wO 2024/115874 A 1IN INALN A0 0000 OO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual Propert N
B organisation > O 00 0 A
International Bureau / (10) International Publication Number
(43) International Publication Date WO 2024/115874 A1
06 June 2024 (06.06.2024) WIPO I PCT
(51) International Patent Classification: (72) Inventor: ALAVI, Niusha; c/o V-Nova International Lim-
GO6T 1/20 (2006.01) GO6T 1/60 (2006.01) ited, Level 2, 20 Eastbourne Terrace, Paddington, London

(21) International Application Number: Greater London W2 6L.G (GB).
PCT/GB2023/052940 (74) Agent: WITHERS & ROGERS LLP; 2 London Bridge,

(22) International Filing Date: London Greater London SE1 9RA (GB).

10 November 2023 (10.11.2023) (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN,HR,HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, K G,

(25) Filing Language: English

(30) Priority Data:

2218005.3 30 November 2022 (30.11.2022) GB KIL KN, KP, KR, KW, KZ. LA, LC, LK, LR, LS, LU, LY,
(71) Applicant: V-NOVA INTERNATIONAL LIMITED MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
[GB/GB]; Level 2, 20 Eastbourne Terrace, Paddington, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
London Greater London W2 6LG (GB). RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,

(54) Title: A METHOD OF PROCESSING SOURCE DATA

/

Valuey [1,1] 10
401
. Memory Location B1 620
112 "~.. 110
N] s — 0+ (SF xValuey [01]) | —» (39—
goND1 0% 0.3 v
10 3,1 1.211,3 —— Memory Locati 402
' y Location B1
ISIIE Ry IIPe
5013113233 T - Value,; [1,1]
Memory Location B2 403
= Value,y; [0,1]
X SF + (SF x Valuey, [1,1])
140
N Value,; [2,1] 142p
(alBlcl 230n - 401
o Memory Location B2 [~ 620
} 110 = Value,; [0,1] + (SF x
\ . —
{}’\& 1Ry 03 Valuew [1,1])
310 é‘yl Lol L Memory Location B2 | ~402
20021 2V 2A
3.3

30131153,2 = Value,; [2,1]

Memory Location B1 403

= Value,yy [1,1]
x SF + (SF x Value,; [2,1]) FIG. 6

(57) Abstract: There is provided a computer-implemented method of processing source data with a separable kernel to create output
data. The method comprising: convolving a first lower dimension kernel of the separable kernel with the source data to obtain a set of
intermediate values. For an intermediate value obtained for a target data point in the source data, the method comprising: combining
the intermediate value with the content of a first memory location storing accumulated intermediate values for a first data point in the
output data to create a final value for the first data point in the output data, wherein the final value corresponds to a value that the
separable kernel would produce if the first data point were processed by the separable kernel; and storing the intermediate value in a
second memory location related to a second data point of the output data, wherein the second data point requires the intermediate value
to be processed according to the separable kernel.

[Continued on next page]

WO 2024/115874 AT} A0E V!0 000 0O O

TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE,LR,LS, MW, MZ NA,RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

A METHOD OF PROCESSING SOURCE DATA

Technical Field

The disclosure relates to a computer-implemented method of processing source data to
create output data. Particularly, but not exclusively, the invention relates to a computer-
implemented method for processing image data as source data, for example, picture data
in a video data. Applications of such a technique comprise smoothing, noise reduction,
edge detection, and scaling. In particular, the disclosure relates to and uses separable
filters. The disclosure is implementable in hardware or software.

Background

In data processing, filters are often used to change or improve the data. For example, in
image processing, filters are used to adjust certain attributes of an image such as to
suppress any high frequencies in the image e.g., smoothing the image, or to suppress any
low frequencies in the image e.g., enhancing or detecting edges in the image.

However, the application of filters to a data signal requires memory resources and
computational resources that may not be available at a processor. Therefore, there is a
need for a more efficient filtering process.

Summary

It is an aim of the invention to address one or more of the disadvantages associated with
the prior art. Aspects and embodiments of the invention provide a computer-implemented
method of processing source data, an apparatus for processing source data, and a
computer-readable medium as claimed in the appended claims.

According to a first aspect of the invention, there is provided a computer-implemented
method of processing source data with a separable kernel to create output data. The
method comprising: convolving a first lower dimension kernel of the separable kernel with
the source data to obtain a set of intermediate values. For an intermediate value obtained
for a target data point in the source data, the method comprising: combining the
intermediate value with the content of a first memory location storing accumulated
intermediate values for a first data point in the output data to create a final value for the
first data point in the output data, wherein the final value corresponds to a value that the
separable kernel would produce if the first data point were processed by the separable
kernel; and storing the intermediate value in a second memory location related to a second

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

data point of the output data, wherein the second data point requires the intermediate
value to be processed according to the separable kernel.

In this way computational resources necessary for processing source data using a filter
are reduced by placing each intermediate value in multiple locations where it would be of
used instead of, separately, obtaining/recalculating the intermediate value for each
location. Furthermore, memory resources are also conserved by reducing the number of
memory reads and writes that would have been used if an intermediate value is obtained
multiple times for each data point.

Optionally, wherein the source data is digital image data.

Optionally, wherein the separable kernel is one of: a 2D separable kernel; a 3x3 separable
kernel; a 3x3 Gaussian kernel,

Optionally, wherein the first lower dimension kernel is one of: a 1D kernel; a 1D horizontal
filter; a 3x1 kernel; a 1D vertical filter; a 1x3 kernel; and a symmetrical kernel of any of
the aforementioned kernel types.

Optionally, wherein the first lower dimension kernel is a 1D horizontal kernel and the step
of convolving a first lower dimension kernel of the separable kernel with the source data
to obtain a set of intermediate values comprises applying the first lower dimension kernel
to each data point of the source data in a row-wise manner, and the first data point and
the second data point in the output data are arranged in the same column.

Optionally, wherein the first lower dimension kernel is a 1D vertical kernel and the step of
convolving a first lower dimension kernel of the separable kernel with the source data to
obtain a set of intermediate values comprises applying the first lower dimension kernel to
each data point of the source data in a column-wise manner, and the first data point and
the second data point in the output data are arranged in the same row.

Optionally, wherein the first data point and the second data point are separated by the
target data point of the source signal.

Optionally, wherein the method further comprises: deriving the first lower dimension
kernel and a second lower dimension kernel from the separable kernel in such a way so
that the second lower dimension kernel has a single non-unitary coefficient, and deriving
a scaling factor from the single non-unitary coefficient.

Optionally, wherein the scaling factor is one of the following: 2, 4, or 8.

