
THE IN
US 20200285470A1

(19) United States
(12) Patent Application Publication

Zbiciak et al .
(10) Pub . No .: US 2020/0285470 A1
(43) Pub . Date : Sep. 10 , 2020

(54) CACHE PRELOAD OPERATIONS USING
STREAMING ENGINE

(71) Applicant : TEXAS INSTRUMENTS
INCORPORATED , Dallas , TX (US)

(72) Inventors : Joseph Raymond Michael Zbiciak ,
San Jose , CA (US) ; Timothy David
Anderson , University Park , TX (US) ;
Jonathan (Son) Hung Tran , Murphy ,
TX (US) ; Kai Chirca , Dallas , TX (US) ;
Daniel Wu , Plano , TX (US) ; Abhijeet
Ashok Chachad , Plano , TX (US) ;
David M. Thompson , Dallas , TX (US)

G06F 12/0875 (2006.01)
G06F 9/38 (2006.01)
G06F 9/32 (2006.01)
GO6F 12/0897 (2006.01)
G06F 11/10 (2006.01)
G06F 11/00 (2006.01)
G06F 12/0862 (2006.01)
GOOF 12/1036 (2006.01)

(52) U.S. CI .
CPC GO6F 9/3016 (2013.01) ; G06F 2212/657

(2013.01) ; G06F 9/30145 (2013.01) ; G06F
12/0875 (2013.01) ; G06F 9/30036 (2013.01) ;

GO6F 9/30014 (2013.01) ; G06F 9/3867
(2013.01) ; G06F 9/30098 (2013.01) ; G06F

9/32 (2013.01) ; G06F 9/3802 (2013.01) ;
GO6F 12/0897 (2013.01) ; G06F 11/1048
(2013.01) ; G06F 9/383 (2013.01) ; GO6F

9/30112 (2013.01) ; GO6F 11/00 (2013.01) ;
G06F 12/0862 (2013.01) ; G06F 12/1036
(2013.01) ; G06F 11/10 (2013.01) ; G06F

9/3822 (2013.01) ; G06F 2212/60 (2013.01) ;
GO6F 2212/452 (2013.01) ; G06F 2212/6028

(2013.01) ; G06F 2212/1024 (2013.01) ; G06F
2212/681 (2013.01) ; G06F 2212/6022

(2013.01) ; GO6F 9/345 (2013.01)

(21) Appl . No .: 16 / 827,875

(22) Filed : Mar. 24 , 2020

Related U.S. Application Data
(60) Continuation of application No. 16 / 203,528 , filed on

Nov. 28 , 2018 , now Pat . No. 10,606,596 , which is a
continuation - in - part of application No. 15 / 429,205 ,
filed on Feb. 10 , 2017 , now Pat . No. 10,162,641 ,
which is a division of application No. 14 / 331,986 ,
filed on Jul . 15 , 2014 , now Pat . No. 9,606,803 .

(60) Provisional application No. 61 / 846,148 , filed on Jul .
15 , 2013 .

Publication Classification

(57) ABSTRACT
A stream of data is accessed from a memory system using a
stream of addresses generated in a first mode of operating a
streaming engine in response to executing a first stream
instruction . A block cache preload operation is performed on
a cache in the memory using a block of addresses generated
in a second mode of operating the streaming engine in
response to executing a second stream instruction .

(51) Int . Ci .
GO6F 9/30
G06F 9/345

(2006.01)
(2006.01)

100

142 512b

121 L11

110 141 512b

111 INSTRUCTION FETCH
-118 EMULATION

112 INSTRUCTION DISPATCH

113 INSTRUCTION DECODE
INTERRUPTS /
EXCEPTIONS

119
114 CONTROL REGISTERS

117

115

SCALAR
DATA
PATH
SIDE A

VECTOR
DATA
PATH
SIDEB

- 116

64b 512b 512b 512b 143 -144 147 -149
L1D STREAMING ENGINE 123 125

512b 512b 512b 145 146 -148
L2 130

Patent Application Publication Sep. 10 , 2020 Sheet 1 of 24 US 2020/0285470 A1

100

142 512b

121 L11

110 141 - 512b

111 INSTRUCTION FETCH
-118 EMULATION

112 INSTRUCTION DISPATCH

113 INSTRUCTION DECODE
INTERRUPTSI 119
EXCEPTIONS 114 1

CONTROL REGISTERS

117
SCALAR
DATA
PATH
SIDE A

VECTOR
DATA
PATH
SIDE B

115 116

64b 512b 512b 143 1471 512b 144 149

L1D STREAMING ENGINE 123 125

512b 512b 512b 145 146 148

L2 130

FIG . 1

115

116

117

DATAPATH SIDE B

DATAPATH SIDE A

211

SCALAR RF

231

VECTOR RF

Patent Application Publication

221

241

.L1 UNIT

.L2 UNIT

212

.LI.S LOCAL RF

232

.LI.S LOCAL RF

222

242

$ 1 UNIT

S2 UNIT

223

243

.M1 UNIT

M2 UNIT

.N1 UNIT

.N2 UNIT

224

244

.M.N LOCAL RF

.M / .N / .C LOCAL RF

Sep. 10 , 2020 Sheet 2 of 24

213

233

.D1 UNIT

.C UNIT

225

245

.D1 / .D2

214 LOCAL RF

.P UNIT

246

.D2 UNIT

PREDICATE RF

226

234

64 BITS

64 BITS

512 BITS

US 2020/0285470 A1

FIG . 2

Patent Application Publication Sep. 10 , 2020 Sheet 3 of 24 US 2020/0285470 A1

64b 64b

A15 D15
64b

A14 D14

AL7 1
1 OOO OOO

2114 214 212
16 16 8

1

??? 1
AL1
ALO

D1 A1
?? FIG . 5 DO

FIG . 3 FIG . 4

64b

AMZ
512b

1 1 213 ??? 64b
8

VB15 B15
AM1 VB14 B14
AMO

FIG . 6 O O O

16

64b O O O O O O I

P7
B1 VB1

VBO 234 BO

??? 1 8
FIG . 7 231

P1
PO

FIG . 8

Patent Application Publication Sep. 10 , 2020 Sheet 4 of 24 US 2020/0285470 A1

8

0 ---

64b BM7 OOO BM1 INSTRUCTION P 111100b BMO
. LE O 1 1

233 INSTRUCTION O 111000b

INSTRUCTION N 110100b

INSTRUCTION M 1100005

512b FIG . 10
VBM7 OOO VBM1 VBMO INSTRUCTION L 101100b

O

INSTRUCTION K 1010000

INSTRUCTION J 100100b

INSTRUCTION I 1000000

0 31/031/0312
0 31

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
0 31 / 031 /

0 31/031/0312
0 31

0 31

1201 1202 1203 1204 1205

31/031

INSTRUCTION H 011100b FIG . 12
INSTRUCTION G 011000b

64b BL7 BL1 BLO
INSTRUCTION F 010100b

? INSTRUCTION E 0100006

INSTRUCTION D 001100b

FIG . 9
L? 0 / 1 € 0 / L O

512b > INSTRUCTION C 001000b

VBL7 VBL1 VBLO ~ INSTRUCTION B 0001006

INSTRUCTION A 000000b M 232
LSBS OF THE BYTE ADDRESS

Patent Application Publication Sep. 10 , 2020 Sheet 5 of 24 US 2020/0285470 A1

INSTRUCTION FETCH PHASE 1110
1111 - PROGRAM ADDRESS GENERATION (PG)

