted between a source volume 302 and a space
efficient (SE) target volume 304. An SE target volume 304

US 2012/0233.13.6 A1

differs from a standard target volume 304 (such as those
illustrated in FIG. 12A) in that data is not physically stored in
the volume. Rather, the SE target volume 304 is a virtual
volume (as indicated by the dotted lines) whose data is physi
cally stored in a common repository 1200. A mapping struc
ture 1202 keeps track of where a SE target volume's data is
physically located in the repository 1200. Stated otherwise,
the mapping structure 1202 maps logical tracks of the SE
target volume 304 to physical tracks of the repository 1200.
From the perspective of a host device 106, reading from or
writing to a SE target volume 304 may be the same as reading
from or writing to a standard target Volume.
0059 Because a SE target volume 304 does not physically
store any data, it is unnecessary to physically copy data from
a SE target volume 304 to other sibling SE target volumes 304
when a relation is deleted. Rather, the mapping structure 1202
may be modified so that other sibling SE target volumes, and
more specifically a COS volume or volumes, point to the SE
target volume's data in the repository 1200. Stated otherwise,
instead of physically copying data from one SE target Volume
to another, as may occur with standard target Volumes, the
mapping structure 1202 is modified so that data that is logi
cally stored in one SE target Volume is now logically stored in
another SE target volume. For the purposes of this disclosure,
it will be assumed that all target volumes referred to hereafter
are space-efficient (SE) target Volumes.
0060 Referring to FIG. 13, in certain embodiments, a
relationship table 1300 is stored in memory 214 to keep track
of each of the relations in the multi-target architecture 300. In
certain embodiments, each relation has associated therewith a
Source relationship entry 1302a, corresponding to the Source
of the relation, and a target relationship entry 1302b, corre
sponding to the target of the relation. As will be explained in
more detail hereafter, when deleting a relation, the Source
relationship entry 1302a and the target relationship entry
1302b associated with the relation may be marked as
“deleted to indicate that the relation is in the process of being
deleted (i.e., the mapping structure is in the process of being
modified to map data to the COS, in preparation to delete the
relation). Marking the relationship entries 1302a, 1302b in
this manner may also ensure that data is not written to the SE
target volume 304 whose relation is in the process of being
deleted. Once the mapping structure is modified so that data
that was logically stored in the SE target Volume is logically
stored in the COS, the relation may be deleted. Deleting the
relation may include deleting the Source relationship entry
1302a and target relationship entry 1302b associated with the
relation from the relationship table 1300.
0061 Referring to FIG. 14, one embodiment of a method
1400 for deleting a relation between a source 302 and a SE
target 304 in a multi-target architecture 300 is illustrated. As
shown, the method 1400 initially determines 1402 whether a
request to withdraw (i.e., a request to delete a relation) has
been received. If a request to withdraw has been received, the
method 1400 marks 1404 the relationship entries associated
with the relation as “deleted.” This may include marking 1404
both the source relationship entry 1302a and the target rela
tionship entry 1302b associated with the relation as “deleted.”
The method 1400 then determines 1406 whether a relation is
already in process, meaning that the mapping structure 1202
is in the process of being modified to map data to a COS, in
preparation to delete a relation.
0062) If a relation is already in process, the method 1400
queues 1408 the relation. Upon queueing the relation, the

Sep. 13, 2012

method 1400 sorts 1408 the relations in the queue from oldest
to youngest in order to process older relations prior to
younger relations. This will ideally minimize the number of
times that the mapping structure 1202 is modified. For
example, if the mapping structure 1202 is modified to map
data to a COS whose relation is in line to be deleted, the
mapping structure 1202 may need to be modified again, wast
ing both time and resources. Processing the relations from
oldest to youngest will help to ensure that the mapping struc
ture 1202 is modified a minimal number of times.

