w0 20207106407 A1 | NI 0000 KO Y0 0 0 00 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
28 May 2020 (28.05.2020)

(10) International Publication Number

WO 2020/106407 A1

WIPO I PCT

(51) International Patent Classification:
GO6F 21/33 (2013.01) Ho041 29/06 (2006.01)
GO6F 21/41 (2013.01) Ho4W 12/08 (2009.01)

(21) International Application Number:
PCT/US2019/057863

(22) International Filing Date:

24 October 2019 (24.10.2019)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
16/198,249 21 November 2018 (21.11.2018) US

(71) Applicant: CITRIX SYSTEMS, INC. [US/US]; 851 West
Cypress Creek Road, Fort Lauderdale, Florida 33309 (US).

(72) Inventors: JAIN, Ayush; c/o Citrix Systems, Inc., 851
West Cypress Creek Road, Fort Lauderdale, Florida 33309
(US). FEIJOO, Ricardo; c/o Citrix Systems, Inc., 851
West Cypress Creek Road, Fort Lauderdale, Florida 33309
Us).

Agent: DANNENBERG, Ross, Banner & Witcoff, Ltd.,
1100 13th Street, NW, Suite 1200, Washington, District of
Columbia 20005 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(54) Title: DUAL FACTOR AUTHENTICATION WITH ACTIVE DIRECTORY AND ONE TIME PASSWORD TOKEN COM-

BINATION

500
Authentication System 520 FIG. 5
441~ /\
AD Plugin "Cust\
431« 7 AD \
|
. Relying .. Authentication AD + OTP
. Party Interface m+— Plugin
il (A —

. 523 | . 447~
Client OTP Plugin > otp)
Device L 437 ’ \
5&5 puLt_2 & ~

(57) Abstract: Aspects described herein may utilize self-federation in a plugin-based authentication system to support combinations of
authentication processes. The authentication system may include a plugin that executes an authentication process that is a combination of
two or more other authentication processes. This plugin may handle the combined authentication process by self-federating back to the
authentication interface, generating its own authentication requests under each of the subsidiary authentication processes. Thus, the self-
federating plugin corresponding to the combined authentication process may allow the authentication system to support authentication
requests that indicate the combined authentication process. This chained authentication process, accomplished through self-federation,
may allow the authentication system to reuse existing code paths and avoid downsides associated with duplication of code.

[Continued on next page]

WO 2020/106407 A1 {1110} 00 00000000 O

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2020/106407 PCT/US2019/057863

SELF-FEDERATION IN AUTHENTICATION SYSTEMS
CROSS-REFERENCE TO RELATED APPLICATIONS
{0081] This application claims priority to U.S. Non-Provisional Patent Application No.
16/198,249, filed on November 21, 2018, whose contents are expressly incorporated herein by

reference in its entirety.
TECHNICAL FIELD

{6002] Aspecis of the disclosure relate to computer hardware and software. In particular,
one or more aspects of the disclosiure generally relate to computer hardware and software for
generation and management of authentication tokens to interact with multiple serviees

provided by various identity providers in a virtualized environment.
BACKGROUND

{0083] Authentication systems may allow users fo access enierprise services by
authenticating the identity and permissions of the user through various authentication
processes. A relying party, in secking to provide network services to a client device, may
provide an authentication request to the authentication system, and the authentication system
may interface with one or more systems to authenticate the user. The authentication system
may return a token that the relying party can use to provide access the enterprise services.
Authentication requirements may be configured as part of the client system, and may include

processes such as Active Directory (AD) or One Time Password (OTF).

{6004] Federation in authentication systems may provide common authentication processes
for a user’s identity across multiple systems and applications. Federation may be imoplemented
using industry standards, such as the OAuth 2.0 standard. Authentication requests may flow

through software modules tasked with handling aspects of the authentication process.
SUMMARY

{0005] The following presents a simplified summary of various aspects described herein.
This summary is not an cxtensive overview, and is not intended to identify key or critical
clements or to delineate the scope of the claims. The following summary merely presents some
concepts in a simplified form as an introductory prelude to the more detailed description

provided below.

{6006] Federating to other parties may present challenges regarding trust, code flow, and

other concerns. Problems may arise when it is desired to authenticate with multiple 1dentity

WO 2020/106407 PCT/US2019/057863

services, and some relying partics may not be able to themselves implement the specific
requirements of the flows associated with authentication processes. These problems are
associated with computer-implemented authentication systems, and are rooted in the computer
structures and functionality used in such systems. To overcome these limitations, and to
overcome other Hmitations that will be apparent upon reading and understanding the present
specification, aspects described herein are directed towards using self-federation in a muld-

federation asthentication system 1o support combined authentication processes.

{0087] Aspects described herein may relate to a plugin-based authentication system. The
authentication system may comprise an authentication interface and a plurality of plugins
corresponding to different authentication processes. When the authentication interface
recetves a request to authenticate a client device from a relying party, such as an enterprise
server, the authentication interface may call a plugin corresponding to an authentication
process associated with the client request to authenticate. A relying party may be a server
and/or other computer device, or a service, that utilizes an authentication systerm to authenticate
a client device. Typically, a relying party may reguest that the agthesntication system
authentication the client device in response to a client request to access services that are secured
by the authentication system. In some instances, the authentication system may Serve as an
interface to other systems, soch as third party systems, that inchide information and
functionality effective to securely authenticate a user of the client device. According to some
aspects described further herein, multiple authentication processes may be combined in a single
request, and the combined process may be handled by a corresponding plugin. The plugin
corresponding o the combined authentication process may self-federate to the authentication
interface to process cach of the individual authentication processes in the combined request.
For example, the plugin corresponding to the combined authentication process may generate
its own individual authentication requests for the authentication nterface to handle. The
avthentication interface may call respective plugins corresponding to cach of the individoal
authentication processes, and return the results to the plugin corresponding to the combined
authentication process. The plugin corresponding to the combined authentication process may
combine the results from each of the plugins associated with the individual authentication
processes, and the combined authentication token may be returned to the enterprise server via
the authentication interface. Sclf-federation in this manner may aliow the authentication

systerm to support a combination of authentication flows. Additionally, self-federation may

]

WO 2020/106407 PCT/US2019/057863

aliow the authentication system to change flows from one form to another, such as from an

authentication code flow to a resource owner flow.

{0088] Thus, some aspects described herein may provide methods, systems, and computer-
readable media for processing an authentication request that corresponds to multiple
authentication processes. An authentication interface may receive a first request to
authenticate a client device using a first type of authentication process from an enterprisc
server. The first type of authentication process may be a combination of authentication
processes. For example, the first type of authentication process may comprisc authenticating
a uscr via a second type of authentication process and a third type of authentication process.
The authentication interface may call, based on the first request, a first plugin corresponding
to the first type of authentication process to generate a first asthentication token. The first
plugin may be configured to gencrate the first authentication token through self-federation to
the authentication interface to obtain a sccond authentication token corresponding to the
second authentication process and a third authentication token corresponding to the third
authentication process from other plugins corresponding to those authentication processes.
While the enterprise server is the relying party in the first request 1o the authentication interface
(based on the combined authentication process}), the first plugin may be considered the relying
party in the individual requests 1o the authentication interface to bandie the second and third

types of authentication processes.

{6009%] For example, the first plugin may generate and send to the authentication interface a
second request to authenticate the client device using the second type of authentication process.
The authentication interface may return to the first plugin a second authentication token
generated by calling a second plugin corresponding to the second type of authentication
process based on the second request. The first plugin may generate and send to the
avthentication interface a third request to authenticate the client device using the third type of
authentication process. The authentication interface may return to the first plugin a third
authentication token gencrated by calling a third plugin corresponding to the third type of
authentication process based on the third request. The first plugin may combine the second
authentication token and the third authentication token in generating the first authentication
token corrcsponding to the combined authentication process, and provide the first
authentication token to the authentication interface. The authentication interface may provide

the first authentication token to the enterprise server. The enterprise server may use the first

WO 2020/106407 PCT/US2019/057863

authentication token to provide the client device with access network services secured by the

first authentication process.

{0018] The plugins corresponding to the individeal types of authentication processes
included in the combined authentication process may be configured to handle and/or process
an authentication flow corresponding to the authentication process type. For example, a second
plugin corresponding to the second type of authentication process may gather user credentials
and request the second authentication token from a resource owner systern. Similarly, a third
plugin corresponding to the third type of authentication process may gather necessary
credentials and authenticate with a resource owner systent. According to some aspects, the
authentication systern may implement single-sign on features. If the user has previously
authenticated with a particular resource owner systern and/or through a particular
authentication process, the authentication system may provide stored single-sign on
credentials/tokens without needing to re-gather credentials and re-authenticate with the
resource owner system. While single-sign on credentials/tokens may be associated with timing
and/or use restrictions, they may allow users to avoid duplicative credential prompts when re-

accessing resources within the parameters of the single-sign on system.

{6011] The first authentication process may comprise a combination of authentication
processes based on different credentials. For example, the second authentication process may
bie based on requesiing a user name and password from the user, such as an Active Directory
(AD) authentication process. The third authentication process, in the example, may be based
on a two-factor authentication process, such as a One Time Password (OTP) authentication
process. In this example, client applications may request that the authentication interface
authenticate the client device / user based on a combination of Active Directory and Oue Time
Password asthentication processes. Client applications may include, for example, applications
on a server accessed by users via a chient device. The chent applications may provide a service
to the user using information and/or functionality provided by network resources and services.
The network resources and services may be secured by one or more authentication processes,
and access may be facilitated by and/or controlled by the authentication system. Continuing
the example, the authentication interface may call a plogin that corvesponds to the combination
of AD + TP based on the request to authenticate. The AD+OTP plugin may make its own
requests to the authentication interface to call the appropriate plugin to handle each part of the

combined request. Thus, through self-federation, the AD+OTP plugin may go through the

WO 2020/106407 PCT/US2019/057863

authentication interface to leverage existing and managed code paths to process authentication

for cach requested type of authentication.

{6012] These and additional aspects will be appreciated with the benefit of the disclosires
discussed in further detail below.

BRIEF DESCRIPTION OF THE DRAWINGS
{0013] A more complete understanding of aspects described herein and the advantages

thereof may be acquired by referring to the following description in consideration of the

accompanying drawings, in which like reference numbers indicate like features, and wherein:

{0014] FIG. 1 depicts an illustrative computer systemn architecture that may be used in

accordance with one or more Hlustrative aspects described herein.

{0015] FIG. 2 depicts an tllustrative remote-access system architecture that may be used in

accordance with one or more illusirative aspects described herein.
[0016] FIG. 3 depicts an illustrative enterprise mobility management system.
{0017] FIG. 4 depicts an example plugin-based authentication system.

{0018] FIG. S depicts an example plugin-based authentication system incorporating self-

federation, according to some aspects described herein.

{6019] FIG. 6 depicts an example flow chart for use of self-federation in an authentication

system, according to some aspects described herein.

{6020] FIG. 7 depicts an example plug-in based authentication system implementing

combined auvthentication processes without self-federation, according to some aspects.