1112 PROGRAM MEMORY ACCESS (PA)

1113 INSTRUCTION PROGRAM RECEIVE (PR)

DISPATCH AND DECODE PHASE 1120
1121 INSTRUCTION DISPATCH STAGE (DS)

1122 INSTRUCTION DECODE STAGE 1 (DC1)

1123 INSTRUCTION DECODE STAGE 2 (DC2)

1141
STREAM BUFFERS REGISTER FILES

1142

EXECUTION PHASE 1130

EXECUTION STAGE 1 (E1) 1131

EXECUTION STAGE 2 (E2) 1132 DATA
MEMORY
ACCESS EXECUTION STAGE 3 (E3) 1133 1151

EXECUTION STAGE 4 (E4) 1134

EXECUTION STAGE 5 (E5) 1135

FIG . 11

31

29 28 27

23 22

18 17

13 12

3 2 1 0

1309

1300

CREG
Z

DST

SRC2 / CST

SRC1

OPCODE

ESP

FIG . 13

1301 1302

1303

1304

1305

1306

1307 1308

Patent Application Publication

31

28 27

24 23

20 19

16 15

12 11

8 7 6 5

0

1400

CREG FOR L1

CREG FOR L2

CREG FOR S1

CREG FOR S2

CREG FOR D1

CREG FOR D2

RES

CCEXO

FIG . 14

1401

1402

1403

1404

1405

1406

1407

1408

31

28 27

24 23

20 19

16 15

12 11

6 5

0

Sep. 10 , 2020 Sheet 6 of 24

1500

CREG FOR M1

CREG FOR M2

CREG FOR C

CREG FOR N1

CREG FOR N2

RES

CCEX1

FIG . 15

? 7

? 7

7

? 7

1501

1502

1503

1504

1505

1506

1507

31

5 4

0

1600

CONSTANT EXTENSION BITS

CSTXO

US 2020/0285470 A1

FIG . 16

? 7 1601

1602

Patent Application Publication Sep. 10 , 2020 Sheet 7 of 24 US 2020/0285470 A1

CONSTANT INSTRUCTION
EXTENSION CONSTANT
SLOT BITS FIELD
(27 BITS) (5 BITS)

1700

1701 CONCATENATOR

32 BITS 5 BITS

E BIT 1702

SCALAR / VECTOR
SIGN EXTENSION

DATA SIZE 1703

OPERAND

FIG . 17

1801
CARRY CONTROL
SIGNAL BIT N + 1

CARRY INPUT BIT N CARRY
OUTPUT

FIG . 18

Patent Application Publication Sep. 10 , 2020 Sheet 8 of 24 US 2020/0285470 A1

1900

STREAM BUFFER 1920
FORMATTED

DATA STREAM ADDRESS
GENERATOR

DATA
FIFO FORMATTER CPU

1901 1902 1903

ELEMENT
ADDRESSES

DATA
ELEMENTS

SYSTEM MEMORY 1910

FIG . 19

1903

2011 2012

LINEAR FETCH TRANSPOSED
FETCH 2010

?
2021 COMPLEX SWAP

2022 TYPE PROMOTION

DECIMATION 2023 2020

ELEMENT DUPLICATION 2024

VECTOR LENGTH MASKING /
GROUP DUPLICATION 2025

REGISTER AND BUFFER FOR CPU 2030 2031

FIG . 20

511

448 447

384 383

320 319

256

Patent Application Publication

LANE 7

LANE 6

LANE 5

LANE 4

2100
255

192 191

128 127

64 63

0

LANE 3

LANE 2

LANE 1

LANE O

FIG . 21

Sep. 10 , 2020 Sheet 9 of 24

511

480 479

448 447

416 415

384 383

352 351

320 319

288 287

256

LANE 15

LANE 14

LANE 13

LANE 12

LANE 11

LANE 10

LANE 9 LANE 8

2200
255

224 223

192 191

160 159

128 127

96 95

64 63

32 31

0

LANE 7

LANE 6

LANE 5

LANE 4

LANE 3

LANE 2

LANE 1

LANE O

FIG . 22

US 2020/0285470 A1

Patent Application Publication Sep. 10 , 2020 Sheet 10 of 24 US 2020/0285470 A1

2320

dimension_1 iter_count_0 x elem_size FIG . 23

2311 2321

2310

2312 iter_count_1 2322

Patent Application Publication Sep. 10 , 2020 Sheet 11 of 24 US 2020/0285470 A1

DDDD op DDDD
7

9

5 FIG . 24

4

3

2400
2

??????????
1

STARTING POINT

DIM1 = 14 x 2

2522

2511

ICNTO = 12

Patent Application Publication

2510

2520

-2512
ICNT1 = 8

Sep. 10 , 2020 Sheet 12 of 24

2522

US 2020/0285470 A1

ELEM_BYTES = 2

FIG . 25

N

Patent Application Publication Sep. 10 , 2020 Sheet 13 of 24 US 2020/0285470 A1

Mamma
Naalala

FIG . 26

AAA ... AL
wwww
name 2600 GRANULE = 4

(32 BITS)

Patent Application Publication Sep. 10 , 2020 Sheet 14 of 24 US 2020/0285470 A1

FIG . 27 1:16 17:14

GRANULE = 8 (64 BITS)

2700

2824

REFERENCE QUEUE -2825

STORAGE ALLOCATION / TRACKING

2820

Patent Application Publication

ADDR GEN .

