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FULLY PARALLEL , LOW COMPLEXITY 
APPROACH TO SOLVING COMPUTER 

VISION PROBLEMS 
CROSS REFERENCE TO RELATED 

APPLICATIONS 
10001 ] This application claims priority to U . S . Provisional 
Patent Application 62 / 473 , 280 , entitled “ Low Compute and 
Fully Parallel Computer Vision with HashMatch ” and filed 
on Mar . 17 , 2017 , the entirety of which is incorporated by 
reference herein . 

BACKGROUND 
[ 0002 ] Machine learning is used in many classes of com 
puter vision problems including identification of stereo 
images , object classification , foreground / background seg 
mentation , disparity estimation , image retrieval , feature 
approximation , background subtraction , and the like . These 
problems are typically formulated as a per - pixel image 
labeling task . For example , pixels in a stereo image are 
labeled as “ left ” or “ right , ” to indicate the pixels that are 
intended to be viewed by the left eye or the right eye , 
respectively . Computer vision labelling problems are con 
ventionally formulated as conditional random fields ( CRFs ) , 
which have been shown to provide precise and accurate 
labeling of the pixels in images . However , the computational 
complexity of the CRF approach precludes using these 
approaches in low - compute scenarios such as implementa 
tions that solve the computer vision problems in devices 
such as smart phones , tablet computers , and the like . An 
alternative approach consists of using deep architectures 
such as convolutional neural networks ( CNNs ) to solve 
general computer vision problems , but these methods also 
require a considerable amount of computational resources . 

stored image patches from memory . The algorithms are 
therefore both memory and computationally bound . The 
computational complexity therefore increases in proportion 
to the sample size , e . g . , the number of pixels in an image . 
[ 0008 ] At least some of the drawbacks in conventional 
solutions to computer vision problems are reduced or elimi 
nated using a general inference framework ( referred to 
herein as HashMatch ) that is performed in parallel on 
images with a complexity that is independent of size of 
input , e . g . , the number of pixels in a patch , by training a 
binary unary potential using sparsity and anti - sparsity con 
straints . The binary unary potential is utilized in an inference 
scheme that estimates a true distribution of labels that is 
independent of the solution space . Some embodiments of the 
binary unary potential are represented by a first function that 
maps values of the pixels to a binary space that preserves 
characteristics of the values of the pixels . The binary unary 
function is also represented by a second function that learns 
to perform a labeling task to assign labels to the pixels in the 
image . In some embodiments , the first and second functions 
are determined based on regularizers that are trained based 
on sets of training images . A reconstruction function is used 
to verify that the original data is reconstructed from the 
binary unary potential . The inference scheme estimates the 
label for each pixel by selecting a value that is equal to a 
value of a label of a nearest - neighbor pixel to the pixel based 
on the corresponding independent per - pixel distribution . 
The inference scheme is then iterated , e . g . , using a coordi 
nate ascent procedure , until values of the labels of the pixels 
converge . Considering only the nearest neighbors in the 
inference scheme results in a computational complexity that 
is independent of the size of the solution space and produces 
good approximations of the true distribution when the 
solution for each pixel is most likely found in a small subset 
of the set of potential solutions , e . g . , the entropy of the 
solution is low . 
[ 0009 ] FIG . 1 is a block diagram of a processing system 
100 that is configured to solve computer vision problems 
according to some embodiments . The processing system 100 
includes a user equipment 105 such as a smart phone , a 
tablet , or a laptop computer . However , some embodiments 
of the processing system 100 include other devices that are 
configured to solve computer vision problems such as desk 
top computers , servers , and the like . Examples of computer 
vision problems that are addressed by the processing system 
100 include identification of stereo images , object classifi 
cation , foreground / background segmentation , disparity esti 
mation , image retrieval , feature approximation , background 
subtraction , and the like . 
[ 0010 ] The user equipment 105 includes a transceiver 110 
for transmitting and receiving signals over an air interface 
via antenna 115 . The user equipment 105 also includes a 
processor 120 and a memory 125 . The processor 120 may be 
used to execute instructions stored in the memory 125 and 
to store information in the memory 125 such as the results 
of the executed instructions . The user equipment 105 also 
implements a camera 130 that is used to acquire images such 
as the image 135 . The processor 120 is configured to operate 
on pixels representative of the image 135 and the memory 
125 is configured to store values of the pixels of the image 
135 . Although the camera 130 is integral to the user equip 
ment 105 , some embodiments of the user equipment 105 ( or 
other processing devices ) operate on images acquired by 
external image acquisition devices . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0003 ] The present disclosure may be better understood , 
and its numerous features and advantages made apparent to 
those skilled in the art by referencing the accompanying 
drawings . The use of the same reference symbols in different 
drawings indicates similar or identical items . 
[ 0004 ] FIG . 1 is a block diagram of a processing system 
that is configured to solve computer vision problems accord 
ing to some embodiments . 
[ 0005 ) FIG . 2 illustrates a method of training first and 
second functions that are used to solve computer vision 
problems according to some embodiments . 
[ 0006 ] FIG . 3 is a flow diagram of a method of generating 
labels for pixels in an image according to some embodi 
ments . 

