
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4
38

7
16

0
A

1
EP004387160A1

(11) EP 4 387 160 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
19.06.2024 Bulletin 2024/25

(21) Application number: 23182415.2

(22) Date of filing: 29.06.2023

(51) International Patent Classification (IPC):
H04L 9/08 (2006.01)

(52) Cooperative Patent Classification (CPC):
H04L 9/088; H04L 9/0861; H04L 2209/046

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL
NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA
Designated Validation States:
KH MA MD TN

(30) Priority: 15.12.2022 US 202218066868

(71) Applicant: Intuit Inc.
Mountain View, CA 94043 (US)

(72) Inventors:
• VALD, Margarita

Tel Aviv (IL)
• ZARUBINSKY, Julia

Tel Aviv (IL)
• SHEFFER, Yaron

Tel Aviv (IL)
• BANSHATS, Sergey

Tel Aviv (IL)

(74) Representative: D Young & Co LLP
3 Noble Street
London EC2V 7BQ (GB)

(54) SYSTEMS AND METHODS FOR BLOCKING DECRYPTION CAPABILITIES IN SYMMETRIC KEY
ENCRYPTION

(57) Systems and methods that may be used to pro-
vide policies and protocols for blocking decryption capa-
bilities in symmetric key encryption using a unique pro-
tocol in which key derivation may include injecting a ran-
dom string into each key derivation. For example, a policy
may be assigned to each client device indicating whether

the client device has been assigned encryption only per-
mission or full access permission to both encrypt and
decrypt data. The disclosed protocol prevents client de-
vices with encryption only permission from obtaining keys
for decryption.

EP 4 387 160 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

[0001] Many computer applications require crypto-
graphic operations for multiple clients, users, or process-
es. For example, multiple clients may require separate
keys for accessing applications hosted by servers or
cloud-based systems through one or more networks. To
enhance security in case of a breach, server/cloud-side
key management systems may be separated. For exam-
ple, if an attacker breaches one key server, he/she may
only gain a small number of the total keys, and may have
to breach additional servers separately to gain the re-
maining keys.
[0002] Due to their complexity, currently existing key
management services require separate groups of serv-
ers per project and therefore introduce tremendous over-
all costs due to the additional hardware and overhead.
These services also require large storage resources to
store the numerous keys being managed and used for
encryption and decryption purposes, and the storage of
encrypted data. Moreover, these services utilize complex
exponential processing during key generation and deri-
vation processing, meaning that they are also processor
intensive.
[0003] Further still, conventional access permission
protocols are binary, such that a user either is granted
full access to a key and can therefore encrypt and decrypt
data or has no access to a key at all. However, in some
instances, granting a user encryption only permissions
are needed or would be beneficial for a specific task. But
there are no mechanisms that allow encryption only per-
missions for symmetric encryption schemes. As such,
under conventional approaches, when a user requires
encryption permission, full access is provided to that us-
er, which violates the principle of least privilege (i.e., a
concept in computer security that limits users’ access
rights to only what are strictly required to do their jobs).
As can be appreciated, all of these results are undesir-
able.
[0004] Accordingly, there is a need and desire for a
new and improved key derivation process that over-
comes the shortcomings of today’s key management
services.

SUMMARY

[0005] Particular aspects are set out in the appended
independent claims. Various optional embodiments are
set out in the dependent claims.

BRIEF DESCRIPTION OF THE FIGURES

[0006]

FIG. 1 shows an example system configured to per-
form multitenant key derivation according to an em-

bodiment of the present disclosure.
FIG. 2 shows an example key derivation encryption
process according to an embodiment of the present
disclosure.
FIG. 3 shows an example process for computing a
derived key according to an embodiment of the
present disclosure.
FIG. 4 shows an example computing device accord-
ing to an embodiment of the present disclosure.