SHARED L2
2830

INTERFACES
2836

SEO V

COMMAND QUEUE 2823

2821

2829

2822

2834

DATA STORAGE
BUTTERFLY NETWORK

2826

2827

-125

uTLB

2

L2 INTERFACE B

SEO D

COARSE ROTATOR

2828

2832

STREAM 1 STREAM O

SEO V

UTLB

L2 INTERFACE A

Sep. 10 , 2020 Sheet 16 of 24

COARSE ROTATOR

2819

DATA STORAGE
BUTTERFLY NETWORK

2812

2831

2816

2817

SEO D

ADDR GEN .

2813 COMMAND QUEUE

2818

2811

2833
2835

2810

STORAGE ALLOCATION / TRACKING

VA

2814

2815 REFERENCE QUEUE

US 2020/0285470 A1

FIG . 28

2921

Patent Application Publication

63

48

RESERVED

3018

3017

3016

3015

3014

3013

3012

47

46 45

44 43

42 41

40 39

38 37

36 35

32

AM5

AM4

AM3

AM2

AM1

AMO

CBK1

31

28

27

26

24 23

22 21

20

19

18

16

CBKO

DIR

DIMFMT

THROTTLE

DECIM

GRDUP

ELDUP

Sep. 10 , 2020 Sheet 17 of 24

3011

3010

3009

3008

3007
7

3006

3005

15

14

12

11

10

8

6

4 3

0

RESERVED
VECLEN

RESERVED

PROMOTE

RESERVED
TRANSPOSE

ELTYPE

3004

3003

3002

3001

FIG . 30

US 2020/0285470 A1

Patent Application Publication Sep. 10 , 2020 Sheet 18 of 24 US 2020/0285470 A1

3200
r VECLEN

3201 TOTAL 3203
ELEMENT

SIZE
LANE
SIZE 3204

ELTYPE - DECODE NUMBER
OF LANES

PROMOTE
FACTOR

PROMOTE DECODE 3211
NUMBER
OF LANES TRANSPOSE

3202
LANE / REMAINING

ELEMENTS
CONTROL WORD

LOOPO /

+ LOOP1 /
L > E LSE

00011111
3212
3213

CONTROL WORD
EXPANSION 3214 INVALID

0

GRDUP Z. 3215
3216

VECLEN GROUP
DUPLICATE

3217

MSB LSB

I BIT63 BIT62 BIT1 BITO
2819

FIG . 32

Patent Application Publication Sep. 10 , 2020 Sheet 19 of 24 US 2020/0285470 A1

2811

3301 3302

ICTNO START
ADDRESS LOOPO

COUNT
COMPARE LOOPO END

3311 3314 LOOPO
COUNT

LOOP5
END 1

ADDER
CONTROL

WORD
ADDER

NEXT
ADDRESS

3312 LOOP1 LOOP2 LOOP3 LOOP4 LOOP5
3313

ELEM_BYTES - X
LOOPO
ADDRESS

FINAL SUM

3303 FETCH ADDRESS FIG . 33

Patent Application Publication Sep. 10 , 2020 Sheet 20 of 24 US 2020/0285470 A1

3400

1305
231 232/233

17 13
OOO SRC1 GLOBAL VECTOR

REGISTER FILE
LOCAL VECTOR
REGISTER FILE

3420

00000
01111

FUNCTIONAL
UNIT

DATA
src1 dst

3412 src2 3411
REGISTER NUMBER 10000

10111 2800

11100 STREAMING
ENGINE 3414 3413 STREAM O

OUTPUT 11101 2818
READ

11110 ADVANCE
VALID 3416 2819 3415

11111 STREAM 1
OUTPUT

2828 INSTRUCTION
DECODE READ

ADVANCE
VALID 113 2829 PREDICATE PO

REGISTER
FILE P1 234

FIG . 34

Patent Application Publication Sep. 10 , 2020 Sheet 21 of 24 US 2020/0285470 A1

3500

1305
231 234

17 13

SRC1 GLOBAL VECTOR
REGISTER FILE

PREDICATE
REGISTER FILE

246

00000
01111

PREDICATE
UNIT

DATA
src1 dst

src2 3511
REGISTER NUMBER 10000

10111 2800

3512
11100

STREAMING
ENGINE

STREAM O
VALID

2819
READ VALID

3514 3513 2
11101

INSTRUCTION
DECODE

STREAM 1
VALID

2829
READ VALID

113
FIG . 35

wwwwwww

PROCESSOR A 142
512b 5120

100

121

L11

Patent Application Publication

110

-141

3600

512b PROCESSOR CORE

fi 143
512b

144

147

149

64b

5126

512b 5125]

512b 512b

3611

123

125

L1D

STREAMING ENGINE

PROCESSOR B

512b 5125L

512b 51264

512b
146 - 148

-145

L2

I

Sep. 10 , 2020 Sheet 22 of 24

DMA

PERIPHERALS
L2

130

3660

3662

3612

512b

1

512b

3651

L3

EXTERNAL MEMORY INTERFACE

3650

3652

US 2020/0285470 A1

FIG . 36

L4

3654

Patent Application Publication Sep. 10 , 2020 Sheet 23 of 24 US 2020/0285470 A1

121 L11

123
L1D

TO L1D / L11

3734 SNOOP
LOGIC L2 CACHE

130
TAG CACHE LINE

TAG CACHE LINE

??? ???
TAG CACHE LINE

3731
3732 3733

PROCESSOR ACCESS ??? 3743 IDLE
3735

3742
L2 INT 2833

UTLB ERROR COHERENCE ACTIVE
UTLB MODE

2811 3741
2812 3740

ADDRESS
GENERATOR

STREAM
ENGINE 2810

FIG . 37

Patent Application Publication Sep. 10 , 2020 Sheet 24 of 24 US 2020/0285470 A1

3800 OPEN DATA - LESS
STREAM ACCESS ON SE

3806 ALTERNATE
PROGRAM FLOW

3801 ATTEMPT TO READ A DATA
ELEMENT BY PROCESSOR

3802

NO PRELOAD
COMPLETE ?

YES

YES ERROR ? HANDLE ERROR CASE

3803 NO 3804
CLOSE DATA - LESS STREAM 3805

OPEN DATA STREAM ON SE 3807

CONSUME DATA STREAM
BY PROCESSOR 3808

CLOSE DATA STREAM 3809

FIG . 38

US 2020/0285470 A1 Sep. 10 , 2020
1

BRIEF DESCRIPTION OF THE DRAWINGS CACHE PRELOAD OPERATIONS USING
STREAMING ENGINE

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser . No. 16 / 203,528 , filed Nov. 28 , 2018 , which
is a continuation in part of U.S. patent application Ser . No.
15 / 429,205 , filed Feb. 10 , 2017 , now U.S. Pat . No. 10,162 ,
641 , which is a division of U.S. patent application Ser . No.
14 / 331,986 , filed Jul . 15 , 2014 , now U.S. Pat . No. 9,606 ,
803 , which claims priority to U.S. Provisional Application
No. 61 / 846,148 , filed Jul . 15 , 2013 , each of which is herein
incorporated by reference in its entirety .