DETAILED DESCRIPTION 
[ 0007 ] The efficiency of conventional deep learning tech 
niques can be improved using compression techniques such 
as the use of binary weights for the input to a convolutional 
neural network ( CNN ) and the filters implemented in the 
CNN , removal of redundant connections and sharing of 
quantized weights by multiple neurons of a CNN , imple 
menting compact CNN layers that are characterized by a 
reduced number of parameters , and binarizing the full net 
work . Despite the improved efficiency , these approaches still 
require multiple convolutions to infer the per - pixel labels . 
Multiple memory accesses are also required to retrieve 
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[ 0011 ] The processor 120 maps values of pixels in the 
image 135 to a binary space using a first function that 
preserves characteristics of values of the pixels . Labels are 
iteratively assigned to the pixels in the image 135 in parallel 
based on a second function . The label assigned to each pixel 
is determined based on values of a set of nearest - neighbor 
pixels . In some embodiments , the labels for the pixels in the 
image 135 are then stored in the memory 125 . The first and 
second functions are trained prior to using the first and 
second functions to estimate labels for the pixels in the 
image 135 . In the illustrated embodiment , the first function 
is trained to map values of pixels in a set of training images 
140 to the binary space and the second function is trained to 
assign labels to the pixels in the set of training images 140 . 
Training of the first and second functions is performed by 
the processor 120 or by an external processor , which then 
provides information representative of the trained first and 
second functions to the user equipment 105 . 
[ 0012 ] Some embodiments of the processor 120 imple 
ment a fully parallel and low complexity technique that is 
based on a pairwise conditional random field ( CRF ) that is 
expressed as a probabilistic factorization , P , where : 

[ 0015 ] FIG . 2 illustrates a method 200 of training the first 
and second functions that are used to solve computer vision 
problems according to some embodiments . Some embodi 
ments of the method 200 are implemented in the processor 
120 shown in FIG . 1 . Other embodiments of the method 200 
are implemented in other processors and information repre 
senting the trained first and second functions is provided to 
the processor 120 shown in FIG . 1 so that the processor 120 
is able to use the trained first and second functions to 
perform computer vision tasks , as discussed herein . 
[ 0016 ] At block 205 , the processor accesses a signal from 
a set of training images , e . g . , values that represent the pixels 
in the training images . In some embodiments , the processor 
trains the function h ( x ; ) to map a signal x ER " in a binary 
space b E { 0 , 1 } " , which preserves characteristics of the 
original signal . 
[ 0017 ] At block 210 , the processor learns a set of hyper 
planes and a task function by minimizing a dissimilarity 
measure . In some embodiments , the processor learns a set of 
hyperplanes WER nxk and a task function ZER kxd that 
minimizes a loss function : 

min L ( sign ( XW ) Z , Y ) + T ( W ) + ( Z ) W . Z 
( 6 ) 

© PY | D ) = lo e - ECYD ) 
E ( Y | D ) = 1 ; 4 ull ; ) + £ ; £ jENjVplli , l ; ) ? where sign ( ) is a function that returns a sign of the operand 

and X ER mxn and Y ER mxd are matrices whose i - th row 
corresponds respectively to x ; and y? . The terms T ( W ) and 
2 ( Z ) are regularizers that encourage particular structures on 
the predictors W and Z . In some embodiments , the regular 
izer T ( W ) is chosen to induce sparse solutions in the set of 
hyperplanes . Optimization of the loss function cannot be 
performed using first - order methods such as back propaga 
tion because the functions are piece - wise constant and the 
sub - gradient with respect to W is zero almost everywhere . 
Instead , a dissimilarity measure , D , is introduced , which 
modifies the problem to : 

