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BRIEF DESCRIPTION OF THE DRAWINGS CACHE PRELOAD OPERATIONS USING 
STREAMING ENGINE 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application is a continuation of U.S. patent 
application Ser . No. 16 / 203,528 , filed Nov. 28 , 2018 , which 
is a continuation in part of U.S. patent application Ser . No. 
15 / 429,205 , filed Feb. 10 , 2017 , now U.S. Pat . No. 10,162 , 
641 , which is a division of U.S. patent application Ser . No. 
14 / 331,986 , filed Jul . 15 , 2014 , now U.S. Pat . No. 9,606 , 
803 , which claims priority to U.S. Provisional Application 
No. 61 / 846,148 , filed Jul . 15 , 2013 , each of which is herein 
incorporated by reference in its entirety . 

TECHNICAL FIELD 

[ 0002 ] This relates to using a streaming engine to perform 
block - oriented cache preloading . 

BACKGROUND 

[ 0003 ] Digital signal processors ( DSP ) are optimized for 
processing streams of data that may be derived from various 
input signals , such as sensor data , a video stream , a voice 
channel , radar signals , biomedical signals , etc. Digital signal 
processors operating on real - time data typically receive an 
input data stream , perform a filter function on the data 
stream ( such as encoding or decoding ) and output a trans 
formed data stream . The system is called real - time because 
the application fails if the transformed data stream is not 
available for output when scheduled . Typical video encoding 
requires a predictable but non - sequential input data pattern . 
A typical application requires memory access to load data 
registers in a data register file and then supply data from the 
data registers to functional units which perform the data 
processing . 
[ 0004 ] One or more DSP processing cores can be com 
bined with various peripheral circuits , blocks of memory , 
etc. on a single integrated circuit ( IC ) die to form a system 
on chip ( SOC ) . These systems can include multiple inter 
connected processors that share the use of on - chip and 
off - chip memory . A processor can include some combination 
of instruction cache ( ICache ) and data cache ( DCache ) to 
improve processing . Furthermore , multiple processors with 
shared memory can be incorporated in a single embedded 
system . The processors can physically share the same 
memory without accessing data or executing code located in 
the same memory locations or can use some portion of the 
shared memory as common shared memory . 

[ 0006 ] FIG . 1 illustrates an example dual scalar / vector 
data path processor . 
[ 0007 ] FIG . 2 illustrates the registers and functional units 
in the dual scalar / vector data path processor illustrated in 
FIG . 1 . 
[ 0008 ] FIG . 3 illustrates a global scalar register file . 
[ 0009 ] FIG . 4 illustrates a local scalar register file shared 
by arithmetic functional units . 
[ 0010 ] FIG . 5 illustrates a local scalar register file shared 
by multiply functional units . 
[ 0011 ] FIG . 6 illustrates a local scalar register file shared 
by load / store units . 
[ 0012 ] FIG . 7 illustrates a global vector register file . 
[ 0013 ] FIG . 8 illustrates a predicate register file . 
[ 0014 ] FIG . 9 illustrates a local vector register file shared 
by arithmetic functional units . 
[ 0015 ] FIG . 10 illustrates a local vector register file shared 
by multiply and correlation functional units . 
[ 0016 ] FIG . 11 illustrates pipeline phases of a processing 
unit . 
[ 0017 ] FIG . 12 illustrates sixteen instructions of a single 
fetch packet . 
[ 0018 ] FIG . 13 illustrates an example of the instruction 
coding of instructions . 
[ 0019 ] FIG . 14 illustrates bit coding of a condition code 
extension slot 0 . 
[ 0020 ] FIG . 15 illustrates bit coding of a condition code 
extension slot 1 . 
[ 0021 ] FIG . 16 illustrates bit coding of a constant exten 
sion slot 0 . 
[ 0022 ] FIG . 17 is a partial block diagram illustrating 
constant extension . 
[ 0023 ] FIG . 18 illustrates carry control for SIMD opera 
tions . 
[ 0024 ] FIG . 19 illustrates a conceptual view of streaming 
engines . 
[ 0025 ] FIG . 20 illustrates a sequence of formatting opera 
tions . 
[ 0026 ] FIG . 21 illustrates an example of lane allocation in 
a vector . 
[ 0027 ] FIG . 22 illustrates an example of lane allocation in 
a vector . 

[ 0028 ] FIG . 23 illustrates a basic two - dimensional ( 2D ) 
stream . 
[ 0029 ] FIG . 24 illustrates the order of elements within the 
example stream of FIG . 23 . 
[ 0030 ] FIG . 25 illustrates extracting a smaller rectangle 
from a larger rectangle . 
[ 0031 ] FIG . 26 illustrates how an example streaming 
engine fetches a stream with a transposition granularity of 4 
bytes . 
[ 0032 ] FIG . 27 illustrates how an example streaming 
engine fetches a stream with a transposition granularity of 8 
bytes . 
[ 0033 ] FIG . 28 illustrates the details of an example 
streaming engine . 
[ 0034 ] FIG . 29 illustrates an example stream template 
register . 
[ 0035 ] FIG . 30 illustrates sub - field definitions of the flags 
field of the example stream template register of FIG . 29 . 
[ 0036 ] FIG . 31 illustrates an example of a vector length 
masking / group duplication block . 

SUMMARY 

[ 0005 ] Methods and apparatus are provided such that a 
stream of data can be accessed from a memory system using 
a first stream of addresses generated in a first mode of 
operating a streaming engine in response to executing a first 
stream instruction . A block cache preload operation can be 
performed on a cache in the memory system using a second 
stream of addresses generated in a second mode of operating 
the streaming engine in response to executing a second 
stream instruction . 
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[ 0037 ] FIG . 32 is a partial schematic diagram of an 
example of the generation of the stream engine valid or 
invalid indication . 
[ 0038 ] FIG . 33 is a partial schematic diagram of a stream 
ing engine address generator illustrating generation of the 
loop address and loop count . 
[ 0039 ] FIG . 34 illustrates a partial schematic diagram 
showing the streaming engine supply of data of this 
example . 
[ 0040 ] FIG . 35 illustrates a partial schematic diagram 
showing the streaming engine supply of valid data to the 
predicate unit . 
[ 0041 ] FIG . 36 is a block diagram of a multiprocessor 
system with multiple levels of cache . 
[ 0042 ] FIG . 37 is a partial schematic diagram for cache 
management operations using the streaming engine of FIG . 
28 . 
[ 0043 ] FIG . 38 is a flow chart illustrating operation of 
cache management operations using the streaming engine . 

DETAILED DESCRIPTION 

[ 0044 ] In the drawings , like elements are denoted by like 
reference numerals for consistency . 
[ 0045 ] Digital signal processors ( DSP ) are optimized for 
processing streams of data that may be derived from various 
input signals , such as sensor data , a video stream , a voice 
channel , radar signals , biomedical signals , etc. Memory 
bandwidth and scheduling are concerns for digital signal 
processors operating on real - time data . An example DSP 
processing core is described herein that includes a streaming 
engine to improve memory bandwidth and data scheduling . 
[ 0046 ] One or more DSP processing cores can be com 
bined with various peripheral circuits , blocks of memory , 
etc. on a single integrated circuit ( IC ) die to form a system 
on chip ( SOC ) . See , for example , " 66AK2Hx Multicore 
KeystoneTM DSP + ARM® System - on - Chip , ” 2013 which is 
incorporated by reference herein . 
[ 0047 ] In the example DSP core described herein , an 
autonomous streaming engine ( SE ) is coupled to the DSP . In 
this example , the streaming engine includes two closely 
coupled streaming engines that can manage two data streams 
simultaneously . In another example , the streaming engine is 
capable of managing only a single stream , while in other 
examples the streaming engine is capable of handling more 
than two streams . In each case , for each stream , the stream 
ing engine includes an address generation stage , a data 
formatting stage , and some storage for formatted data wait 
ing for consumption by the processor . In the examples 
described herein , addresses are derived from algorithms that 
can involve multi - dimensional loops , each dimension main 
taining an iteration count . In one example , the streaming 
engine supports six levels of nested iteration . In other 
examples , more or fewer levels of iteration are supported . 
[ 0048 ] In this example , the DSP data processing systems 
employs data caches and instruction caches to improve 
performance . A small amount of high - speed memory is used 
for each cache . These cache memories are filled from main 
memory on an as - needed basis . When the data processor 
requires data or an instruction , this is first sought from the 
respective cache memory . If the data or instruction sought is 
already stored in the cache memory , it is recalled faster than 
it could have been recalled from main memory . If the data 
or instruction sought is not stored in the cache memory , it is 
recalled from main memory for use and stored in the 

corresponding cache . A performance improvement is 
achieved using cache memory based upon the principle of 
locality of reference . It is likely that the data or the instruc 
tion just sought by the data processor will be needed again 
soon . Use of cache memories speeds the accesses needed to 
service these future needs . 

[ 0049 ] It is desirable to provide a level of control to the 
programmer over cache operations . In this example , the 
cache system supports a writeback mechanism , whereby the 
programmer can direct the cache to write data in the cache 
back to external memory for shared access by another 
processor which doesn't have access to the cache . Similarly , 
it is often desirable to be able to clear or invalidate cache 
entries so that new data can be accessed at addresses which 
have been updated in the reference memory . In some appli 
cations it is desirable to be able to preload data into a 
selected hierarchical level of cache in order to assure that the 
data is available when accessed by a program . 
[ 0050 ] In this example , in addition to its core data stream 
support , the streaming engine supports a range of special 
“ data - less ” streams . A data - less stream may be used move 
data between various levels of cache and memory , without 
bringing data to the processor . In this example , two special 
instructions are provided to allow a program to initiate a 
data - less stream . A block cache maintenance operation is 
initiated by a “ BLKCMO ” instruction . A block cache pre 
load operation is initiated with a “ BLKPLD ” instruction . 
[ 0051 ] An example of performing block - oriented cache 
maintenance operations and block oriented cache preloading 
using BLKCMO and BLKPLD instructions is described in 
more detail with regard to FIGS . 36-38 . 
[ 0052 ] An example DSP processor is described in detail 
herein with reference to FIGS . 1-18 . An example streaming 
engine capable of managing two data streams using six 
dimensional nested loops is described in detail herein with 
reference to FIGS . 19-35 . 

[ 0053 ] FIG . 1 illustrates an example processor 100 that 
includes dual scalar / vector data paths 115 , 117. Processor 
100 includes a streaming engine 125 that is described in 
more detail herein . Processor 100 includes separate level one 
instruction cache ( L1D ) 121 and level one data cache ( L1D ) 
123. Processor 100 includes a level 2 ( L2 ) combined instruc 
tion / data cache 130 that holds both instructions and data . 
FIG . 1 illustrates connection between LII cache and L2 
combined instruction / data cache 130 , 512 - bit bus 142. FIG . 
1 illustrates the connection between LID cache 123 and L2 
combined instruction / data cache 130 , 512 - bit bus 145. In the 
example processor 100 , L2 combined instruction / data cache 
130 stores both instructions to back up L1I cache 121 and 
data to back up LID cache 123. In this example , L2 
combined instruction / data cache 130 is further connected to 
higher level cache and / or main memory using known or later 
developed memory system techniques not illustrated in FIG . 
1. As used herein , the term “ higher level ” memory or cache 
refers to a next level in a memory hierarchy that is more 
distant from the processor , while the term “ lower level ” 
memory or cache refers to a level in the memory hierarchy 
that is closer to the processor . L1I cache 121 , L1D cache 
123 , and L2 cache 130 may be implemented in different 
sizes in various examples . In this example , L1I cache 121 
and L1D cache 123 are each 32K bytes , and L2 cache 130 
is 1024K bytes . In the example processor 100 , L1I cache 
121 , L1D cache 123 and L2 combined instruction / data cache 
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130 are formed on a single integrated circuit . This single 
integrated circuit optionally includes other circuits . 
[ 0054 ] Processing unit core 110 fetches instructions from 
L1I cache 121 as controlled by instruction fetch unit 111 . 
Instruction fetch unit 111 determines the next instructions to 
be executed and recalls a fetch packet sized set of such 
instructions . The nature and size of fetch packets are further 
detailed below . Instructions are directly fetched from LII 
cache 121 upon a cache hit if the instructions are stored in 
LII cache 121. Upon a cache miss occurring when the 
specified instructions are not stored in LlI cache 121 , the 
instructions are sought in L2 combined cache 130. In this 
example , the size of a cache line in L1I cache 121 equals the 
size of a fetch packet which is 512 bits . The memory 
locations of these instructions are either a hit in L2 combined 
cache 130 or a miss . A hit is serviced from L2 combined 
cache 130. A miss is serviced from a higher level of cache 
( not illustrated ) or from main memory ( not illustrated ) . In 
this example , the requested instruction is simultaneously 
supplied to both LlI cache 121 and processing unit core 110 
to speed use . 
[ 0055 ] In this example , processing unit core 110 includes 
multiple functional units to perform instruction specified 
data processing tasks . Instruction dispatch unit 112 deter 
mines the target functional unit of each fetched instruction . 
In this example , processing unit 110 operates as a very long 
instruction word ( VLIW ) processor capable of operating on 
multiple instructions in corresponding functional units 
simultaneously . A complier organizes instructions in execute 
packets that are executed together . Instruction dispatch unit 
112 directs each instruction to its target functional unit . The 
functional unit assigned to an instruction is completely 
specified by the instruction produced by the compiler . The 
hardware of processing unit core 110 has no part in the 
functional unit assignment . In this example , instruction 
dispatch unit 112 operates on several instructions in parallel . 
The number of such parallel instructions is set by the size of 
the execute packet . This is further described herein . 
[ 0056 ] One part of the dispatch task of instruction dispatch 
unit 112 is determining whether the instruction is to execute 
on a functional unit in scalar data path side A 115 or vector 
data path side B 116. An instruction bit within each instruc 
tion called the s bit determines which data path the instruc 
tion controls . This is further described herein . 
[ 0057 ] Instruction decode unit 113 decodes each instruc 
tion in a current execute packet . Decoding includes identi 
fication of the functional unit performing the instruction , 
identification of registers used to supply data for the corre 
sponding data processing operation from among possible 
register files , and identification of the register destination of 
the results of the corresponding data processing operation . 
As further explained below , instructions can include a con 
stant field in place of one register number operand field . The 
result of this decoding are signals for control of the target 
functional unit to perform the data processing operation 
specified by the corresponding instruction on the specified 
data . 
[ 0058 ] Processing unit core 110 includes control registers 
114. Control registers 114 store information for control of 
the functional units in scalar data path side A 115 and vector 
data path side B 116. This information may include mode 
information or the like . 
[ 0059 ] The decoded instructions from instruction decode 
113 and information stored in control registers 114 are 

supplied to scalar data path side A 115 and vector data path 
side B 116. As a result , functional units within scalar data 
path side A 115 and vector data path side B 116 perform 
instruction specified data processing operations upon 
instruction specified data and store the results in an instruc 
tion specified data register or registers . Each of scalar data 
path side A 115 and vector data path side B 116 include 
multiple functional units that operate in parallel . These are 
further described below in conjunction with FIG . 2. There is 
a data path 117 between scalar data path side A 115 and 
vector data path side B 116 permitting data exchange . 
[ 0060 ] Processing unit core 110 includes further non 
instruction - based modules . Emulation unit 118 permits 
determination of the machine state of processing unit core 
110 in response to instructions . This capability can be 
employed for algorithmic development . Interrupts / excep 
tions unit 119 enables processing unit core 110 to be 
responsive to external , asynchronous events interrupts ) and 
to respond to attempts to perform improper operations 
( exceptions ) . 
[ 0061 ] Processor 100 includes streaming engine 125 . 
Streaming engine 125 supplies two data streams from pre 
determined addresses cached in L2 combined cache 130 to 
register files of vector data path side B of processing unit 
core 110. This provides controlled data movement from 
memory ( as cached in L2 combined cache 130 ) directly to 
functional unit operand inputs . This is further described 
herein . 
[ 0062 ] FIG . 1 illustrates example data widths of busses 
between various parts . LlI cache 121 supplies instructions 
to instruction fetch unit 111 via bus 141. Bus 141 is a 512 - bit 
bus in this example . Bus 141 is unidirectional from LII 
cache 121 to processing unit 110. L2 combined cache 130 
supplies instructions to LlI cache 121 via bus 142. Bus 142 
is a 512 - bit bus in this example . Bus 142 is unidirectional 
from L2 combined cache 130 to LlI cache 121 . 
[ 0063 ] LID cache 123 exchanges data with register files in 
scalar data path side A 115 via bus 143. Bus 143 is a 64 - bit 
bus in this example . L1D cache 123 exchanges data with 
register files in vector data path side B 116 via bus 144. Bus 
144 is a 512 - bit bus in this example . Busses 143 and 144 are 
illustrated as bidirectional supporting both processing unit 
core 110 data reads and data writes . LID cache 123 
exchanges data with L2 combined cache 130 via bus 145 . 
Bus 145 is a 512 - bit bus in this example . Bus 145 is 
illustrated as bidirectional supporting cache service for both 
processing unit core 110 data reads and data writes . 
[ 0064 ] Processor data requests are directly fetched from 
LID cache 123 upon a cache hit ( if the requested data is 
stored in LID cache 123 ) . Upon a cache miss ( the specified 
data is not stored in LID cache 123 ) , the data is sought in 
L2 combined cache 130. The memory locations of the 
requested data are either a hit in L2 combined cache 130 or 
a miss . A hit is serviced from L2 combined cache 130. A 
miss is serviced from another level of cache ( not illustrated ) 
or from main memory ( not illustrated ) . The requested data 
may be simultaneously supplied to both LID cache 123 and 
processing unit core 110 to speed use . 
[ 0065 ] L2 combined cache 130 supplies data of a first data 
stream to streaming engine 125 via bus 146. Bus 146 is a 
512 - bit bus in this example . Streaming engine 125 supplies 
data of the first data stream to functional units of vector data 
path side B 116 via bus 147. Bus 147 is a 512 - bit bus in this 
example . L2 combined cache 130 supplies data of a second 
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data stream to streaming engine 125 via bus 148. Bus 148 is 
a 512 - bit bus in this example . Streaming engine 125 supplies 
data of this second data stream to functional units of vector 
data path side B 116 via bus 149 , which is a 512 - bit bus in 
this example . Busses 146 , 147 , 148 and 149 are illustrated 
as unidirectional from L2 combined cache 130 to streaming 
engine 125 and to vector data path side B 116 in accordance 
with this example . 
[ 0066 ] Streaming engine data requests are directly fetched 
from L2 combined cache 130 upon a cache hit ( if the 
requested data is stored in L2 combined cache 130 ) . Upon 
a cache miss ( the specified data is not stored in L2 combined 
cache 130 ) , the data is sought from another level of cache 
( not illustrated ) or from main memory ( not illustrated ) . It is 
technically feasible in some examples for L1D cache 123 to 
cache data not stored in L2 combined cache 130. If such 
operation is supported , then upon a streaming engine data 
request that is a miss in L2 combined cache 130 , L2 
combined cache 130 snoops LID cache 123 for the stream 
engine requested data . If L1D cache 123 stores the data , the 
snoop response includes the data , which is then supplied to 
service the streaming engine request . If L1D cache 123 does 
not store the data , the snoop response indicates this and L2 
combined cache 130 services the streaming engine request 
from another level of cache ( not illustrated ) or from main 
memory ( not illustrated ) . 
[ 0067 ] In this example , both LID cache 123 and L2 
combined cache 130 can be configured as selected amounts 
of cache or directly addressable memory in accordance with 
U.S. Pat . No. 6,606,686 entitled UNIFIED MEMORY SYS 
TEM ARCHITECTURE INCLUDING CACHE AND 
DIRECTLY ADDRESSABLE STATIC RANDOM 
ACCESS MEMORY , which is incorporated by reference 
herein . 
[ 0068 ] In this example , processor 100 is fabricated on an 
integrated chip ( IC ) that is mounted on a ball grid array 
( BGA ) substrate . A BGA substrate and IC die together may 
be referred to as “ BGA package , ” “ IC package , ” “ integrated 
circuit , ” “ IC , ” “ chip , ” “ microelectronic device , ” or similar 
terminology . The BGA package may include encapsulation 
material to cover and protect the IC die from damage . In 
another example , other types of known or later developed 
packaging techniques may be used with processor 100 . 
[ 0069 ] FIG . 2 illustrates further details of functional units 
and register files within scalar data path side A 115 and 
vector data path side B 116. Scalar data path side A 115 
includes L1 unit 221 , S1 unit 222 , M1 unit 223 , N1 unit 224 , 
D1 unit 225 and D2 unit 226. Scalar data path side A 115 
includes global scalar register file 211 , L1 / S1 local register 
file 212 , M1 / N1 local register file 213 and D1 / D2 local 
register file 214. Vector data path side B 116 includes L2 unit 
241 , S2 unit 242 , M2 unit 243 , N2 unit 244 , C unit 245 and 
P unit 246. Vector data path side B 116 includes global 
vector register file 231 , L2 / S2 local register file 232 , 
M2 / N2 / C local register file 233 and predicate register file 
234. Which functional units can read from or write to which 
register files is described in more detail herein . 
[ 0070 ] Scalar data path side A 115 includes L1 unit 221 . 
L1 unit 221 generally accepts two 64 - bit operands and 
produces one 64 - bit result . The two operands are each 
recalled from an instruction specified register in either 
global scalar register file 211 or Li / Si local register file 212 . 
L1 unit 221 performs the following instruction selected 
operations : 64 - bit add / subtract operations ; 32 - bit min / max 

operations ; 8 - bit Single Instruction Multiple Data ( SIMD ) 
instructions such as sum of absolute value , minimum and 
maximum determinations , circular min / max operations ; and 
various move operations between register files . The result is 
written into an instruction specified register of global scalar 
register file 211 , L1 / S1 local register file 212 , M1 / N1 local 
register file 213 or D1 / D2 local register file 214 . 
[ 0071 ] Scalar data path side A 115 includes S1 unit 222. Si 
unit 222 generally accepts two 64 - bit operands and produces 
one 64 - bit result . The two operands are each recalled from 
an instruction specified register in either global scalar reg 
ister file 211 or L1 / S1 local register file 212. In this example , 
S1 unit 222 performs the same type operations as L1 unit 
221. In another example , there may be slight variations 
between the data processing operations supported by L1 unit 
221 and S1 unit 222. The result is written into an instruction 
specified register of global scalar register file 211 , L1 / S1 
local register file 212 , M1 / N1 local register file 213 or 
D1 / D2 local register file 214 . 
[ 0072 ] Scalar data path side A 115 includes M1 unit 223 . 
M1 unit 223 generally accepts two 64 - bit operands and 
produces one 64 - bit result . The two operands are each 
recalled from an instruction specified register in either 
global scalar register file 211 or Mi / N1 local register file 
213. In this example , M1 unit 223 performs the following 
instruction selected operations : 8 - bit multiply operations ; 
complex dot product operations ; 32 - bit bit count operations ; 
complex conjugate multiply operations ; and bit - wise Logi 
cal Operations , moves , adds and subtracts . The result is 
written into an instruction specified register of global scalar 
register file 211 , L1 / S1 local register file 212 , M1 / N1 local 
register file 213 or D1 / D2 local register file 214 . 
[ 0073 ] Scalar data path side A 115 includes N1 unit 224 . 
N1 unit 224 generally accepts two 64 - bit operands and 
produces one 64 - bit result . The two operands are each 
recalled from an instruction specified register in either 
global scalar register file 211 or Mi / N1 local register file 
213. In this example , N1 unit 224 performs the same type 
operations as M1 unit 223. There are also double operations 
( called dual issued instructions ) that employ both the M1 
unit 223 and the N1 unit 224 together . The result is written 
into an instruction specified register of global scalar register 
file 211 , L1 / S1 local register file 212 , M1 / N1 local register 
file 213 or D1 / D2 local register file 214 . 
[ 0074 ] Scalar data path side A 115 includes D1 unit 225 
and D2 unit 226. D1 unit 225 and D2 unit 226 generally each 
accept two 64 - bit operands and each produce one 64 - bit 
result . D1 unit 225 and D2 unit 226 generally perform 
address calculations and corresponding load and store opera 
tions . D1 unit 225 is used for scalar loads and stores of 64 
bits . D2 unit 226 is used for vector loads and stores of 512 
bits . In this example , D1 unit 225 and D2 unit 226 also 
perform : swapping , pack and unpack on the load and store 
data ; 64 - bit SIMD arithmetic operations ; and 64 - bit bit - wise 
logical operations . D1 / D2 local register file 214 stores base 
and offset addresses used in address calculations for the 
corresponding loads and stores . The two operands are each 
recalled from an instruction specified register in either 
global scalar register file 211 or D1 / D2 local register file 
214. The calculated result is written into an instruction 
specified register of global scalar register file 211 , L1 / S1 
local register file 212 , M1 / N1 local register file 213 or 
D1 / D2 local register file 214 . 
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[ 0075 ] Vector data path side B 116 includes L2 unit 241 . 
L2 unit 241 generally accepts two 512 - bit operands and 
produces one 512 - bit result . The two operands are each 
recalled from an instruction specified register in either 
global vector register file 231 , L2 / S2 local register file 232 
or predicate register file 234. In this example , L2 unit 241 
performs instruction similar to Ll unit 221 except on wider 
512 - bit data . The result may be written into an instruction 
specified register of global vector register file 231 , L2 / S2 
local register file 232 , M2 / N2 / C local register file 233 or 
predicate register file 234 . 
[ 0076 ] Vector data path side B 116 includes S2 unit 242 . 
S2 unit 242 generally accepts two 512 - bit operands and 
produces one 512 - bit result . The two operands are each 
recalled from an instruction specified register in either 
global vector register file 231 , L2 / S2 local register file 232 
or predicate register file 234. In this example , S2 unit 242 
performs instructions similar to S1 unit 222. The result is 
written into an instruction specified register of global vector 
register file 231 , L2 / S2 local register file 232 , M2 / N2 / C 
local register file 233 or predicate register file 234 . 
[ 0077 ] Vector data path side B 116 includes M2 unit 243 . 
M2 unit 243 generally accepts two 512 - bit operands and 
produces one 512 - bit result . The two operands are each 
recalled from an instruction specified register in either 
global vector register file 231 or M2 / N2 / C local register file 
233. In this example , M2 unit 243 performs instructions 
similar to M1 unit 223 except on wider 512 - bit data . The 
result is written into an instruction specified register of 
global vector register file 231 , L2 / S2 local register file 232 
or M2 / N2 / C local register file 233 . 
[ 0078 ] Vector data path side B 116 includes N2 unit 244 . 
N2 unit 244 generally accepts two 512 - bit operands and 
produces one 512 - bit result . The two operands are each 
recalled from an instruction specified register in either 
global vector register file 231 or M2 / N2 / C local register file 
233. In this example , N2 unit 244 performs the same type 
operations as M2 unit 243. There are also double operations 
( called dual issued instructions ) that employ both M2 unit 
243 and the N2 unit 244 ether . The result is written into 
an instruction specified register of global vector register file 
231 , L2 / S2 local register file 232 or M2 / N2 / C local register 
file 233 . 
[ 0079 ] Vector data path side B 116 includes correlation ( C ) 
unit 245. C unit 245 generally accepts two 512 - bit operands 
and produces one 512 - bit result . The two operands are each 
recalled from an instruction specified register in either 
global vector register file 231 or M2 / N2 / C local register file 
233. In this example , C unit 245 performs “ Rake ” and 
" Search " instructions that are used for WCDMA ( wideband 
code division multiple access ) encoding / decoding . In this 
example , C unit 245 can perform up to 512 multiples per 
clock cycle of a 2 - bit PN ( pseudorandom number ) and 8 - bit 
I / Q ( complex number ) , 8 - bit and 16 - bit Sum - of - Absolute 
Difference ( SAD ) calculations , up to 512 SADs per clock 
cycle , horizontal add and horizontal min / max instructions , 
and vector permutes instructions . C unit 245 also contains 4 
vector control registers ( CUCRO to CUCR3 ) used to control 
certain operations of C unit 245 instructions . Control reg 
isters CUCRO to CUCR3 are used as operands in certain C 
unit 245 operations . In some examples , control registers 
CUCRO to CUCR3 are used in control of a general permu 
tation instruction ( VPERM ) , and as masks for SIMD mul 
tiple DOT product operations ( DOTPM ) and SIMD multiple 