TECHNICAL FIELD

[0002] This relates to using a streaming engine to perform
block - oriented cache preloading .

BACKGROUND

[0003] Digital signal processors (DSP) are optimized for
processing streams of data that may be derived from various
input signals , such as sensor data , a video stream , a voice
channel , radar signals , biomedical signals , etc. Digital signal
processors operating on real - time data typically receive an
input data stream , perform a filter function on the data
stream (such as encoding or decoding) and output a trans
formed data stream . The system is called real - time because
the application fails if the transformed data stream is not
available for output when scheduled . Typical video encoding
requires a predictable but non - sequential input data pattern .
A typical application requires memory access to load data
registers in a data register file and then supply data from the
data registers to functional units which perform the data
processing .
[0004] One or more DSP processing cores can be com
bined with various peripheral circuits , blocks of memory ,
etc. on a single integrated circuit (IC) die to form a system
on chip (SOC) . These systems can include multiple inter
connected processors that share the use of on - chip and
off - chip memory . A processor can include some combination
of instruction cache (ICache) and data cache (DCache) to
improve processing . Furthermore , multiple processors with
shared memory can be incorporated in a single embedded
system . The processors can physically share the same
memory without accessing data or executing code located in
the same memory locations or can use some portion of the
shared memory as common shared memory .

[0006] FIG . 1 illustrates an example dual scalar / vector
data path processor .
[0007] FIG . 2 illustrates the registers and functional units
in the dual scalar / vector data path processor illustrated in
FIG . 1 .
[0008] FIG . 3 illustrates a global scalar register file .
[0009] FIG . 4 illustrates a local scalar register file shared
by arithmetic functional units .
[0010] FIG . 5 illustrates a local scalar register file shared
by multiply functional units .
[0011] FIG . 6 illustrates a local scalar register file shared
by load / store units .
[0012] FIG . 7 illustrates a global vector register file .
[0013] FIG . 8 illustrates a predicate register file .
[0014] FIG . 9 illustrates a local vector register file shared
by arithmetic functional units .
[0015] FIG . 10 illustrates a local vector register file shared
by multiply and correlation functional units .
[0016] FIG . 11 illustrates pipeline phases of a processing
unit .
[0017] FIG . 12 illustrates sixteen instructions of a single
fetch packet .
[0018] FIG . 13 illustrates an example of the instruction
coding of instructions .
[0019] FIG . 14 illustrates bit coding of a condition code
extension slot 0 .
[0020] FIG . 15 illustrates bit coding of a condition code
extension slot 1 .
[0021] FIG . 16 illustrates bit coding of a constant exten
sion slot 0 .
[0022] FIG . 17 is a partial block diagram illustrating
constant extension .
[0023] FIG . 18 illustrates carry control for SIMD opera
tions .
[0024] FIG . 19 illustrates a conceptual view of streaming
engines .
[0025] FIG . 20 illustrates a sequence of formatting opera
tions .
[0026] FIG . 21 illustrates an example of lane allocation in
a vector .
[0027] FIG . 22 illustrates an example of lane allocation in
a vector .

[0028] FIG . 23 illustrates a basic two - dimensional (2D)
stream .
[0029] FIG . 24 illustrates the order of elements within the
example stream of FIG . 23 .
[0030] FIG . 25 illustrates extracting a smaller rectangle
from a larger rectangle .
[0031] FIG . 26 illustrates how an example streaming
engine fetches a stream with a transposition granularity of 4
bytes .
[0032] FIG . 27 illustrates how an example streaming
engine fetches a stream with a transposition granularity of 8
bytes .
[0033] FIG . 28 illustrates the details of an example
streaming engine .
[0034] FIG . 29 illustrates an example stream template
register .
[0035] FIG . 30 illustrates sub - field definitions of the flags
field of the example stream template register of FIG . 29 .
[0036] FIG . 31 illustrates an example of a vector length
masking / group duplication block .

SUMMARY

[0005] Methods and apparatus are provided such that a
stream of data can be accessed from a memory system using
a first stream of addresses generated in a first mode of
operating a streaming engine in response to executing a first
stream instruction . A block cache preload operation can be
performed on a cache in the memory system using a second
stream of addresses generated in a second mode of operating
the streaming engine in response to executing a second
stream instruction .

US 2020/0285470 A1 Sep. 10 , 2020
2

[0037] FIG . 32 is a partial schematic diagram of an
example of the generation of the stream engine valid or
invalid indication .
[0038] FIG . 33 is a partial schematic diagram of a stream
ing engine address generator illustrating generation of the
loop address and loop count .
[0039] FIG . 34 illustrates a partial schematic diagram
showing the streaming engine supply of data of this
example .
[0040] FIG . 35 illustrates a partial schematic diagram
showing the streaming engine supply of valid data to the
predicate unit .
[0041] FIG . 36 is a block diagram of a multiprocessor
system with multiple levels of cache .
[0042] FIG . 37 is a partial schematic diagram for cache
management operations using the streaming engine of FIG .
28 .
[0043] FIG . 38 is a flow chart illustrating operation of
cache management operations using the streaming engine .

DETAILED DESCRIPTION

[0044] In the drawings , like elements are denoted by like
reference numerals for consistency .
[0045] Digital signal processors (DSP) are optimized for
processing streams of data that may be derived from various
input signals , such as sensor data , a video stream , a voice
channel , radar signals , biomedical signals , etc. Memory
bandwidth and scheduling are concerns for digital signal
processors operating on real - time data . An example DSP
processing core is described herein that includes a streaming
engine to improve memory bandwidth and data scheduling .
[0046] One or more DSP processing cores can be com
bined with various peripheral circuits , blocks of memory ,
etc. on a single integrated circuit (IC) die to form a system
on chip (SOC) . See , for example , " 66AK2Hx Multicore
KeystoneTM DSP + ARM® System - on - Chip , ” 2013 which is
incorporated by reference herein .
[0047] In the example DSP core described herein , an
autonomous streaming engine (SE) is coupled to the DSP . In
this example , the streaming engine includes two closely
coupled streaming engines that can manage two data streams
simultaneously . In another example , the streaming engine is
capable of managing only a single stream , while in other
examples the streaming engine is capable of handling more
than two streams . In each case , for each stream , the stream
ing engine includes an address generation stage , a data
formatting stage , and some storage for formatted data wait
ing for consumption by the processor . In the examples
described herein , addresses are derived from algorithms that
can involve multi - dimensional loops , each dimension main
taining an iteration count . In one example , the streaming
engine supports six levels of nested iteration . In other
examples , more or fewer levels of iteration are supported .
[0048] In this example , the DSP data processing systems
employs data caches and instruction caches to improve
performance . A small amount of high - speed memory is used
for each cache . These cache memories are filled from main
memory on an as - needed basis . When the data processor
requires data or an instruction , this is first sought from the
respective cache memory . If the data or instruction sought is
already stored in the cache memory , it is recalled faster than
it could have been recalled from main memory . If the data
or instruction sought is not stored in the cache memory , it is
recalled from main memory for use and stored in the