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

Optionally, wherein the method comprises applying the scaling factor to the intermediate
value and adding the intermediate value to the content of a third memory location used
to accumulate values for a target data point in the output data corresponding to the target
data point in the input data.

Optionally, wherein the first memory location and the second memory location are the
same memory location within a buffer to reuse memory space in the buffer. In this way

memory resources are conserved by reusing memory space.

Optionally, wherein the third memory location is in the buffer and is a separate memory
location to the first and second memory locations.

Optionally, wherein each of the first memory location, the second memory location and
the third memory location are separate locations corresponding to data points in the output
data. In this way, memory resources are conserved by outputting the intermediate values
immediately the locations corresponding to data points in the output data where it would
it be of use. Furthermore, computational resources are also conserved by obtaining each
intermediate value once and outputting to all locations where it would be of use.

Optionally, wherein the method comprises moving to a second target data point in the
input data, obtaining a resulting second intermediate value, applying the scaling factor to
the resulting second intermediate value and combining the scaled subsequent

intermediate value with the intermediate value stored in the second memory location.

Optionally, wherein the second target data point is in the row immediately below the target
data point.

Optionally, wherein the method comprises moving to a third target data point in the input
data, and repeating the process outlined above in relation to the first aspect. In this way,
the method usefully combines with a downsampling operation to further reduce

computational and memory resource requirements.

Optionally, wherein the third target data point is in the row immediately below the second
data point.

Optionally, wherein the method comprises outputting the final value.

Optionally, wherein the outputting the final value comprises outputting the final value to
a memory location storing the output data or outputting for streaming.

Optionally, wherein the method is implemented in one of the following: a dedicated
hardware such as an Application Specific Integrated Circuit, ASIC, or Field Programmable

3

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

Gate Arrays, FPGA; software running on a Central Processing Unit, CPU; software running
on a Graphical Processing Unit, GPU.

According to a second aspect of the invention, there is provided an apparatus for
processing a source data. The apparatus is arranged to perform the computer-
implemented method of any of preceding method statement.

According to a third aspect of the invention, there is provided a computer-readable
medium comprising instructions which when executed cause a processor to perform the

method of any preceding method statement.

Some new hierarchical video codecs, such as LCEVC, operate by receiving a relatively
high-resolution video frame which is downsampled to generate a relatively low-resolution
frame. The high resolution and/or the low-resolution frame is processed during coding.
The low-resolution frame is often encoded with a base codec for ouput. The encoded
version is often decoded by the base codec and the decoded version compared with the
low-resolution frame to generate differences, or residual values. Moreover, the generated
low-resolution frame or decoded version thereof is often upsampled as part of the coding
process, and the upsampled rendition thereof is often utilised and/or processed, for
example by comparing the upsampled rendition to the high-resolution frame to generate
differences, or residual values. Such techniques have been shown to have increased
performance (e.g. increased compression efficiency, better flexibility) over non-
hierarchical codecs. Filtering operations are often used in such techniques. However, the
filtering operations, upsampling operations and downsampling operations (which are not
found in 'traditional single layer' coding schemes) use up memory, memory bandwidth,
and add extra time to the encoding and decoding pipeline. This can be particularly
problematic if the coding scheme is being used to encode/decode high resolution images
(e.g. 4k and/or 8k) and/or high frame rate videos (e.g. 60 frames per second, 120fps or
higher) and/or real time video (e.g. live sports events). During such examples (i.e. high-
resolution real-time encoding), memory, memory bandwidth and latency need to be
reduced as much as possible.

As mentioned, up/downsampling (and/or filtering) is not usually performed by traditional
'single layer' coding schemes.

Therefore, embodiments of the invention provide a new low latency, low memory and
memory bandwidth filtering and up/down sampling operation that is especially useful when
used as part of the aforementioned hierarchical coding schemes (e.g. especially when
encoding real time and/or high-resolution video).

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

A further aspect comprises a method of encoding, the method comprising performing an
operation according to the above-disclosed aspects of the invention on an input frame to
generate a downsampled frame, upsampling according to the above-disclosed aspects of
the invention a rendition of the downsampled frame to generate an upsampled frame,
comparing the upsampled frame with the input frame to generate residuals, and encoding

said residuals.

Preferably, the method further comprises: sending the downsampled frame to a base
encoder to generate a base encoding of the downsampled frame; receiving, from a base
decoder, a decoded version of the base encoding of the downsampled frame; comparing
the downsampled frame with the a decoded version of the base encoding of the
downsampled frame to generate a further set of residuals.

Preferably, the method further comprises generating the rendition of the downsampled
frame by: combining a rendition of the further set of residuals with the decoded version
of the base encoding of the downsampled frame.

Preferably method further comprises generating the rendition of the further set of residuals
by transforming the residuals and inverse transforming the transformed residuals.

Preferably method further comprises generating the rendition of the further set of residuals
by: transforming the residuals; quantising the transformed residuals; inverse quantising
the quantised transformed residuals; inverse transforming the output of the inverse
quantising.

Brief Description of the Drawings

The invention shall now be described, by way of example only, with reference to the

accompanying drawings in which:

FIG. 1 shows an example of an input data, kernel and output data useful for understanding

the invention;

FIG. 2 shows an example separable kernel provides useful context for understanding the

invention;

FIG. 3 is a flowchart explaining a first aspect of the invention;

FIG. 4 is a block diagram showing in more detail how the generalised method described

would work in an exemplary embodiment of the invention;

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

FIG. 5 is a flowchart explaining a second aspect of the invention showing a buffer
embodiment which is able to reuse memory space while accumulating intermediate and

scaled intermediate values in order to obtain final values in the output data;

FIG. 6 is a block diagram showing in more detail how the method described in FIG. 5 would

work in an exemplary embodiment of the invention;

FIG. 7 is a generalised schematic showing example data values or pixel values for an
example 4x4 source data processed into output data according to FIG. 5 and FIG. 6;

FIG. 8 is a flow diagram of a method of processing a data signal according to another
aspect of the invention;

FIG. 9 is a block diagram showing in more detail how the method described in FIG. 8 would

work in another exemplary embodiment of the invention;

FIG. 10 is a generalised schematic showing example data values or pixel values for an
example 4x4 source data processed into output data according to FIG. 8 and FIG. 9; and

FIG. 11 is a schematic diagram of an apparatus according to the invention.
Detailed Description

The disclosure relates to a computer-implemented method of processing source data to
create output data. Particularly, the disclosure relates to a computer-implemented method
for processing image data as source data, for example, picture data in a video data.
Applications of such a technique comprise smoothing, noise reduction, edge detection, and
scaling. In particular, the disclosure relates to and uses separable filters. The disclosure is

implementable in hardware or software.