16021] FIG. € depicts an example plugin-based authentication system operative to combine

a first authentication flow to a second authentication flow.
DETAILED DESCRIPTION

{6022] In the following description of the various embodiments, reference is made to the
accompanying drawings identified above and which form a part hercof, and in which is shown
by way of illustration various embodiments in which aspects described herein may be
practiced. It is to be understood that other embodiments may be utilized and structural and
functional modifications may be made without departing from the scope described herein.
Various aspects are capable of other embodiments and of being practiced or being carried out

in various different ways.

WO 2020/106407 PCT/US2019/057863

[6023] It is to be understood that the phraseology and terminology used herein are for the
purpose of description and should not be regarded as limiting. Rather, the phrases and terms
used herein arc to be given their broadest interpretation and meaning. The use of “including”
and “comprising” and variations thereof is meant to encompass the ites listed thereafter and

equivalents thereof as well as additional items and equivalents thereof. The use of the terms

3 25 66,

“mounted,” “connected,” “coupled,” “positioned,” “engaged” and similar terms, is meant o

include both direct and indirect mounting, connecting, coupling, positioning and engaging.

{0024] As cxplained above, aspects described herein may utilize self-federation in a plugin-
based authentication system to support combinations of authentication processes. As discussed
above and further herein, federation in authentication systems may allow one authentication
system to invoke functionality of a federated identity provider. Federation may be
implemented using industry standards, such as the OAuth 2.0 standard. Through federation,
authentication requests may flow through software modules tasked with handling aspects of
the authentication process. Aspects described herein may velate to components “self-
federating” back to the authentication system to implement individaal portons of a compound

workflow.

{6025] An authentication system may be provided to handle and respond to authentication
requests from relying parties. The authentication system may serve as an interface to various
federated identity providers. The authentication system may be implemented using one or
more computing devices, processors, memory, and/or other computing hardware as discussed
further herein. The authentication system may include suitable software code modules to
respond to the authentication requests and implement the authentication processes supported
by the system. The authentication system may include a plugin corresponding to an
authentication process that is a combination of two or more other authentication processes.
This plugin may handle the combined authentication process by seff-federating back to the
authentication interface, generating its own authentication requests under each of the
subsidiary authentication processes. Authentication requests may include an indication of an
authentication process o be used in authenticating the client device and/or user. The indication
may be, for example, an explicit request to invoke a particular authentication process and/or
an imaplicit request, where the authentication process may be determined based on an indication
of the resources 1o be accessed. The self-federating phlugin corresponding 1o the combined
authentication process may allow the authentication system to support authentication requests

that indicate the combined authentication process. This “chained” authentication process,

WO 2020/106407 PCT/US2019/057863

accomplished through self-federation, may allow the avthentication system to regse existing

code paths and avoid downsides associated with duplication of code,

{0026] As an cxample, consider an authentication system that supports user name and
password verification via a first authentication process, such as Active Directory (AD), and
supports two-factor verification via a sccond authentication process, such as Oune Time
Password (OTP). If arelving party such as an enterprise server wanted to authenticate a client
device via the AD process, the relying party may send an authentication request to the
authentication system. An authentication interface of the authentication system may route the
authentication request to a corresponding AD plugin, which may prompt the user to enter the
user name and password before authenticating with a customer AD systern. But if it is
desirable for the enterprise server to authenticate using both AD and OTP, the client application
may need to generate two separate authentication requests. Aspects described herein may
provide a plugin corresponding to the combined authentication process, such as AD + OQTP.
This AD + OTP plugin may self-federate back to the asthentication interface of the
authentication system and generate requests for the AD authentication and for the OTP
authentication, which will be handled by the respective AD and OTP plugins. The AD + OTP
plugin may receive the resulting authentication tokens for the AD and OTP requests from the
avthentication interface, and may combine the tokens for use by the client application. The
combined token may be returned to the enterprise server via the agthentication interface so that

the user can access the system.

{6027] Although examples herein discuss AD, OTP, and AD + OTP authentication
processes, it should be understood that these are exemplary embodiments only. Aspects
described herein may apply to anv types of authentication processes supported by an
authentication system, and any combination thereof. Despite the use of these example
avthentication processes, the discussion herein applies equally to other types and combinations
of authentication processes.

{6028] But before discussing these and other aspects further, discussion will turn to example
computing environments in which aspects described herein may be implemented, as iHustrated
in FIGS. 1-3.

[6029] Computer software, hardware, and networks may be utilized in a variety of different
system environments, including standalone, networked, remote-access (aka, remote desktop),

virtualized, and/or cloud-based environments, among others. FEG. 1 illustrates one example of

~J

WO 2020/106407 PCT/US2019/057863

a systern architecture and data processing device that may be used to implement one or more
tHustrative aspects described herein in a standalone and/or networked enviroument. Various
network nodes 103, 105, 107, and 109 may be interconnected via a wide arca network (W AN}
101, such as the Internet. Gther networks may also or alternatively be used, including private
intranets, corporate networks, local area networks (LAN), metropolitan arca networks (MAN),
wircless networks, personal networks (PAN), and the like. Network 101 is for illustration
purposes and may be replaced with fewer or additional computer networks. A local avea
network 133 may have one or more of any known LAN topology and may use one or more of
a varicty of different protocols, such as Ethernet. Devices 103, 105, 107, and 109 and other
devices (not shown} may be connected to one or more of the networks via twisted pair wires,

coaxial cable, fiber optics, radio waves, or other communication media.

{0030] The term “network” as used herein and depicted in the drawings refers not only to
systems in which remote storage devices are coupled together via one or more communication
paths, but also to stand-alone devices that may be coupled, from time to time, to such systems
that have storage capability. Consequently, the term “network” includes not only a “physical
network”™ but also a “content network,” which is comprised of the data—attributable to a single

entity—which resides across all physical networks.

{6031] The components may inchide data server 103, web server 105, and client computers
107, 109. Data server 103 provides overall access, control and adminisiration of databases and
control software for performing one or more illustrative aspects describe herein. Data server
103 may be connected to web server 105 through which users interact with and obtain data as
requested. Alternatively, data server 103 may act as a web server itself and be directly
connected to the Internet. Data scrver 103 may be connected to web server 105 through the
local arca network 133, the wide area network 101 (e.g., the Internet), via direct or indirect
connection, or via some other network. Users may interact with the data server 103 using
remote computers 1037, 109, e.g., using a web browser to connect to the data server 103 via one
or more externally exposed web sites hosted by web server 105, Client coraputers 107, 109
may be used in concert with data server 103 to access data stored therein, or may be used for
other purposes. For example, from client device 107 a user may access web server 105 using
an Internct browser, as is known in the art, or by executing a software application that
coromunicates with web server 105 and/or data server 103 over a computer network (such as

the Internet).

WO 2020/106407 PCT/US2019/057863

[0032] Servers and applications may be combined on the same physical machines, and retain
scparate virtual or logical addresses, or may reside on separate physical machines. FIG. 1
illustrates just one example of a network architecture that may be used, and those of skill in
the art will appreciate that the specific network architecture and data processing devices used
may vary, and are secondary to the fonctionality that they provide, as further described herein.
For example, services provided by web server 105 and data server 103 may be combined on a

single server.

{0033] Each component 103, 105, 107, 109 may be any type of known computer, server, or
data processing device. Data server 103, e.g., may include a processor 111 controlling overall
operation of the data server 103. Data server 103 may further include random access memory
(RAM) 113, read only memory (ROM) 115, network interface 117, input/output interfaces 119
(e.z., keyboard, mouse, display, printer, etc.}), and memory 121. Input/output (/0) 119 may
include a variety of interface units and drives for reading, writing, displaying, and/or printing
data or files. Memory 121 may further store operating system software 123 for controlling
overall operation of the data processing device 103, control logic 125 for instructing data server
103 to perform aspects described herein, and other application softwarc 127 providing
sccondary, support, and/or other functionality which may or might not be used in conjunction
with aspects described herein. The control logic may also be referred to herein as the data
server software 125. Functionality of the data server software may refer to operations or
decisions made automatically hasced on rules coded into the control logic, made manually by a
user providing input tnio the system, and/or a combination of automatic processing based on

user input {(e.g., queries, data updates, etc.).

{6034] Memory 121 may also store data used in performance of one or more aspects
described berein, including a first database 129 and a second database 131. In some
embodiments, the first database may inchide the second database {(e.g., as a separale table,
report, etc.). That is, the imformation can be stored in a single database, or separated into
different logical, virtual, or physical databascs, depending on system design. Devices 105, 107,
and 109 may have similar or different architecture as described with respect to device 103,
Those of skill in the art will appreciate that the functionality of data processing device 103 {or
device 105, 107, or 109} as described herein may be spread across multiple data processing
devices, for example, 1o distribute processing load across multiple computers, to segregate

transactions based on geographic location, user access level, quality of service (QoS), etc.

WO 2020/106407 PCT/US2019/057863

[0035] One or more aspects may be embedied in computer-usable or readable data and/or
computer-cxecutable instructions, such as in one or more program modules, executed by one
or more computers or other devices as described berein. Generally, program modules include
routines, programs, objects, componenis, data structures, etc. that perform particular tasks or
implement particular abstract data types when executed by a processor in a computer or othey
device. The modules may be writtcn in a source code programming language that is
subsequently compiled for execution, or may be written in a scripting language such as (but
not limited toy HyperText Markop Language (HTML) or Extensible Markup Language
(XML). The coraputer executable instructions may be stored on a compuicr readable medium
such as a nonvolatile storage device. Any suitable computer readable storage media may be
utilized, including hard disks, CD-ROMs, optical storage devices, magnetic storage devices,
and/or any combination thereof. In addition, various transmission {(non-storage) media
representing data or events as described herein may be transferred between a source and a
destination in the form of electromagnetic waves traveling through signal-conducting media
such as metal wires, optical fibers, and/or wireless transmission media (e.g., air and/or space).
Vartous aspects described herein may be embodied as a method, a data processing system, or
a compuicr program product. Therefore, various functionalitics may be embeodied in whole or
in part in software, firmware, and/or hardware or hardware equivalents such as integrated
circuits, field programmable gate arrays (FPGA), and the like. Particular data structures may
be used w more effectively implement one or more aspects described herein, and such data
structures are contemplated within the scope of computer executable instructions and

computer-usable data described herein.

{0036] With further reference to FIG. 2, one or more aspects described herein may be
implemented in a remote-access environment. FIG. 2 depicts an example system architecture
including a computing device 201 in an illustrative computing environment 200 that may be
used according to one or more iHustrative aspects described herein. Computing device 201
may be used as a server 206a in a single-server or multi-server desktop virtualization system
(e.g., arcmote access or cloud system) configured to provide virtual machines for client access
devices. The computing device 201 may have a processor 203 for controlling overall operation
of the server and its associated components, including RAM 203, ROM 207, Input/Cutput

(10} module 209, and memory 213.

{6037] /O module 209 may include a mouse, keypad, touch screen, scanner, optical reader,

and/or stylus {or other input device(s)) through which a user of computing device 201 may

WO 2020/106407 PCT/US2019/057863

provide input, and may also inchude one or more of a speaker for providing audic output and
one or more of a video display device for providing textual, audiovisual, and/or graphical
output. Software may be stored within memory 215 and/or other storage to provide instructions
to processor 203 for configuring computing device 201 into a special purpose computing
device in order to perform various functions as described herein. For example, memory 2153
may store software used by the computing device 201, such as an operating system 217,

application programs 219, and an associated database 221.