min L ( B , Z , Y ) + F ( W ) + N ( Z ) + yD ( XW , B ) 

subject to the constraint that : 
| | B | | . 0 

where E can be interpreted as a measure of error and a data 
term , , measures how well an inferred solution agrees with 
input data , e . g . , actual values of the pixels in the training 
images 140 or a cost of assigning a pixel i to a label 1 ; . The 
first summation captures the likelihood for a particular 
solution but does not consider values of neighboring pixels , 
which can lead to a noisy solution . The second summation 
considers the nearest neighbors to a pixel and provides 
regularization of the solution such that a label for a pixel is 
similar to labels for pixels of the nearest neighbors . 
[ 0013 ] The implementation of the data term , , depends on 
the labeling task that is being performed by the processor 
120 . For example , if the processor 120 is tasked with finding 
a nearest neighbor between image patches , the labels 1 ; 
correspond to vectors ( u , v ) that define displacements in the 
image directions . In that case , the data term 4 , is represented 
as : 

Wall ; ) = \ h ( x ; ) – H ( Xi + i ) , ( 3 ) 
which measures the compatibility of two image patches x 
centered at two - dimensional pixel locations i and i + 1 ; . The 
function h ( x ) is a binary feature that allows efficient com 
putation of Yu ( 11 ) via a Hamming distance . For another 
example , other classification or regression problems are 
addressed by representing the data term Wu as : 

Well ; ) = - log ( g ( 1 ; , h ( x ; ) ) ) , ( 4 ) 
where g is a learned classifier or aggressor that evaluates the 
likelihood of label l ; given the binary code h ( x ; ) of an image 
patch x? 
[ 0014 ] The smoothness cost * , is represented as 

4p ( x = 1 ; x ; = l ; ) = max ( t , \ l ; - 1 ; ! ) . 
The smoothness function encourages neighboring pixels to 
be assigned similar labels and the value t is a truncation 
threshold . 

where 

| | B | | . o = max | Bi ; 

denotes the lo norm of B and u > 0 is a scalar hyperparameter . 
This constraint is referred to as an anti - sparsity constraint . 
[ 0018 ] At block 215 , the processor reconstructs an esti 
mate of the original signal using the hyperplanes and task 
function generated in block 210 . In some embodiments , a 
reconstruction function is used to generate the estimate of 
the original signal based on the hyperplanes and the task 
function . The estimated signal is then used as a feedback 
signal to evaluate the quality of the hyperplanes and the task 
function . 
[ 0019 ] At decision block 220 , the processor determines 
whether the reconstructed signal is equal to the actual signal 



US 2018 / 0300588 A1 Oct . 18 , 2018 

Mi = uli ) + ( 12 ) volli , arg max lj ) 
JEN ; 

within a predetermined tolerance . If not , the method 200 
flows to block 210 and iteratively updates the estimate of the 
hyperplanes and the task function . In some embodiments , 
the values of the task function are iteratively updated using 
a gradient descent technique . If the processor determines 
that the reconstructed signal is within the predetermined 
tolerance of the actual signal , the method 200 flows to block 
225 and the set of hyperplanes and the task function are 
stored in a memory , such as the memory 125 shown in FIG . 

[ 0020 ] FIG . 3 is a flow diagram of a method 300 of 
generating labels for pixels in an image according to some 
embodiments . The method 300 is implemented in some 
embodiments of the processor 120 shown in FIG . 1 . In order 
to generate labels for the pixels in parallel using a parallel 
inference technique , a true distribution ( e . g . , the distribution 
Pin equation 1 ) of labels over the pixels is approximated by 
a distribution within a class of distributions that is 
factorized as a product of independent marginals : 

Q ( Y ) = II , Q ( Y : ) 
This approximation is expected to provide a good approxi 
mation of the true distribution in cases when the unary 
potentials that represent the actual solutions have strong 
peaks at the actual values of the labels , e . g . , the solutions 
have low entropy . 
[ 0021 ] At block 305 , values of the labels are initialized 
using a random label hypothesis to assign random labels to 
each pixel . A coordinate ascent procedure is then used to 
update the values of the labels . Using the coordinate ascent 
procedure guarantees that the iterative method 300 will 
converge on a solution . 
[ 0022 ] At block 310 , values of the labels are updated . An 
update for the label 1 , in the marginal of random variable x ; 
can be generated according to : 