The teaching of the following patent disclosures is incorporated into this specification by
reference: W02020/188273 A, W0O2019/111010 A and PCT/GB2022/052406.

FIG. 1 shows an example of an input data, kernel and output data and provides useful

context for understanding the invention.

Source data 110 in this example comprises 4x4 data points, with each data point being
referenced by its location within the source data using indices i, j as is commonly used,
where i represents the row and j represents the column in the source data 110. Source
data 110 can be referred to as matrix I;;. As an example, source data point I, is located
at the top left corner of the illustration of the source data 110.

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

Source data 110 is usefully convolved using a 2D convolution with kernel 130 (see
convolution operator 120 in FIG.1) for several reasons, for example to perform image
processing operations, such as to preform edge detection, blurring and sharpening. The
2D convolution may also be used with a downsampling or upsampling operation.

Kernel 130 in this example is a 3x3 2D matrix which comprises 9 filter coefficients k, with
each filter coefficient, k, being referenced by its location in the kernel 130 also using
indices i, j as is commonly used. Kernel 130 can be referred to as matrix Kj;. As an
example, kernel coefficient 131 at Kpo (=ko,0) shown in FIG.1 is located at the top left
corner of the kernel 130.

Output data 140 in this example comprises 4x4 data points and matches the size of source
data 120. Each data point is the output data 140 is referenced by its location within the
output data 140 using indices x, y as is commonly used, where x represents the row and
y represents the column in the output data 140. Output data 140 can be referred to as
matrix Oxy. AS an example, output data point Oy,; is located one row down, and one column
across in the illustration of the output data 140, and in this example is referred to as
output target data point 142 for the purposes of the below explanation.

2D convolution is performed on the source data 110 as would be known to persons skilled
in the art, using kernel 130, to produce the output data 140.

The mathematical formulation of 2D convolution is given by, for a kernel K of size mxn,
source or input data I and output data O, as follows:

m—-1n—1

5

i) -31+)

I
=]

i=0 j

As the skilled reader will anticipate, each output data point Oy, is a weighted sum of the
source target data point 112 together with neighbouring data points 114 as defined by
kernel 130. In other examples, the neighbouring data points may not be strictly
neighbouring to the target data point 112 but may be associated with the target data point

in some other way.

In the illustration of FIG.1 source target data point 112 (=I;:) vields the following
corresponding output target data point 142 (=0;,1) as a result of the 2D convolution:

= Ky o [0,01+ky ,+[0,114K, ,+[0,2]+k, [1,0]+k, -[1,11+k, ,*[1,2]+K, [2,0]+k, ;-[2,11+k, ,'[2,2]

10

15

20

25

30

35

WO 2024/115874 PCT/GB2023/052940

FIG. 2 shows an example 3x3 separable kernel 230S and provides useful context for
understanding the invention. As is known in the art, separable convolution may be
performed where the kernel is separable. An mxn kernel is said to be separable if there
exists a pair of vectors with dimensions mx1 and 1xn such that the product of the vectors

is equal to original kernel matrix.

Rather than convolving an image with an mxn kernel such as kernel 230S, one can first
apply an mx1 kernel followed by an 1xn kernel. It is important to note that the convolutions
in the expressions refer to the whole source data or image, not just one data point or pixel
— the entire source data or image is convolved with one vector, after which the resulting
intermediate data is convolved with the other vector. This means that two distinct passes
are performed, rather than one.

From an algorithm analysis standpoint, the cost of performing the convolution is reduced
from O(m * n) to O(m + n) per output data point, assuming the cost of performing a
convolution pass is relatively cheap.

Referring back to FIG.2, separable kernel 230S is shown as having a first horizontal kernel
or vector 230H with dimensions 3x1, and a second vertical kernel or vector 230V with
dimensions 1x3. The kernels are referred to as lower dimension kernels. As can be seen
in FIG.2, the kernel coefficients of the first horizontal vector 230H are labelled as
coefficients A, B, C for ease of reference in the following description. Also, a scaling factor
SF is derived from the second vertical vector 230V. The skilled person would understand
that this arrangement may be reversed, with the scaling factor being derivable from the
first horizontal vector 230H and the coefficients from the second vertical vector 230V.

FIG. 3 is a flowchart explaining a first aspect of the invention. The flowchart outlines the
following computer-implemented method of processing source data to create output data.
The general method follows the above-mentioned separable convolution process to obtain
the intermediate data using a first pass of the first horizontal vector. However, and
importantly, the second pass is not performed in the same way. Instead, at least some of
the intermediate data is used twice during each pass as each relevant intermediate data
point is generated. Firstly, each generated intermediate data value is used to calculate or
obtain a final value for an output data point in the output data that requires the same to
be fully processed in accordance with the separable filter 230S, and secondly, the
intermediate data is stored, at least once, to accumulate a value for another output data
point. This concept is illustrated in more detail in the following description and allows for
a reduction in memory and computations resources, allowing for the handling of
particularly large input data, such as image data as part of a video signal at, for example,

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

a relatively high resolution and frame rate. The invention is particularly, but not
exclusively, suitable for processing real-time video data.

The method of FIG. 3 is as follows.

At step 310, the method comprises convolving a first lower dimension kernel, such as first
horizontal vector 230H of a separable kernel, such as separable kernel 230S, with source
data, such as source data 110, to obtain a set of intermediate values.

At step 320, the method comprises, for an intermediate value obtained for a target data
point in the source data, combining the intermediate value with the content of a first
memory location storing accumulated intermediate values for a first data point in the
output data. This step is to create a final value for the first data point in the output data,
wherein the final value corresponds to a value that the separable kernel would produce if
the corresponding source data point were processed by the separable kernel.

At step 330, the method comprises, for the intermediate value obtained, storing the
intermediate value in a second memory location related to a second data point of the
output data, wherein the second data point requires the intermediate value so as to be
processed according to the separable kernel.

FIG. 4 is a block diagram showing in more detail how the generalised method described
above would work in an exemplary embodiment of the invention. Two snapshots of the
process are shown, with the first snapshot focussing on source target data point [1,1],
and the second snapshot focussing on source target data point [2,1]. The general
reference numeral 112 indicates the source target data point for each snapshot. In the
example of FIG. 4, it is assumed that the output data is stored in a memory (not shown)
which is accessible to a CPU performing this method in such a way so as not to introduce
latency when processing the data, such as when processing images or frames in video
data. Each data point in the output data 140 is stored primarily in the memory.

For this example to ease explanation, out of bounds data points, or pixels, are ignored.