Sum - of - Absolute - Difference ( SAD ) operations . In further 
examples , control register CUCRO is used to store the 
polynomials for Galois Field Multiply operations ( GFMPY ) 
and control register CUCR1 is used to store the Galois field 
polynomial generator function . 
[ 0080 ] Vector data path side B 116 includes P unit 246 . 
Vector predicate ( P ) unit 246 performs basic logic operations 
on registers of local predicate register file 234. P unit 246 has 
direct access to read from and write to predication register 
file 234. The logic operations include single register unary 
operations such as NEG ( negate ) which inverts each bit of 
the single register , BITCNT ( bit count ) which returns a 
count of the number of bits in the single register having a 
predetermined digital state ( 1 or 0 ) , RMBD ( right most bit 
detect ) which returns a number of bit positions from the least 
significant bit position ( right most ) to a first bit position 
having a predetermined digital state ( 1 or 0 ) , DECIMATE 
which selects every instruction specified Nth ( 1 , 2 , 4 , etc. ) 
bit to output , and EXPAND which replicates each bit an 
instruction specified N times ( 2 , 4 , etc. ) . The logic opera 
tions also include two register binary operations such as 
AND which is a bitwise AND of data of the two registers , 
NAND which is a bitwise AND and negate of data of the two 
registers , OR which is a bitwise OR of data of the two 
registers , NOR which is a bitwise OR and negate of data of 
the two registers , and XOR which is exclusive OR of data 
of the two registers . The logic operations include transfer of 
data from a predicate register of predicate register file 234 to 
another specified predicate register or to a specified data 
register in global vector register file 231. One use of P unit 
246 is manipulation of the SIMD vector comparison results 
for use in control of a further SIMD vector operation . The 
BITCNT instruction can be used to count the number of l’s 
in a predicate register to determine the number of valid data 
elements from a predicate register . 
[ 0081 ] FIG . 3 illustrates global scalar register file 211 . 
There are 16 independent 64 - bit wide scalar registers des 
ignated AO to A15 . Each register of global scalar register file 
211 can be read from or written to as 64 - bits of scalar data . 
All scalar data path side A 115 functional units ( L1 unit 221 , 
S1 unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225 and D2 
unit 226 ) can read or write to global scalar register file 211 . 
Global scalar register file 211 can be read from as 32 - bits or 
as 64 - bits and written to as 64 - bits . The instruction execut 
ing determines the read data size . Vector data path side B 116 
functional units ( L2 unit 241 , S2 unit 242 , M2 unit 243 , N2 
unit 244 , C unit 245 and P unit 246 ) can read from global 
scalar register file 211 via cross path 117 under restrictions 
that are described below . 
[ 0082 ] FIG . 4 illustrates D1 / D2 local register file 214 . 
There are sixteen independent 64 - bit wide scalar registers 
designated Do to D16 . Each register of D1 / D2 local register 
file 214 is read from or written to as 64 - bits of scalar data . 
All scalar data path side A 115 functional units ( L1 unit 221 , 
S1 unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225 and D2 
unit 226 ) can write to global scalar register file 211. Only D1 
unit 225 and D2 unit 226 can read from D1 / D2 local scalar 
register file 214. Data stored in D1 / D2 local scalar register 
file 214 can include base addresses and offset addresses used 
in address calculation . 
[ 0083 ] FIG . 5 illustrates L1 / S1 local register file 212. In 
this example , L1 / S1 local register file 212 includes eight 
independent 64 - bit wide scalar registers designated ALO to 
AL7 . In this example , the instruction coding permits L1 / S1 
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local register file 212 to include up to 16 registers . In this 
example , eight registers are implemented to reduce circuit 
size and complexity . Each register of L1 / S1 local register file 
212 can be read from or written to as 64 - bits of scalar data . 
All scalar data path side A 115 functional units ( L1 unit 221 , 
S1 unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225 and D2 
unit 226 ) can write to L1 / S1 local scalar register file 212. L1 
unit 221 and S1 unit 222 can read from L1 / S1 local scalar 
register file 212 . 
[ 0084 ] FIG . 6 illustrates M1 / N1 local register file 213. In 
this example , eight independent 64 - bit wide scalar registers 
designated AMO to AM7 are implemented . In this example , 
the instruction coding permits M1 / N1 local register file 213 
to include up to 16 registers . In this example , eight registers 
are implemented to reduce circuit size and complexity . Each 
register of Mi / N1 local register file 213 can be read from or 
written to as 64 - bits of scalar data . All scalar data path side 
A 115 functional units ( L1 unit 221 , S1 unit 222 , M1 unit 
223 , N1 unit 224 , D1 unit 225 and D2 unit 226 ) can write 
to M1 / N1 local scalar register file 213. M1 unit 223 and N1 
unit 224 can read from Mi / N1 local scalar register file 213 . 
[ 0085 ) FIG . 7 illustrates global vector register file 231 . 
There are sixteen independent 512 - bit wide vector registers . 
Each register of global vector register file 231 can be read 
from or written to as 64 - bits of scalar data designated BO to 
B15 . Each register of global vector register file 231 can be 
read from or written to as 512 - bits of vector data designated 
VB0 to VB15 . The instruction type determines the data size . 
All vector data path side B 116 functional units ( L2 unit 241 , 
S2 unit 242 , M2 unit 243 , N2 unit 244 , C unit 245 and Punit 
246 ) can read or write to global vector register file 231 . 
Scalar data path side A 115 functional units ( L1 unit 221 , S1 
unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225 and D2 unit 
226 ) can read from global vector register file 231 via cross 
path 117 under restrictions that are described below . 
[ 0086 ] FIG . 8 illustrates predicate ( P ) local register file 
234. There are eight independent 64 - bit wide registers 
designated PO to P7 . Each register of P local register file 234 
can be read from or written to as 64 - bits of scalar data . 
Vector data side B 116 functional units L2 unit 241 , S2 
unit 242 , C unit 245 and P unit 246 can write to P local 
register file 234. L2 unit 241 , S2 unit 242 and Punit 246 can 
read from P local scalar register file 234. One use of P local 
register file 234 is writing one - bit SIMD vector comparison 
results from L2 unit 241 , S2 unit 242 or C unit 245 , 
manipulation of the SIMD vector comparison results by P 
unit 246 , and use of the manipulated results in control of a 
further SIMD vector operation . 
[ 0087 ] FIG . 9 illustrates L2 / S2 local register file 232. In 
this example , eight independent 512 - bit wide vector regis 
ters are implemented . In this example , the instruction coding 
permits L2 / S2 local register file 232 to include up to sixteen 
registers . In this example , eight registers are implemented to 
reduce circuit size and complexity . Each register of L2 / S2 
local vector register file 232 can be read from or written to 
as 64 - bits of scalar data designated BLO to BL7 . Each 
register of L2 / S2 local vector register file 232 can be read 
from or written to as 512 - bits of vector data designated 
VBLO to VBL7 . The instruction type determines the data 
size . All vector data path side B 116 functional units ( L2 unit 
241 , S2 unit 242 , M2 unit 243 , N2 unit 24 , C unit 245 and 
P unit 246 ) can write to L2 / S2 local vector register file 232 . 
L2 unit 241 and S2 unit 242 can read from L2 / S2 local 
vector register file 232 . 

[ 0088 ] FIG . 10 illustrates M2 / N2 / C local register file 233 . 
In this example , eight independent 512 - bit wide vector 
registers are implemented . In this example , the instruction 
coding permits M2 / N2 / C local register file 233 to include up 
to sixteen registers . In this example , eight registers are 
implemented to reduce circuit size and complexity . Each 
register of M2 / N2 / C local vector register file 233 can be read 
from or written to as 64 - bits of scalar data designated BMO 
to BM7 . Each register of M2 / N2 / C local vector register file 
233 can be read from or written to as 512 - bits of vector data 
designated VBM0 to VBM7 . All vector data path side B 116 
functional units ( L2 unit 241 , S2 unit 242 , M2 unit 243 , N2 
unit 244 , C unit 245 and P unit 246 ) can write to M2 / N2 / C 
local vector register file 233. M2 unit 243 , N2 unit 244 and 
C unit 245 can read from M2 / N2 / C local vector register file 
233 . 
[ 0089 ] The provision of global register files accessible by 
all functional units of a side and local register files accessible 
by some of the functional units of a side is a design choice . 
In another example , a different accessibility provision could 
be made , such as employing one type of register file corre 
sponding to the global register files described herein . 
[ 0090 ] Cross path 117 permits limited exchange of data 
between scalar data path side A 115 and vector data path side 
B 116. During each operational cycle one 64 - bit data word 
can be recalled from global scalar register file A 211 for use 
as an operand by one or more functional units of vector data 
path side B 116 and one 64 - bit data word can be recalled 
from global vector register file 231 for use as an operand by 
one or more functional units of scalar data path side A 115 . 
Any scalar data path side A 115 functional unit ( L1 unit 221 , 
S1 unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225 and D2 
unit 226 ) can read a 64 - bit operand from global vector 
register file 231. This 64 - bit operand is the least significant 
bits of the 512 - bit data in the accessed register of global 
vector register file 231. Multiple scalar data path side A 115 
functional units can employ the same 64 - bit cross path data 
as an operand during the same operational cycle . However , 
a single 64 - bit operand is transferred from vector data path 
side B 116 to scalar data path side A 115 in a single 
operational cycle . Any vector data path side B 116 functional 
unit ( L2 unit 241 , S2 unit 242 , M2 unit 243 , N2 unit 244 , C 
unit 245 and P unit 246 ) can read a 64 - bit operand from 
global scalar register file 211. If the corresponding instruc 
tion is a scalar instruction , the cross - path operand data is 
treated as a 64 - bit operand . If the corresponding instruction 
is a vector instruction , the upper 448 bits of the operand are 
zero filled . Multiple vector data path side B 116 functional 
units can employ the same 64 - bit cross path data as an 
operand during the same operational cycle . In one example , 
a single 64 - bit operand is transferred from scalar data path 
side A 115 to vector data path side B 116 in a single 
operational cycle . 
[ 0091 ] Streaming engine 125 ( FIG . 1 ) transfers data in 
certain restricted circumstances . Streaming engine 125 con 
trols two data streams . A stream includes of a sequence of 
elements of a particular type . Programs that operate on 
streams read the data sequentially , operating on each ele 
ment in turn . Every stream has the following basic proper 
ties : the stream data have a well - defined beginning and 
ending in time ; the stream data have fixed element size and 
type throughout the stream ; and , the stream data have a fixed 
sequence of elements . Once a stream is opened , streaming 
engine 125 performs the following operations : calculates the 
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address ; fetches the defined data type from L2 unified cache 
130 ( which may require cache service from a higher level 
memory , e.g. , in the event of a cache miss in L2 ) ; performs 
data type manipulation such as zero extension , sign exten 
sion , data element sorting / swapping such as matrix trans 
position ; and delivers the data directly to the programmed 
data register file within processor core 110. Streaming 
engine 125 is thus useful for real - time digital filtering 
operations on well - behaved data . Streaming engine 125 
frees the corresponding processor from these memory fetch 
tasks , thus enabling other processing functions . 
[ 0092 ] Streaming engine 125 provides several benefits . 
For example , streaming engine 125 permits multi - dimen 
sional memory accesses , increases the available bandwidth 
to the functional units minimizes the number of cache miss 
stalls since the stream buffer bypasses LID cache 123 , and 
reduces the number of scalar operations required to maintain 
a loop . Streaming engine 125 also manages address pointers 
and handles address generation which frees up the address 
generation instruction slots and D1 unit 225 and D2 unit 226 
for other computations . 
[ 0093 ] Processor core 110 ( FIG . 1 ) operates on an instruc 
tion pipeline . Instructions are fetched in instruction packets 
of fixed length as further described below . All instructions 
require the same number of pipeline phases for fetch and 
decode but require a varying number of execute phases . 
[ 0094 ] FIG . 11 illustrates the following pipeline phases : 
program fetch phase 1110 , dispatch and decode phases 1120 , 
and execution phases 1130. Program fetch phase 1110 
includes three stages for all instructions . Dispatch and 
decode phases 1120 include three stages for all instructions . 
Execution phase 1130 includes one to four stages depending 
on the instruction . 
[ 0095 ] Fetch phase 1110 includes program address gen 
eration ( PG ) stage 1111 , program access ( PA ) stage 1112 and 
program receive ( PR ) stage 1113. During program address 
generation stage 1111 , the program address is generated in 
the processor and the read request is sent to the memory 
controller for the LlI cache . During the program access 
stage 1112 , the LlI cache processes the req accesses the 
data in its memory and sends a fetch packet to the processor 
boundary . During the program receive stage 1113 , the pro 
cessor registers the fetch packet . 
[ 0096 ] Instructions are fetched in a fetch packet that 
includes sixteen 32 - bit wide words . FIG . 12 illustrates 
sixteen instructions 1201 to 1216 of a single fetch packet . 
Fetch packets are aligned on 512 - bit ( 16 - word ) boundaries . 
This example employs a fixed 32 - bit instruction length 
which enables decoder alignment . A properly aligned 
instruction fetch can load multiple instructions into parallel 
instruction decoders . Such a properly aligned instruction 
fetch can be achieved by predetermined instruction align 
ment when stored in memory by having fetch packets 
aligned on 512 - bit boundaries coupled with a fixed instruc 
tion packet fetch . Conversely , variable length instructions 
require an initial step of locating each instruction boundary 
before decoding . A fixed length instruction set generally 
permits more regular layout of instruction fields which 
simplifies the construction of each decoder which is an 
advantage for a wide issue VLIW processor . 
[ 0097 ] The execution of the individual instructions is 
partially controlled by a p bit in each instruction . In this 
example , the p bit is bit 0 of the 32 - bit wide slot . The p bit 
determines whether an instruction executes in parallel with 

the next instruction . In this example , instructions are 
scanned from lower to higher address . If the p bit of an 
instruction is 1 , then the next following instruction ( higher 
memory address ) is executed in parallel with in the same 
cycle as ) that instruction . If the p bit of an instruction is 0 , 
then the next following instruction is executed in the cycle 
after the instruction . 
[ 0098 ] Processor core 110 ( FIG . 1 ) and L1I cache 121 
pipelines ( FIG . 1 ) are de - coupled from each other . Fetch 
packet returns from LlI cache can take a different number of 
clock cycles , depending on external circumstances such as 
whether there is a hit in Lil cache 121 or a hit in L2 
combined cache 130. Therefore , program access stage 1112 
can take several clock cycles instead of one clock cycle as 
in the other stages . 
[ 0099 ] The instructions executing in parallel constitute an 
execute packet . In this example , an execute packet can 
contain up to sixteen 32 - bit wide slots for sixteen instruc 
tions . No two instructions in an execute packet can use the 
same functional unit . A slot is one of five types : 1 ) a 
self - contained instruction executed on one of the functional 
units of processor core 110 ( L1 unit 221 , S1 unit 222 , M1 
unit 223 , N1 unit 224 , D1 unit 225 , D2 unit 226 , L2 unit 241 , 
S2 unit 242 , M2 unit 243 , N2 unit 244 , C unit 245 and P unit 
246 ) ; 2 ) a unitless instruction such as a NOP ( no operation ) 
instruction or multiple NOP instruction ; 3 ) a branch instruc 
tion ; 4 ) a constant field extension ; and 5 ) a conditional code 
extension . Some of these slot types are further explained 
herein . 
[ 0100 ] Dispatch and decode phases 1120 ( FIG . 11 ) include 
instruction dispatch to appropriate execution unit ( DS ) stage 
1121 , instruction pre - decode ( DC1 ) stage 1122 , and instruc 
tion decode , operand read ( DC2 ) stage 1123. During instruc 
tion dispatch to appropriate execution unit stage 1121 , the 
fetch packets are split into execute packets and assigned to 
the appropriate functional units . During the instruction pre 
decode stage 1122 , the source registers , destination registers , 
and associated paths are decoded for the execution of the 
instructions in the functional units . During the instruction 
decode , operand read stage 1123 , more detailed unit decodes 
are performed and operands are read from the register files . 
[ 0101 ] Execution phase 1130 includes execution ( E1 to 
E5 ) stages 1131 to 1135. Different types of instructions 
require different numbers of such stages to complete execu 
tion . The execution stages of the pipeline play an important 
role in understanding the device state at processor cycle 
boundaries . 
[ 0102 ] During El stage 1131 , the conditions for the 
instructions are evaluated and operands are operated on . As 
illustrated in FIG . 11 , E1 stage 1131 can receive operands 
from a stream buffer 1141 and one of the register files shown 
schematically as 1142. For load and store instructions , 
address generation is performed , and address modifications 
are written to a register file . For branch instructions , the 
branch fetch packet in PG phase 1111 is affected . As 
illustrated in FIG . 11 , load and store instructions access 
memory here shown schematically as memory 1151. For 
single - cycle instructions , results are written to a destination 
register file when any conditions for the instructions are 
evaluated as true . If a condition is evaluated as false , the 
instruction does not write any results or have any pipeline 
operation after E1 stage 1131 . 
[ 0103 ] During E2 stage 1132 , load instructions send the 
address to memory . Store instructions send the address and 
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data to memory . Single - cycle instructions that saturate 
results set the SAT bit in the control status register ( CSR ) if 
saturation occurs . For 2 - cycle instructions , results are writ 
ten to a destination register file . 
[ 0104 ] During E3 stage 1133 , data memory accesses are 
performed . Any multiply instructions that saturate results set 
the SAT bit in the control status register ( CSR ) if saturation 
occurs . For 3 - cycle instructions , results are written to a 
destination register file . 
[ 0105 ] During E4 stage 1134 , load instructions bring data 
to the processor boundary . For 4 - cycle instructions , results 
are written to a destination register file . 
[ 010 ] During E5 stage 1135 , load instructions write data 
into a register as illustrated schematically in FIG . 11 with 
input from memory 1151 to E5 stage 1135 . 
[ 0107 ] FIG . 13 illustrates an example of the instruction 
coding 1300 of functional unit instructions used by this 
example . Each instruction includes 32 bits and controls the 
operation of one of the individually controllable functional 
units ( L1 unit 221 , S1 unit 222 , M1 unit 223 , N1 unit 224 , 
D1 unit 225 , D2 unit 226 , L2 unit 241 , S2 unit 242 , M2 unit 
243 , N2 unit 244 , C unit 245 and P unit 246 ) . 
[ 0108 ] The creg field 1301 ( bits 29 to 31 ) and the z bit 
1302 ( bit 28 ) are optional fields used in conditional instruc 
tions . The bits are used for conditional instructions to 
identify the predicate register and the condition . The z bit 
1302 ( bit 28 ) indicates whether the predication is based upon 
zero or not zero in the predicate register . If z = 1 , the test is 
for equality with zero . If z = 0 , the test is for nonzero . The 
case of creg = 0 and z = 0 is treated as true to allow uncondi 
tional instruction execution . The creg field 1301 and the z 
field 1302 are encoded in the instruction as shown in Table 
1 . 

unconditional instructions ) . One meaning specifies a register 
of a corresponding register file as the second operand . 
Another meaning is an immediate constant . Depending on 
the instruction type , the field 1304 is treated as an unsigned 
integer and zero extended to a specified data length or is 
treated as a signed integer and sign extended to the specified 
data length . 
[ 0112 ] The src1 field 1305 ( bits 13 to 17 ) specifies a 
register in a corresponding register file as the first source 
operand . 
[ 0113 ] The opcode field 1306 ( bits 3 to 12 ) for all instruc 
tions ( and additionally bits 28 to 31 for unconditional 
instructions ) specifies the type of instruction and designates 
appropriate instruction options including unambiguous des 
ignation of the functional unit used and operation per 
formed . A detailed explanation of the opcode is beyond the 
scope of this description except for the instruction options 
described below . 
[ 0114 ] The e bit 1307 ( bit 2 ) is used for immediate 
constant instructions where the constant can be extended . If 
e = 1 , then the immediate constant is extended in a manner 
described below . If e = 0 , then the immediate constant is not 
extended and the immediate constant is specified by the 
src2 / cst field 1304 ( bits 18 to 22 ) . Note that the e bit 1307 
is used for some instructions . Accordingly , with proper 
coding , the e bit 1307 can be omitted from some instructions 
and the bit can be used as an additional opcode bit . 
[ 0115 ] The s bit 1308 ( bit 1 ) designates scalar data path 
side A 115 or vector data path side B 116. Ifs = 0 , then scalar 
data path side A 115 is selected which limits the functional 
unit to L1 unit 221 , S1 unit 222 , M1 unit 223 , N1 unit 224 , 
D1 unit 225 and D2 unit 226 and the corresponding register 
files illustrated in FIG . 2. Similarly , s = 1 selects vector data 
path side B 116 which limits the functional unit to L2 unit 
241 , S2 unit 242 , M2 unit 243 , N2 unit 244 , P unit 246 and 
the corresponding register file illustrated in FIG . 2 . 
[ 0116 ] The ? bit 1309 ( bit 0 ) marks the execute packets . 
The p - bit determines whether the instruction executes in 
parallel with the following instruction . The p - bits are 
scanned from lower to higher address . If p = 1 for the current 
instruction , then the next instruction executes in parallel 
with the current instruction . If p = 0 for the current instruc 
tion , then the next instruction executes in the cycle after the 
current instruction . All instructions executing in parallel 
constitute an execute packet . An execute packet can contain 
up to sixteen instructions . Each instruction in an execute 
packet uses a different functional unit . 
[ 0117 ] There are two different condition code extension 
slots . Each execute packet can contain one each of these 
unique 32 - bit condition code extension slots which contains 
the 4 - bit creg / z fields for the instructions in the same execute 
packet . FIG . 14 illustrates the coding for condition code 
extension slot 0 and FIG . 15 illustrates the coding for 
condition code extension slot 1 . 
[ 0118 ] FIG . 14 illustrates the coding for condition code 
extension slot 0 1400 having 32 bits . Field 1401 ( bits 28 to 
31 ) specifies 4 creg / z bits assigned to the L1 unit 221 
instruction in the same execute packet . Field 1402 ( bits 27 
to 24 ) specifies four creg / z bits assigned to the L2 unit 241 
instruction in the same execute packet . Field 1403 ( bits 20 
to 23 ) specifies four creg / z bits assigned to the S1 unit 222 
instruction in the same execute packet . Field 1404 ( bits 16 
to 19 ) specifies four creg / z bits assigned to the S2 unit 242 
instruction in the same execute packet . Field 1405 ( bits 12 