DETAILED DESCRIPTION OF SEVERAL EMBODI-
MENTS

[0007] Many conventional methods lack the proper
protocols to prevent a malicious server from being forced
to derive a key to a value of its choice. For example, in
one conventional approach, Oblivious Pseudorandom
Function (OPRF) is a two-party protocol for computing
the output of a pseudorandom function (PRF). One party
(the server) holds the PRF secret key, and the other (the
client) holds the PRF input. The ’obliviousness’ property
ensures that the server does not learn anything about
the client’s input during the evaluation. In OPRF systems,
there is no distinction between derivation for encryption
protocols and derivation for decryption protocols, thus
these protocols cannot be used to block decryption. As
such, a malicious OPRF server could be forced to derive
a key to enable decryption, thereby violating a vital se-
curity property that is required by most security / intrusion
detection and prevention systems.
[0008] In contrast to conventional approaches, the dis-
closed solution may involve a key derivation protocol and
management system that implements a unique protocol
in which (remote) key derivation may be executed be-
tween the server that holds the root key and a client that
holds the derivation data and obtains an encryption key.
The key derivation protocol may include two separate
derivation paths, one path that derives a key for encryp-
tion and a second path that derives a key for decryption.
The disclosed solution combines the key derivation pro-
tocol with a policy that blocks the decryption path. Some
embodiments described herein may enable the blocking
of decryption permissions for users that should not have
permission to decrypt on given system, using a novel key
derivation protocol that derives a new key with a random
string for each derivation encryption request. The gen-
eration of a new key with a random string enables the
disclosed key derivation protocol and management sys-
tem to block decryption requests from certain entities,
while simultaneously enabling the key derivation protocol
and management system to benefit from the efficiency
of symmetric key encryption techniques.
[0009] Moreover, in one or more embodiments, the
derivation data may be hashed and may include some
information, potentially secret, associated with the data
to be encrypted. The use of the hashed data and process-
ing disclosed herein provides the advantage of simplify-
ing the computations used throughout the process such

1 2

EP 4 387 160 A1

3

5

10

15

20

25

30

35

40

45

50

55

as e.g., by removing complex derivation computations
that utilize exponents and exponential processing. In-
stead, the principles disclosed herein are based on sim-
plified probabilistic and multiplication operations rather
than complex exponential processing, reducing the load
on the processors when carrying out the disclosed pro-
tocol. In addition, the hashed data and processing dis-
closed herein allow for the use of very short headers
when encrypted data (e.g., ciphertext) is stored. Thus,
the principles disclosed herein require significantly less
storage resources to store the keys being managed and
used for encryption and decryption purposes.
[0010] Moreover, the disclosed protocol ensures that
the server does not get access to or learn anything about
the client’s derived key, while the client does not get ac-
cess to or learn anything about the server’s root key.
Significantly, the server cannot force the derived key to
a value of its choice. These features allow the protocol
to run simultaneous mutually distrustful key derivation
processes on the same cluster of machines, thereby re-
ducing the number of servers needed when keys for mul-
tiple projects are being derived and or managed.
[0011] In one or more embodiments, the protocol may
be executed between a client computing device and one
or more server computing devices in communication with
the client computing device. In one or more embodi-
ments, the protocol may have the following high-level
structure: (1) the client computing device may provide
blinded and or hashed derivation data, while the one or
more server computing devices (2) may provide an en-
crypted key, and (3) may compute a derived key based
on the root key injected with a random string, and the
derivation data. In one or more embodiments, the derived
key may be blinded when on the one or more server
computing devices, meaning that the one or more server
computing devices will not have access to the cleartext
derived key, and can only be unblinded (revealed) by the
client.
[0012] FIG. 1 shows an example system 100 config-
ured to perform multitenant key derivation according to
an embodiment of the present disclosure. In the illustrat-
ed example, the system 100 includes elements such as
a remote crypto cluster (RCC) 120, virtual key manager
(VKM) 130, project key server (PKS) 140, and/or at least
one client device 150. Each of these elements may in-
clude one or more physical computing devices. In one or
more embodiments, the RCC 120 may be merged into
the VKM 130. In some embodiments, the client device
150 may be any device configured to provide access to
remote applications. For example, the client device 150
may be a smartphone, personal computer, tablet, laptop
computer, or other device. It should be appreciated that
the disclosed principles should not be limited to the illus-
trated example and that they can be applied to one or
more server computing devices that are separate from a
client computing device.
[0013] The elements may communicate with one an-
other through at least one network 110. Network 110 may