{0038] Computing device 201 may operate in a networked environment supporting
connections to one or more remote computers, such as terminals 240 (also referred to as client
devices). The termainals 240 may be personal computers, mobile devices, laptop computers,
tablets, or servers that include many or all of the elements described above with respect to the
compaiting device 103 or 201. The network connections depicted in FIG. 2 include a local area
network (LAN)Y 225 and a wide arca network (WAN) 229, but may also include other notworks.
When used in 2 LAN networking environment, computing device 201 may be connected to the
LAN 225 through a network interface or adapter 223. When uvsed in a WAN networking
environment, computing device 201 may inchide a modem 227 or other wide arca network
interface for establishing conmmunications over the WAN 229, such as computer network 230
{e.g.. the Internet). It will be appreciated that the network connections shown are illustrative
and other means of establishing a communications link between the computers may be used.
Coraputing device 201 and/or terminals 240 may also be mobile terminals {e.g., mobile phones,
smartphones, personal digital assistants (PDAs), notebooks, etc.) including various other

components, such as a battery, speaker, and antennas (not shown).

{6039] Aspects described hercin may also he operational with numerous other general
purpose or special purpose computing system environments or configurations. Examples of
other computing systems, environments, and/or configurations that may be suitable for use
with aspects described hercin include, but are not himited to, personal computers, scrver
computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based
systems, set top boxes, programmable consumer clectronics, network personal computers
(PCs), minicomputers, mainframe computers, distributed computing environments that inciude
any of the above systems or devices, and the like.

{6040] As shown in FIG. 2, one or more client devices 240 may be in communication with
one of more servers 206a-206n (generally referred to herein as “server(s) 2067). In one

embodiment, the computing environment 200 may include a network appliance installed

WO 2020/106407 PCT/US2019/057863

between the server{s) 206 and client machine(s) 240. The network appliance may manage
client/server connections, and in some cases can foad balance client counections armongst a

plurality of backend servers 206,

{6041} The client machine(s) 240 may in some embodiments he referred to as a single client
machine 240 or a single group of client machines 240, while server(s) 206 may be referred o
as a single server 206 or a single group of servers 206. In one embodiment a single client
machine 240 commnunicates with more than one server 206, while in another embodiment a
single server 206 communicates with more than one client machine 240. In yet another

cmbodiment, a single client machine 240 conununicates with 3 single server 206.

{00427 A client machine 240 can, in some embodiments, be referenced by any one of the
following non-exhaustive terms: client machine(s); client(s); client computer(s); client
device(s); client computing device{s); local machine; remote machine; client node(s);
endpoint(s); or endpoint node(s). The server 206, in some embodiments, may be referenced by
any onc of the following non-cxhaustive terms: servei(s), local machine; remote machine;

server farm(s), or host computing device(s).

{6043] In one embodiment, the client machine 240 may be a virtual machine. The virtoal
machine may be any virtsal machine, while in some embodiments the virtual machine may be
any virtual machine managed by a Tvpe 1 or Type 2 hypervisor, for example, a hypervisor
developed by Citrix Systerns, [BM, VMware, or any other hypervisor. In some aspects, the
virtual machine may be managed by a hypervisor, while in other aspects the virtual machine
may be managed by a hypervisor executing on a server 206 or a hypervisor executing on a

client 240,

{0044] Some embodiments include a client device 240 that displays application output
generated by an application remotely executing on a server 206 or other remotely located
machine. In these embodiments, the client device 240 may execute a virtual machine yeceiver
program or application to display the output in an application window, a browser, or other
output window. In one example, the application 13 a desktop, while in other examples the
application is an application that generates or prescnts a desktop. A desktop may include a
graphical shell providing a user interface for an instance of an operating system in which local
and/or remote applications can be integrated. Applications, as used herein, are programs that
execute after an instance of an operating system (and, optionally, also the desktop) has bheen

foaded.

3]

WO 2020/106407 PCT/US2019/057863

[0045] The server 206, in some embodiments, gses a remote presentation protocol or other
program to send data to a thin-client or remote-display application executing on the client to
prescnt display output generated by an application executing on the scrver 206. The thin-clicnt
or remote-display protocol can be any one of the following non-exhaustive list of protocols:
the Independent Computing Architecture ({CA) protocol developed by Citrix Systems, Inc. of
Ft. Lauderdale, Florida; or the Remote Desktop Protocol (RDP) manufactured by the Microsoft

Corporation of Redmond, Washington.

{0046] A remote computing environment may include more than one server 206a-206n such
that the servers 206a-206n are logically grouped together into 3 server farm 206, for example,
in a cloud computing environment. The server farm 206 may include servers 206 that are
geographically dispersed while and logically grouped together, or servers 206 that are located
proximate to cach other while logically grouped together. Geographically dispersed servers
206a-206m within a scrver farm 206 can, in some embodiments, communicate using a WAN
(wide}, MAN (metropolitan), or LAN (local), where different geographic regions can be
characterized as: different conunents; different regions of a continent; different countries;
different states; different cities; different campuses; different rooms; or any combination of the
preceding geographical locations. In some cmbodiments the server farm 206 may be
administered as a single entity, while in other embodiments the server farm 206 can include

multiple server farms.

{6047] In some embodiments, a server farm may inchide servers 206 that execute a
substantially similar type of operating system platform {e.g., WINDOWS, UNIX, LINUX,
108, ANDROID, SYMBIAN, ctc.) In other embodiments, server tarm 206 may inciude a first
group of onc or more servers that execute a first type of operating system platform, and a

second group of one or more servers that execute a second type of operating system platform.

{0048] Server 2006 may be configured as any type of server, as needed, e.g., a tile server, an
application server, a weh server, a proxy scrvet, an appliance, a network appliance, a gateway,
an application gateway, a gateway server, a virtualization server, a deployment server, a Secure
Sockets Laver (SSL) VPN server, a firewall, a web server, an application server or as a master
application server, a server executing an active directory, Or a scrver executing an application
acceleration program that provides firewall functionality, application functionality, or load

balancing functionality. Other server types may also be used.

WO 2020/106407 PCT/US2019/057863

{6049] Some embodiments inchide a first server 206a that receives requests from a client
machine 240, forwards the request to a second server 206b (not shown), and responds to the
request generated by the client machine 240 with a response from the second server 206b (not
shown.) First server 206a may acquire an enumeration of applications available to the client
machine 240 and well as address information associated with an application server 206 hosting
an application identified within the enumeration of applications. First server 206a can then
present a response to the client’s request using a web interface, and communicate directly with
the client 240 to provide the client 240 with access to an identified application. One or more
clients 240 and/or one or more servers 206 may transmit data over network 230, e.g., network

101,

{0050] FIG. 3 is an illastrative enterprise mobility management system 300. In this case, the
feft hand side represents an enrolled mobile device 302 with a client agent 304, which interacts
with gateway server 306 (which includes Access Gateway and application controller
functionality) to access various enterprise resources 308 and services 309 such as Exchange,
Sharepoint, public-key infrastructure (PKI) Resources, Kerberos Resources, Certificate
Issuance service, as shown on the right hand side above. Although not specifically shown, the
mobile device 302 may also inferact with an enterprise application store (StoreFront) for the

selection and downloading of applications.

{0051] The chlent agent 304 acts as the Ul (user interface) intermediary for Windows
apps/desktops hosted in an Enterprise data center, which are accessed using the High-
Definition User HExperience (HDX)/ICA display remoting protocol. The client agent 304 also
supports the installation and management of native applications on the mobile device 302, such
as native 105 or Android applications. For example, the managed applications 310 (mail,
browser, wrapped application) shown in the figure above are all native applications that
execute locally on the mobile device 302. Client agent 304 and application management
framework of this architecture act to provide policy driven management capabilities and
features such as connectivity and S50 (single sign on) to enterprise resources/services 308,
The client agent 304 handies primary user authentication to the enterprise, normally to Access
Gateway (AG) 306 with 550 to other gateway server components. The client agent 304 obtains
policics from gateway server 306 to control the behavior of the managed applications 310 on

the mobile device 302.

{6052] The Secure InterProcess Communication (IPC) links 312 between the native

applications 310 and client agent 304 represent a management channel, which may allow a

WO 2020/106407 PCT/US2019/057863

client agent to supply policies to be enforced by the application management framework 314
“wrapping” each application. The IPC channel 312 may also allow client agent 304 to supply
credential and authentication information that enables connectivity and 3530 to enferprise
resources 308. Finally, the IPC channel 312 may allow the application management framework
314 to invoke user interface functions implemented by client agent 304, such as online and

offline authentication.

[6033] Commuonications between the client agent 304 and gateway server 306 are essentially
an extension of the management channel from the application management framework 314
wrapping cach native managed application 310. The application management framework 314
may request policy information from client agent 304, which in turs may request it from
gateway server 306. The application management framework 314 may request authentication,
and client agent 304 may log into the gateway services part of gateway server 306 {(also known
as NETSCALER ACCESS GATEWAY). Client agent 304 may also call supporting services
on gateway server 306, which may prodoce input material to derive encryption keys for the
local data vaults 316, or may provide client certificates which may enable direct authentication

to PKI protected resources, as more fully explained below.

{6054] In more detail, the application management framework 314 “wraps” each managed
application 310. This may be incorporated via an explicit build step, or via a post-build
processing step. The application management framework 314 may “pair” with client agent 304
on first launch of an application 310 to initialize the Secure IPC channel 312 and obtain the
policy for that application. The application management framework 214 may enforce relevant
portions of the policy that apply locally, such as the clicnt agent login dependencies and some
of the containment policies that restrict how local OS services may be used, or how they may

interact with the managed application 310.

{055] The application management framework 314 may use services provided by client
agent 304 over the Secure 1PC channel 312 to facilitate authentication and tnternal network
access. Key management for the private and shared data vaults 316 {containers) may be also
managed by appropriate interactions between the managed applications 310 and client agent
304. Vanlts 316 may be available only after online authentication, or may be made available
after offline authentication if allowed by policy. First use of vaults 316 may require online
authentication, and offline access may be limited to at most the policy refresh period before

online authentication is again required.

WO 2020/106407 PCT/US2019/057863

[0036] Network access to internal resources may occur divectly from individual managed
applications 310 through Access Gateway 306. The application managerment framework 314
may be responsible for orchestrating the network access on behalf of each managed application
310. Client agent 304 may facilitate these network connections by providing suitable time
limited secondary credentials obtained following online authentication. Multiple modes of
network connection may be used, such as reverse web proxy connections and end-to-end VPN-

style tunmnels 318.

{0057] The Mail and Browser managed applications 310 have special status and may make
use of facilitics that might not be generally available to arbitrary wrapped applications. For
example, the Mail application 310 may use a special background network access mechanism
that allows it to access an Exchange server 308 over an extended period of time without
requiring a full AG logon. The Browser application 310 may use multiple private data vauits

316 to segregate different kinds of data.