This is equivalent to updating the labels of the pixels i to a 
maximal value of the marginal functions of the nearest 
neighbor pixels . The compute complexity of the modified 
problem is O ( 1Y | | N | ( 1 + 1N1 ) , which is independent of the 
size of the label space ( L ) . In practice the value of N is 
small , e . g . , on the order of four or eight , and in most 
problems | L | > NT . For example , when estimating dispari 
ties in an image , the size of the label space | L | is typically 
in the hundreds . 
[ 0023 ] At decision block 315 , the processor determines 
whether the updating procedure has converged . If not , the 
method 300 flows back to block 310 to update labels for the 
pixels in the image . If the updating procedure has converged , 
the method 300 flows to block 320 and stores the labels of 
the pixels , e . g . , in a memory such as the memory 125 shown 
in FIG . 1 . 
0024 ] In some embodiments , certain aspects of the tech 
niques described above may implemented by one or more 
processors of a processing system executing software . The 
software comprises one or more sets of executable instruc 
tions stored or otherwise tangibly embodied on a non 
transitory computer readable storage medium . The software 
can include the instructions and certain data that , when 
executed by the one or more processors , manipulate the one 
or more processors to perform one or more aspects of the 
techniques described above . The non - transitory computer 
readable storage medium can include , for example , a mag 
netic or optical disk storage device , solid state storage 
devices such as Flash memory , a cache , random access 
memory ( RAM ) or other non - volatile memory device or 
devices , and the like . The executable instructions stored on 
the non - transitory computer readable storage medium may 
be in source code , assembly language code , object code , or 
other instruction format that is interpreted or otherwise 
executable by one or more processors . 
[ 0025 ] . A computer readable storage medium may include 
any storage medium , or combination of storage media , 
accessible by a computer system during use to provide 
instructions and / or data to the computer system . Such stor 
age media can include , but is not limited to , optical media 
( e . g . , compact disc ( CD ) , digital versatile disc ( DVD ) , 
Blu - Ray disc ) , magnetic media ( e . g . , floppy disc , magnetic 
tape , or magnetic hard drive ) , volatile memory ( e . g . , random 
access memory ( RAM ) or cache ) , non - volatile memory 
( e . g . , read - only memory ( ROM ) or Flash memory ) , or 
microelectromechanical systems ( MEMS ) - based storage 
media . The computer readable storage medium may be 
embedded in the computing system ( e . g . , system RAM or 
ROM ) , fixedly attached to the computing system ( e . g . , a 
magnetic hard drive ) , removably attached to the computing 
system ( e . g . , an optical disc or Universal Serial Bus ( USB ) 
based Flash memory ) , or coupled to the computer system via 
a wired or wireless network ( e . g . , network accessible storage 
( NAS ) ) . 
[ 0026 ] Note that not all of the activities or elements 
described above in the general description are required , that 
a portion of a specific activity or device may not be required , 
and that one or more further activities may be performed , or 
elements included , in addition to those described . Still 