be the Internet and/or other public or private networks or
combinations thereof. For example, in some embodi-
ments, at least the RCC 120, VKM 130, and PKS 140
may communicate with one another over secure chan-
nels (e.g., one or more TLS/SSL channels). In some em-
bodiments, communication between at least some of the
elements of the system 100 may be facilitated by one or
more application programming interfaces (APls). APls of
the system 100 may be proprietary and/or may be exam-
ples available to those of ordinary skill in the art such as
Amazon® Web Services (AWS) APIs or the like.
[0014] Specific examples of the processing performed
by the elements of the system 100 in combination with
one another are given below with respect to the key der-
ivation encryption process 200 illustrated in FIG. 2, and
the key derivation decryption process 300 illustrated in
FIG. 3.
[0015] The RCC 120, VKM 130, PKS 140, and client
device 150 are each depicted as single devices for ease
of illustration, but those of ordinary skill in the art will
appreciate that the RCC 120, VKM 130, PKS 140, and/or
client device 150 may be embodied in different forms for
different implementations. For example, the RCC 120
may be merged into the VKM 130 and they may reside
on one or more computing devices. In other embodi-
ments, the RCC 120, VKM 130, and/or PKS 140 may
include a plurality of devices. In another example, a plu-
rality of client devices 150 may be connected to the net-
work 110 and may use the key derivation services de-
scribed herein. Furthermore, as noted above, the net-
work 110 may be a single network or a combination of
networks, which may or may not all use similar commu-
nication protocols and/or techniques.
[0016] FIG. 2 shows an example key derivation en-
cryption process 200 according to an embodiment of the
present disclosure. The entire system 100 may work to-
gether to perform process 200 in a distributed manner.
The process 200 may consist of a derive twice application
programming interface (API). In accordance with the dis-
closed principles, the client device 150 may provide blind-
ed and or hashed derivation data, the VKM 130 may pro-
vide an encrypted key, and the RCC 120 may compute
a derived key based on the root key and the derivation
data. In one or more embodiments, the derived key may
be blinded when on the RCC, 120 meaning that the RCC
120 will not have access to the cleartext derived key, and
can only be unblinded (revealed) by the client device 150.
This arrangement will yield a low-cost, multitenant sys-
tem 100 with strong protection of stored and/or managed
data. The process 200 is presented as deriving a single
new key per derivation request and it should be appre-
ciated that process 200 may be repeated as new deriva-
tion requests are received.
[0017] Some portions of process 200 and other proc-
esses discussed herein are described as using specific
equations. However, it will be clear to those of ordinary
skill in the art that some portions of process 200 may be
performed with modifications to the example equations

3 4

EP 4 387 160 A1

4

5

10

15

20

25

30

35

40

45

50

55

and/or with different processing altogether. The following
definitions may be useful for understanding the example
equations presented herein:

• n is the number of clients.
• For i ∈ [n], Ci is the i’th client and bi is the blinding

value associated with client Ci. A blinding value bi is
added to and or processed with other data to form
blinded data, which can only be unblinded using the
blinding value bi.

• < is the number of root keys in the project.
• For j ∈ [<], zj, vj, and tj are respectively the j’th RCC

root key and additional variables used for derivation
with zj. The length of zj, vj, and tj is 2,048 bits.

• DD is the derivation data supplied by the client.
• (vsk, vpk) is the VKM’s key pair for RSA encryption.

These keys are generated once and vpk is known
to all entities in the system.

• (sk, vk) is the PKS’ key pair for an RSA signature
scheme. These keys are generated once and vk is
known to all entities in the system.

• p is a 2,048 bit prime number generated once and
is known to all entities in the system.

• K is the project key (i.e., master key) that is generated

in .
• w is a project-wide client key that is shared among

all clients and has a length of 2,048 bits.
• pks-project-key-version is the latest project key ver-

sion generated by the PKS.
• vkm-project-key-version is the latest project key ver-

sion received by VKM.
• key-update-value is the ratio of the current project-

key and previous project key.