{0058] This architecture may support the incorporation of various other security features.
For example, gateway server 306 (including its gateway services) in some cases may not need
to validate active directory (AD) passwords. It can be left to the discretion of an enterprise
whether an AD password may be used as an authentication factor for some users in some
sitnations. Different authentication methods may be used if a user is online or offline (i.e.,
connected or not connected to a network).

1
3

{6039] Step up authentication is a feature wherein gateway server 306 may identify managed
native applications 310 that are allowed to have access to highly classified data requiring strong
authentication, and ensure that access to these applications is only permitied after performing
appropriate authentication, even if this means a re-auvthentication is required by the user after

a prior weaker level of login.

{6068] Another sccurity feature of this solution is the encryption of the data vaults 316
{containers) on the mobile device 302. The vaults 316 may be encrypted so that all on-device
data including files, databases, and configurations are protected. For on-line vaults, the keys
may be stored on the server (gateway server 306), and for off-line vaulis, a local copy of the
keys may be protected by a user password or biometric validation. If or when data is stored
locally on the mobile device 302 in the secure container 316, it may be preferred that a

mintmum of AES 256 encryption algorithm be vtilized.

WO 2020/106407 PCT/US2019/057863

[6061] Other secure container features may also be implemented. For example, a logging
feature may he included, wherein security cvents happening inside a managed application 310
may be logged and reported to the backend. Data wiping may be supported, such as if or when
the managed application 310 detects tampering, associated encryption keys may be written
over with random data, leaving no bint on the file system that user data was deswoyed.
Screenshot protection may be another feature, where an application may prevent any data from
being stored in screenshots. For exarople, the key window’s hidden property may be set to
YES. This may cause whatever content is currently displayed on the screen to be hidden,

resulting in a blank screenshot where any content would normally reside.

{6062] Local data wansfer may be prevented, such as by preventing any data from being
locally wransferred outside the application container, e.g., by copying it or sending it to an
external application. A keyboard cache feature may operate to disable the autocorrect
functionality for seunsitive text fields, SSL certificate validation may be operable so the
application specifically validates the server SSL certificate instead of it being stored in the
keychain. An encryption key generation feature may be vsed such that the key used to encrypt
data on the mobile device 302 is generated using a passphrase or biometric data supplied by
the user (if offline access is required). 1t may be XORed with another key randomly generated
and stored on the server side if offline access is not required. Key Derivation functions may
operate such that keys generated from the user password use KDFs (key derivation functions,
notably Password-Based Key Derivation Function 2 (PBKDF2)) rather than creating a

cryptographic hash of it. The latter makes a key susceptible to brute force or dictionary attacks,

{6063] Further, one or more initialization vectors may be used in encryption methods. An
initialization vector will cause multiple copies of the same encrypted data to yvield different
cipher text output, preventing both replay and cryptanalytic attacks. This will also prevent an
attacker from decrypting any data even with a stolen encryption key. Further, authentication
then decryption may be used, wherein application data is decrypted only after the user has
authenticated within the application. Another feature may relate to sensitive data in memory,
which may be kept in memory (and not in disk) only when it's needed. For example, login
credentials may be wiped from memory after login, and encryption keys and other data inside
objective-C instance variables are not stored, as they may be easily referenced. Instead,

memory may be manually allocated for these.

[0064] An inactivity timeout may be implemented, wherein after a policy-defined period of

inactivity, a user session is terminated.

~J

WO 2020/106407 PCT/US2019/057863

[0065] Dataleakage from the application management framework 314 may be prevented in
other ways. For example, if or when 2 managed application 310 is put in the background, the
memory may be cleared after a predetermined (configurable) time period. When
backgrounded, a snapshot may be taken of the last displayed screen of the application to fasten
the foregrounding process. The screenshot may contain confidential data and hence should be

cleared.

[0066] Another security feature may relate to the use of an OTP (one time password) 320
without the use of an AD (active directory) 322 password for access to ong or more
applications. In some cases, some users do not know (or are not permitied to know) their AD
password, so these users may authenticate using an OTP 320 such as by using a hardware OTP
system like SecurlD (OTPs may be provided by different vendors also, such as Entrust or
Gemalto). In some cases, after a user authenticates with a user ID, a text may be sent to the
user with an OTP 320. In some cases, this may be tmplemented only for online use, with a

prompt being a single field

{0067] An offline password may be implemented for offline authentication for those
managed applications 310 for which offline use is permitted via enterprise policy. For example,
an enterprise may want StoreFront to be accessed in this manner. In this case, the client agent
304 may require the user o set a custom offiine password and the AD password is not used.
Gateway server 306 may provide policies to control and enforce password standards with
respect to the minimum length, character class composition, and age of passwords, such as
described by the standard Windows Server password complexity requirements, although these

requirements may be modified.

{6068] Another feature may relate to the enablement of a client side certificate for certain
applications 310 as secondary credentials (for the purpose of accessing PKI protected web
resources via the application management framework micre VPN feature). For example, a
managed application 310 may utilize such a certificate. In this case, certificate-based
authentication using ActiveSync protocol may be supported, wherein a certificate from the
client agent 304 may be retrieved by gateway server 306 and used in a keychain. Fach managed
application 310 may have one associated client certificate, identified by a label that is defined

in gateway server 306.

WO 2020/106407 PCT/US2019/057863

[6069] Gateway server 306 may interact with an enterprise special purpose web service to
support the issuance of client certificates to allow relevant managed applications to

authenticate to internal PKI protected resources.

{0070] The client agent 304 and the application management framework 314 may be
enhanced to support obtaining and using clicnt certificates for authentication o internal PKI
protected network resources. More than one certificate may be supported, such as to match
various levels of security and/or separation requirerents. The certificates may be used by the
Mail and Browser managed applications 310, and ultimately by arbitrary wrapped applications
310 (provided those applications use web service style communication patterns where it is

reasonable for the application management framework to mediate HTTPS requests).

{6071] Application management client certificate support on #235 may rely on importing a
public-key cryptography standards (PKCS) 12 BLOB (Binary Large Object) into the iOS
keychain in each managed application 310 for each period of use. Application management
framework client certificate support may use a HI'TPS implementation with private in-memory
key storage. The client certificate may not be present in the 105 keychain and may not be

persisted except potentially in “online-only” data value that is strongly protected.

{0072] Mutual SSL may also be implemented to provide additional security by requiring that
a mwobile device 302 is authenticated to the enterprise, and vice versa. Virtual smart cards for

authentication to gateway server 306 may also be tnplemented.

{6073] Both limited and full Kerberos support may be additional features. The full support
feature relates to an ability to do full Kerberos login to Active Directory (AD) 322, using an
AD password or trusted client certificate, and obtain Kerberos service tickets to respond to
HTTP Negotiate authentication challenges. The himited sapport feature relates to constrained
delegation in Citrix Access Gateway Enterprise Edition (AGEE). where AGEE supports
invoking Kerberos protocol transition so it can obtain and use Kerberos service tickets (subject
to constrained delegation) in response to HTTP Negotiate authentication challenges. This
mechanism works in reverse web proxy (aka corporate virtual private network (CVPN)) mode,
and when HTTP (but not HTTPS) counections are proxied in VPN and Micro VPN mode.

{0074] Another feature may relate to application container locking and wiping, which may
automatically occur upon jail-break or rooting detections, and occur as a pushed command
from administration console, and may include a remote wipe functionality even when a

managed application 310 is not running.

WO 2020/106407 PCT/US2019/057863

[6075] A multi-site architectwe or configuration of enterprise application store and an
application controller may be supported that allows users to be serviced from one of several

different locations i1n case of fatlure.

{0076] In some cases, managed applications 310 may be allowed to access a certificate and
private key via an APL (for example, OpenSSL). Trusted managed applications 310 of an
cnterprise may be allowed to perform specific Public Key operations with an application’s
client certificate and private key. Various use cases may be identfied and weated accordingly,
such as if or when an application behaves like a browser and no certificate access is required,
if or when an application reads a certificate for “who am 1,” if or when an application uscs the
certificate to build a secure session token, and if or when an application uses private keys for

digital signing of important data (e.g. transaction log) or for temporary data encryption.

{60771 As discussed above, aspects of the disclosure relate to utilizing self-federation in an
authentication system to provide enhanced authentication processes. One or more aspects of
the disclosure may incorporated in, be embodied in, and/or be implemented using one or more
of the computer system architecture, remote-access system architecture, and/or enterprise
mobility management systems discussed above in connection with FIGS. 1-3. For example,
gateway server 306 may be configured to provide a plugin-based authentication system, such
as Citrix’s ATHENA authentication system product. The plug-in based authentication system
may be configured to federate to multipie third party authentication systems {(also knowsn as
federation providers). This federation may be done using the OAuth 2.0 flow by securely
redirecting to the federation provider and doing a token exchange. The authentication interface
itself may not collect credentials for federation providers itself. Instead, the plug-in software
modules may interface with the third party authentication systeros to retrieve user credentials

and authenticate the user.

{0078] FIG. 4 depicts an illustrative example of such a plugin-based authentication system
in accordance with one ot more aspects described berein. In particular, FIG. 4 dlustrates an
computing environment 400 comprising a client device 4035, a relying party 410, an
authentication system 420, and a plurality of federated identity providers 441, 443, 445, 447.
Examples of federated identity provides include customer AD server 441, customer AAD
scrver 443, customer OKTA server 445, and one time password scrver 447 as discussed further
below. Hach illustrated entity may include one or move physical components, such as one or

MOre Processors, memories, communication interfaces, and/or the like.

WO 2020/106407 PCT/US2019/057863

[6079] Relying party 410 may be a server that provides services to client device 405, and
may be any type of computing device including, for example, a server, computer, laptop, tablet,
smartphone, or other device that includes a processor (¢.g., computing device 201). Relying
party 410 may communicate, via communication interfaces (e.g., wireless interfaces, LAN
interfaces, WLAN interfaces), with client device 405 and other devices and/or entities such as
authentication systern 420 to request autheuntication to access nefwork services and data, as
discussed in greater detail below. Relying party 410 may be an enterprise server, which may
be a server vesponsible for providing and managing a virtual, cloud-based environment that
may be accessed by one or more cnterprise users via client device 435, In an example use case,
relying party 410 may be a server of an enterprise that an eroployee logs inte for authentication
to access the enterprise’s virtual, cloud-based covironment {e.g., a virtual desktop, a virtual

applicaton, a virtual mobile app, or other virtual service(s)).

{6086] Authentication system 420 may be an enterprise identity provider server, and may
inchude at least one processor, memory, and communication interfaces. The processor may
execule instructions stored in memory to cause authentication system 420 to perform one or
more functions, such as retrieving an authentication token corresponding to an authentication
request from relying party 410, The communication interfaces may include one or more
network interfaces via which authentication system 420 can communicate with one or more
other systems and/or devices in computing environment 400, such as relying party 410 and/or

federated identity providers 441, 443, 445, 447.