corresponding cache . A performance improvement is
achieved using cache memory based upon the principle of
locality of reference . It is likely that the data or the instruc
tion just sought by the data processor will be needed again
soon . Use of cache memories speeds the accesses needed to
service these future needs .

[0049] It is desirable to provide a level of control to the
programmer over cache operations . In this example , the
cache system supports a writeback mechanism , whereby the
programmer can direct the cache to write data in the cache
back to external memory for shared access by another
processor which doesn't have access to the cache . Similarly ,
it is often desirable to be able to clear or invalidate cache
entries so that new data can be accessed at addresses which
have been updated in the reference memory . In some appli
cations it is desirable to be able to preload data into a
selected hierarchical level of cache in order to assure that the
data is available when accessed by a program .
[0050] In this example , in addition to its core data stream
support , the streaming engine supports a range of special
“ data - less ” streams . A data - less stream may be used move
data between various levels of cache and memory , without
bringing data to the processor . In this example , two special
instructions are provided to allow a program to initiate a
data - less stream . A block cache maintenance operation is
initiated by a “ BLKCMO ” instruction . A block cache pre
load operation is initiated with a “ BLKPLD ” instruction .
[0051] An example of performing block - oriented cache
maintenance operations and block oriented cache preloading
using BLKCMO and BLKPLD instructions is described in
more detail with regard to FIGS . 36-38 .
[0052] An example DSP processor is described in detail
herein with reference to FIGS . 1-18 . An example streaming
engine capable of managing two data streams using six
dimensional nested loops is described in detail herein with
reference to FIGS . 19-35 .

[0053] FIG . 1 illustrates an example processor 100 that
includes dual scalar / vector data paths 115 , 117. Processor
100 includes a streaming engine 125 that is described in
more detail herein . Processor 100 includes separate level one
instruction cache (L1D) 121 and level one data cache (L1D)
123. Processor 100 includes a level 2 (L2) combined instruc
tion / data cache 130 that holds both instructions and data .
FIG . 1 illustrates connection between LII cache and L2
combined instruction / data cache 130 , 512 - bit bus 142. FIG .
1 illustrates the connection between LID cache 123 and L2
combined instruction / data cache 130 , 512 - bit bus 145. In the
example processor 100 , L2 combined instruction / data cache
130 stores both instructions to back up L1I cache 121 and
data to back up LID cache 123. In this example , L2
combined instruction / data cache 130 is further connected to
higher level cache and / or main memory using known or later
developed memory system techniques not illustrated in FIG .
1. As used herein , the term “ higher level ” memory or cache
refers to a next level in a memory hierarchy that is more
distant from the processor , while the term “ lower level ”
memory or cache refers to a level in the memory hierarchy
that is closer to the processor . L1I cache 121 , L1D cache
123 , and L2 cache 130 may be implemented in different
sizes in various examples . In this example , L1I cache 121
and L1D cache 123 are each 32K bytes , and L2 cache 130
is 1024K bytes . In the example processor 100 , L1I cache
121 , L1D cache 123 and L2 combined instruction / data cache

US 2020/0285470 A1 Sep. 10 , 2020
3

130 are formed on a single integrated circuit . This single
integrated circuit optionally includes other circuits .
[0054] Processing unit core 110 fetches instructions from
L1I cache 121 as controlled by instruction fetch unit 111 .
Instruction fetch unit 111 determines the next instructions to
be executed and recalls a fetch packet sized set of such
instructions . The nature and size of fetch packets are further
detailed below . Instructions are directly fetched from LII
cache 121 upon a cache hit if the instructions are stored in
LII cache 121. Upon a cache miss occurring when the
specified instructions are not stored in LlI cache 121 , the
instructions are sought in L2 combined cache 130. In this
example , the size of a cache line in L1I cache 121 equals the
size of a fetch packet which is 512 bits . The memory
locations of these instructions are either a hit in L2 combined
cache 130 or a miss . A hit is serviced from L2 combined
cache 130. A miss is serviced from a higher level of cache
(not illustrated) or from main memory (not illustrated) . In
this example , the requested instruction is simultaneously
supplied to both LlI cache 121 and processing unit core 110
to speed use .
[0055] In this example , processing unit core 110 includes
multiple functional units to perform instruction specified
data processing tasks . Instruction dispatch unit 112 deter
mines the target functional unit of each fetched instruction .
In this example , processing unit 110 operates as a very long
instruction word (VLIW) processor capable of operating on
multiple instructions in corresponding functional units
simultaneously . A complier organizes instructions in execute
packets that are executed together . Instruction dispatch unit
112 directs each instruction to its target functional unit . The
functional unit assigned to an instruction is completely
specified by the instruction produced by the compiler . The
hardware of processing unit core 110 has no part in the
functional unit assignment . In this example , instruction
dispatch unit 112 operates on several instructions in parallel .
The number of such parallel instructions is set by the size of
the execute packet . This is further described herein .
[0056] One part of the dispatch task of instruction dispatch
unit 112 is determining whether the instruction is to execute
on a functional unit in scalar data path side A 115 or vector
data path side B 116. An instruction bit within each instruc
tion called the s bit determines which data path the instruc
tion controls . This is further described herein .
[0057] Instruction decode unit 113 decodes each instruc
tion in a current execute packet . Decoding includes identi
fication of the functional unit performing the instruction ,
identification of registers used to supply data for the corre
sponding data processing operation from among possible
register files , and identification of the register destination of
the results of the corresponding data processing operation .
As further explained below , instructions can include a con
stant field in place of one register number operand field . The
result of this decoding are signals for control of the target
functional unit to perform the data processing operation
specified by the corresponding instruction on the specified
data .
[0058] Processing unit core 110 includes control registers
114. Control registers 114 store information for control of
the functional units in scalar data path side A 115 and vector
data path side B 116. This information may include mode
information or the like .
[0059] The decoded instructions from instruction decode
113 and information stored in control registers 114 are