0 ; l ) = ze - M : 4 : 1 

Mi = ull ; ) + o l y plli , l ; ) ( 10 ) 
JEN ; l ; EL 

Z ; = Se = M ; ( i ) ( 11 ) 
liEL 

However , the complexity of evaluating the updated values 
according to the equations ( 9 ) , ( 10 ) , and ( 11 ) is O ( 1Y | | L | ( I 
N | | L | + 1 ) ) , which is quadratic in L . Consequently , this 
approach becomes computationally slow as the size of the 
label space increases and is therefore impractical for imple 
mentation on devices with limited resources such as smart 
phones , tablets , and the like . In some embodiments , this 
drawback is addressed by only considering values of labels 
of nearest neighbor pixels . The solution is further approxi 
mated by assuming that the distribution Q has low entropy 
and is therefore reasonably well approximated by a Dirac d 
function . In this approximation , equation ( 10 ) is rewritten 
as : 
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further , the order in which activities are listed are not 
necessarily the order in which they are performed . Also , the 
concepts have been described with reference to specific 
embodiments . However , one of ordinary skill in the art 
appreciates that various modifications and changes can be 
made without departing from the scope of the present 
disclosure as set forth in the claims below . Accordingly , the 
specification and figures are to be regarded in an illustrative 
rather than a restrictive sense , and all such modifications are 
intended to be included within the scope of the present 
disclosure . 
[ 0027 ] Benefits , other advantages , and solutions to prob 
lems have been described above with regard to specific 
embodiments . However , the benefits , advantages , solutions 
to problems , and any feature ( s ) that may cause any benefit , 
advantage , or solution to occur or become more pronounced 
are not to be construed as a critical , required , or essential 
feature of any or all the claims . Moreover , the particular 
embodiments disclosed above are illustrative only , as the 
disclosed subject matter may be modified and practiced in 
different but equivalent manners apparent to those skilled in 
the art having the benefit of the teachings herein . No 
limitations are intended to the details of construction or 
design herein shown , other than as described in the claims 
below . It is therefore evident that the particular embodiments 
disclosed above may be altered or modified and all such 
variations are considered within the scope of the disclosed 
subject matter . Accordingly , the protection sought herein is 
as set forth in the claims below . 
What is claimed is : 
1 . A method comprising : 
mapping values of pixels in an image to a binary space 

using a first function that preserves characteristics of 
values of the pixels ; 

iteratively assigning labels to the pixels in the image in 
parallel based on a second function , wherein the label 
assigned to each pixel is determined based on values of 
a set of nearest - neighbor pixels . 

2 . The method of claim 1 , further comprising : 
training the first function to map values of pixels in a set 
of training images to the binary space ; and 

training the second function to assign labels to the pixels 
in the set of training images . 

3 . The method of claim 2 , wherein training the first and 
second functions comprises reconstructing estimated values 
of pixels in the set of training images from the values of the 
pixels in the binary space and iteratively updating the first 
and second functions based on a comparison of actual values 
of the pixels in the set of training images and the estimated 
values . 

4 . The method of claim 3 , wherein training the first and 
second functions comprises learning a set of hyperplanes 
and a task function that minimize a loss function subject to 
an anti - sparsity constraint . 

5 . The method of claim 4 , wherein training the first and 
second functions comprises training first and second regu 
larizer functions using the set of training images , wherein 
the first and second regularizer functions encourage corre - 
sponding structures for the set of hyperplanes and the task 
function . 

6 . The method of claim 5 , wherein learning the set of 
hyperplanes comprises iteratively updating values of the set 

of hyperplanes based on the first regularizer , wherein the 
first regularizer is chosen to induce sparse solutions in the set 
of hyperplanes . 

7 . The method of claim 6 , wherein learning the task 
function comprises iteratively updating values of the task 
function using a gradient descent technique . 

8 . The method of claim 1 , wherein iteratively assigning 
the labels to the pixels in parallel comprises estimating 
distributions of labels of the pixels as independent marginal 
functions 

9 . The method of claim 8 , wherein estimating the distri 
butions of the labels of the pixels as independent marginal 
functions comprises estimating the distributions of the labels 
of the pixels as Dirac d functions . 

10 . The method of claim 9 , wherein iteratively assigning 
the labels to the pixels in parallel comprises assigning , 
during an iteration , the labels of the pixels to a maximal 
value of the marginal functions of the nearest neighbor 
pixels . 

11 . The method of claim 8 , wherein iteratively assigning 
the labels to the pixels in parallel comprises iteratively 
assigning the labels to the pixels in parallel using a coordi 
nate ascent procedure until convergence . 

12 . An apparatus comprising : 
a processor configured to map values of pixels in an image 

to a binary space using a first function that preserves 
characteristics of values of the pixels and iteratively 
assign labels to the pixels in the image in parallel based 
on a second function , wherein the label assigned to 
each pixel is determined based on values of a set of 
nearest - neighbor pixels ; and 

a memory to store the labels of the pixels . 
13 . The apparatus of claim 12 , wherein the first function 

is trained to map values of pixels in a set of training images 
to the binary space and the second function is trained to 
assign labels to the pixels in the set of training images . 

14 . The apparatus of claim 13 , wherein training the first 
and second functions comprises reconstructing estimated 
values of pixels in the set of training images from the values 
of the pixels in the binary space and iteratively updating the 
first and second functions based on a comparison of actual 
values of the pixels in the set of training images and the 
estimated values . 