0063 Various different methods or techniques may be
used to determine the age of the relations. In certain embodi
ments, the age of the relations is determined using generation
numbers, as illustrated in FIG. 9. For example, by inspecting
the generation numbers on the source volume 302, the age of
the relations may be readily determined. In the illustrated
example of FIG. 9, the generation number is incremented
each time a new relation is generated. Thus, the relation
associated with the generation number “1” is the oldest and
the relation associated with the generation number '3' is the
youngest. This convention could be reversed in other embodi
mentS.

0064. If no relations are in the queue, the method 1400
simply processes 1410 the relation. If one or more relations
are in the queue, the method 1400 processes 1410 the next
relation in the queue. Various methods for processing 1410 a
relation will be described in association with FIGS. 15 and 16.
Once a relation is processed, meaning that the mapping struc
ture 1202 has been modified for a SE target 304 to map data
to a COS304, the method 1400 removes 1412 the relationship
entries 1302a, 1302b associated with the relation from the
relationship table 1300. This will terminate the relation. The
method then checks 1414 whether any other relations are in
the queue. If the queue is empty, the method 1400 waits 1402
for the next request to withdraw. If the queue is not empty, the
method 1400 processes 1410 the next relation in the queue.
This continues until all relations in the queue are processed.
0065. In certain embodiments, the method 1400 is config
ured Such that several relations can be in process at any
particular time. In certain embodiments, the number of rela
tions in process at any particular time may be limited so as not
to overdrive storage devices 204 (e.g., disk drives, Solid State
drives, etc.) or device adapters 210 associated with the storage
devices 204. For example, in certain embodiments, device
adapters 210 and storage devices 204 may be limited to pro
cessing some number (e.g., four) of relations at any particular
time to not overdrive the devices. When processing several
relations simultaneously, older relations may be given prior
ity over newer relations to minimize the number of times that
a mapping structure 1202 is modified.
0.066 Referring to FIG. 15, one embodiment of a method
1410 for processing a relation is illustrated. Such a method
1410 may be executed whenever a relation is processed 1410,
as described in FIG. 14. As shown, to process a relation, the
method 1410 initially identifies 1500 the SE target associated
with the relation. The method 1410 then identifies 1502 the
closest older sibling (COS) of the SE target. The method 1410
then examines 1504 the first track of the SE target and the
COS. If the method 1410 determines 1506 that the TBM of
the SE target for the track is not set (indicating that the SE
target includes a copy of the data) and determines 1508 that
the TBM of the COS for the track is set (indicating that the
COS does not include a copy of the data), then the method
1410 modifies 1510 the mapping structure 1202 to map the

US 2012/0233.13.6 A1

data in the repository 1200 to the COS. The TBM of the COS
is then reset 1510 for the track to indicate that it includes a
copy of the data. If, however, the TBM of the SE target for the
track is set (indicating that the SE target does not include a
copy of the data) or the TBM of the COS for the track is not
set (indicating that the COS already includes a copy of the
data), then the mapping structure 1202 is not modified and the
method 1410 proceeds to the decision step 1512.
0067. Once the method 1410 examines a track and either
modifies the mapping structure 1202 or determines that no
modification is necessary, the method 1410 determines 1512
whether the last track of the SE target 304 has been reached.
If the last track has not been reached, the method 1410 exam
ines 1514 the next track of the SE target and the correspond
ing track of the COS and repeats steps 1506, 1508, 1510,
1512. When all tracks in the SE target 304 have been exam
ined and the mapping structure 1202 has been modified for
those tracks where it is required, the method 1410 ends.
0068 Referring to FIG. 16, another embodiment of a
method 1410 for processing a relation is illustrated. Such a
method 1410 may be executed in place of the method of FIG.
15 whenever a relation is processed 1410. The method 1410
illustrated in FIG.16 may be used to address implementations
where different ranges of tracks in a SE target have different
closest older siblings (COSs), such as in dataset-level point
in-time-copy implementations.
0069. As shown, to process a relation, the method 1410