The illustrated convolution step is captured in the first snapshot after processing source
target data point [1,1] in accordance with the disclosed technique. In this first snapshot
of the convolution process, the first horizontal vector or kernel 230H has been applied to
source target data point [1,1] to obtain a corresponding intermediate value (Valuemri,11).
In other words, to obtain Valuemwrz,17a summation of the following multiplications is made:
coefficient A is multiplied with the source data value at I 0; coefficient B is multiplied with
the value at I ;; coefficient C is multiplied with the value at I;,>. As would be known to a

10

15

20

25

30

35

WO 2024/115874 PCT/GB2023/052940

skilled reader, this approach is repeated along the whole row i = 1 of source data 110 for
each target data point 112 in turn as j increases.

The intermediate value obtained Valuemr 1,17 IS combined with the content of a first
memory location [0,1] (reference numeral 401) which already stores an accumulated
value for a first data point 142p in the output data, which was allocated “previously” as
will become apparent from reading on. The first data point 142p is located at coordinates
[0,1] in the output data. The first snapshot shows how a final value for the first data point
142p is created according to the process through the combination. In the specific example
of FIG. 4, the first memory location stores the final value, however the final value can be
stored elsewhere as desired. According to this process, the final value corresponds to a
value that the separable kernel 230S would have produced if the corresponding source
data point [1,1] were processed by the separable kernel 230S.

The intermediate value Valuewr 11,17 is also stored in a second memory location [2,1]
(reference numeral 402) for future use when obtaining a final value for a second data
point 142f located at point [2,1] in the output data 140.

As will be seen, the above two operations are shared with a later example embodiment in
which downsampling is performed alongside the kernel convolution process.

However, in this example embodiment of FIG. 4, no downsampling is performed. The
intermediate value Valuemwr 1,17is also accumulated with the contents of a third memory
location [1,1] (reference numeral 403) for future use when obtaining a final value for a
third data point 142 in the output data 140 at point [1,1]. The third data point 142 in the
output data 140 corresponds to source target data point 112. However, prior to the
accumulation, the scaling factor SF derived from the second lower dimension kernel 230V
(from FIG. 2) is applied so that the final value will reflect what would have been obtained
using traditional 2D convolution or equivalent separable convolution. Third memory
location [1,1] at this first snapshot of the process had a value of Valuer 0,11 which would
have been obtained when first horizontal kernel 230H was applied to source data point
[0,1] and the above method was followed (in that iteration, third memory location [1,1]
would have been equivalent to the second memory location [2,1] in this iteration).

First memory location [0,1] is shown to have a value of 0 accumulated therein. This
represents the fact that no row-wise convolution with first horizontal kernel 230H would
have been conducted on any out of bounds pixels and represents the result that would
have been obtained with a traditional 2D convolution of source data point [0,1] using
separable filter 230S where out of bounds data points or pixels are treated as having zero

value.

10

10

15

20

25

30

35

WO 2024/115874 PCT/GB2023/052940

First memory location [0,1] is also shown to have a value of SF x Valuemwr 0,11 accumulated
therein which would have been obtained when first horizontal kernel 230H was applied to

source data point [0,1].

FIG. 4 also shows a second snapshot showing the convolution process when horizontal
kernel reaches row j = 2 and the target data point becomes source data point [2,1].
ValuemwT 2,17 is calculated as described above for Valuemr 1,11, mutatis mutandis.

The first memory location 401 for this iteration of the convolution process “inherits” the
value of, or more accurately is, the third memory location [1,1] of the previous row’s
process, and has added thereto the intermediate value Valueir 2,11 for the source target
pixel [2,1]. The accumulated value of memory location [1,1] = Valuemre,17 + (SF x Valuewr

r1,11) + Valuewrz1i-

The second memory location 402 for this iteration of the process is a new or so far unused
memory location [3,1] which is allocated for “future” data point 142f in the output data
140. This data pointis called a “future” data point in the sense that it is only now becoming
relevant as the convolution process proceeds. The intermediate value Valuemr 2,17 is stored
therein.

The third memory location 403 for this iteration of the process “inherits” the value of, or
more accurately is, the second memory location [2,1] of the previous row’s process, and
has added thereto the intermediate value Valuemnr 2,17 for the source target pixel [2,1]
scaled by the scaling factor SF. The accumulated value of memory location [2,1] = Valuewr
1,11 + (SF x Valuewr 2,11)-

Whilst the above discussion contemplates a row-wise implementation of the first horizontal
kernel 230H, it would be possible to implement a column-wise variation using the second
vertical kernel 230V as required, deriving a suitable scaling factor from the corresponding
first horizontal kernel 230H. Indeed, if needed, a scaling factor could be applied to all
intermediate values prior to storage in memory locations. However, it is advantageous in
some circumstances to create a single scaling factor to reduce computational resources

and memory read/writes in the process.

It may be advantageous to derive the first lower dimension kernel and a second lower
dimension kernel from the separable kernel in such a way so that the second lower
dimension kernel has a single non-unitary coefficient and deriving a scaling factor from
the single non-unitary coefficient. The scaling factor may be one of the following: 2, 4, or
8.

11

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

While this method is generally applicable to any source data, a useful implementation is
with digital image data, and with frames of video data.

The separable kernel in the illustrated example of FIG. 4 is a 3x3 Gaussian kernel.
However, other suitable kernels may be used.

In some instances, it may be required to use a buffer memory space within a memory
hardware that is more easily accessible to a CPU or equivalent processor running the
method. The buffer memory space may be expensive in terms of financial cost, and so
may be a scarce resource. In that case, an arrangement may be made in which the first
memory location and the second memory location are the same memory location within a

buffer to reuse memory space in the buffer.

FIG. 5 is a flowchart showing a buffer embodiment which is able to reuse memory space
while accumulating intermediate and scaled intermediate values in order to obtain final

values in the output data.

The process of FIG.5 has the following steps:

Step 510: an intermediate value Valuemwr is determined for a target data point or pixel 112
in the source data 110 as described above. The target pixel 112 is at coordinates /, j in
the source data 110.

Step 515: a determination is made to determine whether the row of the target pixel 112
is an even or an odd row of the input data 110. If even, the process moves to step 520.
If odd, the process moves to step 550.

Step 520: a determination is made to determine whether the row of the target pixel 112
is the top row, i.e. i = 0. If the row is the not the top row, the process moves to step 525.
If the row is the top row, then the process moves to step 530.

Step 525: as the row is not the top row, there will be pre-stored accumulated values in a
buffer location [j2] which is equivalent to the first memory location described above. The
process adds the intermediate value to the contents of the buffer location [j2] and outputs
the same to a separate memory location corresponding to a previous data point in the
output data, e.g. 142p. The separate memory location may be on a DRAM which is slower
to access than the buffer memory.