[0018] At 202, client device 150 is assigned a policy
that defines access permissions to the APls defined by
the key derivation protocol. For example, client device
150 may assigned a policy the permits the client device
150 either full access (i.e., to both encrypt and decrypt)
or to encrypt only.
[0019] At 204, the client device 150 sends an encryp-
tion derive request to the RCC 120. In some instances,
the request may be transmitted to the RCC 120 with a
master key (which may be masked/blinded), a key name,
and derivation data. Derivation data may include but is
not limited to a table name, column name, and / or data
included in a table or column.
[0020] At 206, once the derive request is received at
the RCC 120, the RCC computes a digest parameter as
the keyed hash function of vj and d (i.e., digest = HKDF(vj,
d, 48)). The RCC 120 may also compute a modified d
parameter (i.e., d) as the keyed hash function of vj and

digest (i.e., d = HKDF(vj, digest, 2048) · zj· bi
-1). Here,

the RCC 120 may additionally generate a random string
and inject it into the digest calculation. The random string
may be one or more of a timestamp, a random phrase,

a predictable phrase, a series of numbers, and/or a series
of random alphanumeric characters that have no partic-
ular pattern. The injection of the random string into the
digest ensures that a fresh key is created that cannot be
subsequently used for decryption. The random string
may be generated according to predefined rules. For ex-
ample, the random string may be generated at predeter-
mined time intervals (e.g., every second, minute, hour,
day, etc.). In addition, or alternatively, the random string
may be generated subject to predetermined rules related
to the needs of a project or the required permissions of
a particular user or team.
[0021] At 208, the RCC 120 sends a message "mes-
sage (Remote-derive-Client, digest, d)" to the client de-
vice 150 (Ci) requesting that the client compute a derived
key. The message (Remote-derive-Client, digest, d) may
send the parameters digest and d, to the client device
150 (Ci) along with a partially derived key (i.e., "partial
derived key"). In the illustrated embodiment, the RCC
120 is shown as performing step 208, but it should be
appreciated that this step may be performed by the VKM
130, particularly if the RCC 120 is merged into the VKM
130.
[0022] At 210, after receiving the message (Remote-
derive-Client, digest, d), the client device 150 (Ci) com-
putes the derived key dd as the hash function of w ⊕ tj
and d · bi (i.e., dd = HKDF((w ⊕ tj, d · bi, 256/128). In
addition, the client device 150 (Ci) may encrypt the mes-
sage m using the derived key dd and store the digest and
ciphertext.
[0023] According to the process 200, blinded and or
hashed derivation data DD (e.g., from the client and only
known by the client) and an encrypted key (e.g., from the
VKM) may be used to compute a derived key (e.g., by
the RCC or VKM) that is blinded when on the RCC (or
VKM). This means that the computing device implement-
ing the VKM and RCC does not get access to or learn
anything about the client’s derived key, while the client
does not get access to or learn anything about the serv-
er’s root key. As such, privacy is ensured throughout the
encryption, storage and decryption of the message m.
Moreover, as discussed in more detail below in relation
to FIG. 3, this additionally ensures that the derived key
cannot be used for decryption in one or more downstream
processes.
[0024] FIG. 3 shows an example process for comput-
ing a derived key 300 according to an embodiment of the
present disclosure. The entire system 100 may work to-
gether to perform process 300 in a distributed manner.
[0025] At 302, the client device 150 (Ci) sends a de-
cryption derive request (Remote-derive-VKM, d, ei, σi,
key-name) to the RCC 120. Here, the client device 150
may identify the ciphertext stored on the client device
150 and extract a digest from the header of the ciphertext.
The decryption derive request may include a key name
and digest data.
[0026] At 304, once the request is received at the RCC

5 6

EP 4 387 160 A1

5

5

10

15

20

25

30

35

40

45

50

55

120, a policy assigned to client device 150 is verified at
the RCC 120 before the message is processed by the
VKM 130. For example, upon receiving the decryption
derive request (Remote-derive-VKM, d, ei, σi, key-
name), the VKM 130 may verify the policy assigned to
the client device 150.
[0027] At 306, if it is determined that the client device
150 was assigned an encryption only policy, then the
decryption derive request is denied at 310, at which point
process 300 terminates.
[0028] Alternatively, if at 306, if it is determined that
the policy assigned to client device 150 was assigned
full access permission (i.e., both encryption and decryp-
tion permission), then the decryption derive request is
processed at 312.
[0029] At 314, the RCC 120 computes the digest pa-
rameter as the keyed hash function of vj and d (i.e., digest
= HKDF(vj, d, 48)). The RCC 120 may also compute a
modified d parameter (i.e., d) as the keyed hash function
of vj and digest (i.e., d = HKDF(vj, digest, 2048) · zj· bi