supplied to scalar data path side A 115 and vector data path
side B 116. As a result , functional units within scalar data
path side A 115 and vector data path side B 116 perform
instruction specified data processing operations upon
instruction specified data and store the results in an instruc
tion specified data register or registers . Each of scalar data
path side A 115 and vector data path side B 116 include
multiple functional units that operate in parallel . These are
further described below in conjunction with FIG . 2. There is
a data path 117 between scalar data path side A 115 and
vector data path side B 116 permitting data exchange .
[0060] Processing unit core 110 includes further non
instruction - based modules . Emulation unit 118 permits
determination of the machine state of processing unit core
110 in response to instructions . This capability can be
employed for algorithmic development . Interrupts / excep
tions unit 119 enables processing unit core 110 to be
responsive to external , asynchronous events interrupts) and
to respond to attempts to perform improper operations
(exceptions) .
[0061] Processor 100 includes streaming engine 125 .
Streaming engine 125 supplies two data streams from pre
determined addresses cached in L2 combined cache 130 to
register files of vector data path side B of processing unit
core 110. This provides controlled data movement from
memory (as cached in L2 combined cache 130) directly to
functional unit operand inputs . This is further described
herein .
[0062] FIG . 1 illustrates example data widths of busses
between various parts . LlI cache 121 supplies instructions
to instruction fetch unit 111 via bus 141. Bus 141 is a 512 - bit
bus in this example . Bus 141 is unidirectional from LII
cache 121 to processing unit 110. L2 combined cache 130
supplies instructions to LlI cache 121 via bus 142. Bus 142
is a 512 - bit bus in this example . Bus 142 is unidirectional
from L2 combined cache 130 to LlI cache 121 .
[0063] LID cache 123 exchanges data with register files in
scalar data path side A 115 via bus 143. Bus 143 is a 64 - bit
bus in this example . L1D cache 123 exchanges data with
register files in vector data path side B 116 via bus 144. Bus
144 is a 512 - bit bus in this example . Busses 143 and 144 are
illustrated as bidirectional supporting both processing unit
core 110 data reads and data writes . LID cache 123
exchanges data with L2 combined cache 130 via bus 145 .
Bus 145 is a 512 - bit bus in this example . Bus 145 is
illustrated as bidirectional supporting cache service for both
processing unit core 110 data reads and data writes .
[0064] Processor data requests are directly fetched from
LID cache 123 upon a cache hit (if the requested data is
stored in LID cache 123) . Upon a cache miss (the specified
data is not stored in LID cache 123) , the data is sought in
L2 combined cache 130. The memory locations of the
requested data are either a hit in L2 combined cache 130 or
a miss . A hit is serviced from L2 combined cache 130. A
miss is serviced from another level of cache (not illustrated)
or from main memory (not illustrated) . The requested data
may be simultaneously supplied to both LID cache 123 and
processing unit core 110 to speed use .
[0065] L2 combined cache 130 supplies data of a first data
stream to streaming engine 125 via bus 146. Bus 146 is a
512 - bit bus in this example . Streaming engine 125 supplies
data of the first data stream to functional units of vector data
path side B 116 via bus 147. Bus 147 is a 512 - bit bus in this
example . L2 combined cache 130 supplies data of a second

US 2020/0285470 A1 Sep. 10 , 2020
4

data stream to streaming engine 125 via bus 148. Bus 148 is
a 512 - bit bus in this example . Streaming engine 125 supplies
data of this second data stream to functional units of vector
data path side B 116 via bus 149 , which is a 512 - bit bus in
this example . Busses 146 , 147 , 148 and 149 are illustrated
as unidirectional from L2 combined cache 130 to streaming
engine 125 and to vector data path side B 116 in accordance
with this example .
[0066] Streaming engine data requests are directly fetched
from L2 combined cache 130 upon a cache hit (if the
requested data is stored in L2 combined cache 130) . Upon
a cache miss (the specified data is not stored in L2 combined
cache 130) , the data is sought from another level of cache
(not illustrated) or from main memory (not illustrated) . It is
technically feasible in some examples for L1D cache 123 to
cache data not stored in L2 combined cache 130. If such
operation is supported , then upon a streaming engine data
request that is a miss in L2 combined cache 130 , L2
combined cache 130 snoops LID cache 123 for the stream
engine requested data . If L1D cache 123 stores the data , the
snoop response includes the data , which is then supplied to
service the streaming engine request . If L1D cache 123 does
not store the data , the snoop response indicates this and L2
combined cache 130 services the streaming engine request
from another level of cache (not illustrated) or from main
memory (not illustrated) .
[0067] In this example , both LID cache 123 and L2
combined cache 130 can be configured as selected amounts
of cache or directly addressable memory in accordance with
U.S. Pat . No. 6,606,686 entitled UNIFIED MEMORY SYS
TEM ARCHITECTURE INCLUDING CACHE AND
DIRECTLY ADDRESSABLE STATIC RANDOM
ACCESS MEMORY , which is incorporated by reference
herein .
[0068] In this example , processor 100 is fabricated on an
integrated chip (IC) that is mounted on a ball grid array
(BGA) substrate . A BGA substrate and IC die together may
be referred to as “ BGA package , ” “ IC package , ” “ integrated
circuit , ” “ IC , ” “ chip , ” “ microelectronic device , ” or similar
terminology . The BGA package may include encapsulation
material to cover and protect the IC die from damage . In
another example , other types of known or later developed
packaging techniques may be used with processor 100 .
[0069] FIG . 2 illustrates further details of functional units
and register files within scalar data path side A 115 and
vector data path side B 116. Scalar data path side A 115
includes L1 unit 221 , S1 unit 222 , M1 unit 223 , N1 unit 224 ,
D1 unit 225 and D2 unit 226. Scalar data path side A 115
includes global scalar register file 211 , L1 / S1 local register
file 212 , M1 / N1 local register file 213 and D1 / D2 local
register file 214. Vector data path side B 116 includes L2 unit
241 , S2 unit 242 , M2 unit 243 , N2 unit 244 , C unit 245 and
P unit 246. Vector data path side B 116 includes global
vector register file 231 , L2 / S2 local register file 232 ,
M2 / N2 / C local register file 233 and predicate register file
234. Which functional units can read from or write to which
register files is described in more detail herein .
[0070] Scalar data path side A 115 includes L1 unit 221 .
L1 unit 221 generally accepts two 64 - bit operands and
produces one 64 - bit result . The two operands are each
recalled from an instruction specified register in either
global scalar register file 211 or Li / Si local register file 212 .
L1 unit 221 performs the following instruction selected
operations : 64 - bit add / subtract operations ; 32 - bit min / max