Step 530: buffer location [j2] takes on the value of the intermediate value and is
equivalent to the second memory location described above.

12

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

Step 535: the intermediate value is scaled by the scaling factor SF. This scaled value is
typically, but not necessarily, stored in a same memory location or register as used to hold

the intermediate value.

Step 540: another buffer location [j1] is arranged to accumulate any previous value stored
therein with the now scaled intermediate value and is equivalent to the third memory
location described above.

Step 545: the target pixel is moved along the row by one data point or pixel and the
process repeats. At this point, if there are no more pixels in the row, then the process
moves down a row and repeats for the next row, until no more rows remain to be

processed.

Step 550: following determination step 515, and as the row is odd, e.g. i = 1, 3, 5, etc,
there will be pre-stored accumulated values in a buffer location [j1] which is equivalent to
the first memory location disclosed above. The process adds the intermediate value to the
contents of the buffer location [j1] and outputs the same to a separate memory location
corresponding to a previous data point in the output data, e.g. 142p. The separate memory
location may be on a DRAM which is slower to access than the buffer memory.

Step 555: buffer location [j1] takes on the value of the intermediate value and is
equivalent to the second memory location described above.

Step 535: the intermediate value is scaled by the scaling factor SF. This scaled value is
typically, but not necessarily, stored in a same memory location or register as used to hold

the intermediate value.

Step 540: another buffer location [j2] is arranged to accumulate any previous value stored
therein with the now scaled intermediate value and is equivalent to the third memory
location described above.

The process moves to step 545 as described above.

As will be realised, the buffer is equivalent to two rows of source data 110, and is used to
accumulate two intermediate values (one of which is scaled by the scaling factor SF) before
being used to create a final output value for a data point or pixel in the output data 140.
In this way efficient memory usage is achieved with reduced latency because the buffer
memory is quicker to access than other memory such as DRAM.

FIG. 6 is a block diagram showing in more detail how the generalised method described in
FIG. 5 would work in another exemplary embodiment of the invention. FIG. 6 has many

13

10

15

20

25

30

35

WO 2024/115874 PCT/GB2023/052940

similarities to FIG. 4 and only the differences are described, with like reference signs
denoting like features.

First and second snapshots of the process are shown in FIG. 6. Instead of first memory
location 401 being a stand-alone memory location configured to store all data points of
the output data 140, first memory location 401 is buffer B1. Buffer Bl is reused as
described above and that teaching is not repeated.

In the first snapshot, once the intermediate value is obtained from source target pixel 112
and the accumulated content of buffer Bl (first memory location 401) is read and
combined with the intermediate value, the buffer Bl is reused (second memory location
402) to store the intermediate value. The combination of the value of buffer B1 with the
intermediate value is shown by accumulation unit 620, the output of which is sent to a
separate memory location corresponding to a previous data point in the output data, e.g.
142p. The separate memory location may be on a DRAM which is slower to access than
the buffer memory. Additionally, a second buffer location B2 (third memory location 403)
is used to accumulate its contents with the scaled intermediate value for later use.

In the second snapshot representing source target pixel [2,1] in the row below prior source
target pixel [1,1], the same process is repeated, but the first memory location 401 and
the second memory location 402 are each buffer B2, and the third memory location 403
is buffer B1.

FIG. 7 is a generalised schematic showing example data values or pixel values for an
example 4x4 source data 110. In this example, a 3x3 Gaussian kernel (separable) is used,
and coefficients A = 1/16; B = 1/8; and C = 1/16 with scaling factor SF = 2 can be derived
therefrom. Output data 140 is shown with worked out final data point values. Additionally,
a representation 700 of the accumulation of the intermediate values for each output data
point, scaled appropriate, is shown to aid understanding. Typically, three accumulations
are made for each data point, with each being represented by its own row within the
representation 700. Out of bounds data points or pixels are treated as zero, or alternatively
padding is used as is known in the art. Padding is where out of bounds data points or
pixels are given a non-zero value. For example an out of bounds data point or pixel is
given the value of the nearest pixel value in the input data. When out of bounds pixels are
treated as zero, no calculations are performed for the top and bottom rows of the input
data 110, saving on computational resource.

FIG. 8 is a flow diagram of a method of processing a data signal according to another
aspect of the invention. The flow diagram shows the method of processing a data signal
where the data signal is downscaled and processed using the separable kernel 230S.

14

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

The process of FIG.8 has the following steps:

Step 810: an intermediate value for a source target data point [i,j] is computed using the
first lower dimension, or horizontal, kernel 230H as already described above. In this

example, the intermediate value computed is stored as parameter “value”.

Step 820: the method checks if the value of i of the data point is divisible by 2 without a
remainder. If the value of i is divisible by 2 without a remainder, then the method
progresses to step 830, otherwise the method progresses to step 860.

Step 830: the value calculated at step 810 is multiplied by 2 (which is derived from the
vertical kernel 230V of FIG. 2), and the resulting value then overwrites the value that is
stored in the parameter “value”.

Step 840: the parameter “value” is added to whatever is stored in a buffer [j/2] to result
in an updated buffer [j/2].

Step 850: the method updates the value of j by adding 2 to it because this method is for
downscaling by a factor of 2. The method goes back to the start.

If at step 820 the value of i is not divisible by 2 without a remainder (i.e. the row being
processed is odd), then the method progresses to step 860.

Step 860: the method outputs a value output [(i-1)/2,j/2] using whatever is stored in the
buffer [j/2] (the first memory location) added to the value stored in the parameter “value”.
Buffer [j/2] is then updated to be the value in the parameter “value”. The method then
proceeds to step 850 described above. In this way, resources when computing a processed
value for a subsequent data point are saved as the value stored in buffer [j/2] can be
reused instead of calculating a new value for its corresponding data point. Additionally,
fewer memory resources are needed, especially in fast-access memory close to a CPU or
GPU.

This process repeats for each source target data point [i,j], but as explained already,
missing every other data point both row-wise and column-wise. In other words, once the
end of the row is reached in the source data 110, the process moves as follows i=i+2.

FIG. 9 is a block diagram showing in more detail how the generalised method described in
FIG. 8 would work in another exemplary embodiment of the invention. FIG. 9 has
similarities to FIG. 6 and only the differences are described in relation to the downscaling
or downsampling aspect, with like reference signs denoting like features.

15

10

15

20

25

30

35

WO 2024/115874 PCT/GB2023/052940

First and second snapshots of the process are shown in FIG. 9. Instead of first memory
location 401 being a stand-alone memory location configured to store all data points of
the output data 140, first memory location 401 is a buffer [j/2]. Buffer [j/2] is reused as
each row is processed as described above and that teaching is not repeated.