{6081] Authentication system 420 may be a server responsible for providing an identity
management platform in an enterprise network. Specifically, authentication system 420 may
be responsible for generating, updating, and managing authentication tokens for enterprise
users and/or their respective devices to use in authenticating with and accessing resources of a
virtual, cloud-based environment (e.g., resowrces provided in computing environment 400).
As such, relying party 410 may obtain an authentication token from authentication server 420
on behalf of user devices (e..g, client device 405) that enables the user devices to access the
services and resources in an enterprise system. For example, a relving party may direct the
aser to log into an identity management platform provided by authentication system 420 and
obtain an authentication token from the identity management platform (e.g., a federated

identity provider such as customer AD server 441).

{0082] Authentication systemn 420 may issue an authentication token to an authenticated user

(e.g., a user that successfully authenticates with a federated identity provider) as a resuit of

221 -

WO 2020/106407 PCT/US2019/057863

successfully completing an authentication procedure {(e.g., logging i) in the enterprise
network., In one cxample, uscrs of client devices may log into a virtnalized, cloud-based
cnvironment using their existing authentication credentials, which may be a username and
password, biometric measurement (e.g., fingerprint scan, retina scan, facial recognition, voice
recognition, etc.), entering an access code provided to a specified user device {o.g.. the user’s
smartphone may receive a message containing a code €0 entor into a portal provided by the
relying party), or any other authentication means for access to the enterprise network., In
response to the successtul logging in of the user device, authentication systemn 420 may issue
an authentication token for the authenticated user and forward the authentication token to
relying party 410, which in twrn may enable user devices to have single sign on (S350} access
to the services and resources in the virtualized, cloud-based envivonment within the enterprise
network. In this fashion, authentication system 420 may provision relying party 410 with the

requested authentication token.

{0083] Computing environment 400 may inchide one or more federated identity providers,
such as federated identity providers 441, 443, 445, 447, which may be responsible for
generating, updating, and managing tokens of users for use in the public network for access ©
third party systems. In some instances, the authentication tokens issued by authentication
system 420 might not be recognized and interpreted by the federated identity provider servers.
As a result, the authentication tokens that enables the user devices to access the enterprise
system, might not be sufficient to permit the user devices to access thivd party systems. In this
scenario, authentication system 420 may re-direct requesis to access third party systems from
user devices via relying party 410 to a login page managed and authenticated by a

corresponding federated identity provider server.

{6084] 'This may be accomplished using an anthentication interface 425 and corresponding
authentication process plugins 431, 433, 435, 437. Requests to authenticate may be received
by the authentication system 420 via authentication interface 425. Authentication interface
425 may inspect the request to authenticate and determine an indicated authentication process.
For example, an authentication request may explicitly indicate the corresponding
authentication process using a pavameter or other information included in the request. As
another example, the authentication request may implicitly indicate the corresponding
authentication process. The authentication interface may determine the corrcsponding
authentication process based on the type of resource requested. As one example of this, the

avthentication interface may determine that an AD authentication process should be used when

2.

WO 2020/106407 PCT/US2019/057863

the authentication request indicates that the user is requesting access to a matl server that is
sccured using customer AD server 441. The request may be routed to a plugin (e.g., plugins
431, 433, 435, 437) corresponding to the indicated authentication process. The plugin may
conduct the authenucation process in coordination with the federated identity provider server
(e.g.. server 441, 443, 445, and/or 447) corresponding to the indicated authentication process
and retricve a corresponding authentication token. The plugin may return the authentication

token to the authentication interface 425, which may pass it on to the relying party 410.

{0085] One or more federated identity provider servers may be a server responsible for
providing an identity platform for federated logon access to third party systems in a public
network., Specifically, federated identity provider server 441 may be respousible for
generating, updating, and managing tokens for user deviees (o have access to third party
systems secured using an Active Directory (AD) authentication process. Authentication
system 420 may provide AD plugin 431 to process and forward a request to authenticate with
customer AD server 441, and authentication systern 420 may be configured to receive and
return an apthentication token associated with the customer AD server 441 in response o
authentication. Similarly, customer Azure AD server 443 may manage access o 1esources
secured by an Azure Active Directory (AAD) authentication process, and AAD plugin 433
may handle processing for the authentication system 420, Customer OKTA server 445 may
manage access to resources secured by Okia identity management services, and OKTA plugin
435 may handle processing for the authentication system 420. TOTP server 447 may provide
time-based One Time Passwords (OTF) used to secure some network resources, and OTP
plugin 437 may handle processing for the authentication system 420. As such, relying party
410 may obtain an authentication token from federated identity provider server on behalf of
user devices that enables user devices to access the services and resources in third party
systems. For example, relying party 410 may direct a user of client device 405 to log into an
identity platform (such as a web page provided by authentication system 420 and/or customer
AD server 441) with their user name and password as part of an AD authentication process

provided by customer AD server 441 and obtain an AD authentication token.

[0086] Use of these plugins may allow system administrators to configure authentication
flows as desired. Each plugin may be tasked with handling a different authentication process.
As examopled above, the AD plugin 431 may be configured to interface with custommer AD
server 441, AD phigin 431 may coordinate with customer AD server 441 to retrieve user

credentials {e.g.., user name and password), authenticate the user, and retrieve an AD

-23 .

WO 2020/106407 PCT/US2019/057863

authentication token. AD plugin 431 may convert the AD authentication token to a standard
format for use in the enterprise network and with authentication system 420. For example,
authentication system 420 may utilize a convpon data format to provide identity/avthentication
tokens to relying parties, and that format may differ from a format emploved by the servers
441, 443, 445, andfor 447. The converted, standard format token may be returned via
application interface 425 to relying party 410. Relying party 410 may not ever have aceess (o
the user’s user name and password, as this step is securely handled by the corresponding plugin

of authentication system 420.

{0087] FIG. 5 illustrates a computing environroent 500 comprising an authentication system
320 that may use self-federation 523 to support compound or combined authentication flows.
In the exampie of FIG. 5, relying party 510 may request authorization for a client device 503
to access resources secured by a combined Active Directory (ALY and One Time Password
(OTP) authentication process. Authentication system 520 may inchide authentication interface
525 (which may comrespond to authentication interface 425), AD phugin 431, and OTP plugin
437. As an improvement over the system of FIG. 4, authentication system 520 may further
inchude AD + OTP plugin 535, which may be configured to handle the combined AD + QTP

authentication process using self-federation 523 back to authentication mnterface 525.

{0088] As was discussed above regarding FIG. 4, relying party 510 in FIG. 5 may send
requests to authenticate to authentication interface 525. Authentication interface 525 may
inspect the request to authenticate, determine the comresponding authentication process, and
pass handling of the authentication request to a suitable plogin software module. For exarople,
relying party 310 may send a request for authentication to the authentication interface
indicating that relying party 310 would like to authenticate a client device 505 using a
combined AD and OTP authentication process. In the example, the authentication request sent
by relying party 510 to authentication system 520 may include a parameter indicating that the
type of authentication requested is AD + OTP. Authentication interface 525 may determine
that the authentication request indicates the combined AD + OTP process, and may call AD +
OTP plugin 535 to handle the request. Inresponse, AD + OTP plugin 535 processes the request
to generate a combined AD + OTP authentication token in the format of the authentication

system as described further below.

[0089] AD+ QTP plugin 535 may utilize self-federation 523 back to authentication interface
525 to process the AD authentication component and the OTP authentication component of

the combined authentication process. AD + OTP plugin 533 may make authentication requests

S04

WO 2020/106407 PCT/US2019/057863

of its own to authentication interface 525. That is, AD + QTP plugin 535 may make subsidiary
requests acting as a relying party itself. This self-federation, according to aspects herein, may
provide a bencficial and clegant solution to implementing compound authorization flows in an
avthorization sysiem supporting multiple types of federation. Por example, this seli-federation
allows the authentication system 520 to reuse existing code paths and avoids complications
associated with duplicate code logic for handling the same authentication processes.
Application interface 525 may process each of the authentication requests made by the AD +
OTP plugin 535 (as avelying party) by calling the appropriate plugins to handle, which in the
cxample would be AD plugin 431 and OTP plugin 437. AD plugin 431 and OTP plugin 437
interface with customer AD server 441 and OTP server 447 respectively to receive user
credentials, authenticate the user credentials, and generate an AD or an OTP authentication
token. These individual authentication tokens may be returned via authentication interface 5253
to the AD + OTP plugin 533, which may combine the tokens and return a combined AD +

OTP authentication token to the original relying party 510 via authentication interface 525.

[6090¢] FIG. 6 indicates the processing flows performed by authentication systern 520 and
the other elements in computing environment 500, Specifically, FIG. 6 illustrates processing
flows corresponding to a request by relying party 510 to authenticate client device 503 using a
compound AD and OTP authentication process. Steps illustated in FIG. 6 are performed by
relying party 510, authentication interface 525, AD + OTP plugin 335, AD plugin 431,
customer Al server 441, OTP plugin 437, and OTP server 447. AD + OTP plugin 335 may
utilize self-federation back to authentication intcrface 525 (see steps 604-606 and 624-626) to

perform the compound AD and OTP auathentication process.

{0091] At step 600, relying party 510 may send a request fo authenticate client device 505 to
authentication interface 525. The request may indicate that client device 5035 should be
authenticated using AD and OTP authentication processes. Step 600 may be prompted by a
user of client device 505 requesting to access one or more services or resources of an enterprise
system. For example, the user may atternpt to log into a virtual deskiop, web application or
mobile application to access a virtual, cloud-based enterprise system where enterprise servers
may be integrated with a particular enterprise identity service provided by an enterprise identity
provider server (e.g., authentication system 520). Subsequently, the enterprise server may
forward such requests, as relying party 510, on behbalf of user devices o authentication
interface 325 for authentication. The request may indicate information about the user and/or

user device as appropriate. However, the relying party 510 usually will not itself acquire or

-25 -

WO 2020/106407 PCT/US2019/057863

request user credentials {e.g., a user name and password) from the user or user device. Because
the anthentication system 325 and its plugins (like AD plugin 431) securely gather the user

credentials, relying party 510 does not need to access the user credentials.

{0092] At step 602, the authentication interface 525 may inspect the request for
authentication received from relying party 510 and determine a suitable plugin to handle the
type of authentication associated with the request. For example, authentication interface 525
may determine that AD + OTP plugin 535 corresponds to the requested type of authentication
process {e.g., compound AD + OTP authentication) based on a parameter in the authentication
request that indicates (explicitly or implicitly) that the resource to be accessed is secured using
AD + OTP authentication. As illustrated, the request to authenticate the user device may be
forwarded to the proper plugin (e.g., AD + OTP plugin 535) for handling via a call of the plugin

by apthentication interface 525.

[0093] Having been called to handle the vequest to authenticate the user device, AD + QTP
plugin 535 may execute logic to handle each component authentication process of the
compound authentication process indicated in the request. In the illustrated example, AD +
OTP plugin 335 may execute logic configured to generate an AD authentication request for
the user device and logic configured to generate an OTP authentication request for the user
device. As discussed further herein, AD + OTP plugin 535 may receive a result of both
subsidiary authentication requests, combine the resulting authentication tokens into a
combined token, and respond to the call from authentication interface 5257s call from step 602.
In some ernbodiments, the AD token and the OTP token may be used by the systern to generate
a single token that is recognizable by authentication system 520 in later requests. The
combined token may not have meaning outside of authentication system 520, but relying
partics may present the combined token to authentication systern 520 in later requests and
authentication system 520 may use the previously retricved AD token and OTP token to
suppott single sign on {850) features. In other embodiments, the AD token and OTP token
may be combined into a single data structure that stores all or at least a portion of the

information in the AD token and OTP token.