-1).
In addition, the RCC 120 may send a message "message
(Remote-derive-Client, digest, d)" to the client device 150
(Ci) requesting that the client compute a derived key. The
message (Remote-derive-Client, digest, d) may send the
parameters digest and d to the client device 150 (Ci).
While this embodiment has been discussed with RCC
120 as performing steps 302-314, it should be appreci-
ated that this process 300 may be performed by the VKM
130, particularly if the RCC 120 is merged into the VKM
130.
[0030] FIG. 4 is a block diagram of an example com-
puting device 400 that may implement various features
and processes as described herein. For example, in
some embodiments the computing device 400 may func-
tion as the RCC 120, VKM 130, PKS 140, or client device
150, or a portion of any of these elements. The computing
device 400 may be implemented on any electronic device
that runs software applications derived from instructions,
including without limitation personal computers, servers,
smart phones, media players, electronic tablets, game
consoles, email devices, etc. In some implementations,
the computing device 400 may include one or more proc-
essors 402, one or more input devices 404, one or more
display devices 406, one or more network interfaces 408,
and one or more computer-readable mediums 412. Each
of these components may be coupled by a bus 410.
[0031] The display device 406 may be any known dis-
play technology, including but not limited to display de-
vices using Liquid Crystal Display (LCD) or Light Emitting
Diode (LED) technology. The processor(s) 402 may use
any known processor technology, including but not lim-
ited to graphics processors and multi-core processors.
The input device 404 may be any known input device
technology, including but not limited to a keyboard (in-
cluding a virtual keyboard), mouse, track ball, and touch-
sensitive pad or display. The bus 410 may be any known
internal or external bus technology, including but not lim-

ited to ISA, EISA, PCI, PCI Express, USB, Serial ATA or
FireWire. The computer-readable medium 412 may be
any non-transitory medium that participates in providing
instructions to the processor(s) 402 for execution, includ-
ing without limitation, non-volatile storage media (e.g.,
optical disks, magnetic disks, flash drives, etc.), or vola-
tile media (e.g., SDRAM, ROM, etc.).
[0032] The computer-readable medium 412 may in-
clude various instructions for implementing an operating
system 414 (e.g., Mac OS®, Windows®, Linux). The op-
erating system may be multi-user, multiprocessing, mul-
titasking, multithreading, real-time, and the like. The op-
erating system may perform basic tasks, including but
not limited to: recognizing input from the input device
404; sending output to the display device 406; keeping
track of files and directories on the computer-readable
medium 412; controlling peripheral devices (e.g., disk
drives, printers, etc.) which can be controlled directly or
through an I/O controller; and managing traffic on the bus
410. The network communications instructions 416 may
establish and maintain network connections (e.g., soft-
ware for implementing communication protocols, such
as TCP/IP, HTTP, Ethernet, telephony, etc.). The net-
work interface(s) 408 may be used for receiving instruc-
tions (such as the key derivation service instructions 418)
by way of a computer-readable communication medium
(for example carrier waves, transmission signals or the
like). Similarly the bus 410 may use a computer-readable
communication medium for transfer of instructions be-
tween the medium 412 and the processor(s) 402. In this
way it will be understood that computer-readable medium
may include both a computer-readable storage medium
(as exemplified by medium(s) 412) and/or a computer-
readable transmission medium.
[0033] The key derivation service instructions 418 may
include instructions that perform the various multitenant
key derivation functions as described herein. The key
derivation service instructions 418 may vary depending
on whether the computing device 400 is functioning as
the RCC 120, VKM 130, PKS 140, or client device 150.
For example, the RCC 120 may include key derivation
service instructions 418 for requesting data from other
devices and using it to compute a blinded derived key.
The client device 150 may include key derivation service
instructions 418 for generating public/private key pairs
and using the private key to decrypt the blinded derived
key. The VKM 130 and/or PKS 140 may include key der-
ivation service instructions 418 for generating and/or
transmitting data used throughout the process 200, proc-
ess 300 and or required by other devices.
[0034] The applications 420 may be an application that
uses or implements the processes described herein
and/or other processes. The processes may also be im-
plemented in the operating system 414.
[0035] The described features may be implemented in
one or more computer programs that may be executable
on a programmable system including at least one pro-
grammable processor coupled to receive data and in-