In the first snapshot, the target data point 112 is different to that shown in FIG. 6, with
the target data point being at location [1,2] in FIG. 9. As will be appreciated from FIG. 8,
only every other data point on each row becomes a target data point from which an
intermediate is derived, and not every data point on each row as taught in the FIG. 6
embodiment. This is because of the concurrent downsampling operation of FIG. 8. Once
the intermediate value is obtained from source target pixel 112 and the accumulated
content of buffer [j/2] (first memory location 401) is read and combined with the
intermediate value, the buffer [j/2] is reused (second memory location 402) to store the
intermediate value. The combination of the value of buffer [j/2] with the intermediate
value is shown by accumulation unit 620, the output of which is sent to a separate memory
location corresponding to a previous data point in the output data, e.g. 142p. In this case,
the processing of input data value [1,2] completes the accumulation of values for
processing input data value [0,2] according to the kernel 230S, and so a final value is
determined for output data point [0,1]. Note that output data point [0,1] corresponds, via
the downsampling, to input data point [0,2]. Of course, other downsampling and
upsampling variations are contemplated. The separate memory location may be on a
DRAM which is slower to access than the buffer memory. Notice that in this example, a
second buffer location B2 is not needed and is not used.

In the second snapshot representing source target pixel [2,1] in the row below prior source
target pixel [1,1], the same process is repeated, but the third memory location 403 is also
buffer B1. The intermediate value for source target pixel [2,1] is added to the value stored
in buffer B1 and the combined total is also stored in buffer B1.

FIG. 10 is a generalised schematic showing example data values or pixel values for an
example 4x4 source data 110 according to the process described in relation to FIG. 8 and
FIG. 9. In this example, a 3x3 Gaussian kernel (separable) is used, and coefficients A =
1/16; B = 1/8; and C = 1/16 with scaling factor SF = 2 can be derived therefrom. Output
data 140 is shown with worked out final data point values. The coordinates of the output
data are given in terms of the input data 110 so that an easy relationship can be made
between the output data points and the input data points which have been processed by
the kernel 230S or equivalent thereto to arrive at the output data points. As can be seen,
in this downsampling embodiment, the output data 140 is half the size of the input data
110, in other words can be expressed as 2x2 output data 140. Additionally, a

16

10

15

20

25

30

35

WO 2024/115874 PCT/GB2023/052940

representation 1000 of the accumulation of the intermediate values for each output data
point, scaled appropriately, is shown to aid understanding. Typically, three accumulations
are made for each data point, with each being represented by its own row within the
representation 1000. Again, representation 1000 uses coordinates from the input data 110
to make a comparison more straightforward. As can be seen, intermediate values shown
as 1010 corresponding to row 1 of the source data 110 is used in the determination of
both output data rows. This principle would carry on throughout the output data if larger
source data were used. Out of bounds data points or pixels are treated as zero. No
calculations are performed for the top and bottom rows of the input data 110, saving on

computational resource.

FIG. 11 is a schematic diagram of an apparatus according to the invention. The apparatus
is configured to perform the method of FIGS. 8-10 and is straightforwardly modifiable to
perform the method of FIGS. 3-7. An input signal data_in is processed through blocks
1110a and 1110b to prepare the input data signal for multiplication with the first lower
dimension kernel 230H. The selected part of the input signal is then processed through
multipliers 1120a, 1120b and 1120c which have multiplication values derived from the
first lower dimension kernel 230H, those being 1/16, 1/8 and 1/16 respectively. The result
of multipliers 1120a, 1120b and 1120c is then summed at summation module 1030 to
create the intermediate value. The output of summation module 1130 is then input to
selector 1150 and is also multiplied by the scaling factor SF at module 1140 (in this
example SF = 2) and input to selector 1150. Selector 1150 chooses to select either the
unscaled or scaled intermediate value according to the method outlined above. The result
of the selection at selector 1150 is then inputted to summing module 1160 to be summed
with the data out buffer signal (dout_buff) which is the output of the buffer 1170 as
required by the method described above and the result of the summation is then inputted
to the second selector 1180 and also output as data_out. The output of the summing
module 1160 is also input directly into the second selector module 1180. Depending on
the method described above, the second selector 1180 selects one of the two inputs to be
sent for storage in the buffer 1170 as data in buffer signal (din_buff).

The method may be implemented in one of the following: a dedicated hardware such as
an Application Specific Integrated Circuit, ASIC, or Field Programmable Gate Arrays, FPGA;
software running on a Central Processing Unit, CPU; software running on a Graphical
Processing Unit, GPU.

The skilled person would understand from this disclosure how to design and build an
apparatus for processing source data in accordance with the above embodiments.

17

10

WO 2024/115874 PCT/GB2023/052940

The method may be captured on a computer-readable medium comprising instructions
which when executed cause a processor to perform the method of any of the above
embodiments. The method may be encapsulated by a computer program, which may be
transmitted as a signal.

The above embodiments are to be understood as illustrative examples. Further
embodiments are envisaged. It is to be understood that any feature described in relation
to any one embodiment may be used alone or in combination with other features
described, and may also be used in combination with one or more features of any other of
the embodiments, or any combination of any other of the embodiments. Furthermore,
equivalents and modifications not described above may also be employed without
departing from the scope of the invention, which is defined in the accompanying claims.

18

5

10

20

30

35

WO 2024/115874 PCT/GB2023/052940

Claims

1. A computer-implemented method of processing source data 1o create cutput data,
the method comprising:
convolving a first lower dimension kernel of a separable kernel with the source data
to obtain a set of intermediate values;
for an intermediate value obtained for a target data point in the source data:
combining the intermediate value with the content of a first memory location
storing accumulated intermediate values for g first data point in the output data to
create a final value for the first data point in the cutput data, wherein the final
value corresponds to a value that the separable kernel would produce if the
corresponding source data point were processed by the saparable kernel; and
storing the intermediate value in a second memory location related to a
second data point of the output data, wherein the second data point requires the

intarmediate value so as to be processed according to the separable kernel,

2. The computer-implemented method of claim 1, wherein the source data is digital

image data.

3. The computer-implemented method of either of daims 1 or 2, wherein the
saparable karnel is one of! a 2D separable kernel; a 3x3 separable kernel; a 3x3 Gaussian

kernel.

4. The computer-implemented method of any preceding claim, wherein the first lower
dimension kernel is one of: a 1D kernel; a 1D horizontal filter; a 3x1 kernel; a 1D vartical

filter; a 1x3 kernel; and a symmetrical kernel of any of the aforementioned kernel types,

5. The computer-implemented method of any precading claim, wherein the first lower
dimension kernel is a 1D horizontal kernel and the step of convolving a first lower
dimension kernel of the separable kernel with the source data to obtain a set of
intermediate values comprisas applying the first lower dimension kernel to sach data point
of the source data in a row-wise manner, and the first data point and the second data

paoint in the ocutput data are arranged in the same column.