{0094] Thus, at step 604, AD + OTP plugin 535 may seli-federate back to the authentication
interface 525 and, at step 606, send a request o authenticate the user device using an AD

authentication process to authentication interface 525.

-6 -

WO 2020/106407 PCT/US2019/057863

[6095] Application interface 525 may receive the request to authenticate the user device
using the AD authentication process from AD + OTP plugin 535, and may treat the AD + OTP
plugin 535 as the relying party for that request. Application interface 525 may handle the
request from AD + OTP plugin 535 just like other requests. For example, application interface
525 may determine that the request from AD + OTP plugin 535 corresponds to an AD
authentication process, and may determine that AD plugin 431 should handie the request,
Thus, at step 608, application interface 535 may call AD plugin 431 to handle the AD
authentication request received from AD + OTP plugin 533 as a relying party. Although FIG.
6 indicates sequential handling, in some embodiments parallel processing may be incorporated.
Handling both authentication processes simuitanecusly may improve speed in handling

authentication requests.

{0096] At step 610, AD plugin 431 may get user credentials associated with the user and/or
user device being authenticated. AD plugin 431 may get user credentials by generating a
prompt for a user of the user device to enter the credentials, such as a user name and password.
AD plagin 431 may, at step 612, request (o authenticate the user device with customer AD
server 441, Customer AD server 441 may be a federated identity provider, and may be
associated with the enterprise hosting authentication system 520 and/or a third party network.
The request may be to obtain a second authentication token, an AD authentication token (with
the first being the to-be-created combined AD + OTP token). The request may comprise the
zathered user credentials. At step 614, customer AD server 441 may authenticate the user
hased on the credentials in the request. If the user successfully authenticates, customer AD
server 441 may respond to the AD plugin 431 with an AD authentication token at step 616.
For example, as a result of the user successtully logging into the virtual, cloud-based enterprise
system, customer AD server 441 may issue the AD authentication token. Although step 610
tllustrates the AD plogin 431 acquiring user credentials, in some implementations customer

AD server 441 may operate to prompt the user for credentials.

{00971 Atsicp 618, AD plugin 431 may optionally convert the received AD authontication
token to a standard and/or specialized format associated with authentication systern 520. As
noted above, the authentication system 520 may provide relying parties with authentication
tokens in a8 common format used by authentication system 520 that differs from the format
provided by the federated identity providers. This may allow for rcuse among other
applications that utilize authentication systemn 520, and may suppott single sign on {550}

features between different applications provided by commponly managed systems via

WO 2020/106407 PCT/US2019/057863

authentication systern 520. The standard form AD authentication token (or original AD
authentication token} may be returned to authentication interface 525 at step 620. At step 622,
authentication interface 525 may return the AD authentication token to AD + OTP plugin 535,
thereby completing the vequest by AD + OTP plagin 535 (as a relying party) to authenticate

the user device using the AD authentication process.

[0098] At step 624, AD + OTP plugin S35 may further self-federate to authentication
interface 525 to handle the remaimng OTP portion of the compound AD + OTF authentication
process initiated by relying party 510 in step 600. At step 626, AD + OTP plugin 535 may
generate and send a request to authenticate the user device using an OTP authentication process
to authentication interface 525. Again, in this subsidiary aothentication process call, AD +

(TP plugin 535 may be acting as the relying party.

{6099] Similarly to the AD authentication request, application inferface 525 may receive the
request to authenticate the user device using the OTP authentication process from AD + OTP
plugin 535, and may weat the AD + OTP plugin 333 as the relying party for that request.
Application interface 525 may determine that the request from AD + OTP plugin 335
corresponds to an OTF authentication process, and roay determine that OTP plugin 437 should
handle the request. As explained above, the authentication request may inchide information,
such as a parameter, that indicates (explicitly and/or implicitly) the type of authentication
process to be used to authenticate the user’s access to the resources. The authentication system
520 may select a plugin corvesponding to the type of authentication process indicated by the
pararneter. Thus, at step 628, application interface 535 may call OTP plugin 43 to handle the

OTP authentication request received from AD + OTP plugin 335 as a relying party.

{0100] At step 630, OTP plugin 437 may get user One Time Password (OTP) credentials or
proof of access to a mulii-factor authentication device. For example, OTP plugin 437 may
cause a fext message to be sent to a registered SMS number of the user’s mobile device, or
may receive as input a time-bascd one time password code from an authentication device of
the user. OTP phugin 437 may, at step 632, request to authenticate the user device with OTP
server 447. OTP server 447 may be a federated identity provider, and may be associated with
the enterprise hosting authentication system 520 and/or a third party network. The request may
be to obtain a third authentication token, an OTP authentication token. The request may
coraprise the gathered user credentials, e.g., the one time password. If the OTP server 447 is
configured to confirm multi-factor authentication in another manner, such as having an

authentication device of the user send a message directly to OTP server 447, the request may

-08 -

WO 2020/106407 PCT/US2019/057863

not require credentials, but may include information identifving the request and the user device
to be authenticated. At step 634, OTP server 447 may authenticate the user based on the
credentials in the request and/or OTP/multi-factor authentication information corresponding to
the request using known techniques. For example, OTP server may send an SMS message to
a mobile phone associated with the user, and the gser may enter 2 one ume code into a page
provided by OTP server 447 and/or authentication system 520. I the user successfully
authenticates, OTP server 447 may respond to the OTP plugin 437 with an OTP authentication
token at step 636. For example, as a result of the user successfully logging into the virtual,
cloud-based enterprise system using OTP aunthentication, OTP server 447 may issue the OTP
authentication token. Although step 630 illustrates the OTP plugin 437 acquiring user
credentials, in some implementations TP server 447 may operate to prompt the user for

credentials.

{0181] Atstep 638, OTP plugin 437 may optionally convert the received OTP authentication
token to a standard and/or specialized format associated with authentication systern 520. The
standard form OTP authentication token (or original OTP authentication token) may be
returned to authentication interface 5325 at step 640, At step 642, authentication interface 325
may return the OTP authentication token to AD + OTP plugin 335, thereby completing the
request by AD + OTP plugin 535 (as a relying party) to authenticate the user device using the

(TP authentication process.

{0192] At step 644, AD + OTP plugin 535 may combine the AD and OTP authentication
tokens, received from AD plugin 431 and OTP plugin 437 via application interface 525, to
generate the first token responsive to the original request by replying party 510 to authenticate
the user device based on the compound AD + OTP authentication process from step 600. As
discussed above, a combined token in a special format used by authentication system 520 may
allow for later requests to the system, from the originating application and/or other
applications, to utilize single sign on (3S0) features to access network resources via
authentication system 520. AD + UTP plugin 535 may retumn the combined AD + OTP
authentication token to authentication interface 525 at step 646. At step 648, authentication
interface 525 may return and/or pass through the combined AD + OTP authentication token o
relying party 510 in response to the request to authenticate the user device using the compound
AD + OTP authentication from step 600, thereby completing the response to the original

request. Although the combined token is illustrated as being returned to and via authentication

209 .

WO 2020/106407 PCT/US2019/057863

interface 525, in some embodiments the AD + OTP plagin 535 may return the combined token

directly to relying party 510.

{0183] Self-federation in this manner may allow for beneficial code path reuse and leverage
existing workflows to support compound authentication processgs. This may avoid having
duplicate code paths, where multiple plugins cach include the logic to process a given type of
authentication process. Self-federation may stroplify implementation of custom authentication
work flows by reusing existing code paths. Self-federation may also support integration with
third party authentication code and systems, by allowing custom authentication workflows to

incorporate third party anthentication modules without needing access to the underlying code.

{6104] The AD + OTP authentication token (or other authentication tokens) may enable user
devices managed by the relying party 510, such as client device 505, to access network
resources and establish sessions using network resources. For example, client device 505
and/or authentication systern 520 may provide the asthentication token to a session manager
associated with the network resource. The session manager may rely on the authentication
token as proof that the user’s identity has been authenticated via the corresponding
authentication process. The session manager may establish a session with client device 505
based on confirming the validity of the authentication token. Through the session, client device
585 may access network resources and scrvices. In some embodiments, the AD + OTP
authentication token (or other authentication tokens) may further enable user devices to have
single-sign-on (SSO) access to one or more resources using an enterprise identity service
provided by an enterprise identity server, c.g., the authentication system 520. For example,
cnterprise servers {relying partics) may receive the authentication token from enterprise
identity provider servers. As an example, relying party 510 may store the AD + OTP
authentication token (or other authentication tokens obtained by the authentication systern 320
and returned to the relying party 510 or derived from those tokens) in a key store of the
enterprise system. In some instances, the authentication token may be specific to
authentication system 520 and may be interpreted by authentication systern 520, which may
enable user devices to have 550 access to various services and resources provided by the
enterprise system within the enterprise network. SSO may be a property of access control of
multiple related, yet independent services and resources in an enterprise system. As an
cxample, a user may log in with a single ID and password to gain access to connected systems
without using different usernames or passwords, or scamlessly sign on at each system.

Accordingly, a single apthentication may provide access to multiple applications, services and

WO 2020/106407 PCT/US2019/057863

resources by passing the authentication token seamlessly in the enterprise system integrated

with authentication system 520.

{6105] In some instances, when user devices attempt to login using the federated identity
services, federated identity provider servers may issue an cvidence of the successful sign-in
the format of a SAML token, OpenlD Conncct Identity token, OAuth Access Token, or other
form of token. In particular, such authentication tokens may enable the user devices (such as
client device 505} managed by the enterprise server (such as velying party 510) to have single-
sign-on access to the third party system using the federated identity service. In some instances,
the type of evidence of successful login issued by federated identity providers may range from
an authentication or identity token, to specialized claims or assertions that come from the

federated identity provider server.

{0196] For subsequent requests from the enterprise server to access the third party system,
the enterprise server (e.g. velying party 510) may present the authentication token to the
enterprise identity provider server. Specifically, as an example the AD + OTP authentication
token previously issued to the enterprise scrver by the enterprise identity provider server at
step 648 may later be used to support S50 to the same or other network services. As another
example, where the user device has previously authenticated via the AD authentication
process, the authentication system 325, relying party 510, and/or client device 505 may already
have an AD authentication token. During the AD + OTP authentication process, the AD plugin
431 may determine that user credentials associated with the AD authentication process were
previously received and that a single sign on (850} token associated with the AD
authentication process is available to the system. The AD plugin may return the SSO token as
the AD authentication token if it determuines an S50 token is available. in some instances, the
authentication token issued to the enterprise identity provider server for that user or user
devices may be a temporary token. As an example, the anthentication token may last for an

hour. In those scenarios, the authentication token may need to be refreshed.