TABLE 1 

Conditional creg Z 

Register 31 30 29 28 

0 
0 
0 

0 
0 

0 
1 
Z 

Z 

Unconditional 
Reserved 
A0 
A1 
A2 
A3 
A4 
A5 
Reserved 

0 

0 
0 
0 
1 
1 
0 
0 
1 
1 

1 
0 
1 
0 
1 

Z 

Z 1 
1 Z 

1 0 Z 
1 X X 

[ 0109 ] Execution of a conditional instruction is condi 
tional upon the value stored in the specified data register . 
The data register is in the global scalar register file 211 for 
all functional units . Note that “ Z ” in the z bit column refers 
to the zero / not zero comparison selection noted above and 
“ x ” is a don't care state . This coding specifies a subset of the 
sixteen global registers as predicate registers which pre 
serves bits in the instruction coding . Note that unconditional 
instructions do not have the optional bits . For unconditional 
instructions , the bits in fields 1301 and 1302 ( 28 to 31 ) are 
used as additional opcode bits . 
[ 0110 ] The dst field 1303 ( bits 23 to 27 ) specifies a register 
in a corresponding register file as the destination of the 
instruction results . 
[ 0111 ] The src2 / cst field 1304 ( bits 18 to 22 ) has several 
meanings depending on the instruction opcode field ( bits 3 
to 12 for all instructions and additionally bits 28 to 31 for 
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to 15 ) specifies four creg / z bits assigned to the D1 unit 225 
instruction in the same execute packet . Field 1406 ( bits 8 to 
11 ) specifies four creg / z bits assigned to the D2 unit 226 
instruction in the same execute packet . Field 1407 ( bits 6 
and 7 ) is unused / reserved . Field 1408 ( bits 0 to 5 ) is coded 
as a set of unique bits ( CCEXO ) to identify the condition 
code extension slot 0. Once the unique ID of condition code 
extension slot 0 is detected , the corresponding creg / z bits are 
employed to control conditional execution of any L1 unit 
221 , L2 unit 241 , S1 unit 222 , S2 unit 242 , D1 unit 225 and 
D2 unit 226 instruction in the same execution packet . The 
creg / z bits are interpreted as shown in Table 1. If the 
corresponding instruction is conditional includes creg / z 
bits ) , the corresponding bits in the condition code extension 
slot 0 override the condition code bits in the instruction . 
Setting the creg / z bits equal to “ 0000 ” makes the instruction 
unconditional . Thus , a properly coded condition code exten 
sion slot 0 can make some corresponding instructions con 
ditional and some unconditional . 
[ 0119 ] FIG . 15 illustrates the coding for condition code 
extension slot 1 1500 having 32 bits . Field 1501 ( bits 28 to 
31 ) specifies four creg / z bits assigned to the M1 unit 223 
instruction in the same execute packet . Field 1502 ( bits 27 
to 24 ) specifies four creg / z bits assigned to the M2 unit 243 
instruction in the same execute packet . Field 1503 ( bits 19 
to 23 ) specifies four creg / z bits assigned to the C unit 245 
instruction in the same execute packet . Field 1504 ( bits 16 
to 19 ) specifies four creg / z bits assigned to the N1 unit 224 
instruction in the same execute packet . Field 1505 ( bits 12 
to 15 ) specifies four creg / z bits assigned to the N2 unit 244 
instruction in the same execute packet . Field 1506 ( bits 6 to 
11 ) is unused / reserved . Field 1507 ( bits 0 to 5 ) is coded as 
a set of unique bits ( CCEX1 ) to identify the condition code 
extension slot 1. Once the unique ID of condition code 
extension slot 1 is detected , the corresponding creg / z bits are 
employed to control conditional execution of any M1 unit 
223 , M2 unit 243 , C unit 245 , N1 unit 224 and N2 unit 244 
instruction in the same execution packet . These creg / z bits 
are interpreted as shown in Table 1. If the corresponding 
instruction is conditional ( includes creg / z bits ) , the corre 
sponding bits in the condition code extension slot 1 override 
the condition code bits in the instruction . Setting the creg / z 
bits equal to “ 0000 ” makes the instruction unconditional . 
Thus , a properly coded condition code extension slot 1 can 
make some instructions conditional and some unconditional . 
[ 0120 ] Both condition code extension slot 0 and condition 
code extension slot 1 can include a p bit to define an execute 
packet as described above in conjunction with FIG . 13. In 
this example , as illustrated in FIGS . 14 and 15 , code 
extension slot 0 and condition code extension slot 1 have bit 
0 ( p bit ) encoded as 1. Thus , neither condition code exten 
sion slot 0 nor condition code extension slot 1 can be in the 
last instruction slot of an execute packet . 
[ 0121 ] There are two different 32 - bit constant extension 
slots . Each execute packet can contain one each of the 
unique constant extension slots which contains 27 bits to be 
concatenated as high order bits with the 5 - bit constant field 
1305 to form a 32 - bit constant . As noted in the instruction 
coding description above , some instructions define the src2 / 
cst field 1304 as a constant rather than a source register 
identifier . At least some of such instructions can employ a 
constant extension slot to extend the constant to 32 bits . 
[ 0122 ] FIG . 16 illustrates the fields of constant extension 
slot 0 1600. Each execute packet can include one instance of 

constant extension slot 0 and one instance of constant 
extension slot 1. FIG . 16 illustrates that constant extension 
slot 0 1600 includes two fields . Field 1601 ( bits 5 to 31 ) 
constitutes the most significant 27 bits of an extended 32 - bit 
constant including the target instruction scr2 / cst field 1304 
as the five least significant bits . Field 1602 ( bits 0 to 4 ) is 
coded as a set of unique bits ( CSTXO ) to identify the 
constant extension slot 0. In this example , constant exten 
sion slot 0 1600 can be used to extend the constant of one 
of an L1 unit 221 instruction , data in a D1 unit 225 
instruction , an S2 unit 242 instruction , an offset in a D2 unit 
226 instruction , an M2 unit 243 instruction , an N2 unit 244 
instruction , a branch instruction , or a C unit 245 instruction 
in the same execute packet . Constant extension slot 1 is 
similar to constant extension slot 0 except that bits 0 to 4 are 
coded as a set of unique bits ( CSTX1 ) to identify the 
constant extension slot 1. In this example , constant exten 
sion slot 1 can be used to extend the constant of one of an 
L2 unit 241 instruction , data in a D2 unit 226 instruction , an 
S1 unit 222 instruction , an offset in a D1 unit 225 instruc 
tion , an M1 unit 223 instruction or an N1 unit 224 instruction 
in the same execute packet . 
[ 0123 ] Constant extension slot ( and constant extension 
slot 1 are used as follows . The target instruction is of the type 
permitting constant specification . In this example , the exten 
sion is implemented by replacing one input operand register 
specification field with the least significant bits of the 
constant as described above with respect to scr2 / cst field 
1304. Instruction decoder 113 determines this case , known 
as an immediate field , from the instruction opcode bits . The 
target instruction also includes one constant extension bit ( e 
bit 1307 ) dedicated to signaling whether the specified con 
stant is not extended ( constant extension bit = 0 ) or extended 
( constant extension bit = 1 ) . If instruction decoder 113 detects 
a constant extension slot 0 or a constant extension slot 1 , 
instruction decoder 113 further checks the other instructions 
within the execute packet for an instruction corresponding to 
the detected constant extension slot . A constant extension is 
made if one corresponding instruction has a constant exten 
sion bit ( e bit 1307 ) equal to 1 . 
[ 0124 ] FIG . 17 is a partial block diagram 1700 illustrating 
constant extension . FIG . 17 assumes that instruction decoder 
113 ( FIG . 1 ) detects a constant extension slot and a corre 
sponding instruction in the same execute packet . Instruction 
decoder 113 supplies the twenty - seven extension bits from 
the constant extension slot ( bit field 1601 ) and the five 
constant bits ( bit field 1305 ) from the corresponding instruc 
tion to concatenator 1701. Concatenator 1701 forms a single 
32 - bit word from these two parts . In this example , the 
twenty - seven extension bits from the constant extension slot 
( bit field 1601 ) are the most significant bits and the five 
constant bits ( bit field 1305 ) are the least significant bits . The 
combined 32 - bit word is supplied to one input of multiplexer 
1702. The five constant bits from the corresponding instruc 
tion field 1305 supply a second input to multiplexer 1702 . 
Selection of multiplexer 1702 is controlled by the status of 
the constant extension bit . If the constant extension bit ( e bit 
1307 ) is 1 ( extended ) , multiplexer 1702 selects the concat 
enated 32 - bit input . If the constant extension bit is ( not 
extended ) , multiplexer 1702 selects the five constant bits 
from the corresponding instruction field 1305. The output of 
multiplexer 1702 supplies an input of sign extension unit 
1703 . 
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[ 0125 ] Sign extension unit 1703 forms the final operand 
value from the input from multiplexer 1703. Sign extension 
unit 1703 receives control inputs Scalar / Vector and Data 
Size . The Scalar / Vector input indicates whether the corre 
sponding instruction is a scalar instruction or a vector 
instruction . The functional units of data path side A 115 ( L1 
unit 221 , S1 unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225 
and D2 unit 226 ) perform scalar instructions . Any instruc 
tion directed to one of these functional units is a scalar 
instruction . Data path side B functional units L2 unit 241 , S2 
unit 242 , M2 unit 243 , N2 unit 244 and C unit 245 can 
perform scalar instructions or vector instructions . Instruction 
decoder 113 determines whether the instruction is a scalar 
instruction or a vector instruction from the opcode bits . P 
unit 246 may performs scalar instructions . The Data Size can 
be eight bits ( byte B ) , sixteen bits ( half - word H ) , 32 bits 
( word W ) , or 64 bits ( double word D ) . 
[ 0126 ] Table 2 lists the operation of sign extension unit 
1703 for the various options . 

mined slots . SIMD operation is enabled by carry control at 
the data boundaries . Such carry control enables operations 
on varying data widths . 
[ 0130 ] FIG . 18 illustrates the carry control logic . AND 
gate 1801 receives the carry output of bit N within the 
operand wide arithmetic logic unit ( 64 bits for scalar data 
path side A 115 functional units and 512 bits for vector data 
path side B 116 functional units ) . AND gate 1801 also 
receives a carry control signal which is further explained 
below . The output of AND gate 1801 is supplied to the carry 
input of bit N + 1 of the operand wide arithmetic logic unit . 
AND gates such as AND gate 1801 are disposed between 
every pair of bits at a possible data boundary . For example , 
for 8 - bit data such an AND gate will be between bits 7 and 
8 , bits 15 and 16 , bits 23 and 24 , etc. Each such AND gate 
receives a corresponding carry control signal . If the data size 
is the minimum size , each carry control signal is 0 , effec 
tively blocking carry transmission between the adjacent bits . 
The corresponding carry control signal is 1 if the selected 
data size requires both arithmetic logic unit sections . Table 
3 below shows example carry control signals for the case of 
a 512 - bit wide operand as used by vector data path side B 
116 functional units which can be divided into sections of 8 
bits , 16 bits , 32 bits , 64 bits , 128 bits or 256 bits . In Table 
3 , the upper 32 bits control the upper bits ( bits 128 to 511 ) 
carries and the lower 32 bits control the lower bits ( bits 0 to 
127 ) carries . No control of the carry output of the most 
significant bit is needed , thus only 63 carry control signals 
are required . 

TABLE 2 

Instruction 
Type 

Operand 
Size 

Constant 
Length Action 

Scalar 
Scalar 
Vector 

B / H / W / D 
B / H / W / D 
B / H / W / D 

5 bits Sign extend to 64 bits 
32 bits Sign extend to 64 bits 
5 bits Sign extend to operand size and 

replicate across whole vector 
32 bits Replicate 32 - bit constant across 

each 32 - bit ( W ) lane 
32 bits Sign extend to 64 bits and replicate 

across each 64 - bit ( D ) lane 

Vector B / H / W 

Vector D 

TABLE 3 

Data Size Carry Control Signals 

8 bits ( B ) 

16 bits ( H ) 

32 bits ( W ) 

-000 0000 0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 0000 0000 
-101 0101 0101 0101 0101 0101 0101 0101 
0101 0101 0101 0101 0101 0101 0101 0101 
-111 0111 0111 0111 0111 0111 0111 0111 
0111 0111 0111 0111 0111 0111 0111 0111 
-111 1111 0111 1111 0111 1111 0111 1111 
0111 1111 0111 1111 0111 1111 0111 1111 
-111 1111 1111 1111 0111 1111 1111 1111 
0111 1111 1111 1111 0111 1111 1111 1111 
-111 1111 1111 1111 1111 1111 1111 1111 
0111 1111 1111 1111 1111 1111 1111 1111 

64 bits ( D ) 

128 bits 

256 bits 

[ 0127 ] Both constant extension slot 0 and constant exten 
sion slot 1 can include a p bit to define an execute packet as 
described above in conjunction with FIG . 13. In this 
example , as in the case of the condition code extension slots , 
constant extension slot 0 and constant extension slot 1 have 
bit 0 ( p bit ) encoded as 1. Thus , neither constant extension 
slot 0 nor constant extension slot 1 can be in the last 
instruction slot of an execute packet . 
[ 0128 ] An execute packet can include a constant extension 
slot 0 or 1 and more than one corresponding instruction 
marked constant extended ( e bit = 1 ) . For such an occurrence , 
for constant extension slot 0 , more than one of an L1 unit 
221 instruction , data in a D1 unit 225 instruction , an S2 unit 
242 instruction , an offset in a D2 unit 226 instruction , an M2 
unit 243 instruction or an N2 unit 244 instruction in an 
execute packet can have an e bit of 1. For such an occur 
rence , for constant extension slot 1 , more than one of an L2 
unit 241 instruction , data in a D2 unit 226 instruction , an S1 
unit 222 instruction , an offset in a D1 unit 225 instruction , 
an M1 unit 223 instruction or an N1 unit 224 instruction in 
an execute packet can have an e bit of 1. In one example , 
instruction decoder 113 determines that such an occurrence 
is an invalid operation and not supported . Alternately , the 
combination can be supported with extension bits of the 
constant extension slot applied to each corresponding func 
tional unit instruction marked constant extended . 
[ 0129 ] L1 unit 221 , S1 unit 222 , L2 unit 241 , S2 unit 242 
and C unit 245 often operate in a single instruction multiple 
data ( SIMD ) mode . In this SIMD mode , the same instruction 
is applied to packed data from the two operands . Each 
operand holds multiple data elements disposed in predeter 

[ 0131 ] Operation on data sizes that are integral powers of 
2 ( 2M ) is common . However , the carry control technique is 
not limited to integral powers of 2 and can be applied to 
other data sizes and operand widths . 
[ 0132 ] In this example , at least L unit 241 and S unit 242 
employ two types of SIMD instructions using registers in 
predicate register file 234. In this example , the SIMD vector 
predicate instructions operate on an instruction specified 
data size . The data sizes include byte ( 8 bit ) data , half word 
( 16 bit ) data , word ( 32 bit ) data , double word ( 64 bit ) data , 
quad word ( 128 bit ) data and half vector ( 256 bit ) data . In 
the first of these instruction types , the functional unit ( L unit 
241 or S unit 242 ) performs a SIMD comparison on packed 
data in two general data registers and supplies results to a 
predicate data register . The instruction specifies a data size , 
the two general data register operands , and the destination 
predicate register . In this example , each predicate data 
register includes one bit corresponding to each minimal data 
size portion of the general data registers . In the current 
example , the general data registers are 512 bits ( 64 bytes ) 



US 2020/0285470 A1 Sep. 10 , 2020 
11 

and the predicate data registers are 64 bits ( 8 bytes ) . Each bit 
of a predicate data register corresponds to eight bits of a 
general data register . The comparison is performed on a 
specified data size ( 8 , 16 , 32 , 64 , 128 or 256 bits ) . If the 
comparison is true , then the functional unit supplies 1’s to all 
predicate register bits corresponding the that data size por 
tion . If the comparison is false , the functional unit supplies 
zeroes to the predicate register bits corresponding to that 
data size portion . In this example , the enabled comparison 
operations include : less than , greater than , and equal to . 
[ 0133 ] In the second of the instruction types , the func 
tional unit ( L unit 241 or S unit 242 ) separately performs a 
first SIMD operation or a second SIMD operation on packed 
data in general data registers based upon the state of data in 
a predicate data register . The instruction specifies a data size , 
one or two general data register operands , a controlling 
predicate register , and a general data register destination . For 
example , a functional unit can select , for each data sized 
portion of two vector operands , a first data element of a first 
operand or a second data element of a second operand 
dependent upon the I / O state of corresponding bits in the 
predicate data register to store in the destination register . In 
another example , the data elements of a single vector 
operand can be saved to memory or not saved dependent 
upon the data of the corresponding bits of the predicate 
register . 
[ 0134 ] The operations of P unit 245 permit a variety of 
compound vector SIMD operations based upon more than 
one vector comparison . For example , a range determination 
can be made using two comparisons . In a SIMD operation , 
a candidate vector is compared with a vector reference 
having the minimum of the range packed within a data 
register . The greater than result is scalar data with bits 
corresponding to the SIMD data width set to 0 or 1 depend 
ing upon the SIMD comparison and is stored in a predicate 
data register . Another SIMD comparison of the candidate 
vector is performed with another reference vector having the 
maximum of the range packed within a different data register 
produces another scalar with less than results stored in 
another predicate register . The P unit then ANDs the two 
predicate registers . The AND result indicates whether each 
SIMD data part of the candidate vector is within range or out 
of range . AP unit BITCNT instruction of the AND result can 
produce a count of the data elements within the comparison 
range . The P unit NEG function can be used to convert : a 
less than comparison result to a greater than or equal 
comparison result ; a greater than comparison result to a less 
than or equal to comparison result ; or , an equal to compari 
son result to a not equal to comparison result . 

memory 1902 and provides data formatting according to the 
stream definition . This process is described in more detail 
herein . Streaming engine 1900 supplies the formatted data 
elements from data formatter 1903 to the processor 1920. A 
program executing on processor 1920 consumes the data and 
generates an output . 
[ 0136 ] Stream elements typically reside in system 
memory . The memory imposes no particular structure upon 
the stream . Programs define streams and thereby impose 
structure by specifying the stream attributes such as address 
of the first element of the stream , size and type of the 
elements in the stream , formatting for data in the stream , and 
the address sequence associated with the stream . 
[ 0137 ] The streaming engine defines an address sequence 
for elements of the stream in terms of a pointer walking 
through memory . A multiple - level nested loop controls the 
path the pointer takes . An iteration count for a loop level 
indicates the number of times the level repeats . A dimension 
gives the distance between pointer positions of the loop 
level . 
[ 0138 ] In a basic forward stream , the innermost loop 
consumes physically contiguous elements from memory as 
the implicit dimension of the innermost loop is one element . 
The pointer moves from element to element in consecutive , 
increasing order . In each level outside the inner loop , that 
loop moves the pointer to a new location based on the size 
of the dimension of the loop level . 
[ 0139 ] This form of addressing allows programs to specify 
regular paths through memory using a small number of 
parameters . Table 4 lists the addressing parameters of a basic 
stream . 

TABLE 4 

Parameter Definition 

ELEM BYTES 
ICNTO 

ICNT1 
DIM1 

ICNT2 
DIM2 

Size of each element in bytes 
Number of iterations for the innermost loop level 0 . 
At loop level 0 all elements are physically contiguous . 
Implied DIMO ELEM BYTES 
Number of iterations for loop level 1 
Number of bytes between the starting points for 
consecutive iterations of loop level 1 
Number of iterations for loop level 2 
Number of bytes between the starting points for 
consecutive iterations of loop level 2 
Number of iterations for loop level 3 
Number of bytes between the starting points for 
consecutive iterations of loop level 3 
Number of iterations for loop level 4 
Number of bytes between the starting points for 
consecutive iterations of loop level 4 
Number of iterations for loop level 5 
Number of bytes between the starting points for 
consecutive iterations of loop level 5 

ICNT3 
DIM3 

ICNT4 
DIM4 

ICNT5 
DIMS 

[ 0140 ] In this example , ELEM_BYTES ranges from 1 to 
64 bytes as shown in Table 5 . 

TABLE 5 

Streaming Engine 
[ 0135 ] FIG . 19 is a conceptual view of the streaming 
engine 125 of the example processor 100 of FIG . 1. FIG . 19 
illustrates the processing of a single stream representative of 
the two streams controlled by streaming engine 125. Stream 
ing engine 1900 includes stream address generator 1901 . 
Stream address generator 1901 sequentially generates 
addresses of the elements of the stream and supplies these 
element addresses to system memory 1910. Memory 1910 
recalls data stored at the element addresses ( data elements ) 
and supplies these data elements to data first - in - first - out 
( FIFO ) buffer 1902. Data FIFO buffer 1902 provides buff 
ering between memory 1910 and processor 1920. Data 
formatter 1903 receives the data elements from data FIFO 

ELEM_BYTES Stream Element Length 
000 
001 
010 
011 
100 
101 

1 byte 
2 bytes 
4 bytes 
8 bytes 

16 bytes 
32 bytes 
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TABLE 5 - continued 

ELEM_BYTES Stream Element Length 
110 
111 

64 bytes 
Reserved 

( 1 ) 

[ 0141 ] The definition above maps consecutive elements of 
the stream to increasing addresses in memory which is 
appropriate for many algorithms . Some algorithms are better 
served by reading elements in decreasing memory address 
order or reverse stream addressing . For example , a discrete 
convolution computes vector dot - products , as illustrated by 
expression ( 1 ) 