5. The computer-impiemented method of any of daims 1 to 4, wherein the first lower
dimansion kernal is a 1D vertical kernel and the step of convolving a first lower dimension
kernel of the separable kernel with the source data to obtain a set of intermediate values
comprises applving the first lower dimension kernel to each data point of the source data

19

SUBSTITUTE SHEET (RULE 26)

Ut

10

15

20

25

30

WO 2024/115874 PCT/GB2023/052940

in a colurnn-wise manner, and the first data point and the second data point in the output

data are arranged in the same row.

7. The computer-implemented method of any preceding claim, wherein the first data
puint and the second data point are separated by a data point in the output data

corrasponding to the target data point of the source signal,

8, The computer-implemented method of any preceding claim, wherein the method
further comprises:

deriving the first iower dimension kernel and a second lower dimension kaemneal from
the separable kernel in such a way so that the second lower dimension kernel has a single
non-unitary coefficient, and deriving a scaling factor from the single non-unitary

coafficient.

9. The computer-implemented method of any preceding claim, wherein the scaling

factor is one of the following: 2, 4, or 8.

1G. The computer-implemented method of claim 8 or daim 9, wherein the method
comprises applying the scaling factor to the intermediate value and adding the
intermadiate value to the content of a third memory focation used to accumulats values
for a target data point in the output data corresponding to the target data point in the

input data.

11, The computer-implemented method of any preceding daim, wherein the first
memnory location and the second memory location are the same memory location within a

buffer so as to reuse memory space in the buffer,

12. The computer-implemented method of claim 11 when dependent on claim 10,
wherein the third mamory {ocation is in the buffer and is a separate mamory location to

the first and second memory locations.

13. The computer-implemented method of claim 10, wherein each of the first memory
location, the second memory location and the third memory location are separate locations
corresponding to data points in the ocutput data.

i4. The computer-implemented method of any of claims 1 to 9, whersin the method

comprisas moving o a second target data point in the input data, obtaining a resulting

second intermediate value, applying the scaling factor to the resulting second intermediate

20

SUBSTITUTE SHEET (RULE 26)

10

20

30

WO 2024/115874 PCT/GB2023/052940

value and combining the scaled subsequent intermediate value with the intermediate value

stored in the second memory location.

i5. The computer-implemented method of claim 14, wherein the second target data

point is in the row immediately below the target data point.

iB. The computer-implemented method of claim 14 or claim 15, wherein the method
comprises moving to a third target data point in the input data, and repeating the process

of claim 1.

17. The computer-implemeanted method of claim 16, wherein the third target data point

is in the row immediately below the second data point.

18, The computer-implemented method of any preceding claim, wherein the method

comprises cutputting the final value.

19, The computer-implemented method of claim 18, wherein the cutputting the final
value comprises:

outputting the final value to a memaory location storing the cutput data; or

output for streaming.

20. The computer-impiemented method of any praceding cdaim, wherein the method is
implemented in one of the following: a dedicated hardware such as an Application Specific
Integrated Circuit, ASIC, or Field Programmable Gate Arrays, FPGA; software running on

a Central Processing Unit, CPU,; software running on a Graphical Processing Unit, GPU,

21, An apparatus for processing a source data, the apparatus is arranged to perform

the computer-implemented method of any of preceding claim,

22, A computer-readable medium comprising instructions which when executed cause

a processor to perform the method of any of claims 1-20,

21

SUBSTITUTE SHEET (RULE 26)

PCT/GB2023/052940

WO 2024/115874

1711

T 'Ol

[2'2]-o+[1' 2] Vo +[0"2] -+ [114 W+ T/ 11 I+ [0 110 T+ [2/01- 4O+ [10]- 7O+ [00]-00y =

A

e

| ~— v1
oy 1Ty T 0y
A.xmuw‘ NQVM Q\Mvw TET
A2 BRI RS B i

% «—O0zT
€ElZe[Te0e
€cjez 1¢ 0¢
€Tjz1[TIjoT
€olcoJro o0

ar v

PCT/GB2023/052940

WO 2024/115874

2/1

¢ 'Ol

SOE¢

91/1 1 8/1 151/1
G177 1 8/7 1 91/7
91/1 8/ 191/1

PCT/GB2023/052940

WO 2024/115874

3711

€ 'Ol

(01333

0ce

0T¢

v1iva 1Nnd1nO 3HL NI LNIOd
V1vd dNODJ3S V d404 SANIVA JLVINKWNIDV
OL d3sn NOILVOO1 AdOWIW ANOD3IS
V NI INTVA JLVIAIWHILNI FHL DONIHOLS
‘@aINIVLIGO INTVA ILVIAIWYILNI JHL ¥O4

vliva 1Nd1NnO 3HL NI INIOd v1ivd
1SHId V 404 SANTVA ALVINWNDDV OL d3Isn
NOILVOOT AYOW3IAW LSYHI4 V 40 LNILINOD IHL
HLIM INTVA 3LVIAIWHILNI FHL DONINIGWOD
‘@3INIVLgO INTVA JLVIAIWYILNI NV ¥Od

SANTVA JLVIAIWYILNI
40 13S V NIV1dO Ol v1vad 3234N0S
HLIM T13NY3IN 3719VHVd3S V 40 1INY3IA
NOISNIWIA YIMOT LSHI4 V DNIATOANOD

PCT/GB2023/052940

WO 2024/115874

¥ "OId

4/ 1

([T‘2] *N'anjep x 4s) +
[T7] MNanjep =

[T2] uoied07 AloWBa A

[T‘¢] *N'onjep =

[T€] uoied07 AlOWSA

[T‘2]™N'anjen +
([TT] ™N'anjea x 49)
+[10] tN'anjen =

[TT] uoie207 AlOWS A

A:.: hz_ms_m> X “_mv T
[T0] Hz_w:_m> _

[TT] U020 AIOWSA

[1T] hz_ms_m> _

[T2] uoied07 AloWBa A

TT] hz_ms_m>+
A:\o_ E_w:_m>xu_mv +0=

“cor”]
sTrt e
Nﬁ A .
4 4 \\\\
/ \- ~l\-\\\
~ [47 Va
4 rd0)%
\ ==
ovT dzyt adl

[T°0] uo1LI0T AIOWSA

45 X

£r e
5, %y Z

&7

o 4
21

£0

Ve

45 X

o \ p
v %

N

g § o7

s\:N‘ ‘

L0

\Ve

PCT/GB2023/052940

WO 2024/115874

5711

anmwA + [Y]a9nq = [¥]4aunq

[*/lsaynq

INlanmoA + [*l4aynqg = [[1-1andano

G ‘Ol4 xpup <1 13un jeadas pue g = fpue T + 1 = 7 uayy xvwf<f J
o T+ /=1 |«
srs”
anp4 + [Hlieyng = [liaynq
ovrs” 1 s 1
WNlanpp X 4S = anwA INIanpp X 4S = anpp
ces” 1 095~ 1
> Wiznwy = [¥4eung Wianp =
omm\ 1 mmm\ 1
WNIanA + [¥laayng = [['T-11andIno
see’ 0ss” 1
ON ON