operations ; 8 - bit Single Instruction Multiple Data (SIMD)
instructions such as sum of absolute value , minimum and
maximum determinations , circular min / max operations ; and
various move operations between register files . The result is
written into an instruction specified register of global scalar
register file 211 , L1 / S1 local register file 212 , M1 / N1 local
register file 213 or D1 / D2 local register file 214 .
[0071] Scalar data path side A 115 includes S1 unit 222. Si
unit 222 generally accepts two 64 - bit operands and produces
one 64 - bit result . The two operands are each recalled from
an instruction specified register in either global scalar reg
ister file 211 or L1 / S1 local register file 212. In this example ,
S1 unit 222 performs the same type operations as L1 unit
221. In another example , there may be slight variations
between the data processing operations supported by L1 unit
221 and S1 unit 222. The result is written into an instruction
specified register of global scalar register file 211 , L1 / S1
local register file 212 , M1 / N1 local register file 213 or
D1 / D2 local register file 214 .
[0072] Scalar data path side A 115 includes M1 unit 223 .
M1 unit 223 generally accepts two 64 - bit operands and
produces one 64 - bit result . The two operands are each
recalled from an instruction specified register in either
global scalar register file 211 or Mi / N1 local register file
213. In this example , M1 unit 223 performs the following
instruction selected operations : 8 - bit multiply operations ;
complex dot product operations ; 32 - bit bit count operations ;
complex conjugate multiply operations ; and bit - wise Logi
cal Operations , moves , adds and subtracts . The result is
written into an instruction specified register of global scalar
register file 211 , L1 / S1 local register file 212 , M1 / N1 local
register file 213 or D1 / D2 local register file 214 .
[0073] Scalar data path side A 115 includes N1 unit 224 .
N1 unit 224 generally accepts two 64 - bit operands and
produces one 64 - bit result . The two operands are each
recalled from an instruction specified register in either
global scalar register file 211 or Mi / N1 local register file
213. In this example , N1 unit 224 performs the same type
operations as M1 unit 223. There are also double operations
(called dual issued instructions) that employ both the M1
unit 223 and the N1 unit 224 together . The result is written
into an instruction specified register of global scalar register
file 211 , L1 / S1 local register file 212 , M1 / N1 local register
file 213 or D1 / D2 local register file 214 .
[0074] Scalar data path side A 115 includes D1 unit 225
and D2 unit 226. D1 unit 225 and D2 unit 226 generally each
accept two 64 - bit operands and each produce one 64 - bit
result . D1 unit 225 and D2 unit 226 generally perform
address calculations and corresponding load and store opera
tions . D1 unit 225 is used for scalar loads and stores of 64
bits . D2 unit 226 is used for vector loads and stores of 512
bits . In this example , D1 unit 225 and D2 unit 226 also
perform : swapping , pack and unpack on the load and store
data ; 64 - bit SIMD arithmetic operations ; and 64 - bit bit - wise
logical operations . D1 / D2 local register file 214 stores base
and offset addresses used in address calculations for the
corresponding loads and stores . The two operands are each
recalled from an instruction specified register in either
global scalar register file 211 or D1 / D2 local register file
214. The calculated result is written into an instruction
specified register of global scalar register file 211 , L1 / S1
local register file 212 , M1 / N1 local register file 213 or
D1 / D2 local register file 214 .

US 2020/0285470 A1 Sep. 10 , 2020
5

[0075] Vector data path side B 116 includes L2 unit 241 .
L2 unit 241 generally accepts two 512 - bit operands and
produces one 512 - bit result . The two operands are each
recalled from an instruction specified register in either
global vector register file 231 , L2 / S2 local register file 232
or predicate register file 234. In this example , L2 unit 241
performs instruction similar to Ll unit 221 except on wider
512 - bit data . The result may be written into an instruction
specified register of global vector register file 231 , L2 / S2
local register file 232 , M2 / N2 / C local register file 233 or
predicate register file 234 .
[0076] Vector data path side B 116 includes S2 unit 242 .
S2 unit 242 generally accepts two 512 - bit operands and
produces one 512 - bit result . The two operands are each
recalled from an instruction specified register in either
global vector register file 231 , L2 / S2 local register file 232
or predicate register file 234. In this example , S2 unit 242
performs instructions similar to S1 unit 222. The result is
written into an instruction specified register of global vector
register file 231 , L2 / S2 local register file 232 , M2 / N2 / C
local register file 233 or predicate register file 234 .
[0077] Vector data path side B 116 includes M2 unit 243 .
M2 unit 243 generally accepts two 512 - bit operands and
produces one 512 - bit result . The two operands are each
recalled from an instruction specified register in either
global vector register file 231 or M2 / N2 / C local register file
233. In this example , M2 unit 243 performs instructions
similar to M1 unit 223 except on wider 512 - bit data . The
result is written into an instruction specified register of
global vector register file 231 , L2 / S2 local register file 232
or M2 / N2 / C local register file 233 .
[0078] Vector data path side B 116 includes N2 unit 244 .
N2 unit 244 generally accepts two 512 - bit operands and
produces one 512 - bit result . The two operands are each
recalled from an instruction specified register in either
global vector register file 231 or M2 / N2 / C local register file
233. In this example , N2 unit 244 performs the same type
operations as M2 unit 243. There are also double operations
(called dual issued instructions) that employ both M2 unit
243 and the N2 unit 244 ether . The result is written into
an instruction specified register of global vector register file
231 , L2 / S2 local register file 232 or M2 / N2 / C local register
file 233 .
[0079] Vector data path side B 116 includes correlation (C)
unit 245. C unit 245 generally accepts two 512 - bit operands
and produces one 512 - bit result . The two operands are each
recalled from an instruction specified register in either
global vector register file 231 or M2 / N2 / C local register file
233. In this example , C unit 245 performs “ Rake ” and
" Search " instructions that are used for WCDMA (wideband
code division multiple access) encoding / decoding . In this
example , C unit 245 can perform up to 512 multiples per
clock cycle of a 2 - bit PN (pseudorandom number) and 8 - bit
I / Q (complex number) , 8 - bit and 16 - bit Sum - of - Absolute
Difference (SAD) calculations , up to 512 SADs per clock
cycle , horizontal add and horizontal min / max instructions ,
and vector permutes instructions . C unit 245 also contains 4
vector control registers (CUCRO to CUCR3) used to control
certain operations of C unit 245 instructions . Control reg
isters CUCRO to CUCR3 are used as operands in certain C
unit 245 operations . In some examples , control registers
CUCRO to CUCR3 are used in control of a general permu
tation instruction (VPERM) , and as masks for SIMD mul
tiple DOT product operations (DOTPM) and SIMD multiple