7 8

EP 4 387 160 A1

6

5

10

15

20

25

30

35

40

45

50

55

structions from, and to transmit data and instructions to,
a data storage system, at least one input device, and at
least one output device. A computer program is a set of
instructions that can be used, directly or indirectly, in a
computer to perform a certain activity or bring about a
certain result. A computer program may be written in any
form of programming language (e.g., Objective-C, Java),
including compiled or interpreted languages, and it may
be deployed in any form, including as a stand-alone pro-
gram or as a module, component, subroutine, or other
unit suitable for use in a computing environment.
[0036] Suitable processors for the execution of a pro-
gram of instructions may include, by way of example,
both general and special purpose microprocessors, and
the sole processor or one of multiple processors or cores,
of any kind of computer. Generally, a processor may re-
ceive instructions and data from a read-only memory or
a random access memory or both. The baseline elements
of a computer may include a processor for executing in-
structions and one or more memories for storing instruc-
tions and data. Generally, a computer may also include,
or be operatively coupled to communicate with, one or
more mass storage devices for storing data files; such
devices include magnetic disks, such as internal hard
disks and removable disks; magneto-optical disks; and
optical disks. Storage devices suitable for tangibly em-
bodying computer program instructions and data may
include all forms of non-volatile memory, including by way
of example semiconductor memory devices, such as
EPROM, EEPROM, and flash memory devices; magnet-
ic disks such as internal hard disks and removable disks;
magneto-optical disks; and CD-ROM and DVD-ROM
disks. The processor and the memory may be supple-
mented by, or incorporated in, ASICs (application-spe-
cific integrated circuits).
[0037] To provide for interaction with a user, the fea-
tures may be implemented on a computer having a dis-
play device such as a CRT (cathode ray tube) or LCD
(liquid crystal display) monitor for displaying information
to the user and a keyboard and a pointing device such
as a mouse or a trackball by which the user can provide
input to the computer.
[0038] The features may be implemented in a compu-
ter system that includes a back-end component, such as
a data server, or that includes a middleware component,
such as an application server or an Internet server, or
that includes a front-end component, such as a client
computer having a graphical user interface or an Internet
browser, or any combination thereof. The components
of the system may be connected by any form or medium
of digital data communication such as a communication
network. Examples of communication networks include,
e.g., a telephone network, a LAN, a WAN, and the com-
puters and networks forming the Internet.
[0039] The computer system may include clients and
servers. A client and server may generally be remote
from each other and may typically interact through a net-
work. The relationship of client and server may arise by

virtue of computer programs running on the respective
computers and having a client-server relationship to each
other.
[0040] One or more features or steps of the disclosed
embodiments may be implemented using an API. An API
may define one or more parameters that are passed be-
tween a calling application and other software code (e.g.,
an operating system, library routine, function) that pro-
vides a service, that provides data, or that performs an
operation or a computation.
[0041] The API may be implemented as one or more
calls in program code that send or receive one or more
parameters through a parameter list or other structure
based on a call convention defined in an API specification
document. A parameter may be a constant, a key, a data
structure, an object, an object class, a variable, a data
type, a pointer, an array, a list, or another call. API calls
and parameters may be implemented in any program-
ming language. The programming language may define
the vocabulary and calling convention that a programmer
will employ to access functions supporting the API.
[0042] Thus, from one perspective, there have been
disclosed systems and methods that may be used to pro-
vide policies and protocols for blocking decryption capa-
bilities in symmetric key encryption using a unique pro-
tocol in which key derivation may include injecting a ran-
dom string into each key derivation. For example, a policy
may be assigned to each client device indicating whether
the client device has been assigned encryption only per-
mission or full access permission to both encrypt and
decrypt data. The disclosed protocol prevents client de-
vices with encryption only permission from obtaining keys
for decryption.
[0043] Further examples are set out in the following
numbered clauses.
[0044] Clause 1. A computer implemented method for
implementing a protocol for blocking a decryption derive
request comprising: assigning an encryption only policy
to a client device; receiving an encryption derive request
from the client device; generating a random string ac-
cording to one or more predefined rules; generating a
digest parameter based on the random string and a
masked secret key; generating a blinded partial derived
key based on the digest parameter; and transmitting the
blinded partial derived key to the client device, the partial
derived key being configured to be used to generate a
derived key for encrypting data.
[0045] Clause 2. The computer implemented method
of clause 1, wherein the encryption only policy defines
access permissions associated with the protocol for
blocking decryption.
[0046] Clause 3. The computer implemented method
of clause 1 or 2, wherein the encryption derive request
further includes a key name and derivation data.
[0047] Clause 4. The computer implemented method
of clause 3, wherein the derivation data is blinded, such
that a server receiving the derivation data will not have
access to clear text included with the derivation data.