15 . The apparatus of claim 14 , wherein training the first 
and second functions comprises learning a set of hyper 
planes and a task function that minimize a loss function 
subject to an anti - sparsity constraint . 

16 . The apparatus of claim 15 , wherein training the first 
and second functions comprises training first and second 
regularizer functions using the set of training images , 
wherein the first and second regularizer functions encourage 
corresponding structures for the set of hyperplanes and the 
task function . 

17 . The apparatus of claim 16 , wherein learning the set of 
hyperplanes comprises iteratively updating values of the set 
of hyperplanes based on the first regularizer , wherein the 
first regularizer is chosen to induce sparse solutions in the set 
of hyperplanes . 

18 . The apparatus of claim 17 , wherein learning the task 
function comprises iteratively updating values of the task 
function using a gradient descent technique . 

19 . The apparatus of claim 12 , wherein the processor is 
configured to estimate distributions of labels of the pixels as 
independent marginal functions . 
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20 . The apparatus of claim 19 , wherein the processor is 
configured to estimate the distributions of the labels of the 
pixels as Dirac d functions . 

21 . The apparatus of claim 20 , wherein the processor is 
configured to assign , during an iteration , the labels of the 
pixels to a maximal value of the marginal functions of the 
nearest neighbor pixels . 

22 . The apparatus of claim 19 , wherein the processor is 
configured to iteratively assign the labels to the pixels in 
parallel using a coordinate ascent procedure until conver 
gence . 

23 . A non - transitory computer readable medium embody 
ing a set of executable instructions , the set of executable 
instructions to manipulate at least one processor to : 
map values of pixels in an image to a binary space using 

a first function that preserves characteristics of values 
of the pixels ; 

iteratively assign labels to the pixels in the image in 
parallel based on a second function , wherein the label 
assigned to each pixel is determined based on values of 
a set of nearest - neighbor pixels . 

24 . The non - transitory computer readable medium of 
claim 23 , wherein the set of executable instructions is to 
manipulate the at least one processor to : 

train the first function to map values of pixels in a set of 
training images to the binary space ; and 

train the second function to assign labels to the pixels in 
the set of training images . 

25 . The non - transitory computer readable medium of 
claim 24 , wherein the set of executable instructions is to 
manipulate the at least one processor to reconstruct esti 
mated values of pixels in the set of training images from the 
values of the pixels in the binary space and iteratively 
updating the first and second functions based on a compari 
son of actual values of the pixels in the set of training images 
and the estimated values . 

26 . The non - transitory computer readable medium of 
claim 25 , wherein the set of executable instructions is to 
manipulate the at least one processor to learn a set of 

hyperplanes and a task function that minimize a loss func 
tion subject to an anti - sparsity constraint . 

27 . The non - transitory computer readable medium of 
claim 26 , wherein the set of executable instructions is to 
manipulate the at least one processor to train first and second 
regularizer functions using the set of training images , 
wherein the first and second regularizer functions encourage 
corresponding structures for the set of hyperplanes and the 
task function . 

28 . The non - transitory computer readable medium of 
claim 27 , wherein the set of executable instructions is to 
manipulate the at least one processor to iteratively update 
values of the set of hyperplanes based on the first regularizer , 
wherein the first regularizer is chosen to induce sparse 
solutions in the set of hyperplanes . 

29 . The non - transitory computer readable medium of 
claim 28 , wherein the set of executable instructions is to 
manipulate the at least one processor to iteratively update 
values of the task function using a gradient descent tech 
nique . 

30 . The non - transitory computer readable medium of 
claim 23 , wherein the set of executable instructions is to 
manipulate the at least one processor to estimate distribu 
tions of labels of the pixels as independent marginal func 
tions . 

31 . The non - transitory computer readable medium of 
claim 30 , wherein the set of executable instructions is to 
manipulate the at least one processor to estimate the distri 
butions of the labels of the pixels as Dirac d functions . 

32 . The non - transitory computer readable medium of 
claim 31 , wherein the set of executable instructions is to 
manipulate the at least one processor to assign , during an 
iteration , the labels of the pixels to a maximal value of the 
marginal functions of the nearest neighbor pixels . 

33 . The non - transitory computer readable medium of 
claim 30 , wherein the set of executable instructions is to 
manipulate the at least one processor to iteratively assign the 
labels to the pixels in parallel using a coordinate ascent 
procedure until convergence . 

* * * * * 