( f * g ) [ 1 ] = xx / [ x ] g [ t - x ] 
[ 0142 ] In expression ( 1 ) , f [ ] and g [ ] represent arrays in 
memory . For each output , the algorithm reads f [ ] in the 
forward direction and reads g [ ] in the reverse direction . 
Practical filters limit the range of indices for [ x ] and [ t - x ] to 
a finite number of elements . To support this pattern , the 
streaming engine supports reading elements in decreasing 
address order . 
[ 0143 ] Matrix multiplication presents a unique problem to 
the streaming engine . Each element in the matrix product is 
a vector dot product between a row from the first matrix and 
a column from the second . Programs typically store matrices 
in row - major or column - major order . Row - major order 
stores all the elements of a single row contiguously in 
memory . Column - major order stores all elements of a single 
column contiguously in memory . Matrices are typically 
stored in the same order as the default array order for the 
language . As a result , only one of the two matrices in a 
matrix multiplication map on to the 2 - dimensional stream 
definition of the streaming engine . In a typical example , an 
index steps through columns on one array and rows of the 
other array . The streaming engine supports implicit matrix 
transposition with transposed streams . Transposed streams 
avoid the cost of explicitly transforming the data in memory . 
Instead of accessing data in strictly consecutive - element 
order , the streaming engine effectively interchanges the 
inner two loop dimensions of the traversal order , fetching 
elements along the second dimension into contiguous vector 
lanes . 
[ 0144 ] This algorithm works but is impractical to imple 
ment for small element sizes . Some algorithms work on 
matrix tiles which are multiple columns and rows together . 
Therefore , the streaming engine defines a separate transpo 
sition granularity . The hardware imposes a minimum granu 
larity . The transpose granularity needs to be at least as large 
as the element size . Transposition granularity causes the 
streaming engine to fetch one or more consecutive elements 
from dimension 0 before moving along dimension 1. When 
the granularity equals the element size , a single column from 
a row - major array is fetched . Otherwise , the granularity 
specifies fetching two , four or more columns at a time from 
a row - major array . This is also applicable for column - major 
layout by exchanging row and column in the description . A 
parameter GRANULE indicates the transposition granular 
ity in bytes 
[ 0145 ] Another common matrix multiplication technique 
exchanges the innermost two loops of the matrix multiply . 
The resulting inner loop no longer reads down the column of 
one matrix while reading across the row of another . For 
example , the algorithm may hoist one term outside the inner 

loop , replacing it with the scalar value . The innermost loop 
can be implemented with a single scalar by vector multiply 
followed by a vector add . Or , the scalar value can be 
duplicated across the length of the vector and a vector by 
vector multiply used . The streaming engine of this example 
directly supports the latter case and related use models with 
an element duplication mode . In this mode , the streaming 
engine reads a granule smaller than the full vector size and 
replicates that granule to fill the next vector output . 
[ 0146 ] The streaming engine treats each complex number 
as a single element with two sub - elements that give the real 
and imaginary ( rectangular ) or magnitude and angle ( polar ) 
portions of the complex number . Not all programs or periph 
erals agree what order these sub - elements should appear in 
memory . Therefore , the streaming engine offers the ability to 
swap the two sub - elements of a complex number with no 
cost . The feature swaps the halves of an element without 
interpreting the contents of the element and can be used to 
swap pairs of sub - elements of any type , not just complex 
numbers . 
[ 0147 ] Algorithms generally prefer to work at high preci 
sion , but high precision values require more storage and 
bandwidth than lower precision values . Commonly , pro 
grams store data in memory at low precision , promote those 
values to a higher precision for calculation , and then demote 
the values to lower precision for storage . The streaming 
engine supports such operations directly by allowing algo 
rithms to specify one level of type promotion . In this 
example , every sub - element can be promoted to a larger type 
size with either sign or zero extension for integer types . In 
some examples , the streaming engine supports floating point 
promotion , promoting 16 - bit and 32 - bit floating point values 
to 32 - bit and 64 - bit formats , respectively . 
[ 0148 ] While the streaming engine defines a stream as a 
discrete sequence of data elements , the processing unit core 
110 consumes data elements packed contiguously in vectors . 
The vectors resemble streams as the vectors contain multiple 
homogeneous elements with some implicit sequence . 
Because the streaming engine reads streams , but the pro 
cessing unit core 110 consumes vectors , the streaming 
engine maps streams onto vectors in a consistent way . 
[ 0149 ] Vectors include equal - sized lanes , each lane con 
taining a sub - element . The processing unit core 110 desig 
nates the rightmost lane of the vector as lane 0 , regardless of 
current endian mode . Lane numbers increase right - to - left . 
The actual number of lanes within a vector varies depending 
on the length of the vector and the data size of the sub 
element . 
[ 0150 ] FIG . 20 illustrates the sequence of the formatting 
operations of formatter 1903. Formatter 1903 includes three 
sections : input section 2010 , formatting section 2020 , and 
output section 2030. Input section 2010 receives the data 
recalled from system memory 1910 as accessed by stream 
address generator 1901. The data can be via linear fetch 
stream 2011 or transposed fetch stream 2012 . 
[ 0151 ] Formatting section 2020 includes various format 
ting blocks . The formatting performed within formatter 
1903 by the blocks is further described below . Complex 
swap block 2021 optionally swaps two sub - elements form 
ing a complex number element . Type promotion block 2022 
optionally promotes each data element into a larger data 
size . Promotion includes zero extension for unsigned inte 
gers and sign extension for signed integers . Decimation 
block 2023 optionally decimates the data elements . In this 
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example , decimation can be 2 : 1 retaining every other data 
element or 4 : 1 retaining every fourth data element . Element 
duplication block 2024 optionally duplicates individual data 
elements . In this example , the data element duplication is an 
integer power of 2 ( 2N , where N is an integer ) including 2x , 
4x , 8x , 16x , 32x and 64x . In this example , data duplication 
can extend over multiple destination vectors . Vector length 
masking / group duplication block 2025 has two primary 
functions . An independently specified vector length 
VECLEN controls the data elements supplied to each output 
data vector . When group duplication is off , excess lanes in 
the output data vector are zero filled and these lanes are 
marked invalid . When group duplication is on , input data 
elements of the specified vector length are duplicated to fill 
the output data vector . 
[ 0152 ] Output section 2030 holds the data for output to the 
corresponding functional units . Register and buffer for pro 
cessor 2031 stores a formatted vector of data to be used as 
an operand by the functional units of processing unit core 
110 ( FIG . 1 ) . 
[ 0153 ] FIG . 21 illustrates an example of lane allocation in 
a vector . Vector 2100 is divided into eight 64 - bit lanes ( 8x64 
bits = 512 bits , the vector length ) . Lane ( includes bits 0 to 
63 , lane 1 includes bits 64 to 127 , lane 2 includes bits 128 
to 191 , lane 3 includes bits 192 to 255 , lane 4 includes bits 
256 to 319 , lane 5 includes bits 320 to 383 , lane 6 includes 
bits 384 to 447 , and lane 7 includes bits 448 to 511 . 
[ 0154 ] FIG . 22 illustrates another example of lane alloca 
tion in a vector . Vector 2210 is divided into sixteen 32 - bit 
lanes ( 16x32 bits = 512 bits , the vector length ) . Lane 0 
includes bits 0 to 31 , lane 1 includes bits 32 to 63 , lane 2 
includes bits 64 to 95 , lane 3 includes bits 96 to 127 , lane 4 
includes bits 128 to 159 , lane 5 includes bits 160 to 191 , lane 
6 includes bits 192 to 223 , lane 7 includes bits 224 to 255 , 
lane 8 includes bits 256 to 287 , lane 9 includes bits 288 to 
319 , lane 10 includes bits 320 to 351 , lane 11 includes bits 
352 to 383 , lane 12 includes bits 384 to 415 , lane 13 includes 
bits 416 to 447 , lane 14 includes bits 448 to 479 , and lane 
15 includes bits 480 to 511 . 
[ 0155 ] The streaming engine maps the innermost stream 
dimension directly to vector lanes . The streaming engine 
maps earlier elements within the innermost stream dimen 
sion to lower lane numbers and later elements to higher lane 
numbers , regardless of whether the stream advances in 
increasing or decreasing address order . Whatever order the 
stream defines , the streaming engine deposits elements in 
vectors in increasing - lane order . For non - complex data , the 
streaming engine places the first element in lane ( ) of the 
vector processing unit core 110 ( FIG . 1 ) fetches , the second 
in lane 1 , and so on . For complex data , the streaming engine 
places the first element in lanes 0 and 1 , the second element 
in lanes 2 and 3 , and so on . Sub - elements within an element 
retain the same relative ordering regardless of the stream 
direction . For non - swapped complex elements , the sub 
elements with the lower address of each pair are placed in 
the even numbered lanes , and the sub - elements with the 
higher address of each pair are placed in the odd numbered 
lanes . For swapped complex elements , the placement is 
reversed . 
( 0156 ] The streaming engine fills each vector processing 
unit core 110 fetches with as many elements as possible from 
the innermost stream dimension . If the innermost dimension 
is not a multiple of the vector length , the streaming engine 
zero pads the dimension to a multiple of the vector length . 

As noted below , the streaming engine also marks the lanes 
invalid . Thus , for higher - dimension streams , the first ele 
ment from each iteration of an outer dimension arrives in 
lane 0 of a vector . The streaming engine maps the innermost 
dimension to consecutive lanes in a vector . For transposed 
streams , the innermost dimension includes groups of sub 
elements along dimension 1 , not dimension 0 , as transposi 
tion exchanges these two dimensions . 
[ 0157 ] Two - dimensional ( 2D ) streams exhibit greater 
variety as compared to one - dimensional streams . A basic 2D 
stream extracts a smaller rectangle from a larger rectangle . 
A transposed 2D stream reads a rectangle column - wise 
instead of row - wise . A looping stream , where the second 
dimension overlaps first , executes a finite impulse response 
( FIR ) filter taps which loops repeatedly over FIR filter 
samples providing a sliding window of input samples . 
[ 0158 ] FIG . 23 illustrates a region of memory that can be 
accessed using a basic two - dimensional stream . The inner 
two dimensions , represented by ELEM_BYTES , ICNTO , 
DIM1 and ICNT1 ( refer to Table 4 ) , give sufficient flexibil 
ity to describe extracting a smaller rectangle 2320 having 
dimensions 2321 and 2322 from a larger rectangle 2310 
having dimensions 2311 and 2312. In this example , rect 
angle 2320 is a 9 by 13 rectangle of 64 - bit values and 
rectangle 2310 is a larger 11 by 19 rectangle . The following 
stream parameters define this stream : ICNTO = 9 , ELEM_ 
BYTES = 8 , ICNT1 = 13 , and DIM1 = 88 ( 11 times 8 ) . 
[ 0159 ] Thus , the iteration count in the O - dimension 2321 
is nine and the iteration count in the 1 - dimension 2322 is 
thirteen . Note that the ELEM_BYTES scales the innermost 
dimension . The first dimension has ICNTO elements of size 
ELEM_BYTES . The stream address generator does not 
scale the outer dimensions . Therefore , DIM1 = 88 , which is 
eleven elements scaled by eight bytes per element . 
[ 0160 ] FIG . 24 illustrates the order of elements within the 
example stream of FIG . 23. The streaming engine fetches 
elements for the stream in the order illustrated in order 2400 . 
The first nine elements come from the first row of rectangle 
2320 , left - to - right in hops 1 to 8. The 10th through 24th 
elements comes from the second row , and so on . When the 
stream moves from the 9th element to the 10th element ( hop 
9 in FIG . 24 ) , the streaming engine computes the new 
location based on the position of the pointer at the start of the 
inner loop , not the position of the pointer at the end of the 
first dimension . Thus , DIM1 is independent of ELEM_ 
BYTES and ICNTO . DIM1 represents the distance between 
the first bytes of each consecutive row . 
[ 0161 ] Transposed streams are accessed along dimension 
1 before dimension 0. The following examples illustrate 
transposed streams with varying transposition granularity . 
FIG . 25 illustrates extracting a smaller rectangle 2520 ( 12x 
8 ) having dimensions 2521 and 2522 from a larger rectangle 
2510 ( 14x13 ) having dimensions 2511 and 2512. In FIG . 25 , 
ELEM_BYTES equal 2 . 
[ 0162 ] FIG . 26 illustrates how the streaming engine 
fetches the stream of the example stream of FIG . 25 with a 
transposition granularity of four bytes . Fetch pattern 2600 
fetches pairs of elements from each row ( because the granu 
larity of four is twice the ELEM_BYTES of two ) , but 
otherwise moves down the columns . Once the streaming 
engine reaches the bottom of a pair of columns , the stream 
ing engine repeats the pattern with the next pair of columns . 
[ 0163 ] FIG . 27 illustrates how the streaming engine 
fetches the stream of the example stream of FIG . 25 with a 
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data , and a last reference value indicating the most recent 
reference to this slot in the reference queue . The storage 
allocation and tracking are further described herein . 
[ 0170 ] Respective reference queue 2815/2825 stores the 
sequence of references generated by the respective corre 
sponding address generator 2811/2821 . The reference 
sequence enables the data formatting network to present data 
to processing unit core 110 in the correct order . Each entry 
in respective reference queue 2815/2825 contains the infor 
mation necessary to read data out of the data store and align 
the data for processing unit core 110. Respective reference 
queue 2815/2825 maintains the information listed in Table 6 
in each slot . 

TABLE 6 
Data Slot Low 

Data Slot High 

Slot number for the lower half of data associated with 
aouto 

Slot number for the upper half of data associated with 
aout1 
Number of bytes to rotate data to align next element 
with lane 0 
Number of valid bytes in this reference 

Rotation 

Length 

transposition granularity of eight bytes . The overall structure 
remains the same . The streaming engine fetches four ele 
ments from each row ( because the granularity of eight is four 
times the ELEM_BYTES of two ) before moving to the next 
row in the column as shown in fetch pattern 2700 . 
[ 0164 ] The streams examined so far read each element 
from memory exactly once . A stream can read a given 
element from memory multiple times , in effect looping over 
a portion of memory . FIR filters exhibit two common 
looping patterns : re - reading the same filter taps for each 
output and reading input samples from a sliding window . 
Two consecutive outputs need inputs from two overlapping 
windows . 
[ 0165 ] FIG . 28 illustrates the details of streaming engine 
125 of FIG . 1. Streaming engine 125 contains three major 
sections : Stream ( 2810 ; Stream 1 2820 ; and Shared L2 
Interfaces 2830. Stream 0 2810 and Stream 1 2820 both 
contain identical hardware that operates in parallel . Stream 
0 2810 and Stream 1 2820 both share L2 interfaces 2830 . 
Each stream 2810 and 2820 provides processing unit core 
110 ( FIG . 1 ) data at a rate of up to 512 bits / cycle , every 
cycle , which is enabled by the dedicated stream paths and 
shared dual L2 interfaces . 
[ 0166 ] Each streaming engine 125 includes a respective 
dedicated 6 - dimensional ( 6D ) stream address generator 
2811/2821 that can each generate one new non - aligned 
request per cycle . As is further described herein , address 
generators 2811/2821 output 512 - bit aligned addresses that 
overlap the elements in the sequence defined by the stream 
parameters . 
[ 0167 ] Each address generator 2811/2821 connects to a 
respective dedicated micro table look - aside buffer ( uTLB ) 
2812/2822 . The uTLB 2812/2822 converts a single 48 - bit 
virtual address to a 44 - bit physical address each cycle . Each 
uTLB 2812/2822 has 8 entries , covering a minimum of 32 
kB with 4 kB pages or a maximum of 16 MB with 2 MB 
pages . Each address generator 2811/2821 generates 2 
addresses per cycle . The uTLB 2812/2822 only translates 
one address per cycle . To maintain throughput , streaming 
engine 125 operates under the assumption that most stream 
references are within the same 4 kB page . Thus , the address 
translation does not modify bits 0 to 11 of the address . If 
aout0 and aoul line in the same 4 kB page ( aout0 [ 47:12 ] are 
the same aout1 [ 47:12 ] ) , then the uTLB 2812/2822 only 
translates aout0 and reuses the translation for the upper bits 
of both addresses . 
[ 0168 ] Translated addresses are queued in respective com 
mand queue 2813/2823 . These addresses are aligned with 
information from the respective corresponding Storage Allo 
cation and Tracking block 2814/2824 . Streaming engine 125 
does not explicitly manage uTLB 2812/2822 . The system 
memory management unit ( MMU ) invalidates uTLBs as 
necessary during context switches . 
[ 0169 ] Storage Allocation and Tracking 2814/2824 man 
ages the internal storage of the stream , discovering data 
reuse and tracking the lifetime of each piece of data . The 
block accepts two virtual addresses per cycle and binds 
those addresses to slots in the internal storage . The data store 
is organized as an array of slots . The streaming engine 
maintains following metadata to track the contents and 
lifetime of the data in each slot : 49 - bit virtual address 
associated with the slot , valid bit indicating valid address , 
ready bit indicating data has arrived for the address , active 
bit indicating if there are any references outstanding to this 

[ 0171 ] Storage allocation and tracking 2814/2824 inserts 
references in reference queue 2815/2825 as address genera 
tor 2811/2821 generates new addresses . Storage allocation 
and tracking 2814/2824 removes references from reference 
queue 2815/2825 when the data becomes available and there 
is room in the stream head registers . As storage allocation 
and tracking 2814/2824 removes slot references from ref 
erence queue 2815/2825 and formats data , the references are 
checked for the last reference to the corresponding slots . 
Storage allocation and tracking 2814/2824 compares refer 
ence queue 2815/2825 removal pointer against the recorded 
last reference of the slot . If the pointer and the recorded last 
reference match , then storage allocation and tracking 2814 / 
2824 marks the slot inactive once the data is no longer 
needed . 
[ 0172 ] Streaming engine 125 has respective data storage 
2816/2826 for a selected number of elements . Deep buffer 
ing allows the streaming engine to fetch far ahead in the 
stream , hiding memory system latency . Each data storage 
2816/2826 accommodates two simultaneous read operations 
and two simultaneous write operations per cycle and each is 
therefore referred to a two - read , two - write ( 2r2w ) data 
storage . In other examples , the amount of buffering can be 
different . In the current example , streaming engine 125 
dedicates 32 slots to each stream with each slot tagged by a 
virtual address . Each slot holds 64 bytes of data in eight 
banks of eight bytes . 
[ 0173 ] Data storage 2816/2826 and the respective storage 
allocation / tracking logic 2814/2824 and reference queues 
2815/2825 implement the data FIFO 1902 discussed with 
reference to FIG . 19 . 
[ 0174 ] Respective butterfly network 2817/2827 includes a 
seven - stage butterfly network . Butterfly network 2817/2827 
receives 128 bytes of input and generates 64 bytes of output . 
The first stage of the butterfly is actually a half - stage that 
collects bytes from both slots that match a non - aligned fetch 
and merges the collected bytes into a single , rotated 64 - byte 
array . The remaining six stages form a standard butterfly 
network . Respective butterfly network 2817/2827 performs 
the following operations : rotates the next element down to 
byte lane 0 ; promotes data types by a power of two , if 
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[ 0180 ] FIG . 29 illustrates an example stream template 
register 2900. The stream definition template provides the 
full structure of a stream that contains data . The iteration 
counts and dimensions provide most of the structure , while 
the various flags provide the rest of the details . In this 
example , a single stream template 2900 is defined for all 
data - containing streams . All stream types supported by the 
streaming engine are covered by the template 2900. The 
streaming engine supports a six - level loop nest for address 
ing elements within the stream . Most of the fields in the 
stream template 2900 map directly to the parameters in that 
algorithm . The numbers above the fields are bit numbers 
within a 256 - bit vector . Table 7 shows the stream field 
definitions of a stream template , which includes ICNTO field 
( 2901 ) , ICNT1 field ( 2902 ) , ICNT2 field ( 2903 ) , ICNT3 
field ( 2904 ) , ICNT4 field ( 2905 ) , ICNT5 field ( 2906 ) , DIM1 
field ( 2911 ) , DIM2 field ( 2912 ) , DIM3 field ( 2913 ) , DIM4 
field ( 2914 ) , DIM5 field ( 2915 ) , and FLAGS field ( 2921 ) . 

TABLE 7 

Field 
Name 

FIG . 29 
Reference 
Number 

Size 
Bits Description 

requested ; swaps real and imaginary components of com 
plex numbers , if requested ; and converts big endian to little 
endian if processing unit core 110 is presently in big endian 
mode . The user specifies element size , type promotion , and 
real / imaginary swap as part of the parameters of the stream . 
[ 0175 ] Streaming engine 125 attempts to fetch and format 
data ahead of processing unit core 110's demand in order to 
maintain full throughput . Respective stream head registers 
2818/2828 provide a small amount of buffering so that the 
process remains fully pipelined . Respective stream head 
registers 2818/2828 are not directly architecturally visible . 
Each stream also has a respective stream valid register 
2819/2829 . Valid registers 2819/2829 indicate which ele 
ments in the corresponding stream head registers 2818/2828 
are valid . 
[ 0176 ] The two streams 2810/2820 share a pair of inde 
pendent L2 interfaces 2830 : L2 Interface A ( IFA ) 2833 and 
L2 Interface B ( IFB ) 2834. Each L2 interface provides 512 
bits / cycle throughput direct to the L2 controller 130 ( FIG . 1 ) 
via respective buses 147/149 for an aggregate bandwidth of 
1024 bits / cycle . The L2 interfaces use the credit - based 
multicore bus architecture ( MBA ) protocol . The MBA pro 
tocol is described in more detail in U.S. Pat . No. 9,904,645 , 
“ Multicore Bus Architecture with Non - Blocking High Per 
formance Transaction Credit System , ” which is incorporated 
by reference herein . The L2 controller assigns a pool of 
command credits to each interface . The pool has sufficient 
credits so that each interface can send sufficient requests to 
achieve full read - return bandwidth when reading L2 RAM , 
L2 cache and multicore shared memory controller ( MSMC ) 
memory , as described in more detail herein . 
[ 0177 ] To maximize performance , in this example both 
streams can use both L2 interfaces , allowing a single stream 
to send a peak command rate of two requests per cycle . Each 
interface prefers one stream over the other , but this prefer 
ence changes dynamically from request to request . IFA 2833 
and IFB 2834 prefer opposite streams , when IFA 2833 
prefers Stream O , IFB 2834 prefers Stream 1 and vice versa . 
[ 0178 ] Respective arbiter 2831/2832 ahead of each 
respective interface 2833/2834 applies the follo ing basic 
protocol on every cycle having credits available . Arbiter 
2831/2832 checks if the preferred stream has a command 
ready to send . If so , arbiter 2831/2832 chooses that com 
mand . Arbiter 2831/2832 next checks if an alternate stream 
has at least two requests ready to send , or one command and 
no credits . If so , arbiter 2831/2832 pulls a command from 
the alternate stream . If either interface issues a command , 
the notion of preferred and alternate streams swap for the 
next request . Using this algorithm , the two interfaces dis 
patch requests as quickly as possible while retaining fairness 
between the two streams . The first rule ensures that each 
stream can send a request on every cycle that has available 
credits . The second rule provides a mechanism for one 
stream to borrow the interface of the other when the second 
interface is idle . The third rule spreads the bandwidth 
demand for each stream across both interfaces , ensuring 
neither interface becomes a bottleneck . 
[ 0179 ] Respective coarse grain rotator 2835/2836 enables 
streaming engine 125 to support a transposed matrix 
addressing mode . In this mode , streaming engine 125 inter 
changes the two innermost dimensions of the multidimen 
sional loop to access an array column - wise rather than 
row - wise . Respective rotators 2835/2836 are not architec 
turally visible . 

ICNTO 
ICNT1 
ICNT2 
ICNT3 
ICNT4 
ICNT5 
DIM1 
DIM2 
DIM3 
DIM4 
DIM5 
FLAGS 

2901 
2902 
2903 
2904 
2905 
2906 
2911 
2912 
2913 
2914 
2915 
2921 

Iteration count for loop 0 
Iteration count for loop 1 
Iteration count for loop 2 
Iteration count for loop 3 
Iteration count for loop 4 
Iteration count for loop 5 
Signed dimension for loop 1 
Signed dimension for loop 2 
Signed dimension for loop 3 
Signed dimension for loop 4 
Signed dimension for loop 5 
Stream modifier flags 

32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
64 

[ 0181 ] Loop O is the innermost loop and loop 5 is the 
outermost loop . In the current example , DIMO is equal to 
ELEM_BYTES defining physically contiguous data . Thus , 
the stream template register 2900 does not define DIMO . 
Streaming engine 125 interprets iteration counts as unsigned 
integers and dimensions as unscaled signed integers . An 
iteration count of zero at any level ( ICNTO , ICNT1 , ICNT2 , 
ICNT3 , ICNT4 or ICNT5 ) indicates an empty stream . Each 
iteration count must be at least one to define a valid stream . 
The template above specifies the type of elements , length 
and dimensions of the stream . The stream instructions 
separately specify a start address , e.g. , by specification of a 
scalar register in scalar register file 211 which stores the start 
address . Thus , a program can open multiple streams using 
the same template but different registers storing the start 
address . 

[ 0182 ] FIG . 30 illustrates an example of sub - field defini 
tions of the flags field 2911 shown in FIG . 29. As shown in 
FIG . 30 , the flags field 2911 is 6 bytes or 48 bits . FIG . 30 
shows bit numbers of the fields . Table 8 shows the definition 
of these fields , which include ELTYPE field ( 3001 ) , 
TRANSPOSE field ( 3002 ) , PROMOTE field ( 3003 ) , 
VECLEN field ( 3004 ) , ELDUP field ( 3005 ) , GRDUP field 
( 3006 ) , DECIM field ( 3007 ) , THROTTLE field ( 3008 ) , 
DIMFMT field ( 3009 ) , DIR field ( 3010 ) , CBKO field ( 3011 ) , 
CBK1 field ( 3012 ) , AMO field ( 3013 ) , AM1 field ( 3014 ) , 
AM2 field ( 3015 ) , AM3 field ( 3016 ) , AM4 field ( 3017 ) , and 
AM5 field ( 3018 ) . 
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TABLE 8 

FIG . 30 
Reference 
Number Description 

Size 
Bits Field Name 

ELTYPE 
TRANSPOSE 
PROMOTE 
VECLEN 
ELDUP 
GRDUP 
DECIM 
THROTTLE 
DIMFMT 
DIR 

3001 
3002 
3003 
3004 
3005 
3006 
3007 
3008 
3009 
3010 

4 
3 
3 
3 
3 
1 
2 
2 
3 
1 

Type of data element 
Two - dimensional transpose mode 
Promotion mode 
Stream vector length 
Element duplication 
Group duplication 
Element decimation 
Fetch ahead throttle mode 
Stream dimensions format 
Stream direction 
O forward direction 
1 reverse direction 
First circular block size number 
Second circular block size number 
Addressing mode for loop 0 
Addressing mode for loop 1 
Addressing mode for loop 2 
Addressing mode for loop 3 
Addressing mode for loop 4 
Addressing mode for loop 5 

( FIG . 1 ) operates in big endian mode , as the core 110 lays 
out vectors in little endian order . 
[ 0186 ] Total Element Size specifies the minimal granular 
ity of the stream which determines the number of bytes the 
stream fetches for each iteration of the innermost loop . 
Streams read whole elements , either in increasing or 
decreasing order . Therefore , the innermost dimension of a 
stream spans ICNTOxtotal - element - size bytes . 
[ 0187 ] The TRANSPOSE field 3002 determines whether 
the streaming engine accesses the stream in a transposed 
order . The transposed order exchanges the inner two 
addressing levels . The TRANSPOSE field 3002 also indi 
cated the granularity for transposing the stream . The coding 
of the three bits of the TRANSPOSE field 3002 is defined as 
shown in Table 10 for normal 2D operations . CBKO 

CBK1 
AMO 
AM1 
AM2 
AM3 
AM4 
AMS 

TABLE 10 

3011 
3012 
3013 
3014 
3015 
3016 
3017 
3018 

4 
4 
2 
2 
2 Transpose Meaning 

[ 0183 ] The Element Type ( ELTYPE ) field 3001 defines 
the data type of the elements in the stream . The coding of the 
four bits of the ELTYPE field 3001 is defined as shown in 
Table 9 . 