9 10

EP 4 387 160 A1

7

5

10

15

20

25

30

35

40

45

50

55

[0048] Clause 5. The computer implemented method
of any preceding clause, wherein the random string is
one or more of a timestamp, a random phrase, a predict-
able phrase, a series of numbers, and/or a series of ran-
dom alphanumeric characters.
[0049] Clause 6. The computer implemented method
of any preceding clause, wherein the random string is
generated according to one or more predefined rules in-
cluding at generating the random string at predetermined
time intervals.
[0050] Clause 7. The computer implemented method
of any preceding clause, wherein the digest parameter
is further configured to be stored with the derived key in
a ciphertext.
[0051] Clause 8. A system including one or more proc-
essors configured to implement a protocol for blocking
decryption comprising: assigning an encryption only pol-
icy to a client device; receiving an encryption derive re-
quest from the client device; generating a random string
according to one or more predefined rules; generating a
digest parameter based on the random string and a
masked secret key; generating a blinded partial derived
key based on the digest parameter; and transmitting the
blinded partial derived key to the client device, wherein
the partial derived key is configured to used to generate
a derived key for encrypting data.
[0052] Clause 9. The system of clause 8, wherein the
encryption only policy defines access permissions asso-
ciated with the protocol for blocking decryption.
[0053] Clause 10. The system of clause 8 or 9, wherein
the encryption derive request further includes a key name
and derivation data.
[0054] Clause 11. The system of clause 10, wherein
the derivation data is blinded, such that a server receiving
the derivation data will not have access to clear text in-
cluded with the derivation data.
[0055] Clause 12. The system of any of clauses 8 to
11, wherein the random string is one or more of a times-
tamp, a random phrase, a predictable phrase, a series
of numbers, and/or a series of random alphanumeric
characters.
[0056] Clause 13. The system of any of clauses 8 to
12, wherein the random string is generated according to
one or more predefined rules including at generating the
random string at predetermined time intervals.
[0057] Clause 14. The system of any of clauses 8 to
13, wherein the digest parameter is further configured to
be stored with the derived key in a ciphertext.
[0058] Clause 15. A computer implemented method
for implementing a protocol for blocking decryption com-
prising: receiving an encryption derive request from a
client device; generating a random string according to
one or more predefined rules; generating a digest pa-
rameter based on the random string and a masked secret
key; generating a blinded partial derived key based on
the digest parameter; and transmitting the blinded partial
derived key to the client device, the partial derived key
being configured to be used to generate a derived key

for encrypting data.
[0059] Clause 16. The computer implemented method
of clause 15, further comprises assigning an encryption
only policy to the client device, wherein the encryption
only policy defines access permissions associated with
the protocol for blocking decryption.
[0060] Clause 17. The computer implemented method
of clause 15 or 16, wherein the encryption derive request
further includes a key name and derivation data.
[0061] Clause 18. The computer implemented method
of clause 17, wherein the derivation data is blinded, such
that a server receiving the derivation data will not have
access to clear text included with the derivation data.
[0062] Clause 19. The computer implemented method
of any of clauses 15 to 18, wherein the random string is
one or more of a timestamp, a random phrase, a predict-
able phrase, a series of numbers, and/or a series of ran-
dom alphanumeric characters.
[0063] Clause 20. The computer implemented method
of any of clauses 15 to 19, wherein the random string is
generated according to one or more predefined rules in-
cluding at generating the random string at predetermined
time intervals.
[0064] While various embodiments have been de-
scribed above, it should be understood that they have
been presented by way of example and not limitation. It
will be apparent to persons skilled in the relevant art(s)
that various changes in form and detail can be made
therein without departing from the spirit and scope. In
fact, after reading the above description, it will be appar-
ent to one skilled in the relevant art(s) how to implement
alternative embodiments. For example, other steps may
be provided, or steps may be eliminated, from the de-
scribed flows, and other components may be added to,
or removed from, the described systems. Accordingly,
other implementations are within the scope of the follow-
ing claims.
[0065] In addition, it should be understood that any fig-
ures which highlight the functionality and advantages are
presented for example purposes only. The disclosed
methodology and system are each sufficiently flexible
and configurable such that they may be utilized in ways
other than that shown.
[0066] Although the term "at least one" may often be
used in the specification, claims and drawings, the terms
"a", "an", "the", "said", etc. also signify "at least one" or
"the at least one" in the specification, claims and draw-
ings.
[0067] Finally, it is the applicant’s intent that only claims
that include the express language "means for" or "step
for" be interpreted under 35 U.S.C. 112(f). Claims that
do not expressly include the phrase "means for" or "step
for" are not to be interpreted under 35 U.S.C. 112(f).