{6107] FIG. 7 illustrates an alternative embodiment according to some aspects. Computing
environment 700 comprises authentication system 720, but AD + OTP plugin 735 implements
a compound authentication process without self-federating to authentication interface 5235.
Instead of self-federating back to authentication interface 525 to handle AD and OTP
subcornponents of the compound authentication process, AD + OTP plugin 735 may comprise

togic to handle the AD authentication process and the OTP authentication process on its owil.

WO 2020/106407 PCT/US2019/057863

[6188] In the example of FIG. 7, relying party 710 may request aunthorization to access
resources securcd by a combined Active Directory (AD) and Once Time Password (OTP)
authentication process. Authentication system 720 may include AD + OTP phugin 735, which
may be configured to handle the combined AD + OTP authentication process without using

self-federation back to authentication interface 525 (as illustrated by divect interface 723}

{6109%] Relying party 710 may send requests to authenticate to authentication interface 525.
A request for authentication indicating that relying party 710 would like to authenticate a client
device 705 using a combingd AD and OTP authentication process may be handled by AD +
OTP plugin 735. AD + OTP plugin 735 may process the request {0 generate a combined AD
+ (TP authentication token in the format of the authentication system. In this embodiment,
AD + OTP plagin 735 may utilize direct interface 723 (e.g., AD+OTP plugin 733 calls an API
of AD server 441 and OTP server 447 iiself instead of through self-federation to AD plugin
431 or OTP plugin 437 to coordinate with customer AD server 441 and OTP server 447, rather
than self-federating through application interface 525 and using AD plugin 421 and OTP
plugin 437. AD + OTP plugin 735 may perform steps similar to those performed by AD plugin
421 and OTP plugin 437 (see FIG, 6) to get the AD authentication token and the OTP
authentication token. AD + OTP plugin 735 may combine the AD authentication toke and the

(TP authentication token and return it o relying party 710 via authentication interface 525.

{0118] As discussed above, self-federation may offer numerous benefits in reducing the
complexity of the authentication system 5320. But the alternative embodiment without self-
federation in FIG. 7 may provide benefits as well, such as allowing for climination of redundant
steps across two different plugins respounsible for the individual authentication processes.
Accordingly, in some embodiments, the authentication systern 720 may be configured with
plugins supporting compound workflows, and the corresponding plugin for each workflow
may utilize self-federation as appropriate. For some compound workflows, self-federation
may offer the benefits described above. For other compound workflows, particularly those
made up of authentication processes that have redundant steps, the corresponding plugin may
be implemented without self-federation. Thus, hybrid systems are envisioned where some
compound workflows are handled by self-federaton and other compound workflows are
handled by direct interface logic that does not seli-federate.

{6111] FIG. 8 illusirates a process through which authentication flows of one type may be
ransformed into ancther type. In particular, aspects discussed hercin regarding the

authentication system may ¢nable the system to transform an authorization code flow initiated

WO 2020/106407 PCT/US2019/057863

by a relying party into a resource owner flow suitable for authenticating with a federated
identify provider. Federated identify provider servers may be configured as having arole in a
resource owner flow, which may comprise receiving uscr credentials, providing them to the
server, and receiving back an authentication wken. Some relying parties may also sapport
resource owner flows, such as where the relying party is an application or service that can
securely receive user credentials. Resource owner flows may be associated with the OAuth
authentication framework, and may comprise a resource owner password credentials grant
under that framework., But other relying parties may be unable o support resource owner
flows, such as where the relying party is an application or service that cannot securely receive
user credentials (e.g., an untrusted application). These other relying partics, unable to support
resource owner flows, may instead implement authorization code flows to utilize other systems
{such as the authentication systems discussed hergin) to tmplement resource owner flows on
their behalf and obtain authentication tokens. Authorization code flows may be associated
with the Open D Connect (OIDC) authentication layer, which may be on top of the (3Auth 2.0
authentication framework. In an authorization code flow, a relving party may indicate that it
wants to authenticate to an identify provider. The identity provider, in the authonzation code
flow, gathers credentials, authenticates the user, and returns an authorization token and/or code
to the relving party. The relying party is able to use this code to obtain access to secured

resources despite not having access to user credentials.

{0112] In some authentication systers, relying parties may implernent OIDC authorization
code flows and not OAuth resource owner flows. This may be due to design considerations
for a system, where managed applications are not intended to securely handle chient credentials,
for example. But some identity providers may require GAuth resource owner flows. A plugin
may be provided to convert an authorization code flow to a resource owner flow in the

authentication syster, according to some aspects described herein.

{0113] FIG. 8 illustrates computing environment 8300 where anthentication systermn 820
opcerates to avthenticate a user device with customer AD server 441. FIG. 8 depicts two relying
parties: relying party 810 which may not support a resource owner flow (e.g., it is not
configured to securely receive user credentials), and relving party 815 which may support
resource owner flows (2.2, it may securely reccive user credentials).

{0114] Relying party 815, which supports resource owner flow 851, may send a request to
authenticate a user device to authentication system 820 via authentication interface 825.

Relying party 815 may gather credentials and include them in the request. Authentication

WO 2020/106407 PCT/US2019/057863

interface 825 may route the resource owner flow request received from relying party 815 to a
corresponding plugin, such as AD RO-flow plugin 831. AD RO-flow plugin 831 may be a
plugin software mwodule configured to process a resource owner flow request for AD
authentication and interface with customer AD server 441, AD RO-flow plugin 831 may
provide credentials to customer AD server 441 and receive back an AD token, as described
with respect to FIG. 4 and AD plagin 431. AD RO-flow plugin 731 may convert the AD token
to a standard format, and the converted token (or the original AD token) may be returned to

relyving party 815.

{0115] Authentication systern 820 may further operate fo translate an auvthorization code
flow to a resource owner flow to federate relying parties that need OIDC authorization code
flow where the identity provider supports GAuth resource owner flows. For example, relying
party 810, which does not support resource owner flows, my initiate an OIDC authorization
code flow 853 to authenticate a user device using authentication system 820 via authentication
interface 825. Authentication interface 825 may determine that AD AC-flow plugin 835
corresponds to the request from relying party 810, and may pass the request from relying party
§10 1o AD AC-flow plugin 835, AD AC-flow plugin 835 supports resource owner flows, and
may initiate a resource owner flow 85353 or 855b corresponding to the requested authentication
process in the authorization code flow received from relying party 810. AD AC-flow plugin
835 may get credentials 854 associated with the user as part of a RO flow, such as by causing
a prompt to be generated for the user to provide a user name and password. AD AC-flow
plugin 835 may then request authentication of the user device via a resource owner flow
suitable for authentication by customer AD server 44]1. AD AC-flow plugin 835 may
implement this resource owner flow through the sclt-federation techniques described above
and/or through direct cornmunication with AD RO-flow plugin 831, as lustrated in FIG. &
For example, resource owner flow 8535a may be implemented using self-federation via
authentication interface 825, while resource owner flow 855b may be umplemented through
direct communication {e.g., API calls) between AD AC-flow plugin 835 and AD RO-flow
plugin 831, AD RO-flow plugin 831 may proceed as above, and may get the AD token for the
user device. This token may be returned to AD AC-flow plugin 833, which may return the
token {or a converted token) to relying party 810. Thus, even though relying party 810 does
not support resowrce owner flows, authentication system 820 is able to convert the resource
owner flow initiated by relying party 810 into a rcsource owner flow and implement

authentication processes.

WO 2020/106407 PCT/US2019/057863

[0116] As an example, relying party 8§15 may be a web application that supports resource
owner flows. When relying party 815 needs to authenticate a user device, relying party 815
may redirect the user to an identity provider website that request user name, password, and
multi-factor authentication token (for example). But relying party 810 may be a workspace
application that does not gain access 1o user credentials such as user name and password. The
workspace application may initiate an authorization code flow to the authentication system
820, and the authentication system 8§20 (through AD AC-flow plugin 833) may prompt the
user to enter credentials. The AD AC-flow plugin 835 may thus effect a protocol transition
between an authorization code tlow and a resource owner flow. This may be accomplished

through self-federation to AD RO-flow plugin 831 via authentication interface 8253,

{6117] One or more aspects of the disclosure may be embodied in computer-usable data or
comypriter-cxecutable instiuctions, such as in one or more program modules, executed by one
or more computers or other devices to perform the operations described herein. Generally,
program modules include routines, prograrms, objects, components, data structures, and the like
that perform particular tasks or implement particular abstract data types when executed by one
OF TNOre Processors in a computer or other data processing device. The computer-executable
instructions may be stored as computer-readable instructions on a computer-readable medium
such as a hard disk, optical disk, removable storage media, solid-state memory, RAM, and the
like. The functionality of the program modules may be combined or distributed as desired in
various embodirents. In addition, the functionality may be embodied in whole or in part in
firmware or hardware equivalents, such as integrated circuits, application-specific integrated
circuits (ASICs), field programmmable gate arrays (FPGA), and the like. Particular data
structures may be used to more effectively implement one or more aspects of the disclosure,
and such data structires are countemplaied to he within the scope of computer executable

instructions and computer-usable data described herein.

{0118] Various aspects described herein may be embeodied as a method, an apparatus, or as
one ot more compuier-readable media storing computer-executable instructions. Accordingly,
those aspects may take the form of an entirely hardware embodiment, an entirely software
cmbodiment, an entirely firmware embodiment, or an embodiment combining software,
bhardware, and firmware aspects in any combination. In addition, various signals representing
data or events as described hercin may be transferred botween a source and a destination in the
form of light or electromagnetic waves traveling through signal-conducting media such as

metal wires, optical fibers, or wireless transmission media {e.g., air or space}. In general, the

WO 2020/106407 PCT/US2019/057863

one or more computer-readable media may be and/or include one or more non-transitory

computer-readable media.

{0119] As described herein, the various methods and acts may be operative across one or
more computing servers and one or more nctworks. The functionality may be distributed in
any manner, or may be focated in a single computing device (e.g., a server, a client computer,
and the likey. For example, in alternative embodiments, one or more of the computing
platforms discussed above may be implemented in one or more virtual machines that are
provided by one or more physical computing devices. In such arrangements, the various
functions of each computing platform may be performed by the one or more virtual machines,
and any and/or all of the above-discussed coromunications between computing platforms may
correspond to data being accessed, moved, modified, updated, and/or otherwise used by the

one ot more virtual machines.

{6128] Aspecis of the disclosure have been described in terms of illustrative embodiments
thereof. Numerous other embodiments, modifications, and variations within the scope and
spirit of the appended claims will occur to persons of ordinary skilf in the art from a review of
this disclosure. For example, one or more of the steps depicted in the illustrative figures may
be performed in other than the recited order, and one or more depicted steps may be optional

in accordance with aspects of the disclosure.

{6121] Although the subject matter has been described in language specific to swrucniral
features and/or methodological acts, it is to be understood that the subject matter defined in the
appended claims is not necessarily limited to the specific features or acts described above.
Rather, the specific features and acts described above are described as example

implementations of the following claims.