000 
001 
010 
011 
100 
101 
110 
111 

Transpose disabled 
Transpose on 8 - bit boundaries 
Transpose on 16 - bit boundaries 
Transpose on 32 - bit boundaries 
Transpose on 64 - bit boundaries 
Transpose on 128 - bit boundaries 
Transpose on 256 - bit boundaries 
Reserved 

TABLE 9 

Real / 
Complex 

Sub - element 
Size Bits 

Total Element 
Size Bits ELTYPE 

real 
real 
real 
real 

8 
16 
32 

8 
16 
32 
64 

[ 0188 ] Streaming engine 125 can transpose data elements 
at a different granularity than the element size thus allowing 
programs to fetch multiple columns of elements from each 
row . The transpose granularity cannot be smaller than the 
element size . The TRANSPOSE field 3002 interacts with the 
DIMFMT field 3009 in a manner further described below . 
[ 0189 ] The PROMOTE field 3003 controls whether the 
streaming engine promotes sub - elements in the stream and 
the type of promotion . When enabled , streaming engine 125 
promotes types by powers - of - 2 sizes . The coding of the 
three bits of the PROMOTE field 3003 is defined as shown 
in Table 11 . 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 

64 
reserved 
reserved 
reserved 
reserved 
8 16 

1001 16 32 

1010 TABLE 11 32 64 

1011 64 128 Promotion Promotion Resulting Sub - element Size 

complex 
no swap 
complex 
no swap 
complex 
no swap 
complex 
no swap 
complex 
swapped 
complex 
swapped 
complex 
swapped 
complex 
swapped 

1100 PROMOTE Factor 8 - bit 16 - bit Type 16 32 - bit 64 - bit 8 

1101 16 32 000 
001 
010 
011 
100 

lx 
2x 
4x 
8x 

N / A 
zero extend 
zero extend 
zero extend 

8 - bit 16 - bit 
16 - bit 32 - bit 
32 - bit 64 - bit 
64 - bit Invalid 
reserved 

32 - bit 
64 - bit 
Invalid 
Invalid 

64 - bit 
Invalid 
Invalid 
Invalid 1110 32 64 

1111 64 128 

101 
110 
111 

2x 
4x 
8x 

sign extend 
sign extend 
sign extend 

16 - bit 32 - bit 
32 - bit 64 - bit 
64 - bit Invalid 

64 - bit 
Invalid 
Invalid 

Invalid 
Invalid 
Invalid [ 0184 ] Real / Complex Type determines whether the 

streaming engine treats each element as a real number or two 
parts ( real / imaginary or magnitude / angle ) of a complex 
number and also specifies whether to swap the two parts of 
complex numbers . Complex types have a total element size 
twice the sub - element size . Otherwise , the sub - element size 
equals the total element size . 
[ 0185 ] Sub - Element Size determines the type for purposes 
of type promotion and vector lane width . For example , 
16 - bit sub - elements get promoted to 32 - bit sub - elements or 
64 - bit sub - elements when a stream requests type promotion . 
The vector lane width matters when processing unit core 110 

[ 0190 ] When PROMOTE is 000 , corresponding to a 1x 
promotion , each sub - element is unchanged and occupies a 
vector lane equal in width to the size specified by ELTYPE . 
When PROMOTE is 001 , corresponding to a 2x promotion 
and zero extend , each sub - element is treated as an unsigned 
integer and zero extended to a vector lane twice the width 
specified by ELTYPE . A 2x promotion is invalid for an 
initial sub - element size of 64 bits . When PROMOTE is 010 , 
corresponding to a 4x promotion and zero extend , each 
sub - element is treated as an unsigned integer and zero 
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TABLE 13 - continued 

ELDUP Duplication Factor 
100 
101 
110 
111 

16 times 
32 times 
64 times 
Reserved 

extended to a vector lane four times the width specified by 
ELTYPE . A 4x promotion is invalid for an initial sub 
element size of 32 or 64 bits . When PROMOTE is 011 , 
corresponding to an 8x promotion and zero extend , each 
sub - element is treated as an unsigned integer and zero 
extended to a vector lane eight times the width specified by 
ELTYPE . An 8x promotion is invalid for an initial sub 
element size of 16 , 32 or 64 bits . When PROMOTE is 101 , 
corresponding to a 2x promotion and sign extend , each 
sub - element is treated as a signed integer and sign extended 
to a vector lane twice the width specified by ELTYPE . A 2x 
promotion is invalid for an initial sub - element size of 64 
bits . When PROMOTE is 110 , corresponding to a 4x 
promotion and sign extend , each sub - element is treated as a 
signed integer and sign extended to a vector lane four times 
the width specified by ELTYPE . A 4x promotion is invalid 
for an initial sub - element size of 32 or 64 bits . When 
PROMOTE is 111 , corresponding to an 8x promotion and 
zero extend , each sub - element is treated as a signed integer 
and sign extended to a vector lane eight times the width 
specified by ELTYPE . An 8x promotion is invalid for an 
initial sub - element size of 16 , 32 or 64 bits . 
[ 0191 ] The VECLEN field 3004 defines the stream vector 
length for the stream in bytes . 
[ 0192 ] Streaming engine 125 breaks the stream into 
groups of elements that are VECLEN bytes long . The coding 
of the three bits of the VECLEN field 3004 is defined as 
shown in Table 12 . 

TABLE 12 

Stream Vector 
Length VECLEN 

000 
001 
010 
011 
100 
101 
110 
111 

1 byte 
2 bytes 
4 bytes 
8 bytes 
16 bytes 
32 bytes 
64 bytes 

[ 0195 ] The ELDUP field 3005 interacts with VECLEN 
field 3004 and GRDUP field 3006 in a manner detailed 
below . The nature of the relationship between the permitted 
element size , the element duplication factor , and the desti 
nation vector length requires that a duplicated element that 
overflows the first destination register fills an integer number 
of destination registers upon completion of duplication . The 
data of the additional destination registers eventually sup 
plies the respective stream head register 2818/2828 . Upon 
completion of duplication of a first data element , the next 
data element is rotated down to the least significant bits of 
source register 3100 discarding the first data element . The 
process then repeats for the new data element . 
[ 0196 ] The GRDUP bit 3006 determines whether group 
duplication is enabled . If GRDUP bit 3006 is 0 , then group 
duplication is disabled . If the GRDUP bit 3006 is 1 , then 
group duplication is enabled . When enabled by GRDUP bit 
3006 , streaming engine 125 duplicates a group of elements 
to fill the vector width . VECLEN field 3004 defines the 
length of the group to replicate . When VECLEN field 3004 
is less than the vector length of processing unit core 110 and 
GRDUP bit 3006 enables group duplication , streaming 
engine 125 fills the extra lanes ( see FIGS . 21 and 22 ) with 
additional copies of the stream vector . Because stream 
vector length and vector length of processing unit core 110 
are integral powers of two , group duplication produces an 
integral number of duplicate copies . Note GRDUP and 
VECLEN do not specify the number of duplications . The 
number of duplications performed is based upon the ratio of 
VECLEN to the native vector length , which is 64 bytes / 512 
bits in this example . 
[ 0197 ] The GRDUP field 3006 specifies how stream 
engine 125 pads stream vectors for bits following the 
VECLEN length to the vector length of processing unit core 
110. When GRDUP bit 3006 is 0 , streaming engine 125 fills 
the extra lanes with zeros and marks the extra vector lanes 
invalid . When GRDUP bit 3006 is 1 , streaming engine 125 
fills extra lanes with copies of the group of elements in each 
stream vector . Setting GRDUP bit 3006 to 1 has no effect 
when VECLEN is set to the native vector width of process 
ing unit core 110. VECLEN must be at least as large as the 
product of ELEM_BYTES and the element duplication 
factor ELDUP . That is , an element or the duplication factor 
number of elements cannot be separated using VECLEN . 
[ 0198 ] Group duplication operates to the destination vec 
tor size . Group duplication does not change the data supplied 
when the product of the element size ELEM_BYTES and 
element duplication factor ELDUP equals or exceeds the 
destination vector width . Under such conditions , the states 
of the GRDUP bit 3006 and the VECLEN field 3004 have 
no effect on the supplied data . 
[ 0199 ] The set of examples below illustrate the interaction 
between VECLEN and GRDUP . Each of the following 
examples show how the streaming engine maps a stream 
onto vectors across different stream vector lengths and the 
vector size of vector data path side B 116. The stream of this 

Reserved 

[ 0193 ] VECLEN cannot be less than the product of the 
element size in bytes and the duplication factor . As shown in 
Table 11 , the maximum VECLEN of 64 bytes equals the 
preferred vector size of vector data path side B 116. When 
VECLEN is shorter than the native vector width of process 
ing unit core 110 , streaming engine 125 pads the extra lanes 
in the vector provided to processing unit core 110. The 
GRDUP field 3006 determines the type of padding . The 
VECLEN field 3004 interacts with ELDUP field 3005 and 
GRDUP field 3006 in a manner detailed below . 
[ 0194 ] The ELDUP field 3005 specifies the number of 
times to duplicate each element . The element size multiplied 
with the element duplication amount cannot exceed the 64 
bytes . The coding of the three bits of the ELDUP field 3005 
is defined as shown in Table 13 . 

TABLE 13 

ELDUP Duplication Factor 
000 
001 
010 
011 

No Duplication 
2 times 
4 times 
8 times 
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TABLE 16 - continued 

Processor 
Vectors 

Lane Lane 
7 6 

Lane 
5 

Lane 
4 

Lane Lane 
3 2 

Lane Lane 
1 0 

example includes twenty - nine elements ( EO to E28 ) of 64 
bits / 8 bytes . The stream can be a linear stream of twenty 
nine elements or an inner loop of 29 elements . The tables 
illustrate eight byte lanes such as shown in FIG . 21. Each 
illustrated vector is stored in the respective stream head 
register 2818/2828 in turn . 
[ 0200 ] Table 14 illustrates how the example stream maps 
onto bits within the 64 - byte processor vectors when 
VECLEN is 64 bytes . 

14 
15 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

E27 
0 

E26 
E28 

TABLE 14 

[ 0205 ] The twenty - nine elements of the stream are dis 
tributed over lane 0 and lane 1 in fifteen vectors . Extra lanes 
2 to 7 in vectors 1-14 are zero filled . In vector 15 , lane 1 has 
a stream element ( E28 ) and the other lanes are zero filled . 
[ 0206 ] Table 17 shows the same parameters as shown in 
Table 14 , except with VECLEN of eight bytes . Group 
duplicate is disabled ( GRDUP = 0 ) . 

Processor 
Vectors 

Lane 
7 

Lane 
6 

Lane 
5 

Lane Lane Lane 
4 3 2 

Lane Lane 
1 0 

EO 1 
2 
3 
4 

E7 E6 
E15 E14 
E23 E22 
0 0 

E5 
E13 
E21 
0 

E4 
E12 
E20 
E28 

E3 
E11 
E19 
E27 

E2 
E10 
E18 
E26 

E1 
E9 
E17 
E25 

E8 
E16 
E24 TABLE 17 

Lane Lane Lane Lane Processor 
Vectors 7 6 

Lane 
5 

Lane Lane Lane 
4 3 2 1 0 

0 
0 

0 
0 
0 

0 
0 
0 
0 

0 
0 
0 0 

0 0 

[ 0201 ] As shown in Table 14 , the stream extends over four 
vectors . As previously described , the lanes within vector 4 
that extend beyond the stream are zero filled . When 
VECLEN has a size equal to the native vector length , the 
value of GRDUP does not matter as no duplication can take 
place with such a VECLEN . 
[ 0202 ] Table 15 shows the same parameters as shown in 
Table 20 , except with VECLEN of 32 bytes . Group duplicate 
is disabled ( GRDUP = 0 ) . 

0 
0 
0 
0 
0 
0 
0 

0 

0 
0 
0 
0 
0 
0 
0 
0 

0 0 0 0 0 
0 0 0 0 

0 0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 0 

0 
0 

0 
0 
0 
0 
0 

0 
0 
0 

TABLE 15 
0 
0 
0 

0 
0 
0 
0 Processor 

Vectors 
Lane 
7 

Lane 
6 

Lane 
5 

Lane 
4 . 

Lane 
3 

Lane 
2 

Lane 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Lane 
0 

0 0 

EO 
E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
E11 
E12 
E13 
E14 
E15 
E16 
E17 
E18 
E19 
E20 
E21 
E22 
E23 
E24 
E25 
E26 
E27 
E28 

0 0 

0 0 0 
0 0 0 

1 
2 
3 
4 

0 
0 0 

0 

0 
0 
0 
0 
0 
0 

E3 
E7 
E11 
E15 
E19 
E23 
E27 

E2 
E6 
E10 
E14 
E18 
E22 
E26 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

E1 
E5 
E9 
E13 
E17 
E21 
E25 

EO 
E4 
E8 
E12 
E16 
E20 
E24 

0 

6 
7 
8 

0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 0 0 0 0 E28 0 

0 
0 
0 
0 
0 
0 

0 
0 

0 
0 
0 0 0 0 

0 0 0 0 0 0 0 
[ 0203 ] The twenty - nine elements of the stream are dis 
tributed over lanes 0 to 3 in eight vectors . Extra lanes 4 to 
7 in vectors 1-7 are zero filled . In vector 8 , lane 1 has a 
stream element ( E28 ) and the other lanes are zero filled . 
[ 0204 ] Table 16 shows the same parameters as shown in 
Table 22 , except with VECLEN of sixteen bytes . Group 
duplicate is disabled ( GRDUP = 0 ) . 

[ 0207 ] The twenty - nine elements of the stream appear in 
lane 0 in twenty - nine vectors . Extra lanes 1-7 in vectors 1-29 
are zero filled . 

[ 0208 ] Table 18 shows the same parameters as shown in 
Table 15 , except with VECLEN of thirty - two bytes and 
group duplicate is enabled ( GRDUP = 1 ) . 

TABLE 16 
Processor 
Vectors 

Lane 
7 

Lane 
6 Çane Lane Lane 

5 4 ?ane Lane 
3 

Lane 
2 

Lane 
1 

Lane 
0 

TABLE 18 
0 0 0 

0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 

0 
0 
0 

Processor 
Vectors 

Lane 
7 

Lane 
6 

Lane 
5 

Lane 
4 

Lane 
3 

Lane 
2 

Lane 
1 

Lane 
0 0 

0 0 
0 0 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
2 0 0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0 
0 
0 
0 

E1 
E3 
E5 
E7 
E9 
E11 
E13 
E15 
E17 
E19 
E21 
E23 
E25 

EO 
E2 
E4 
E6 
E8 
E10 
E12 
E14 
E16 
E18 
E20 
E22 
E24 

E3 
E7 
E11 
E15 
E19 
E23 
E27 
0 

0 
0 
0 
0 
0 
0 
0 

E2 
E6 
E10 
E14 
E18 
E22 
E26 
0 

E1 
E5 
E9 
E13 
E17 
E21 
E25 
0 

3 
4 
5 
6 
7 
8 

EO 
F4 
E8 
E12 
E16 
E20 
E24 
E28 

E3 
E7 
E11 
E15 
E19 
E23 
E27 
0 

E2 
E6 
E10 
E14 
E18 
E22 
E26 
0 

E1 
E5 
E9 
E13 
E17 
E21 
E25 
0 

0 

EO 
E4 
E8 
E12 
E16 
E20 
E24 
E28 

0 
0 

0 
0 0 0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 0 
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TABLE 20 - continued 

Processor 
Vectors 

Lane Lane 
7 6 

Lane 
5 

Lane 
4 

Lane Lane 
3 2 

Lane Lane 
1 0 

24 

[ 0209 ] The twenty - nine elements of the stream are dis 
tributed over lanes 0-7 in eight vectors . Each vector 1-7 
includes four elements duplicated . The duplication factor ( 2 ) 
results because VECLEN ( 32 bytes ) is half the native vector 
length of 64 bytes . In vector 8 , lane 0 has a stream element 
( E28 ) and lanes 1-3 are zero filled . Lanes 4-7 of vector 9 
duplicate this pattern . 
[ 0210 ] Table 19 shows the same parameters as shown in 
Table 16 , except with VECLEN of sixteen bytes . Group 
duplicate is enabled ( GRDUP = 1 ) . 

25 
26 
27 
28 
29 

E23 
E24 
E25 
E26 
E27 
E28 

E23 
E24 
E25 
E26 
E27 
E28 

E23 
E24 
E25 
E26 
E27 
E28 

E23 
E24 
E25 
E26 
E27 
E28 

E23 
E24 
E25 
E26 
E27 
E28 

E23 
E24 
E25 
E26 
E27 
E28 

E23 
E24 
E25 
E26 
E27 
E28 

E23 
E24 
E25 
E26 
E27 
E28 

TABLE 19 

processor 
Vectors 

Lane 
7 

Lane 
6 

Lane 
5 

Lane 
4 

Lane 
3 

Lane 
2 

Lane 
1 

Lane 
0 

EO E1 E1 EO 
E2 E2 E3 E3 
E4 

1 
2 
3 
4 
5 
6 

8 

E1 
E3 
ES 
E7 
E9 
E11 
E13 
E15 
E17 
E19 
E21 
E23 
E25 
E27 
0 

E4 
E6 
E8 
E10 
E12 
E14 
E16 
E18 
E20 
E22 
E24 
E26 
E28 

EO 
E2 
E4 
E6 
E8 
E10 
E12 
E14 
E16 
E18 
E20 
E22 
E24 
E26 
E28 

E5 
E7 
E9 
E11 
E13 
E15 
E17 
E19 
E21 
E23 
E25 
E27 
0 

9 
10 
11 
12 
13 
14 
15 

EO 
E2 
E4 
E6 
E8 
E10 
E12 
E14 
E16 
E18 
E20 
E22 
E24 
E26 
E28 

E5 
E7 
E9 
E11 
E13 
E15 
E17 
E19 
E21 
E23 
E25 
E27 
0 

E1 
E3 
E5 
E7 
E9 
E11 
E13 
E15 
E17 
E19 
E21 
E23 
E25 
E27 
0 

E6 
E8 
E10 
E12 
E14 
E16 
E18 
E20 
E22 
E24 
E26 
E28 

[ 0211 ] The twenty - nine elements of the stream are distrib 
uted over lanes 0-7 in fifteen vectors . Each vector 1-7 
includes two elements duplicated four times . The duplica 
tion factor ( 4 ) results because VECLEN ( 16 bytes ) is one 
quarter the native vector length of 64 bytes . In vector 15 , 
lane O has a stream element ( E28 ) and lane 1 is zero filled . 
This pattern is duplicated in lanes 2 and 3 , lanes 4 and 5 , and 
lanes 6 and 7 of vector 15 . 
[ 0212 ] Table 20 shows the same parameters as shown in 
Table 17 , except with VECLEN of eight bytes . Group 
duplicate is enabled ( GRDUP = 1 ) . 

[ 0213 ] The twenty - nine elements of the stream all appear 
on lanes 0 to 7 in twenty - nine vectors . Each vector includes 
one element duplicated eight times . The duplication factor 
( 8 ) results because VECLEN ( 8 bytes ) is one eighth the 
native vector length of 64 bytes . Thus , each lane is the same 
in vectors 1-29 . 
[ 0214 ] FIG . 31 illustrates an example of vector length 
masking / group duplication block 2025 ( see FIG . 20 ) that is 
included within formatter block 1903 of FIG . 19. Input 
register 3100 receives a vector input from element duplica 
tion block 2024 shown in FIG . 20. Input register 3100 
includes 64 bytes arranged in 64 1 - byte blocks byte0 to 
byte63 . Note that bytes byte ) to byte63 are each equal in 
length to the minimum of ELEM_BYTES . A set of multi 
plexers 3101 to 3163 couple input bytes from source register 
3100 to output register 3170. Each respective multiplexer 
3101 to 3163 supplies an input to a respective bytel to 
byte63 of output register 3170. Not all input bytes byte0 to 
byte63 of input register 3100 are coupled to every multi 
plexer 3101 to 3163. Note there is no multiplexer supplying 
byte0 of output register 3170. In this example , bytel of 
output register 3170 is supplied by bytel of input register 
3100 . 
[ 0215 ] Multiplexers 3101 to 3163 are controlled by mul 
tiplexer control encoder 3180. Multiplexer control encoder 
3180 receives ELEM_BYTES , VECLEN and GRDUP input 
signals and generates respective control signals for multi 
plexers 3101 to 3163. ELEM_BYTES and ELDUP are 
supplied to multiplexer control encoder 3180 to check to see 
that ECLEN is at least as great as the product of ELEM_ 
BYTES and ELDUP . In operation , multiplexer control 
encoder 3180 controls multiplexers 3101 to 3163 to transfer 
least significant bits equal in number to VECLEN from input 
register 3100 to output register 3170. If GRDUP = 0 indicat 
ing group duplication disabled , then multiplexer control 
encoder 3180 controls the remaining multiplexers 3101 to 
3163 to transfer zeros to all bits in the remaining most 
significant lanes of output register 3170. If GRDUP = 1 
indicating group duplication enabled , then multiplexer con 
trol encoder 3180 controls the remaining multiplexers 3101 
to 3163 to duplicate the VECLEN number of least signifi 
cant bits of input register 3100 into the most significant lanes 
of output register 3170. This control is similar to the element 
duplication control described above and fills the output 
register 3170 with the first vector . For the next vector , data 
within input register 3100 is rotated down by VECLEN , 
discarding the previous VECLEN least significant bits . The 
rate of data movement in formatter 1903 ( FIG . 19 ) is set by 
the rate of consumption of data by processing unit core 110 
( FIG . 1 ) via stream read and advance instructions described 
below . The group duplication formatting repeats as long as 
the stream includes additional data elements . 
[ 0216 ] Element duplication ( ELDUP ) and group duplica 
tion ( GRUDP ) are independent . Note these features include 

TABLE 20 

Processor 
Vectors 

Lane 
7 Lane Lane 

6 
Lane Lane 
5 4 

Lane 
3 

Lane 
2 

Lane 
1 

Lane 
0 

EO EO EO 
E1 E1 E1 

E2 E2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
E11 
E12 
E13 
E14 
E15 
E16 
E17 
E18 
E19 
E20 
E21 
E22 

E2 
E3 
E4 
E5 
E6 
E7 
ES 
E9 
E10 
E11 
E12 
E13 
E14 
E15 
E16 
E17 
E18 
E19 
E20 
E21 
E22 

EO 
E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
E11 
E12 
E13 
E14 
E15 
E16 
E17 
E18 
E19 
E20 
E21 
E22 

EO 
E1 
E2 
E3 
E4 
E5 
E6 
E7 
ES 
E9 
E10 
E11 
E12 
E13 
E14 
E15 
E16 
E17 
E18 
E19 
E20 
E21 
E22 

EO 
E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
E11 
E12 
E13 
E14 
E15 
E16 
E17 
E18 
E19 
E20 
E21 
E22 

EO 
E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
E11 
E12 
E13 
E14 
E15 
E16 
E17 
E18 
E19 
E20 
E21 
E22 

EO 
E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
E11 
E12 
E13 
E14 
E15 
E16 
E17 
E18 
E19 
E20 
E21 
E22 

E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
E11 
E12 
E13 
E14 
E15 
E16 
E17 
E18 
E19 
E20 
E21 
E22 
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independent specification and parameter setting . Thus , ele 
ment duplication and group duplication can be used together 
or separately . Because of how these are specified , element 
duplication permits overflow to the next vector while group 
duplication does not . 
[ 0217 ] Referring again to FIG . 30 , the DECIM field 3007 
controls data element decimation of the corresponding 
stream . Streaming engine 125 deletes data elements from the 
stream upon storage in respective stream head registers 
2818/2828 for presentation to the requesting functional unit . 
Decimation removes whole data elements , not sub - elements . 
The DECIM field 3007 is defined as listed in Table 21 . 