Claims

1. A system including one or more processors config-

11 12

EP 4 387 160 A1

8

5

10

15

20

25

30

35

40

45

50

55

ured to implement a protocol for blocking decryption
comprising:

receiving an encryption derive request from a
client device;
generating a random string according to one or
more predefined rules;
generating a digest parameter based on the ran-
dom string and a masked secret key;
generating a blinded partial derived key based
on the digest parameter; and
transmitting the blinded partial derived key to
the client device, wherein the partial derived key
is configured to used to generate a derived key
for encrypting data.

2. The system of claim 1, further comprising assigning
an encryption only policy to the client device.

3. The system of claim 1 or 2, wherein the encryption
only policy defines access permissions associated
with the protocol for blocking decryption.

4. The system of claim 1, 2 or 3, wherein the encryption
derive request further includes a key name and der-
ivation data, for example wherein the derivation data
is blinded, such that a server receiving the derivation
data will not have access to clear text included with
the derivation data.

5. The system of any of claims 1 to 4, wherein the ran-
dom string is one or more of a timestamp, a random
phrase, a predictable phrase, a series of numbers,
and/or a series of random alphanumeric characters.

6. The system of any of claims 1 to 5, wherein the ran-
dom string is generated according to one or more
predefined rules including at generating the random
string at predetermined time intervals.

7. The system of any of claims 1 to 6, wherein the digest
parameter is further configured to be stored with the
derived key in a ciphertext.

8. A computer implemented method for implementing
a protocol for blocking decryption comprising:

receiving an encryption derive request from a
client device;
generating a random string according to one or
more predefined rules;
generating a digest parameter based on the ran-
dom string and a masked secret key;
generating a blinded partial derived key based
on the digest parameter; and
transmitting the blinded partial derived key to
the client device, the partial derived key being
configured to be used to generate a derived key

for encrypting data.

9. The computer implemented method of claim 8, the
method for blocking a decryption derive request, and
further comprising assigning an encryption only pol-
icy to the client device,

10. The computer-implemented method of claim 8 or 9,
wherein the encryption only policy defines access
permissions associated with the protocol for blocking
decryption.

11. The computer implemented method of claim 8, 9 or
10, wherein the encryption derive request further in-
cludes a key name and derivation data, for example
wherein the derivation data is blinded, such that a
server receiving the derivation data will not have ac-
cess to clear text included with the derivation data.

12. The computer implemented method of any of claims
8 to 11, wherein the random string is one or more of
a timestamp, a random phrase, a predictable phrase,
a series of numbers, and/or a series of random al-
phanumeric characters.

13. The computer implemented method of any of claims
8 to 12 wherein the random string is generated ac-
cording to one or more predefined rules including at
generating the random string at predetermined time
intervals.

14. The computer implemented method of any of claims
8 to 13, wherein the digest parameter is further con-
figured to be stored with the derived key in a cipher-
text

15. A computer-readable medium comprising instruc-
tions that, when executed by one or more processors
of a computing device, cause the programmable
processing apparatus to become configured to carry
out the method of any of claims 8 to 14.

13 14

EP 4 387 160 A1

9

EP 4 387 160 A1

10

EP 4 387 160 A1

11

EP 4 387 160 A1

12

EP 4 387 160 A1

13

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