WO 2020/106407 PCT/US2019/057863

WHAT IS CLAIMED 18:

1. A computer-implemented method comprising:

receiving, by an authentication interface and from an enterprise server, a first request
to authenticate a chient device using a first authentication process, wherein the first
authentication process comprises authenticating a user via a second authentication process
and a third authentication process;

calling, by the authentication interface and based on the fivst request, a first plugin to
generate a tirst authentication token;

receiving, by the authentication interface and from the first plugin, a second request to
authenticate using the second authentication process;

providing, by the authentication interface to the fivst plugin and based on the second
request, a second authentication token generated by a second plugin that executes the second
authentication process;

receiving, by the authentication interface and from the first plugin, a third request to
authenticate using the third authentication process;

providing, by the authentication interface to the first plugin and based on the third
request, a third authentication token generated by a third plugin that executes the third
authentication process; and

providing, by the authentication interface and to the enterprise server, the first
authentication token, wherein the first authentication token is generated by the first plugin
hased on the second authentication token and the third authentication token,
2. The method of claim 1, wherein the first authentication token enables a client device
associated with the cnterprise scrver {o establish a session with network resources associated

with the first authentication process.

3. The method of claim 1. wherein the first authentication token is genevated by the first

plugin by combining the second authentication token and the third authentication token.

4. The method of claim 1, wherein the second authentication token is generated based on
transforming an authentication token of a first format associated with the second

authentication process to a second format associated with the authentication interface.

WO 2020/106407 PCT/US2019/057863

3. The method of claim 1, wherein the second plugin generates the second authentication
token by:

receiving user credentials associated with the second authentication process;

requesting an authentication token corresponding to the user credentials from a first
resouree owner syster; and

generating the second authentication token based on the asthentication token

corresponding to the user credentials.

6. The method of claim 1, wherein the second plugin generates the second authentication
token by:

determining that user credentials associated with the second authentication process
were received and that a single-sign on token associated with the second authentication
process is available; and

retarning the single-sign on token as the second authentication token based on the

determining.

7. The method of claim 1, wherein the second authentication process is an Active

Directory autheuntication process.

8. The method of claim 1, wherein the second authentication process is a one time

password authentication process.

Q. The method of claim 1, wherein:
the second authentication process is an Active Directory authentication process, and

the third authentication process is a one tirne password authentication process.

14, The method of claim 1, whercin each request to authenticate is associated with a
relying party, and wherein:

the enterprise server is the relying party for the first request to auvthenticate, and

the first phugin is the relying party for the second request to asthenticate and the third

request to authenticate.

WO 2020/106407 PCT/US2019/057863

11. An apthentication system, comprising:
at least one processor;
memory storing instructions that, when executed by the at least one processor, cause
the authentication system to provide an authentication interface by causing the auvthentication
system fo:
receive, from an enterprise server, a first request to authenticate a client device
using a first authentication process, wherein the first authentication process comprises
authenticating a user via a second authentication process and a third authentication
process;
call, hased on the first request, a first plugin to generate a first authentication
token;
receive, from the first plugin, a second vequest to authenticate using the second
authentication process;
provide, to the first plugin and based on the second request, a second
authentication token generated by a second plogin that executes the second
authentication process;
receive, from the first plugin, a third request to authenticate using the third
authentication process;
provide, to the first phugin and based on the third request, a third
authentication token generated by a third plogin that executes the third authentication
process;
receive, from the first plugin, the first authentication token, wherein the first
authentication token is based on the second authentication token and the third
authentication token; and

provide, to the enterprise server, the first authentication token.

12. The authentication system of claim 11, wherein the first authentication token enables
the client device to establish a session with network resources associated with the first

authentication process.

13. The authentication system of claim 11, wherein the first authenticauon token is
generated by the first plugin by combining the second authentication token and the third

authentication token.

WO 2020/106407 PCT/US2019/057863

14. The asthentication system of claim 11, wherein the memory further stores instructions
that, when executed by the one or more processors, cause the sccond plugin to generate the
sccond authentication token by causing the second plugin to:

receive user credentials associated with the second authentication process;

request an avthentication token corresponding to the user credentials from a first
resouree owner syster; and

generate the second anthentication token based on the authentication token

corresponding to the user credentials.

15, The authentication system of claim 11, wherein the memory further stores instructions
that, when executed by the one or more processors, cause the sccond plugin to generate the
second authentication token by causing the second plagin to:

determine that uscr credentials associated with the second authentication process were
reccived and that a single-sign on token associated with the second authentication process is
available; and

return the single-sign on token as the second authentication token based on the

determining.

16. A computer-implerented method comprising:
receiving, by a first plagin in an authentication system and from an authentication
interface, a first request to authenticate a client device using a first authentication process,
wherein the first authentication process coraprises authenticating a user via a second
authentication process and a third authentication process;
generating a first authentication token responsive to the first request by:
providing, by the first plugin and fo the authentication interface, a second
request to authenticate using the second authentication process;
receiving, by the first plugin from the authentication interface and based on
the second request, a second autheniication token generated by a second phugin that
executes the second authentication process;
providing, by the first plugin and to the authentication interface, a thivd request
to authenticate using the third authentication process;
receiving, by the first plugin from the authentication interface and based on
the third request, a third authentication token gencrated by a third plugin that executes

the third authentication process; and

WO 2020/106407 PCT/US2019/057863

generating the first authentication token based on the second authentication
token and the third authentication token; and
providing, by the first plugin to the authentication interface and based on the first

request, the first authentication token.

17. The method of claim 16, wherein the second authentication process is an Active

Directory authentication process.

18. The method of claim 16, wherein the second authentication process is a one time

password aunthentication process.

i9. The method of claim 16, wherein:
the second authentication process is an Active Directory authentication process, and

the third authentication process is a one time password authentication process.

26. The method of claim 16, wherein each request to authenticate is associated with a
relying party, and wherein:

an enferprise server assoclated with the client device is the relying party in the first
request to authenticate, and

the {irst plugin is the relying party in the sceond request to authenticate and the third

request to authenticate.

- 41 -

PCT/US2019/057863
1/8

WO 2020/106407

&

S 4 Rgrrs g
w bt

. ,
p ™

A,

pri

o,
K3 *,

&

#

\N\l..té\ Y 4
St

R
e,
%
3

3
3

et

B

g g orr. s

i

s

N

& 3 k * K 423

%, ; k)
A s wroresoseresose,
k % ,

. 34

oy o
v

o

N
St
T

e
AT

Riiiag SSNERENERERREL

R

E2d

Lok

o

RO

: 7 “

.w.\ ;£ 7
3 I
— b u\%
AR o

¥
3

o ELe
V™ e &m

WO 2020/106407

2/8

203" | |ProcessoR 27 pewory
205 | RAM OPERATING
SYSTEM

207 || ROM 219) DATA

. INPUT/ APPLICATIONS
208 L1 oureur

MODULE

i \\\ 4 g 7\\

223 | {LAN INTERFACE(S) Ew-r—-ﬁii(o) .

COMPUTER NETWORK

PCT/US2019/057863

- 208
/ fffff -
208n
.
200
230

PCT/US2019/057863

WO 2020/106407

3/8

6o¢

=

BTN T
Aemaien)

SR0IABG

60 -1 8oneg
SOUBNSS|
ajealiliel
$EN0SeY |
soqEy]
SAIN0SDY

goe~]1 Md
JOgRIBYS K

90¢ 7

y eBusyoxg k==l
o S |

< 1 Remare

!
“
}
M di0

N

M Aioioalic] sAlny

uopdAisug ynea
| B BB PIES)
T 1 1 :
(e] o o e
N
SIBMYO ddy
MMM mm. — paddeips m 1B8MOIG mmwm«ewma
Welo f gE) O 0it
gLt) 3 - A/ - ﬂ
(./:* m SRTENTRC m
/ Y OUUN] JORSN SINoeg
] / \\
™ 908 8l¢ suojesiddy psbeuepy |
2> N/%

PCT/US2019/057863

WO 2020/106407

4/8

¥ Ol

i ™ < B Nwmwm WHOHW
dlol | uibnid d10 || soned
~ S . 1=l
e “L I UL
/// \\ -
ol o | [
N uibnid v.IMO e —
//\\\H\ o mNW ii:ii:iiW Q m\ W
e B0BLISIU| Aued
- y uonednuauIny BuiAley
\ 4y \\ b %% —
NSnO. uibnid avy
\/ Levy
// Q%% \\\ . .M—Ww.mm
NSO ubnid ay
N/ Ly
0cy WBISAS uonesnusyIny
00v

PCT/US2019/057863

WO 2020/106407

5/8

\\ \\\\\\\\\\\ e b TG
_ 40 L ubnid d1o |
S Uy | £25
b W
Ges GG
uibnid <= aorpay|
dl0 + 4y Uchedijuaiiny
\oav L s TTH
SN0 ubnid av
N/ Ly

S Dl

G0%
aoIneQ

s

L

26 WalsAg uoneonusyiny

OLg
Aled
BuiAiey

PCT/US2019/057863

WO 2020/106407

6/8

9 "Old (dlo+gyiueyor
SUQUIGT Witis
(dio+Qyjuol) PRLIGIeD L 879
suS)O) 41O pue POUIGWIOY UIeY (910
Oy suiguiod (b9 - (d10) usyoy
plepugs winey (749
{d10) usvo| pispuls wney {0y
- UdYO | piepuRig
usyol dLO puss (989 o} ysauos) (geg
(41O
Y (e &@E L0 188nbay (769
410 {(0e9 < uibnid d10 Hed (829
di0
TG T sleiepa jlog HoReIjUaYINY JSenbay mmmmv
di0 wbnig 410 {rz9 - (Qy) usxol
plepuels winsy (779
(v} usvo) piepuelg wimey (029
- UeNe] plepumg
ueyo (v puss (510 0} 1BAUOY (819
{siepuapain)
WY (710 |y Teenbon 1710
sjenuepss) 189y (019 |- uibnid gy 1eD (809
ay
sjeiepe §18g OEoTUSUTY 1587b5Y (800 |
{09
UBNid 410+ OV 1ED (200 L dio+ vy
uopeogustiny 1senbsy (009
T 5% GEg [gie
Qv Isng uibnid gy uibnid 41O+ Y S0BLIBI UOREORUBLANY Red Buidey

PCT/US2019/057863

7/8

L Ol

WO 2020/106407

\\.l/,, - - G0Z
dio | e | ned
S = — UNid 410 Jusio
e U W M %
¢z oIyl T7C L ., OZ
e - UIBN|d e— 20BSIY| Aued
d10 + Qv uonesdnusyINY Buldjiay
¥
/ Q%% \\ & .M—Ww.mm
NSO, | ubnday |
\/ Livy
0¢7 weisAg uoneonusiiny

PCT/US2019/057863

8/8

WO 2020/106407

- S (O voddns
senuspeln 5e8 US| PGt 10U S80p)
o5 " MOY-DV oINe
vmmz | W av “Moid 8poD) commmt.ﬂmﬁs{ ATE T BUTATSY
€58
t [asseoy GZ8
men L2y e
m LogeajUsSyINY
. v K
/ ay xaicmvma.w. av— 128 usMo L PIS » (OY ﬁ&&mmv
/wmzm - MOL-Od (s|enuapsio) glg
\)(< SIERUSPRID av WO Joume soinosay | MHEd DUIA[SY
LPP W N
LG8

028 weysAg uonedsnuayiny

-
-
Q0

	Abstract
	Description
	Claims
	Drawings