[ 0220 ] THROTTLE does not change the meaning of the 
stream and serves only as a hint . The streaming engine can 
ignore this field . Programs should not rely on the specific 
throttle behavior for program correctness , because the archi 
tecture does not specify the precise throttle behavior . 
THROTTLE allows programmers to provide hints to the 
hardware about the program behavior . By default , the 
streaming engine attempts to get as far ahead of processing 
unit core 110 as possible to hide as much latency as possible 
( equivalent to THROTTLE = 11 ) , while providing full stream 
throughput to processing unit core 110. While some appli 
cations need this level of throughput , such throughput can 
cause bad system level behavior for others . For example , the 
streaming engine discards all fetched data across context 
switches . Therefore , aggressive fetch - ahead can lead to 
wasted bandwidth in a system with large numbers of context 
switches . 

TABLE 21 

DECIM Decimation Factor 

00 
01 
10 
11 

No Decimation 
2 times 
4 times 
Reserved [ 0221 ] The DIMFMT field 3009 defines which of the loop 

count fields ICNTO 2901 , ICNT1 2902 , ICNT2 2903 , 
ICNT3 2804 , ICNT4 2905 and ICNT5 2906 , of the loop 
dimension fields DIM1 2911 , DIM2 2912 , DIM3 2913 , 
DIM4 2914 and DIM5 2915 and of the addressing mode 
fields AMO 3013 , AM1 3014 , AM2 3015 , AM3 3016 , AM4 
3017 and AM5 3018 ( part of FLAGS field 2921 ) of the 
stream template register 2900 are active for the particular 
stream . Table 23 lists the active loops for various values of 
the DIMFMT field 3009. Each active loop count must be at 
least 1 and the outer active loop count must be greater than 
1 . 

TABLE 23 

DIMFMT Loop5 Loop4 Loop3 Loop2 Loop1 Loopo 

[ 0218 ] If DECIM field 3007 equals 00 , then no decimation 
occurs . The data elements are passed to the corresponding 
stream head registers 2818/2828 without change . If DECIM 
field 3007 equals 01 , then 2 : 1 decimation occurs . Streaming 
engine 125 removes odd number elements from the data 
stream upon storage in the stream head registers 2818/2828 . 
Limitations in the formatting network require 2 : 1 decima 
tion to be employed with data promotion by at least 2x 
( PROMOTE cannot be 000 ) , ICNTO must be multiple of 2 , 
and the total vector length ( VECLEN ) must be large enough 
to hold a single promoted , duplicated element . For trans 
posed streams ( TRANSPOSE 0 ) , the transpose granule must 
be at least twice the element size in bytes before promotion . 
If DECIM field 3007 equals 10 , then 4 : 1 decimation occurs . 
Streaming engine 125 retains every fourth data element 
removing three elements from the data stream upon storage 
in the stream head registers 2818/2828 . Limitations in the 
formatting network require 4 : 1 decimation to be employed 
with data promotion by at least 4x ( PROMOTE cannot be 
000 , 001 or 101 ) , ICNTO must be a multiple of 4 and the 
total vector length ( VECLEN ) must be large enough to hold 
a single promoted , duplicated element . For transposed 
streams ( TRANSPOSE + 0 ) , in one example , decimation 
removes columns , and does not remove rows . Thus , in such 
cases , the transpose granule must be at least twice the 
element size in bytes before promotion for 2 : 1 decimation 
( GRANULE 2XELEM_BYTES ) and at least four times the 
element size in bytes before promotion for 4 : 1 decimation 
( GRANULE 4XELEM_BYTES ) . 
[ 0219 ] The THROTTLE field 3008 controls how aggres 
sively the streaming engine fetches ahead of processing unit 
core 110. The coding of the two bits of this field is defined 
as shown in Table 22 . 

000 
001 
010 
011 
100 
101 
110-111 

Inactive Inactive 
Inactive Inactive 
Inactive Inactive 
Inactive Inactive 
Inactive Active 
Active Active 

Inactive Inactive Inactive Active 
Inactive Inactive Active Active 
Inactive Active Active Active 
Active Active Active Active 
Active Active Active Active 
Active Active Active Active 

Reserved 

[ 0222 ] The DIR bit 3010 determines the direction of fetch 
of the inner loop ( Loopo ) . If the DIR bit 3010 is 0 , Loopo 
fetches are in the forward direction toward increasing 
addresses . If the DIR bit 3010 is 1 , Loopo fetches are in the 
backward direction toward decreasing addresses . The fetch 
direction of other loops is determined by the sign of the 
corresponding loop dimension DIMI , DIM2 , DIM3 , DIM4 
and DIM5 . 

[ 0223 ] The CBKO field 3011 and the CBK1 field 3012 
control the circular block size upon selection of circular 
addressing . The manner of determining the circular block 
size is described herein . 

[ 0224 ] The AMO field 3013 , AM1 field 3014 , AM2 field 
3015 , AM3 field 3016 , AM4 field 3017 and AM5 field 3018 
control the addressing mode of a corresponding loop , thus 
permitting the addressing mode to be independently speci 
fied for each loop . Each of AMO field 3013 , AM1 field 3014 , 
AM2 field 3015 , AM3 field 3016 , AM4 field 3017 and AM5 
field 3018 are three bits and are decoded as listed in Table 
24 . 

TABLE 22 

THROTTLE Description 

00 
01 
10 
11 

Minimum throttling , maximum fetch ahead 
Less throttling , more fetch ahead 
More throttling , less fetch ahead 
Maximum throttling , minimum fetch ahead 
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TABLE 24 

AN / Tx field Meaning 

00 
01 

Linear addressing 
Circular addressing block size set by 
CBKO 
Circular addressing block size set by 
CBKO + CBK1 + 1 
reserved 

10 

first block size ( AMx of 01 ) and CBKO + CBK1 + 1 for the 
second block size ( AMx of 10 ) . 
[ 0226 ] The processing unit 110 ( FIG . 1 ) exposes the 
streaming engine 125 ( FIG . 28 ) to programs through a small 
number of instructions and specialized registers . Programs 
start and end streams with SEOPEN and SECLOSE . 
SEOPEN opens a new stream and the stream remains open 
until terminated explicitly by SECLOSE or replaced by a 
new stream with SEOPEN . The SEOPEN instruction speci 
fies a stream number indicating opening stream 0 or stream 
1. The SEOPEN instruction specifies a data register storing 
the start address of the stream . The SEOPEN instruction also 
specifies a stream template register that stores the stream 
template as described above . The arguments of the SEOPEN 
instruction are listed in Table 26 . 

11 

In linear addressing , the address advances according to the 
address arithmetic whether forward or reverse . In circular 
addressing , the address remains within a defined address 
block . Upon reaching the end of the circular address block 
the address wraps around to the beginning limit of the block . 
Circular addressing blocks are limited to 2N addresses 
where N is an integer . Circular address arithmetic can 
operate by cutting the carry chain between bits and not 
allowing a selected number of most significant bits to 
change . Thus , arithmetic beyond the end of the circular 
block changes only the least significant bits . The block size 
is set as listed in Table 25 . 

TABLE 26 

Argument Description 

Stream Start Address 
Register 
Stream Number 
Stream Template 
Register 

Scalar register storing stream 
start address 
Stream 0 or Stream 1 
Vector register storing stream 
template data 

TABLE 25 

Encoded Block Size 
CBKO or CBKO + 
CBK1 + 1 

Block Size 
( bytes ) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

512 
1 K 
2 K 
4 K 
8 K 

16 K 
32 K 
64 K 

128 K 
256 K 
512 K 

1 M 
2 M 
4 M 
8 M 

16 M 
32 M 
64 M 

128 M 
256 M 
512 M 

1 G 
2G 
4 G 
8 G 

16 G 
32 G 
64 G 

Reserved 
Reserved 
Reserved 
Reserved 

[ 0227 ] The stream start address register is a register in 
general scalar register file 211 ( FIG . 2 ) in this example . The 
SEOPEN instruction can specify the stream start address 
register via scr1 field 1305 ( FIG . 13 ) of example instruction 
coding 1300 ( FIG . 13 ) . The SEOPEN instruction specifies 
stream 0 or stream 1 in the opcode . The stream template 
register is a vector register in general vector register file 221 
in this example . The SEOPEN instruction can specify the 
stream template register via scr2 / cst field 1304 ( FIG . 13 ) . If 
the specified stream is active , the SEOPEN instruction 
closes the prior stream and replaces the stream with the 
specified stream . 
[ 0228 ] SECLOSE explicitly marks a stream inactive , 
flushing any outstanding activity . Any further references to 
the stream trigger exceptions . SECLOSE also allows a 
program to prematurely terminate one or both streams . 
[ 0229 ] An SESAVE instruction saves the state of a stream 
by capturing sufficient state information of a specified 
stream to restart that stream in the future . An SERSTR 
instruction restores a previously saved stream . An SESAVE 
instruction saves the stream metadata and does not save any 
of the stream data . The stream re - fetches stream data in 
response to an SERSTR instruction . 
[ 0230 ] Each stream can be in one of three states : inactive , 
active , or frozen after reset . Both streams begin in the 
inactive state . Opening a stream moves the stream to the 
active state . Closing the stream returns the stream to the 
inactive state . In the absence of interrupts and exceptions , 
streams ordinarily do not make other state transitions . To 
account for interrupts , the streaming engine adds a third 
state : frozen . The frozen state represents an interrupted 
active stream . 
( 0231 ] In this example , four bits , two bits per stream , 
define the state of both streams . One bit per stream resides 
within the streaming engine , and the other bit resides within 
the processor core 110. The streaming engine internally 
tracks whether each stream holds a parameter set associated 
with an active stream . This bit distinguishes an inactive 
stream from a not - inactive stream . The processor core 110 

[ 0225 ] In this example , the circular block size is set by the 
number encoded by CBKO ( first circular address mode 01 ) 
or the number encoded by CBKO + CBK1 + 1 ( second circular 
address mode 10 ) . For example , in the first circular address 
mode , the circular address block size can range from 512 
bytes to 16 M bytes . For the second circular address mode , 
the circular address block size can range from 1 K bytes to 
64 G bytes . Thus , the encoded block size is 2 ( B + 9 ) bytes , 
where B is the encoded block number which is CBKO for the 
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and then store the combined data to memory using the valid 
data indications as a mask , thus enabling the same process 
to be used for the end of loop data as is used for cases where 
all the lanes are valid which avoids storing invalid data . The 
valid indication stored in predicate register file 234 can be 
used as a mask or an operand in other processes . P unit 246 
( FIG . 2 ) can have an instruction to count the number of l’s 
in a predicate register ( BITCNT , which can be used to 
determine the count of valid data elements from a predicate 
register . 
[ 0237 ] FIG . 32 illustrates example hardware 3200 to pro 
duce the valid / invalid indications stored in the valid register 
2819 ( FIG . 28 ) . FIG . 32 illustrates hardware for stream 0 ; 
stream 1 includes corresponding hardware . Hardware 3200 
operates to generate one valid word each time data is 
updated in stream head register 2818 ( FIG . 28 ) . A first input 
ELTYPE is supplied to decoder 3201. Decoder 3201 pro 
duces an output TOTAL ELEMENT SIZE corresponding to 
the minimum data size based upon the element size ELEM_ 
BYTES and whether the elements are real numbers or 
complex numbers . The meanings of various codings of 
ELTYPE are shown in Table 9. Table 27 shows an example 
output of decoder 3201 in bytes for the various ELTYPE 
codings . Note Table 9 lists bits and Table 27 lists bytes . As 
shown in Table 27 , TOTAL ELEMENT SIZE is 1 , 2 , 4 or 8 
bytes if the element is real and 2 , 4 , 8 or 16 bytes if the 
element is complex . 

TABLE 27 

Total Element 
Size Bytes ELTYPE Real / Complex 

separately tracks the state of each stream with a dedicated bit 
per stream in the Task State Register ( TSR ) : TSR.SEO for 
stream 0 , and TSR.SE1 for stream 1. These bits distinguish 
between active and inactive streams . 
[ 0232 ] Opening a stream moves the stream to the active 
state . Closing a stream moves the stream to the inactive 
state . If a program opens a new stream over a frozen stream , 
the new stream replaces the old stream and the streaming 
engine discards the contents of the previous stream . The 
streaming engine supports opening a new stream on a 
currently active stream . The streaming engine discards the 
contents of the previous stream , flushes the pipeline , and 
starts fetching data for the new opened stream . Data to 
processor is asserted once the data has returned . If a program 
closes an already closed stream , nothing happens . If a 
program closes an open or frozen stream , the streaming 
engine discards all state related to the stream , clears the 
internal stream - active bit , and clears the counter , tag and 
address registers . Closing a stream serves two purposes . 
Closing an active stream allows a program to specifically 
state the stream and the resources associated with the stream 
are no longer needed . Closing a frozen stream also allows 
context switching code to clear the state of the frozen 
stream , so that other tasks do not see it . 
[ 0233 ] As noted above , there are circumstances when 
some data within a stream holding register 2818 or 2828 is 
not valid . As described above , such a state can occur at the 
end of an inner loop when the number of stream elements is 
less than the respective stream holding register 2818/2828 
size or at the end of an inner loop when the number of stream 
elements remaining is less than the lanes defined by 
VECLEN . For times not at the end of an inner loop , if 
VECLEN is less than the width of stream holding register 
2818/2828 and GRDUP is disabled , then lanes in stream 
holding register 2818/2828 in excess of VECLEN are 
invalid . 
[ 0234 ] Referring again to FIG . 28 , in this example stream 
ing engine 125 further includes valid registers 2819 and 
2829. Valid register 2819 indicates the valid lanes in stream 
head register 2818. Valid register 2829 indicates the valid 
lanes in stream head register 2828. Respective valid regis 
ters 2819/2829 include one bit for each minimum ELEM_ 
BYTES lane within the corresponding stream head register 
2818/2828 . In this example , the minimum ELEM_BYTES 
15 1 byte . The preferred data path width of processor 100 
and the data length of stream head registers 2818/2828 is 64 
bytes ( 512 bits ) . Valid registers 2819/2829 accordingly have 
a data width of 64 bits . Each bit in valid registers 2819/2829 
indicates whether a corresponding byte in stream head 
registers 2818/2828 is valid . In this example , a 0 indicates 
the corresponding byte within the stream head register is 
invalid , and a 1 indicates the corresponding byte is valid . 
[ 0235 ] In this example , upon reading a respective one of 
the stream head registers 2818/2828 and transferring of data 
to the requesting functional unit , the invalid / valid data in the 
respective valid register 2819/2829 is automatically trans 
ferred to a data register within predicate register file 234 
( FIG . 2 ) corresponding to the particular stream . In this 
example the valid data for stream 0 is stored in predicate 
register PO and the valid data for stream 1 is stored in 
predicate register P1 . 
[ 0236 ] The valid data stored in the predicate register file 
234 can be used in a variety of ways . The functional unit can 
combine the vector stream data with another set of vectors 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0110 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Real 
Real 
Real 
Real 

Reserved 
Reserved 
Reserved 
Reserved 

Complex , Not Swapped 
Complex , Not Swapped 
Complex , Not Swapped 
Complex , Not Swapped 
Complex , Swapped 
Complex , Swapped 
Complex , Swapped 
Complex , Swapped 

1 
2 
4 
8 

Reserved 
Reserved 
Reserved 
Reserved 

2 
4 
8 

16 
2 
4 
8 

16 

[ 0238 ] A second input PROMOTE is supplied to decoder 
3202. Decoder 3202 produces an output promotion factor 
corresponding to the PROMOTE input . The meaning of 
various codings of PROMOTE are shown in Table 28 , which 
shows an example output of decoder 3202 in bytes for the 
various PROMOTE codings . The difference in extension 
type ( zero extension or sign extension ) is not relevant to 
decoder 3202 . 

TABLE 28 

Promotion 
Factor PROMOTE 

000 
001 
010 
011 
100 

1 
2 
4 
8 

Reserved 
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TABLE 28 - continued 

Promotion 
Factor PROMOTE 

101 
110 
111 

2 
4 
8 

[ 0239 ] The outputs of decoders 3201 and 3202 are sup 
plied to multiplier 3203. The product produced by multiplier 
3203 is the lane size corresponding to the TOTAL ELE 
MENT SIZE and the promotion factor . Because the promo 
tion factor is an integral power of 2 ( 2M ) , the multiplication 
can be achieved by corresponding shifting of the TOTAL 
ELEMENT SIZE , e.g. , no shift for a promotion factor of 1 , 
a one - bit shift for a promotion factor of 2 , a two - bit shift for 
a promotion factor of 4 , and a three - bit shift for a promotion 
factor of 8 . 
[ 0240 ] NUMBER OF LANES unit 3204 receives the 
vector length VECLEN and the LANE SIZE and generates 
the NUMBER OF LANES . Table 29 shows an example 
decoding of the number of lanes for lane size in bytes and 
the vector length VECLEN . 

TABLE 29 

LANE VECLEN 

SIZE 000 001 010 011 100 101 110 

1 2 4 
2 
1 

8 
4 1 

1 
2 
4 
8 

16 
32 
64 

16 
8 
4 
2 
1 

32 
16 
8 
4 
2 
1 

64 
32 
16 
8 
4 
2 

1 

included with address generator 2811. The first loop of the 
stream employs Loopo count register 3311 , adder 3312 , 
multiplier 3313 and comparator 3314. Loop count register 
3311 stores the working copy of the iteration count of the 
first loop ( Loopo ) . For each iteration of Loopo , adder 3312 , 
as triggered by the Next Address signal , adds 1 to the loop 
count , which is stored back in Loop count register 3311 . 
Multiplier 3313 multiplies the current loop count and the 
quantity ELEM_BYTES . ELEM_BYTES is the size of each 
data element in loop ( ) in bytes . Loopo traverses data 
elements physically contiguous in memory with an iteration 
step size of ELEM_BYTES . 
[ 0244 ] Comparator 3314 compares the count stored in 
Loop count register 3311 ( after incrementing by adder 
3313 ) with the value of ICNTO 2901 ( FIG . 29 ) from the 
corresponding stream template register 2900 ( FIG . 29 ) . 
When the output of adder 3312 equals the value of ICNTO 
2901 of the stream template register 2900 , an iteration of 
Loop is complete . Comparator 3314 generates an active 
Loop End signal . Loop0 count register 3311 is reset to 0 
and an iteration of the next higher loop , in this case Loop1 , 
is triggered . 
[ 0245 ] Circuits for the higher loops ( Loop1 , Loop2 , 
Loop3 , Loop4 and Loop5 ) are similar to that illustrated in 
FIG . 33. Each loop includes a respective working loop count 
register , adder , multiplier and comparator . The adder of each 
loop is triggered by the loop end signal of the prior loop . The 
second input to each multiplier is the corresponding dimen 
sion DIMI , DIM2 , DIM3 , DIM4 and DIM5 from the 
corresponding stream template . The comparator of each 
loop compares the working loop register count with the 
corresponding iteration value ICNTI , ICNT2 , ICNT3 , 
ICNT4 and ICNT5 of the corresponding stream template 
register 2900. A loop end signal generates an iteration of the 
next higher loop . A loop end signal from Loop5 ends the 
stream . 

[ 0246 ] FIG . 33 also illustrates the generation of Loop 
count . Loop0 count equals the updated data stored in the 
corresponding working count register 3311. Loop count is 
updated on each change of working Loop count register 
3311. The loop counts for the higher loops ( Loop1 , Loop2 , 
Loop3 , Loop4 and Loop5 ) are similarly generated . 
[ 0247 ] FIG . 33 also illustrates the generation of Loop 
address . Loopo address equals the data output from multi 
plier 3313. Loop0 address is updated on each change of 
working Loop count register 3311. Similar circuits for 
Loop1 , Loop2 , Loop3 , Loop4 and Loop5 produce corre 
sponding loop addresses . In this example , Loopo count 
register 3311 and the other loop count registers are imple 
mented as count up registers . In another example , initial 
ization and comparisons operate as count down circuits . 
[ 0248 ] Referring again to FIG . 32 , the value of the loop 
down count , such as Loop , is given by expression ( 2 ) . 

Loopx / = ICNTx - Loopx ( 2 ) 

[ 0249 ] That is , the loop down count is the difference 
between the initial iteration count specified in the stream 
template register and the loop up count produced as illus 
trated in FIG . 33 . 
[ 0250 ] LANE / REMAINING ELEMENTS CONTROL 
WORD unit 3211 ( FIG . 32 ) generates a control word 3213 
based upon the number of lanes from NUMBER OF LANES 
unit 3204 and the loop down count selected by multiplexer 
3212. The control input to multiplexer 3212 is the TRANS 

| 

[ 0241 ] As previously stated , VECLEN must be greater 
than or equal to the product of the element size and the 
duplication factor . As shown in Table 29 , VECLEN must 
also be greater than or equal to the product of the element 
size and the promotion factor . This means that VECLEN 
must be large enough to guarantee that an element cannot be 
separated from its extension produced by type promotion 
block 2022 ( FIG . 20 ) . The cells below the diagonal in Table 
29 marked indicate an unpermitted combination of 
parameters . 
[ 0242 ] The NUMBER OF LANES output of unit 3204 
serves as one input to LANE / REMAINING ELEMENTS 
CONTROL WORD unit 3211. A second input comes from 
multiplexer 3212. Multiplexer 3212 receives a Loop input 
and a Loop1 input . The Loop input and the Loop1 input 
represent the number of remaining elements in the current 
iteration of the corresponding loop . 
[ 0243 ] FIG . 33 illustrates a partial schematic view of 
address generator 2811 shown in FIG . 28. Address generator 
2811 forms an address for fetching the next element in the 
defined stream of the corresponding streaming engine . Start 
address register 3301 stores a start address of the data 
stream . As previously described above , in this example , start 
address register 3301 is a scalar register in global scalar 
register file 211 designated by the SEOPEN instruction that 
opened the corresponding stream . The start address can be 
copied from the specified scalar register and stored locally at 
the respective address generator 2811/2821 by control logic 
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POSE signal from field 3002 of FIG . 30. If TRANSPOSE is 
disabled ( " 000 ” ) , multiplexer 3212 selects the Loop down 
count Loop0 / . For all other legal values of TRANSPOSE 
( " 001 ” , “ 010 ” , “ 011 ” , “ 100 ” , “ 101 ” and “ 110 ” ) multiplexer 
3212 selects the Loop1 down count Loop1 / . The streaming 
engine maps the innermost dimension to consecutive lanes 
in a vector . For normal streams this is Loopo . For transposed 
streams , this is Loop1 , because transposition exchanges the 
two dimensions . 
[ 0251 ] LANE / REMAINING ELEMENTS CONTROL 
WORD unit 3211 generates control word 3213 as follows . 
Control word 3213 has a number of bits equal to the number 
of lanes from unit 3204. If the remaining count of elements 
of the selected loop is greater than or equal to the number of 
lanes , then all lanes are valid . For this case , control word 
3213 is all ones , indicating that all lanes within the vector 
length VECLEN are valid . If the remaining count of ele 
ments of the selected loop is nonzero and less than the 
number of lanes , then some lanes are valid and some are 
invalid . According to the lane allocation described above in 
conjunction with FIGS . 21 and 22 , stream elements are 
allocated lanes starting with the least significant lanes . 
Under these circumstances . control word 3213 includes a 
number of least significant bits set to one equal to the 
number of the selected loop down count . All other bits of 
control word 3213 are set to zero . In the example illustrated 
in FIG . 32 , the number of lanes equals eight and there are 
five valid ( 1 ) least significant bits followed by three invalid 
( 0 ) most significant bits which corresponds to a loop having 
five elements remaining in the final iteration . 
[ 0252 ] Control word expansion unit 3214 expands the 
control word 3213 based upon the magnitude of LANE 
SIZE . The expanded control word includes one bit for each 
minimally sized lane . In this example , the minimum stream 
element size , and thus the minimum lane size , is one byte ( 8 
bits ) . In this example , the size of holding registers 2818 / 
2828 equals the vector size of 64 bytes ( 512 bits ) . Thus , the 
expanded control word has 64 bits , one bit for each byte of 
stream holding registers 2818/2828 . This expanded control 
word fills the least significant bits of the corresponding valid 
register 2819 and 2829 ( FIG . 28 ) . 
[ 0253 ] For the case when VECLEN equals the vector 
length , the description is complete . The expanded control 
word includes bits for all places within respective valid 
register 2819/2829 . There are some additional consider 
ations when VECLEN does not equal the vector length . 
When VECLEN does not equal the vector length , the 
expanded control word does not have enough bits to fill the 
corresponding valid register 2819/2829 . As illustrated in 
FIG . 32 , the expanded control word fills the least significant 
bits of the corresponding valid register 2819/2829 , thus 
providing the valid / invalid bits for lanes within the 
VECLEN width . Another mechanism is provided for lanes 
beyond the VECLEN width up to the data width of stream 
head register 2818 . 
[ 0254 ] Referring still to FIG . 32 , multiplexer 3215 and 
group duplicate unit 3216 are illustrated to provide the 
needed additional valid / invalid bits . Referring to the 
description of VECLEN , if group duplication is not enabled 
( GRDUP = 0 ) , then the excess lanes are not valid . A first input 
of multiplexer 3215 is an INVALID O signal that includes 
multiple bits equal in number to VEDLEN . When 
GRDUP = 0 , multiplexer 3215 selects this input . Group 
duplicate unit 3216 duplicates this input to all excess lanes 