0TS

[T+/'11D + [/'1]G + [1-/"1]v = Nlanpy

PCT/GB2023/052940

WO 2024/115874

6/11

([t2] *V'anjen x 4s) +
[1°7] *Manjen =

Tg uol1ledxo] Alowa |

[T2] *N'anjep =

29 uonedo] Alows

A
([T'1] ™Monjea
x 4S) + [1'0] tNonjen =

9 'OId
mov\
_ : Nov\
i -
| *\
0¢9
/ ﬁov\

29 uonedo] Alows

45X

£r e
L % |

o 4
21

£0

OTT \c

[12] MNanjep

([z1] *M'anjep x 4s) +
[1°0] *™anjen =

130)7

29 uonedo] Alows

[TT] ™Nonjen =

E ey

e

Tg uol1ledxo] Alowa |

A

-
o

([T'0] MN'anjea x 45) +0 =

Tg uol1ledxo] Alowa |

ov1

dzvt

[407%
\
0¢9
._”ov\

45X

vy

o & g

2

A %

Sy e
o

[TT] MNanjep

WO 2024/115874 PCT/GB2023/052940
71711

140
700

AN «"\Q\.
S s ey Ry
Siaigld :
Il DRV
Sinints
LSRR
X SR . . v
RiAiag PR N e e T e T
gl S EIOBED TR @
H@ioglwrind
i Lo odine]
Jos P
oaisrinrion ™
LG W Y Nt
e
Thesinimb
ST
NS PV DY W
R T R e
- RN PN
BE TR AN
NS
et R R0 G Kaand Eannd Fhannt Bt
B R b <>Cs \\3 Wy Il
e
Pl T
o pows
Ry
i haifaiiny

A
WY WE

X
st
»

X
¥

TR foa N TANT SRR

et e Kas % Ry
“nad M

powey :1\-,.

$ N

A AR

178
28
1/8

1716
316
1/

&
S

sen
P
WX
o

Ay

Iy I

o

—

< ey
\

; %
R AN I
Y ERDTONEWY e ot
eI E R i S
NIV
QMg Wi B E
D PN PN
g b oy $ e E et ~;§§o
N
YW v o
L I EO I AT S
DR TR PR e
R
veeey P o hacl o

ot O e N DY o

FIG. 7

WO 2024/115874

SN

.,

!

e OO,
S o,
"~

o~
N"""u»«-» rirt?”

T s
*;

i

:
t

VoS G 150 eeens

8/ 11

Ve 830

pisg %L

2

v ind =

PCT/GB2023/052940

860

oo
j 323

1 820

Va 850

e

FIG. 8

PCT/GB2023/052940

WO 2024/115874

9/11

6 'Ol

ov1

/

dzvt

130)7

[401/4
\ —
i 029
Q\ ._”o#\

([zg] *N'anjen x 4S) +

[z'T] *Manjen =

[2/(] uoneso] Auows|p

[2‘T] ™Nonjen =

A

e

[2/(] uoneso] Auows|p

Y

A

%

([z'0] MN'anjea x 45) +0 =

0

3%
X
4

*

B

[2/(] uoneso] Auows|p

[2T] MNanjep

Aok

WO 2024/115874
10 /11

(RO
Y}
&N N0
TG e
S
L aa B et

1000

13,
725364
874

A gty

< ey 3
el ata]
2
w
o
o
(@
W IERNS
gy W et
R e L
L itac iR o]
TSI US
Sead St
iRt EE 0
Pasiag fte
i FE o]
Md i
R -3
o *
—i
—i
ISR
Far RS ERTAS Ao g
Lot il g
XN N
TR B E - At it
LB IR PR o]
CHHEN e et
L IR BRIV T E ~ o
e Pt i} vt
P Tenisn tE
Qi iariniey
i e et

\i
G
i
2
3

PCT/GB2023/052940

FIG. 10

PCT/GB2023/052940

WO 2024/115874

11711

1T 'Ol

A

-

0¢TT

ovit

Pt

s

v

adnanansanananaanany

q0TTT” e0TT

=

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2023/052940

A. CLASSIFICATION OF SUBJECT MATTER

INV.
ADD.

GO6T1/20 GO6T1/60

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, BIOSIS, COMPENDEX, INSPEC, IBM-TDB, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 7 826 676 B2 (MITSUBISHI ELECTRIC RES 1-22
LABORA [US]) 2 November 2010 (2010-11-02)
abstract
column 1, line 10 - column 3, line 26
A WO 2007/146574 A2 (QUALCOMM INC [US]; JIAO 1-22
GUOFANG [US] ET AL.)
21 December 2007 (2007-12-21)
abstract
paragraphs [0002] - [0008]
paragraphs [0021] - [0029]
paragraphs [0033] - [0041]
A US 2014/112596 Al (YANG FAGUO [US]) 1-22
24 April 2014 (2014-04-24)
abstract
paragraphs [0001] - [0004]
-/—
|__K| Further documents are listed in the continuation of Box C. ‘z‘ See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X document of particular relevance;; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other """ document of . . - - -
. b particular relevance;; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
2 February 2024 13/02/2024
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, .
Fax: (+31-70) 340-3016 Klemencic, Ales

Form PCT/ASA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2023/052940

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A CHRISTOPHER J HOLDER ET AL: "On Efficient
Real-Time Semantic Segmentation: A
Survey",

ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY
14853,

17 June 2022 (2022-06-17), XP091252890,
abstract

page 4, left-hand column, line 1 - page 5,
left-hand column, line 39

1-22

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2023/052940
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 7826676 B2 02-11-2010 CN 101261733 A 10-09-2008
EP 1968009 A2 10-09-2008
JP 2008226233 A 25-09-2008
Us 20082159580 A1l 11-09-2008
WO 2007146574 A2 21-12-2007 Us 2007292047 A1 20-12-2007
WO 2007146574 A2 21-12-2007
US 2014112596 Al 24-04-2014 NONE

Form PCT/ASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report
	Page 37 - wo-search-report