initially identifies 1600 the SE target associated with the
relation and identifies 1602 a first track range (e.g., the first
fifty tracks) of the SE target. The method 1410 then identifies
1604 the closest older sibling (COS) associated with the track
range. The method 1410 then examines 1606 the first track of
the track range and the corresponding track of the COS. If the
method 1410 determines 1608 that the TBM for the track in
the track range is not set (indicating that the track includes a
copy of the data) and determines 1610 that the TBM for the
corresponding track of the COS is set (indicating that the
track in the COS does not include a copy of the data), then the
method 1410 modifies 1620 the mapping structure 1202 to
map the data in the repository 1200 to the COS. The TBM for
the track in the COS is then reset 1620 to indicate that it now
includes a copy of the data. If, however, the TBM for the track
on the SE target is set (indicating that the SE target does not
include a copy of the data) or the TBM of the COS for the
corresponding track is not set (indicating that the COS
already includes a copy of the data), then the mapping struc
ture 1202 is not modified and the method 1410 proceeds to the
decision step 1618.
0070. Once the method 1410 examines a track in the track
range and either modifies the mapping structure 1202 or
determines that no modification is necessary, the method
1410 determines 1618 whether another track in the track
range exists. If another track in the track range does exist, the
method 1410 examines 1616 the next track of the track range
along with the corresponding track in the COS by repeating
steps 1608, 1610, 1620, 1618. When all tracks in the track
range have been examined and the mapping structure 1202
has been modified for those tracks where it is required, the
method 1410 determines 1614 whether there is another track
range in the SE target. If there is another track range, the
method 1410 identifies 1604 the COS for the track range and
repeats steps 1606, 1608, 1610, 1620, 1618, 1616 for the track
range and the identified COS. This continues until all tracks
within all track ranges of the SE target have been examined

Sep. 13, 2012

and the mapping structure 1202 has been modified for those
tracks where it is required. Once all tracks in all track ranges
of the SE target have been examined and the mapping struc
ture 1202 has been modified accordingly, the method 1410
ends.
0071. The flowcharts and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods, and computer
usable media according to various embodiments of the
present invention. In this regard, each block in the flowcharts
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the Figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustrations, and combinations of blocks in the block
diagrams and/or flowchart illustrations, may be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.

1. A method for deleting a relation between a source and a
space-efficient (SE) target in a multi-target architecture, the
multi-target architecture comprising a source and a plurality
of SE targets mapped thereto, the method comprising:

identifying a first relation for deletion from a multi-target
architecture;

identifying a space-efficient (SE) target associated with the
first relation, wherein a mapping structure maps data in
logical tracks of the SE target to physical tracks of a
repository;

identifying a sibling SE target that inherits data from the SE
target;

modifying the mapping structure to map the data in the
physical tracks of the repository to the logical tracks of
the sibling SE target; and

deleting the first relation.
2. The method of claim 1, wherein the sibling SE target is

a closest older sibling (COS).
3. The method of claim 1, wherein modifying the mapping

structure further comprises (1) identifying data logically
stored in the SE target that is not logically stored in the sibling
SE target, and (2) modifying the mapping structure such that
the data that is logically stored in the SE target but not logi
cally stored in the sibling SE target is logically stored in the
sibling SE target.

4. The method of claim3, further comprising identifying a
second relation for deletion from the multi-target architec
ture.

5. The method of claim 4, further comprising determining
whether the second relation is older than the first relation.

6. The method of claim 4, further comprising deleting the
second relation before the first relation if the second relation
is older than the first relation.

7. The method claim 4, further comprising deleting the first
relation before the second relation if the first relation is older
than the second relation.

8. The method of claim 5, whereindetermining whether the
second relation is older than the first relation comprises find
ing the Source associated with the first and second relations,

US 2012/0233.13.6 A1 Sep. 13, 2012
8

and comparing generation numbers associated with the first 10. The method of claim 9, wherein deleting the first rela
and second relations to determine which relation is older. tion further comprises deleting the relationship entry associ

9. The method of claim 1, wherein identifying a first rela- ated with the first relation.
tion for deletion further comprises marking a relationship
entry associated with the first relation as deleted. ck