of stream head register 2818. Thus , the most significant bits 
of valid register 2819 are set to zero indicating the corre 
sponding bytes of stream head register 2818 are invalid . This 
occurs for vectors 1-7 of the example shown in Table 15 , 
vectors 1-14 of the example shown in Table 16 , and vectors 
1-29 of the example shown in Table 17 . 
[ 0255 ] In another example , mux 3215 and group duplicate 
block 3216 are replaced with group duplicate logic that is 
similar to the group duplicate logic 2025 illustrated in FIG . 
31 . 
[ 0256 ] As previously described , if group duplication is 
enabled ( GRDUP = 1 ) , then the excess lanes of stream head 
register 2818 ( FIG . 28 ) are filled with copies of the least 
significant bits . A second input of multiplexer 3215 is the 
expanded control word from control word expansion unit 
3214. When GRDUP = 1 , multiplexer 3215 selects this input . 
Group duplicate unit 3216 duplicates this input to all excess 
lanes of stream head register 2818 . 
[ 0257 ] There are two possible outcomes . In one outcome , 
in most cases , all the lanes within VECLEN are valid and the 
bits from control word expansion unit 3214 are all ones . This 
occurs for vectors 1-7 of the group duplication example 
shown in Table 18 and vectors 1-14 of the group duplication 
example shown in Table 19. Under these conditions , all bits 
of the expanded control word from control word expansion 
unit 3214 are one and all lanes of stream head register 2818 
are valid . Group duplicate unit 3216 thus fills all the excess 
lanes with ones . In the other outcome , the number of 
remaining stream data elements is less than the number of 
lanes within VECLEN . This occurs for vector 8 in the group 
duplication example shown in Table 18 and vector 15 in the 
group duplication example shown in Table 19. Under these 
conditions , some lanes within VECLEN are valid and some 
are invalid . Group duplicate unit 3216 fills the excess lanes 
with bits having the same pattern as the expanded control 
word bits . In either case , the excess lanes are filled corre 
sponding to the expanded control bits . 
[ 0258 ] Referring still to FIG . 32 , a boundary 3217 is 
illustrated between the least significant bits and the most 
significant bits . The location of this boundary is set by the 
size of VECLEN relative to the size of stream head register 
2818 . 
[ 0259 ] FIG . 34 is a partial schematic diagram 3400 illus 
trating the stream input operand coding described above . 
FIG . 34 illustrates a portion of instruction decoder 113 ( see 
FIG . 1 ) decoding srcl field 1305 of one instruction to control 
corresponding srcl input of functional unit 3420. These 
same or similar circuits are duplicated for src2 / cst field 1304 
of an instruction controlling functional unit 3420. In addi 
tion , these circuits are duplicated for each instruction within 
an execute packet capable of employing stream data as an 
operand that are dispatched simultaneously . 
[ 0260 ] Instruction decoder 113 receives bits 13-17 of src1 
field 1305 of an instruction . The opcode field ( bits 3-12 for 
all instructions and additionally bits 28-31 for unconditional 
instructions ) unambiguously specifies a corresponding func 
tional unit 3420 and the function to be performed . In this 
example , functional unit 3420 can be L2 unit 241 , S2 unit 
242 , M2 unit 243 , N2 unit 244 or C unit 245. The relevant 
part of instruction decoder 113 illustrated in FIG . 34 decodes 
src1 bit field 1305. Sub - decoder 3411 determines whether 
src1 bit field 1305 is in the range from 00000 to 01111. If this 
is the case , sub - decoder 3411 supplies a corresponding 
register number to global vector register file 231. In this 
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example , the register number is the four least significant bits 
of src1 bit field 1305. Global vector register file 231 recalls 
data stored in the register corresponding to the register 
number and supplies the data to the srcl input of functional 
unit 3420 . 
[ 0261 ] Sub - decoder 3412 determines whether src1 bit 
field 1305 is in the range from 10000 to 10111. If this is the 
case , sub - decoder 3412 supplies a corresponding register 
number to the corresponding local vector register file . If the 
instruction is directed to L2 unit 241 or S2 unit 242 , the 
corresponding local vector register file is local vector reg 
ister file 232. If the instruction is directed to M2 unit 243 , N2 
unit 244 or C unit 245 , the corresponding local vector 
register file is local vector register file 233. In this example , 
the register number is the three least significant bits of src1 
bit field 1305. The corresponding local vector register file 
232/233 recalls data stored in the register corresponding to 
the register number and supplies the data to the srcl input of 
functional unit 3420 . 
[ 0262 ] Sub - decoder 3413 determines whether src1 bit 
field 1305 is 11100. If this is the case , sub - decoder 3413 
supplies a stream O read signal to streaming engine 125 . 
Streaming engine 125 then supplies stream 0 data stored in 
holding register 2818 to the srcl input of functional unit 
3420 . 
[ 0263 ] Sub - decoder 3414 determines whether srcl bit 
field 1305 is 11101. If this is the case , sub - decoder 3414 
supplies a stream O read signal to streaming engine 125 . 
Streaming engine 125 then supplies stream 0 data stored in 
holding register 2818 to the src1 input of functional unit 
3420. Sub - decoder 3414 also supplies an advance signal to 
stream 0. As previously described , streaming engine 125 
advances to store the next sequential vector of data elements 
of stream 0 in holding register 2818 . 
[ 0264 ] Supply of a stream 0 read signal to streaming 
engine 125 by either sub - decoder 3413 or sub - decoder 3414 
triggers another data movement . Upon such a stream 0 read 
signal , streaming engine 125 supplies the data stored in valid 
register 2819 to predicate register file 234 for storage . In 
accordance with this example , this is a predetermined data 
register within predicate register file 234. In this example , 
data register PO corresponds to stream 0 . 
[ 0265 ] Sub - decoder 3415 determines whether src1 bit 
field 1305 is 11110. If this is the case , sub - decoder 3415 
supplies a stream 1 read signal to streaming engine 125 . 
Streaming engine 125 then supplies stream 1 data stored in 
holding register 2828 to the src1 input of functional unit 
3420 . 
[ 0266 ] Sub - decoder 3416 determines whether src1 bit 
field 1305 is 11111. If this is the case , sub - decoder 3416 
supplies a stream 1 read signal to streaming engine 125 . 
Streaming engine 125 then supplies stream 1 data stored in 
holding register 2828 to the src1 input of functional unit 
3420. Sub - decoder 3414 also supplies an advance signal to 
stream 1. As previously described , streaming engine 125 
advances to store the next sequential vector of data elements 
of stream 1 in holding register 2828 . 
[ 0267 ] Supply of a stream 1 read signal to streaming 
engine 125 by either sub - decoder 3415 or sub - decoder 3416 
triggers another data movement . Upon such a stream 1 read 
signal , streaming engine 125 supplies the data stored in valid 
register 2829 to predicate register file 234 for storage . In 
accordance with this example , this is a predetermined data 

register within predicate register file 234. In this example , 
data register P1 corresponds to stream 1 . 
[ 0268 ] Similar circuits are used to select data supplied to 
scr2 input of functional unit 3402 in response to the bit 
coding of src2 / cst field 1304. The src2 input of functional 
unit 3420 can be supplied with a constant input in a manner 
described above . If instruction decoder 113 generates a read 
signal for stream O from either scrl field 1305 or scr2 / cst 
field 1304 , streaming engine 125 supplies the data stored in 
valid register 2819 to predicate register PO of predicate 
register file 234 for storage . If instruction decode 113 
generates a read signal for stream 1 from either scrl field 
1305 or scr2 / cst field 1304 , streaming engine 125 supplies 
the data stored in valid register 2829 to predicate register P1 
of predicate register file 234 for storage . 
[ 0269 ] The exact number of instruction bits devoted to 
operand specification and the number of data registers and 
streams are design choices . In particular , the specification of 
a single global vector register file and omission of local 
vector register files is feasible . This example employs a bit 
coding of an input operand selection field to designate a 
stream read and another bit coding to designate a stream read 
and advancing the stream . 
[ 0270 ] The process illustrated in FIG . 34 automatically 
transfers valid data into predicate register file 234 each time 
stream data is read . The transferred valid data can then be 
used by P unit 246 for further calculation of meta data . The 
transferred valid data can also be used as a mask or as an 
operand for other operations by one or more of vector data 
path side B 116 functional units including L2 unit 241 , S2 
unit 242 , M2 unit 243 , N2 unit 244 and C unit 245. There are 
numerous feasible compound logic operations employing 
this stream valid data . 
[ 0271 ] FIG . 35 is a partial schematic diagram 3500 illus 
trating another example configuration for selecting operand 
sources . In this example , the respective stream valid register 
2819/2829 need not be automatically loaded to a predeter 
mined register in predicate register file 234. Instead , an 
explicit instruction to P unit 246 is used to move the data . 
FIG . 35 illustrates a portion of instruction decoder 113 ( see 
FIG . 1 ) decoding srcl field 1305 of one instruction to control 
a corresponding srcl input of P unit 246. These same or 
similar circuits can be duplicated for src2 / cst field 1304 
( FIG . 13 ) of an instruction controlling P unit 246 . 
[ 0272 ] Instruction decoder 113 receives bits 13-17 of src1 
field 1305 of an instruction . The opcode field opcode field 
( bits 3-12 for all instructions and additionally bits 28-31 for 
unconditional instructions ) unambiguously specifies P unit 
246 and the function to be performed . The relevant part of 
instruction decoder 113 illustrated in FIG . 35 decodes src1 
bit field 1305. Sub - decoder 3511 determines whether src1 
bit field 1305 is in the range 00000 to 01111. If this is the 
case , sub - decoder 3511 supplies a corresponding register 
number to global vector register file 231. In this example , the 
register number is the four least significant bits of src1 bit 
field 1305. Global vector register file 231 recalls data stored 
in the register corresponding to the register number and 
supplies the data to the srcl input of P unit 246 . 
[ 0273 ] Sub - decoder 3512 determines whether src1 bit 
field 1305 is in the range 10000 to 10111. If this is the case , 
sub - decoder 3512 supplies a decoded register number to the 
predicate register file 234. In this example , the register 
number is the three least significant bits of src1 bit field 
1305. The predicate register file 234 recalls data stored in the 
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register corresponding to the register number and supplies 
the data to the src1 input of predicate unit 246 . 
[ 0274 ] Sub - decoder 3513 determines whether src1 bit 
field 1305 is 11100. If this is the case , sub - decoder 3513 
supplies a stream 0 valid read signal to streaming engine 
125. Streaming engine 125 then supplies valid data stored in 
valid register 2819 to the srel input of P unit 246 . 
[ 0275 ] Sub - decoder 3514 determines whether src1 bit 
field 1305 is 11101. If this is the case , sub - decoder 3514 
supplies a stream 1 valid read signal to streaming engine 
125. Streaming engine 125 then supplies stream 1 valid data 
stored in valid register 2829 to the srcl input of P unit 246 . 
[ 0276 ] The P unit 246 instruction employing the stream 
valid register 2819/2829 as an operand can be any P unit 
instruction previously described such as NEG , BITCNT , 
RMBD , DECIMATE , EXPAND , AND , NAND , OR , NOR , 
and XOR . 
[ 0277 ] The special instructions noted above can be limited 
to P unit 242. Thus , the operations outlined in FIGS . 34 and 
35 can be used together . If the functional unit specified by 
the instruction is L2 unit 241 , S2 unit 242 , M2 unit 243 , N2 
unit 244 or C unit 245 , then src1 field 1305 is interpreted as 
outlined with respect to FIG . 34. If the functional unit 
specified by the instruction is Punit 246 , then src1 field 1305 
is interpreted as outlined with respect to FIG . 35. Alterna 
tively , the automatic saving of the stream valid register to a 
predetermined predicate register illustrated in FIG . 34 can be 
implemented in one example and not implemented in 
another example . 

First , L1 instruction cache 121 may receive instructions 
recalled from L2 unified cache 130 for a cache miss fill . In 
this example , there is no hardware support for self - modify 
ing code so that instructions stored in L1 instruction cache 
121 are not altered and therefore do not require write - back . 
There are two possible data movements between L1 data 
cache 123 and L2 unified cache 130. The first of these data 
movements is a cache miss fill from L2 unified cache 130 to 
L1 data cache 123. Data may also pass from L1 data cache 
123 to L2 unified cache 130. This data movement takes place 
for several reasons , such as : a write miss to L1 data cache 
123 which must be serviced by L2 unified cache 130 ; a 
victim eviction from L1 data cache 123 to L2 unified cache 
130 ; and a snoop response from L1 data cache 123 to L2 
unified cache 130. Data can be moved between L2 unified 
cache 130 and level 3 ( L3 ) memory 3650. This can take 
place for several reasons , such as : a cache miss to L2 unified 
cache 130 service from L3 memory 3650 , or a direct 
memory access 3660 data movement from L3 memory 3650 
and L2 unified cache 130 configured as SRAM ; a victim 
eviction from L2 unified cache 130 to L3 memory 3650 , or 
a direct memory access 3660 data movement from a portion 
of L2 unified cache 130 configured as SRAM to L3 memory 
3650. Finally , data can move between L2 unified cache 130 
and peripherals 3662. These movements take place for 
several reasons , such as : a direct memory access 3660 data 
movement from peripheral 3662 and L2 unified cache 130 
configured as SRAM ; or a direct memory access 3660 data 
movement from a portion of L2 unified cache 130 config 
ured as SRAM to peripherals 3662. Data movement between 
L2 unified cache 130 and L3 memory 3650 and between L2 
unified cache 130 and peripherals 3662 employ data transfer 
bus 3651 and may be controlled by direct memory access 
unit 3660. These direct memory access data movements may 
take place as result of a command from central processing 
unit core 110 or a command from another digital signal 
processor system . 
[ 0282 ] The number and variety of possible data move 
ments within digital signal processor system 3600 makes the 
problem of maintaining coherence difficult . In any cache 
system data coherence is a problem . The cache system 
attempts to control data accesses so that each cache returns 
the most recent data . As an example in a single level cache , 
a read following a write to the same memory address 
maintained within the cache must return the newly written 
data . This coherence should be maintained regardless of the 
processes within the cache . This coherence preserves the 
transparency of the cache system . That is , the programmer 
need not be concerned about the data movements within the 
cache and can program without regard to the presence or 
absence of the cache system . This transparency feature is 
important if the data processor is to properly execute pro 
grams written for members of a data processor family 
having no cache or varying amounts of cache . Typically , it 
is preferable that the cache hardware maintain the program 
mer illusion of a single memory space . An example of an 
ordering hazard is a read from a cache line just victimized 
and being evicted from the cache . Another example in a 
non - write allocate cache is a read from a cache line follow 
ing a write miss to that address with the newly written data 
in a write buffer waiting write to main memory . In the 
current examples , the cache system includes hardware to 
detect and handle such special cases . 

Block Cache Management and Preload Operations 
[ 0278 ] FIG . 36 illustrates movement of data between 
various levels of memory in example system 3600. In this 
example , processor 100 ( FIG . 1 ) ( referred to as “ processor 
A ” ) is combined with a second processor 3611 ( referred to 
as “ proces essor B ” ) and each processor is coupled to a block 
of shared level three ( L3 ) memory 3650 via bus 3651 . 
Processor B includes a block of unshared level two memory 
3612. A direct memory access ( DMA ) engine 3660 may be 
programmed to transfer blocks of data / instructions from L3 
memory to L2 memory 130 or L2 memory 3612 using 
known or later developed DMA techniques . Various types of 
peripherals 3662 are also coupled to memory bus 3651 , such 
as wireless and / or wired communication controllers , etc. 
[ 0279 ] In this example , processor A , processor B , L3 
memory 3650 are all included in a SoC 3600 that may 
encapsulated to form a package that may be mounted on a 
substrate such as a printed circuit board ( PCB ) using known 
or later developed packaging techniques . For example , SOC 
3600 may be encapsulated in a ball grid array ( BGA ) 
package . In this example , external memory interface ( EMI ) 
3652 allows additional external bulk memory 3654 to be 
accessed by processor A and / or processor B. 
[ 0280 ] In this example , processor B is an ARM® proces 
sor that may be used for scalar processing and control 
functions . In other examples , various types of known or later 
developed processors may be combined with DSP 100 . 
While two processors are illustrated in this example , in 
another example , multiple copies of DSP 100 and / or mul 
tiple copies of processor B may be included within an SoC 
and make use of the block cache management operations 
( CMO ) described hereinbelow in more detail . 
[ 0281 ] The complex interrelation of parts of digital signal 
processor system 3600 permits numerous data movements . 

be 
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[ 0283 ] In the example DSP processor 100 ( FIG . 1 ) and the 
example DSP system 3600 , a second level L2 cache intro 
duces additional hazards . Coherence should be maintained 
between the levels of cache no matter where the most 
recently written data is located . Generally , L1 data cache 
will have the most recent data while the higher level L2 
cache may have old data . If an access is made to the L2 
cache the cache system must determine if a more recent copy 
of the data is stored in the lower level LID cache . This 
generally triggers a snoop cycle in which the L2 cache polls 
the LID cache for more recent data before responding to the 
access . A snoop is nearly like a normal access to the snooped 
cache except that snoops are generally given higher priority . 
Snoops are granted higher priority because another level 
cache is stalled waiting on the response to the snoop . If the 
data stored in the lower level LID cache has been modified 
since the last write to the higher level L2 cache , then this 
data is supplied to the higher level L2 cache . This is referred 
to as a snoop hit . If the data stored in the lower level LID 
cache is clean and thus has not been changed since the last 
write to the higher level L2 cache , then this is noted in the 
snoop response but no data moves . In this case the higher 
level L2 cache stores a valid copy of the data and can supply 
this data . 
[ 0284 ] Additional hazards with a two - level cache include 
snoops to a lower level cache where the corresponding data 
is a victim being evicted , snoops to data during a write miss 
in the lower level cache for non - write allocation systems 
which places the data in a write buffer . L2 unified cache 130 
may need to evict a cache entry which is also cached within 
L1 instruction cache 121 or L1 data cache 123. A snoop 
cycle is required to ensure the latest data is written out to the 
external main memory . A write snoop cycle is transmitted to 
both L1 instruction cache 121 and L1 data cache 123. This 
write snoop cycle misses if this data is not cached within the 
L1 caches . L1 data cache 123 reports the snoop miss to L2 
unified cache 130. No cache states within L1 data cache 123 
are changed . Upon receipt of the snoop miss report , L2 
unified cache 130 knows that it holds the only copy of the 
data and operates accordingly . If the snoop cycle hits a cache 
entry within L1 data cache 123 , the response differs depend 
ing on the cache state of the corresponding cache entry . If the 
cache entry is not in a modified state , then L2 unified cache 
130 has a current copy of the data and can operate accord 
ingly . The cache entry is invalidated within L1 data cache 
123. It is impractical to maintain cache coherency if L1 data 
cache 123 caches the data and L2 unified cache 130 does not . 
Thus , the copy of the data evicted from L2 unified cache 130 
is no longer cached within Li data cache 123. It should be 
understood that when an entry is invalidated at a given level 
of cache , while it is no longer available and therefore no 
longer cached within that level of cache , the data may still 
be present until it is overwritten by a later cache fetch . If the 
cache entry in L1 data cache 123 is in a modified state and 
thus had been modified within that cache , then the snoop 
response includes a copy of the data . L2 unified cache 130 
must merge the data modified in L1 data cache 123 with data 
cached within it before eviction to external memory . The 
cache entry within L1 data cache 123 is invalidated . 
[ 0285 ] In a similar fashion snoop cycles are sent to L1 
instruction cache 121. In this example , DSP system 100 
cannot modify instructions within L1 instruction cache 121 , 
therefore no snoop return is needed . Upon a snoop miss 
nothing changes within L1 instruction cache 121. If there is 

a snoop hit within L1 instruction cache 121 , then the 
corresponding cache entry is invalidated . A later attempt to 
fetch the instructions at that address will generate a cache 
miss within L1 instruction cache 121. This cache miss will 
be serviced from L2 unified cache 130 . 
[ 0286 ] As mentioned above , it is desirable to provide a 
level of control to the programmer over cache operations . In 
this example , the cache system supports a writeback mecha 
nism , whereby the programmer can direct the L2 cache 130 
to write a block of data in the L2 cache back to external L3 
shared memory 3650 for shared access by processor B 3611 
which doesn't have access to the L2 cache 130. Similarly , it 
is often desirable to be able to clear or invalidate L2 cache 
entries so that new data can be accessed at addresses which 
have been updated in the shared memory 3650. In some 
applications it is desirable to be able to preload data into a 
selected hierarchical level of cache in order to assure that the 
data is available when accessed by a program . 
[ 0287 ] In this example , in addition to its core data stream 
support , the streaming engine 125 supports a range of 
special “ data - less ” streams . A data - less stream may be used 
move data between various levels of cache and memory , 
without bringing data to the processor . In this example , two 
special instructions are provided to allow a program to 
initiate a data - less stream . A block cache maintenance opera 
tion is initiated by a “ BLKCMO " instruction . A block cache 
preload operation is initiated with a “ BLKPLD ” instruction . 
[ 0288 ] Examples of prior cache writeback and invalidate 
mechanisms have required the programmer to perform mul 
tiple accesses to control registers to perform programmer 
directed cache operations . For example , if the programmer 
wishes to remove ( evict ) four lines in the cache , a write to 
four control register bits is normally required . In systems 
which implement a control register on which programmer 
directed cache operations are based , four writes must be 
performed . The programmer must provide program code to 
track the address between each write . While these methods 
are functional , they are costly in terms of software overhead . 
These methods generally require the programmer to have an 
understanding of the underlying cache architecture param 
eters . Suppose a block of 128 - bytes is to be copied back to 
memory . If the cache architecture has a 32 - byte line size , 
then four writes must be performed to order this writeback . 
If the cache architecture has a 64 - byte line size cache , then 
only two writes are necessary . This prior approach natively 
inhibits the portability of instruction code that controls the 
cache . 
[ 0289 ] In another example approach described in more 
detail in U.S. Pat . No. 6,665,767 to David A. Comisky et al . , 
a program - controlled cache management technique employs 
an address and word count memory mapped control register 
structure . While this method is functional , it requires soft 
ware overhead to correctly program the memory mapped 
control registers . 
[ 0290 ] FIG . 37 is a partial schematic diagram for cache 
management operations using a streaming stream engine , 
such as streaming engine 125 which is shown in more detail 
FIG . 28. As described hereinabove , processor 100 includes 
a streaming engine 125 that includes two independent 
stream engines 2810 , 2820 that can each be programmed to 
fetch streams of data from the L2 unified cache / memory and 
provide them to processor core 110 for consumption . In this 
example , stream engine 2810 includes mode logic 3740 to 
allow stream engine 2810 to execute in data - less mode . As 
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TABLE 30 - continued 

BLKCMO opcodes 
0x15 

Ox16 
Ox17 
Ox18 

Ox19 

Ox1A 

Data Cache Invalidate to the point of 
Coherence , Shareable 
RESERVED 
RESERVED 
Data Cache Clean to Point of Unification , 
Non - Shareable 
Data Cache Clean and Invalidate to the 
point of Unification , Non - Shareable 
Data Cache Invalidate to the point of 
Unification , Non - Shareable 
Data Cache Clean to the point of 
Coherence , Non - Shareable 
Data Cache Clean and Invalidate to the 
point of Coherence 
Data Cache Invalidate to the point of 
Coherence , Non - Shareable 
RESERVED 
RESERVED 

Ox1B 

OxiC 

Ox1D 

OxlE 
Ox1F 

described hereinabove in more detail , address generator 
2811 may be programmed to generate a simple or complex 
stream of addresses . 
[ 0291 ] In this example , in addition to its core data stream 
support , the streaming engine 2810 supports a range of 
special data - less streams . A data - less stream may be used 
move data between various levels of cache and memory , 
without bringing data to the processor . In this example , two 
special instructions are provided to allow a program to 
initiate a data - less stream . A block cache maintenance opera 
tion is initiated by a “ BLKCMO ” instruction . A block cache 
preload operation is initiated with a “ BLKPLD ” instruction . 
[ 0292 ] In this example , block cache management opera 
tions may be performed under control of a software program 
being executed by processor 100 using a software instruc 
tion referred to herein as a “ block cache management 
operation ” ( BLKCMO ) instruction . The BLKCMO instruc 
tion is fetched and decoded by the instruction pipeline of 
processor 100 as described hereinabove in more detail . After 
being decoded , a BLKCMO instruction is then “ executed ” 
using the streaming engine to provide a stream of addresses , 
that may be referred to as a “ block of addresses , ” to the L2 
cache 130 to clean and / or invalidate a block of memory 
addresses that may or may not be present in the L2 cache 
130 . 

[ 0293 ] Cache maintenance operations move cache lines 
out of cache levels nearer to the processor to cache levels 
that are further from the processor . This allows the program 
mer to manually manage when data leaves the processor's 
caches . While the programmer is generally abstracted from 
the underlying cache architecture of the cache , the program 
mer is generally aware of the required accesses that instruc 
tion code must perform and the memory usage of the 
process . Consequently , the programmer is aware of the 
cache cycles that are required for particular code segments . 
Thus , a good solution to cache control is to provide the 
programmer direct address and word count control for 
programmer directed cache cycles using a BLKCMO 
instruction . This is in contrast to requiring knowledge about 
the cache parameters such as line size , associativity , replace 
ment policies , etc. of prior techniques . 
[ 0294 ] In this example , the format of a BLKCMO instruc 
tion is similar to instruction format 1300 ( FIG . 13 ) . The 
assembler syntax is : BLKCMO src1 , src2 ( cst ) , src3 . Source 
1 is the starting base address contained in a register encoded 
in the srcl field 1305 , source 2 is a 5 - bit constant and is 
encoded as shown in Table 30 in the src2 field 1304 , and 
source 3 specifies the number of bytes involved in the 
maintenance operation . Source 3 is a 32 - bit value specified 
by a register encoded in dst field 1303 . 

[ 0295 ] Referring still to FIG . 37 , L2 cache 130 includes 
multiple cache lines 3731 that each include a tag field 3732 
and a data element field 3733 for holding data that has been 
fetched from higher level L3 memory 3650 ( FIG . 36 ) . Tag 
field 3732 includes address bits to specify the physical 
address from which the respective data elements were 
fetched in L3 memory . Tag field 3732 also includes status bit 
that identify the status of the respective data field , such as 
“ clean , ” and “ valid . ” A valid tag bit means the respective 
data field has been loaded with data element fetched from L3 
memory . A clean tag bit means the data elements have not 
been modified by processor 100 since they were fetched 
from L3 memory . 
[ 0296 ] Snoop logic 3734 performs the various snoop 
operations described hereinabove whenever an access is 
made to L2 cache 130 that may require a data update . Snoop 
logic 3734 performs the same snoop operations irrespective 
of whether an L2 access is being made by processor 100 via 
request bus 3735 or by streaming engine 2810 via L2 
interface 2833. Therefore , essentially no additional control 
logic is needed to support the block CMO instructions 
described herein . 
[ 0297 ] Streaming engine 2810 treats Clean and Clean 
Invalidate operations as equivalent to reads . That is , the 
Clean or Clean - Invalidate command may proceed as long as 
the address range is readable by the current privilege level . 
Control signal “ CMO ” 3743 is asserted to L2 cache 130 to 
inform it that it does not need to provide the read data 
requested by the CMO clean operations . The streaming 
engine treats Invalidate operations as equivalent to writes . 
Control signal “ CMO " is asserted to L2 cache 130 to inform 
it that it will not be receiving any write data with the CMO 
invalidate operation . The Invalidate commands may proceed 
only if the address range is writable by the current privilege 
level . For a Clean operation , L2 cache 130 writes back any 
updates to the line that have not yet been sent to L3 memory . 
For an Invalidate operation , L2 cache 130 marks the line 
invalid and thereby removes it from the cache . For a 
Clean - Invalidate operation , L2 cache 130 writes back any 
updates to L3 memory and then marks the line invalid and 
thereby removes it from the cache . 
[ 0298 ] If the streaming engine detects a privilege viola 
tion , it signals a fault and halts the block CMO . 
[ 0299 ] Referring again to Table 30 , the " point of unifica 
tion ” is the level in the cache hierarchy where instruction 

TABLE 30 

BLKCMO opcodes 
Ox10 

Ox11 

Ox12 

Data Cache Clean to the point of 
Unification , Shareable 
Data Cache Clean and Invalidate to the 
point of Unification , Shareable 
Data Cache Invalidate to the point of 
Unification , Shareable 
Data Cache Clean to the point of 
Coherence , Shareable 
Data Cache Clean and Invalidate to the 
point of Coherence 

Ox13 

Ox14 
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and data streams meet . The “ point of coherence ” is the level 
in the cache hierarchy where all masters see the updated 
data . In this example , the point of unification is the L2 
unified memory 130. The point of coherence is the L3 
memory 3650 ( FIG . 36 ) that is shared by processor A 100 
and processor B 3611 ( FIG . 36 ) . 
[ 0300 ] Not all memory types support cache maintenance 
operations . If a program issues cache maintenance opera 
tions on unsupported memory types , the streaming engine 
may either discard the CMOs or signal an exception similar 
to a privilege violation . For example , any CMOs to memory 
type marked as “ System / Device ” memory type as returned 
by the uTLB 2812 would be an error and the streaming 
engine would drop the command from being sent into the 
memory system and return an error to the processor on the 
read status packet . 
[ 0301 ] In this example , the streaming engine supports a 
“ fencing ” mechanism between outstanding processor stores 
to L1D data cache which prevents the streaming engine from 
sending requests into the system until the outstanding stores 
from processor core 110 ( FIG . 36 ) have landed . A fence is 
initiated by executing an “ MFENCE ” instruction on proces 
sor core 110. Execution of the MFENCE instruction is 
accomplished via internal signaling between the processor 
core 110 , L1D 123 , and streaming engine 125. This fencing 
check is done on any new opened streams issued by pro 
cessor 110. Upon receiving a stream open , the streaming 
engine starts its address generation and uTLB lookups , and 
prepares the request to go out . Once the request reaches the 
arbitration unit , the commands are stalled until the fence is 
complete . This is accomplished by monitoring the IDLE 
signal 3742 from L1D 123 indicating the pertinent stores 
have completed . This prevents streaming engine 2810 from 
receiving old or stale data . The streaming engine asserts a 
separate coherence active signal 3741 to the processor 
indicating whether any CMO stream commands are still 
active in the system . It asserts this signal regardless of 
whether the CMO stream that generated those commands is 
active , frozen or inactive . The processor's MFENCE 
instruction waits for this signal to be deasserted , indicating 
that all outstanding CMO operations have completed . This 
may be necessary when closing a block CMO stream early , 
or during context switches . 
[ 0302 ] In this example , the format of a BLKPLD instruc 
tion is similar to instruction format 1300 ( FIG . 13 ) . The 
assembler syntax is : BLKPLD src1 , src2 ( cst ) , src3 . Source 
1 is the starting base address contained in a register encoded 
in the srcl field 1305 , source 2 is a 5 - bit constant and is 
encoded as shown in Table 31 in the src2 field 1304 , and 
source 3 specifies the number of bytes involved in the 
maintenance operation . Source 3 is 32 - bit value specified 
by a register encoded in dst field 1303 . 

memory 3650. The goal is to ensure data is on - chip within 
SOC 3600 , even if it is not yet in L2 130. This is potentially 
useful for large data sets that do not fit within the L2 
memory . 
[ 0304 ] Preload to L2 Cache attempts to bring data to the 
L2 cache 130 within processor 100. This is potentially useful 
for data sets that do fit within L2 cache 130 . 
[ 0305 ] Preload for Read indicates that the processor 
intends to read the data , but not necessarily write it . The 
streaming engine requests shared access to the data , allow 
ing other caches to retain copies of the data if they already 
have copies . 
[ 0306 ] Preload for Write indicates that the processor 
intends to write to the preloaded block . The streaming 
engine requests exclusive access to the data , with the intent 
of removing copies from other caches . This reduces the cost 
of subsequent processor writes to those lines . 
[ 0307 ] The streaming engine 2810 treats all preload 
requests as reads , including Preload for Write . If a privilege 
check fails , the streaming engine silently ignores it . It drops 
the faulted preload command and continues with the block 
preload operation . 
[ 0308 ] The streaming engine only sends preload requests 
for normal , cacheable memory . It silently drops preload 
requests for other memory types . Preload instructions serve 
as a hint to the caches . Caches may ignore the hint . 
[ 0309 ] FIG . 38 is a flow diagram illustrating operation of 
the cache preload operations using streaming engine 125. In 
this example , data - less streams reuse the hardware 2810 for 
stream engine 0 to perform their actions . Therefore , stream 
O must be inactive when issuing a data - less stream instruc 
tion ( e.g. , it must not be in the process of streaming a data 
stream as described hereinabove ) . 
[ 0310 ] At 3800 , a program executes an BLKPLD stream 
instruction to open a data - less stream . The streaming engine 
begins issuing requests to the memory system . Starting a 
data - less stream asserts the task state register SEO bit ( TSR . 
SEO ) , as described hereinabove in more detail . The stream 
ing engine asserts to the processor a coherence active signal 
3741 ( FIG . 37 ) which processor 100 ( FIG . 1 ) can monitor to 
determine that an active cache preload operation is in 
progress . The streaming engine will deassert the coherence 
active signal 3741 when all coherence commands associated 
with the data - less streams sent have returned . TSR . SEO 
remains asserted until the program issues a SECLOSE for 
stream 0. If the program issues a SECLOSE before the 
data - less stream completes , the streaming engine stops issu 
ing requests to the memory system . 
[ 0311 ] Programs can synchronize with a data - less stream 
by reading from it with a reference to * SEO or * SE0 ++ ( see 
FIG . 34 ) . The streaming engine will begin returning empty 
data - phases to the processor once it has issued all the 
commands associated with the stream , and those commands 
have all completed . The streaming engine will report any 
errors encountered in the fault status associated with these 
data - phases . 
[ 0312 ] For example , in this example the stream of 
addresses used for performing the block preload is a stream 
of virtual addresses in a virtual address space of the pro 
cessor . As described above in more detail , uTLB 2812 ( FIG . 
37 ) converts a single 48 - bit virtual address to a 44 - bit 
physical address each cycle . If a needed virtual address entry 
is not in the uTLB , then an exception is generated and a new 
table entry is determined by a software process . In this 

TABLE 31 

BLKPLD opcodes 
Ox10 
Ox11 
Ox12 
Ox13 
Ox14-1F 

Preload to L3 cache for read 
Preload to L3 cache for write 
Preload to L2 cache for read 
Preload to L2 cache for write 
Reserved 

[ 0303 ] Preload to L3 Cache attempts to bring data to a 
cache level outside processor 100 ( FIG . 36 ) , such as L3 
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3800-3805 , the streaming engine may be operated in data 
less mode to perform a block cache preload operation . This 
allows a program to manage a cache by simply executing a 
single stream instruction with operands to specify a starting 
address and length of a block of addresses . The same address 
generation hardware is used in both modes of operation , 
therefore the hardware cost for providing block cache pre 
load is minimal . 
[ 0324 ] The block cache management operation technique 
described hereinabove that reuses the streaming engine 
hardware provides a preemptive coherence vs a reactionary 
coherence . This reduces snoop overhead without requiring 
complex and expensive cache coherence hardware . As 
described herein , a block cache management operation can 
be initiated on the streaming engine by executing a single 
block CMO instruction on the processor that is coupled to 
the streaming engine . 
[ 0325 ] The block cache preload operation technique 
described hereinabove that reuses the streaming engine 
hardware provides a preemptive cache load that may reduce 
cache misses for a block of data . As described herein , a 
block cache preload operation can be initiated on the stream 
ing engine by executing a single block preload instruction on 
the processor that is coupled to the streaming engine 

Page Faults 

manner , the stream of virtual addresses is translated into a 
respective stream of physical addresses for performing the 
block preload on the cache . 
[ 0313 ] In some cases , the uTLB and associated control 
software / firmware may determine that at least one physical 
address of the stream of physical addresses is an invalid 
address . In this case , an exception is generated to notify the 
processor that an invalid address has been determined . 
[ 0314 ] As will be described in more detail below , in some 
examples a page fault may occur during a block preload 
operation . In this case , an exception is generated to notify 
the processor that a page fault has been detected . 
[ 0315 ] In some examples , a process environment may be 
created by the operating software or other control software 
or firmware to define access rights for a particular software 
task or section of instruction code . This may be based on 
task numbers , for example . In this case , when a block 
preload operation is performed , a check may be performed 
to determine whether the current process has access rights to 
the memory at the stream of physical addresses . If the 
current process does not have access rights , then an error is 
returned when the block preload is attempted . 
[ 0316 ] At 3801 the processor attempts to read a single data 
element from the stream . At 3802 , this stalls the processor 
until the streaming engine finishes issuing the commands for 
the data - less stream , and the memory system completes all 
the commands . The stall occurs because the streaming 
engine will return an empty data phase with error status , if 
any , while the preload progresses . No data is returned 
because this is a “ data - less ” operation . 
[ 0317 ] At 3803 , the processor can check the error status 
bus and fault status register and decide how to proceed if an 
error is received . As described above for various examples , 
errors for various conditions may be detected , such as an 
invalid address , a page fault , a lack of access rights , etc. At 
3804 , the processor may save and restore the data - less 
stream after it has corrected errors . 
[ 0318 ] At 3805 , the program can execute a SECLOSE for 
stream 0. TSR.SEO is deasserted to 0 , indicating TSR . SEO 
is inactive . Optionally , a program may issue a SEOPEN 
without a SECLOSE for a new stream while a data - less 
stream is active . The processor would stall any new com 
mands inside the processor until the data - less stream is done , 
as indicated by the streaming engine via the coherence 
active signal 3741 . 
[ 0319 ] At 3806 , these steps can be spread out in a program 
allowing other computation to occur in parallel with the 
data - less stream . In particular , a program may do significant 
other work between 3800 and 3801 . 
[ 0320 ] At 3807 , the program may execute a SEOPEN 
stream instruction on SEO to cause a stream of data elements 
to be fetched by the streaming engine and to be presented to 
the processor , as described hereinabove in more detail . 
[ 0321 ] At 3808 , the processor may consume the data 
elements in the data stream as they are provided by the 
streaming engine . 
[ 0322 ] At 3809 , the processor may execute a SECLOSE 
instruction to close the data stream . 
[ 0323 ] In this manner , an autonomous streaming proces 
sor , such as streaming processor 125 ( FIG . 1 ) , may be used 
in two different modes . In a first mode illustrated at 3807 
3809 , a stream of data elements may be fetched by the 
streaming engine and presented to a processor for consump 
tion by the processor . In a second mode illustrated at 

[ 0326 ] In another example , a system that performs block 
cache operations as described herein may also manage a 
large amount of data and / or instructions using page faults . A 
page fault is a type of exception raised by computer hard 
ware when a running program accesses a memory page that 
is not currently mapped by the memory management unit 
( MMU ) into the physical address space of a process . Valid 
page faults are not errors per se , and are used to increase the 
amount of memory available to programs in any operating 
system that utilizes virtual memory , such as : Microsoft 
Windows , Unix - like systems ( including macOS , Linux , 
* BSD , Solaris , AIX , and HP - UX ) , z / OS , etc. 
[ 0327 ] Logically , the page may be accessible to the pro 
cess , but requires a mapping to be added to the process page 
tables and may additionally require the actual page contents 
to be loaded from a backing store such as a disk , a large 
solid - state memory , or other type of bulk memory . The 
exception handling software that handles page faults is 
generally a part of the operating system kernel . When 
handling a page fault , the operating system generally tries to 
make the required page accessible at a location in physical 
memory or terminates the program in case of an illegal 
memory access . 
[ 0328 ] The operating system may delay loading parts of a 
program from bulk memory until the program attempts to 
use it and a page fault is generated . The page fault handler 
in the OS needs to find a free location : either a free page in 
memory , or a non - free page in memory . The latter might be 
used by another process , in which case the OS needs to write 
out the data in that page ( if it has not been written out since 
it was last modified ) and mark that page as not being loaded 
in memory in its process page table . Once the space has been 
made available , the OS can read the data for the new page 
into memory , add an entry to its location in the memory 
management unit , and indicate that the page is loaded . Thus , 
page faults add storage access latency to the interrupted 
program's execution . 
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[ 0329 ] In such an example , a page fault may occur while 
a block preload is in progress . In that case , the hardware 
captures the necessary state to support resuming a block 
preload after a fault . The processor therefore has the ability 
to resume a block preload operation after a page fault 
condition has been remedied by software . This makes the 
block preload more efficient , as it does not require pinning 
the corresponding pages in memory . Software can assume 
the block preload is safe to issue without explicitly negoti 
ating with the operating system to ensure the pages are 
present throughout the lifetime of the block preload . 
[ 0330 ] For example , referring again to FIG . 36 , assume 
processor A 100 and processor B 3611 participate in a 
distributed virtual memory ( DVM ) protocol . At some point , 
software on processor A 100 ( FIG . 36 ) decides to preload a 
large block of data into L2 cache 130 ( FIG . 36 ) . Meanwhile 
processor B 3611 ( FIG . 36 ) decides to move one of the pages 
in the middle of that block to a different physical address . 
Software on processor B 3611 may perform a sequence 
similar to that shown in Table 32. In this example , a " data 
synchronization barrier ” ( DSB ) instruction executed by pro 
cessor B 3611 causes processor B 3611 to stall until execu 
tion of all prior instructions are completed . 

TABLE 32 

page replacement 

1 - Mark the page read - only in the page TABLE . 
2 - Issue an appropriate data sync barrier ( DSB ) and TLB invalidate 
DVM , data sync barrier . 
3 - Copy the data from the old physical page to the new physical page . 
4 - Mark the page as invalid . 
5 - Issue data sync barrier , TLB invalidate DVM , data sync barrier . 
6 - Mark the page as valid , pointing to the new physical page . 
7 - Issue one last data sync barrier , TLB invalidate DVM , data sync barrier . 

block of memory addresses in a cache may be cleaned and / or 
invalidated by the data - less stream operation . 
[ 0334 ] In described examples , a complex DSP processor 
with multiple function units and dual data paths is described . 
In another example , a simpler DSP that is coupled to a 
stream processor may be used . In another example , other 
types of known or later developed processors may be 
coupled to a stream processor , such as a reduced instruction 
set computer ( RISC ) , a traditional microprocessor , etc. 
[ 0335 ] In described examples , a complex autonomous 
streaming engine is used to retrieve a data - less stream of 
data elements . In another example , another type of stream 
ing engine may be used , such as a simple direct memory 
access device . In another example , the streaming engine 
may be a second processor that is programmed to access data 
autonomously from the processor that is consuming the data . 
[ 0336 ] In another example , the system may be designed to 
allow block preload instructions to extend across caches 
associated with other processors in the system , such as L2 
cache 3612 ( FIG . 36 ) that is owned by processor B 3611 
( FIG . 36 ) . 
[ 0337 ] In described examples , a processor that consumes 
a stream of data and a streaming engine that retrieves the 
stream of data from system memory are all included within 
a single integrated circuit ( IC ) as a system on a chip . In 
another example , the processor that consumes the stream of 
data may be packaged in a first IC and the streaming engine 
may be packaged in a second separate IC that is coupled to 
the first IC by a known or later developed communication 
channel or bus . 
[ 0338 ] In this description , the term " couple ” and deriva 
tives thereof mean an indirect , direct , optical , and / or wire 
less electrical connection . Thus , if a first device couples to 
a second device , that connection may be through a direct 
electrical connection , through an indirect electrical connec 
tion via other devices and connections , through an optical 
electrical connection , and / or through a wireless electrical 
connection . 
[ 0339 ] Modifications are possible in the described 
examples , and other examples are possible , within the scope 
of the claims . 

1. A method comprising : 
receiving an instruction that specifies a base address , a 

data size , and a level of a cache memory to operate on ; 
determining , based on the base address and the data size , 

a set of addresses associated with the instruction ; and 
issuing a set of cache preload operations to the cache 
memory that includes a cache preload operation for 
each address in the set of addresses . 

2. The method of claim 1 , wherein the cache memory 
includes a level 2 ( L2 ) cache and a level 3 ( L3 ) cache , and 
the instruction specifies whether to operate on the L2 cache 
or the L3 cache . 

3. The method of claim 1 , wherein the cache memory 
includes a level 1 ( L1 ) cache and a level 2 ( L2 ) cache , and 
the set of cache preload operations are issued to the L2 cache 
via a data path that does not include the L1 cache . 

4. The method of claim 1 , wherein the instruction speci 
fies whether to preload the cache memory for read or write . 

5. The method of claim 4 further comprising , when the 
instruction specifies to preload the cache memory for read , 
the set of cache preload operations request to preload the 
cache memory in a shared access mode . 

[ 0331 ] If processor A's block preload races with processor 
B's performing the sequence of Table 32 , processor A has 
the opportunity to see an invalid page mapping . At that 
point , processor A needs to perform a higher - level synchro 
nization with processor B in software to know when the page 
is valid again so that processor A can resume . This is 
typically implemented through a page lock mechanism . The 
SESAVE instruction can be used to store the state of the 
pending block preload so that it can be restarted using a 
SERSTR instruction after the page fault is corrected . 
[ 0332 ] Note that if processor A did actually race with 
processor B in a DVM remap as shown in Table , 32 , 
corresponding portion of the block preload may end up not 
being useful due to the page - copy performed by processor B. 
However , the program on processor A issuing the block 
preload can remain oblivious to those machinations and still 
be correct in all cases by restarting the block preload when 
processor B has completed the remap , while also being 
efficient in the most common case . The block preload can be 
restarted using the state information that was saved when the 
page fault error was detected . 

a 

Other Examples 
[ 0333 ] In described examples , a streaming engine is used 
to process a data - less stream that causes a coherence opera 
tion to be performed on a designated hierarchical level of 
memory without providing stream data to the processor . A 
cache or bulk memory at a designated memory level may be 
preloaded for later access by the processor . Similarly , a 
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6. The method of claim 4 further comprising , when the 
instruction specifies to preload the cache memory for write , 
the set of cache preload operations request to preload the 
cache memory in an exclusive access mode . 

7. The method of claim 1 , wherein : 
the instruction has an associated privilege level ; and 
the method further comprises : 

for each cache preload operation in the set of cache 
preload operations , determining whether the privi 
lege level permits preload of the respective address 
of the cache preload operation ; and 

when the privilege level does not permit preload of a 
first cache preload operation of the set of cache 
preload operations , dropping the first cache preload 
operation while proceeding with a remainder of the 
set of cache preload operations . 

8. The method of claim 1 further comprising : 
determining whether each cache preload operation of the 

set of cache preload operations is directed to cacheable 
memory ; and 

when first cache preload operation of the set of cache 
preload operations is directed to non - cacheable 
memory , dropping the first cache preload operation 
while proceeding with a remainder of the set of cache 
preload operations . 

9. The method of claim 1 , wherein the instruction is a first 
instruction , the method further comprising : 

asserting an indicator of the set of cache preload opera 
tions during the issuing of the set of cache preload 
operations to the cache memory ; and 

in response to the indicator , causing a processor wait to 
execute a second instruction . 

10. The method of claim 1 , wherein : 
the set of addresses includes a virtual address ; 
the method further comprises translating the virtual 

address to a physical address ; and 
the issuing of a cache preload operation associated with 

the virtual address uses the physical address . 
11. The method of claim 1 further comprising : 
determining that an address of the set of addresses is 

invalid ; and 
notifying a processor that the address is invalid . 
12. The method of claim 1 further comprising : 
determining that an address of the set of addresses causes 

a page fault ; and 
notifying a processor of the page fault . 
13. The method of claim 12 further comprising : 
saving a state of the set of cache preload operations prior 

to the page fault ; 
moving a new page of data into the cache memory ; and 
resuming the set of cache preload operations using the 

saved state . 

14. A system comprising : 
a processor ; 
a memory coupled to the processor that includes a cache 
memory ; and 

a memory component coupled to the processor and the 
memory , wherein the memory component is operable 
to : 
receive an instruction from the processor that specifies 

a level of the cache memory to preload ; 
determine a set of addresses associated with the instruc 

tion ; and 
issue a set of cache preload operations to the cache 
memory that includes a cache preload operation for 
each address in the set of addresses . 

15. The system of claim 14 , wherein : 
the instruction further specifies a base address and an 

amount of data ; and 
the memory component is operable to determine the set of 

addresses based on the base address and the amount of 
data . 

16. The system of claim 14 , wherein the cache memory 
includes a level 2 ( L2 ) cache and a level 3 ( L3 ) cache , and 
the instruction specifies whether to operate on the L2 cache 
or the L3 cache . 

17. The system of claim 16 , wherein the memory com 
ponent is coupled to the L2 cache and is operable to issue the 
set of cache preload operations directly to the L2 cache . 

18. The system of claim 14 , wherein the instruction 
specifies whether to preload the cache memory for reading 
or writing . 

19. The system of claim 18 , wherein the memory com 
ponent is operable to : 
when the instruction specifies to preload the cache 
memory for read , issue the set of cache preload opera 
tions to preload the cache memory in a shared access 
mode ; and 

when the instruction specifies to preload the cache 
memory for write , issue the set of cache preload 
operations to preload the cache memory in an exclusive 
access mode . 

20. The system of claim 14 , wherein the memory com 
ponent is operable to : 

determine whether each cache preload operation of the set 
of cache preload operations is directed to cacheable 
memory ; and 

when a first cache preload operation of the set of cache 
preload operations is directed to non - cacheable 
memory , drop the first cache preload operation while 
proceeding with a remainder of the set of cache preload 
operations . 