Sum - of - Absolute - Difference (SAD) operations . In further
examples , control register CUCRO is used to store the
polynomials for Galois Field Multiply operations (GFMPY)
and control register CUCR1 is used to store the Galois field
polynomial generator function .
[0080] Vector data path side B 116 includes P unit 246 .
Vector predicate (P) unit 246 performs basic logic operations
on registers of local predicate register file 234. P unit 246 has
direct access to read from and write to predication register
file 234. The logic operations include single register unary
operations such as NEG (negate) which inverts each bit of
the single register , BITCNT (bit count) which returns a
count of the number of bits in the single register having a
predetermined digital state (1 or 0) , RMBD (right most bit
detect) which returns a number of bit positions from the least
significant bit position (right most) to a first bit position
having a predetermined digital state (1 or 0) , DECIMATE
which selects every instruction specified Nth (1 , 2 , 4 , etc.)
bit to output , and EXPAND which replicates each bit an
instruction specified N times (2 , 4 , etc.) . The logic opera
tions also include two register binary operations such as
AND which is a bitwise AND of data of the two registers ,
NAND which is a bitwise AND and negate of data of the two
registers , OR which is a bitwise OR of data of the two
registers , NOR which is a bitwise OR and negate of data of
the two registers , and XOR which is exclusive OR of data
of the two registers . The logic operations include transfer of
data from a predicate register of predicate register file 234 to
another specified predicate register or to a specified data
register in global vector register file 231. One use of P unit
246 is manipulation of the SIMD vector comparison results
for use in control of a further SIMD vector operation . The
BITCNT instruction can be used to count the number of l’s
in a predicate register to determine the number of valid data
elements from a predicate register .
[0081] FIG . 3 illustrates global scalar register file 211 .
There are 16 independent 64 - bit wide scalar registers des
ignated AO to A15 . Each register of global scalar register file
211 can be read from or written to as 64 - bits of scalar data .
All scalar data path side A 115 functional units (L1 unit 221 ,
S1 unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225 and D2
unit 226) can read or write to global scalar register file 211 .
Global scalar register file 211 can be read from as 32 - bits or
as 64 - bits and written to as 64 - bits . The instruction execut
ing determines the read data size . Vector data path side B 116
functional units (L2 unit 241 , S2 unit 242 , M2 unit 243 , N2
unit 244 , C unit 245 and P unit 246) can read from global
scalar register file 211 via cross path 117 under restrictions
that are described below .
[0082] FIG . 4 illustrates D1 / D2 local register file 214 .
There are sixteen independent 64 - bit wide scalar registers
designated Do to D16 . Each register of D1 / D2 local register
file 214 is read from or written to as 64 - bits of scalar data .
All scalar data path side A 115 functional units (L1 unit 221 ,
S1 unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225 and D2
unit 226) can write to global scalar register file 211. Only D1
unit 225 and D2 unit 226 can read from D1 / D2 local scalar
register file 214. Data stored in D1 / D2 local scalar register
file 214 can include base addresses and offset addresses used
in address calculation .
[0083] FIG . 5 illustrates L1 / S1 local register file 212. In
this example , L1 / S1 local register file 212 includes eight
independent 64 - bit wide scalar registers designated ALO to
AL7 . In this example , the instruction coding permits L1 / S1

US 2020/0285470 A1 Sep. 10 , 2020
6

local register file 212 to include up to 16 registers . In this
example , eight registers are implemented to reduce circuit
size and complexity . Each register of L1 / S1 local register file
212 can be read from or written to as 64 - bits of scalar data .
All scalar data path side A 115 functional units (L1 unit 221 ,
S1 unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225 and D2
unit 226) can write to L1 / S1 local scalar register file 212. L1
unit 221 and S1 unit 222 can read from L1 / S1 local scalar
register file 212 .
[0084] FIG . 6 illustrates M1 / N1 local register file 213. In
this example , eight independent 64 - bit wide scalar registers
designated AMO to AM7 are implemented . In this example ,
the instruction coding permits M1 / N1 local register file 213
to include up to 16 registers . In this example , eight registers
are implemented to reduce circuit size and complexity . Each
register of Mi / N1 local register file 213 can be read from or
written to as 64 - bits of scalar data . All scalar data path side
A 115 functional units (L1 unit 221 , S1 unit 222 , M1 unit
223 , N1 unit 224 , D1 unit 225 and D2 unit 226) can write
to M1 / N1 local scalar register file 213. M1 unit 223 and N1
unit 224 can read from Mi / N1 local scalar register file 213 .
[0085) FIG . 7 illustrates global vector register file 231 .
There are sixteen independent 512 - bit wide vector registers .
Each register of global vector register file 231 can be read
from or written to as 64 - bits of scalar data designated BO to
B15 . Each register of global vector register file 231 can be
read from or written to as 512 - bits of vector data designated
VB0 to VB15 . The instruction type determines the data size .
All vector data path side B 116 functional units (L2 unit 241 ,
S2 unit 242 , M2 unit 243 , N2 unit 244 , C unit 245 and Punit
246) can read or write to global vector register file 231 .
Scalar data path side A 115 functional units (L1 unit 221 , S1
unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225 and D2 unit
226) can read from global vector register file 231 via cross
path 117 under restrictions that are described below .
[0086] FIG . 8 illustrates predicate (P) local register file
234. There are eight independent 64 - bit wide registers
designated PO to P7 . Each register of P local register file 234
can be read from or written to as 64 - bits of scalar data .
Vector data side B 116 functional units L2 unit 241 , S2
unit 242 , C unit 245 and P unit 246 can write to P local
register file 234. L2 unit 241 , S2 unit 242 and Punit 246 can
read from P local scalar register file 234. One use of P local
register file 234 is writing one - bit SIMD vector comparison
results from L2 unit 241 , S2 unit 242 or C unit 245 ,
manipulation of the SIMD vector comparison results by P
unit 246 , and use of the manipulated results in control of a
further SIMD vector operation .
[0087] FIG . 9 illustrates L2 / S2 local register file 232. In
this example , eight independent 512 - bit wide vector regis
ters are implemented . In this example , the instruction coding
permits L2 / S2 local register file 232 to include up to sixteen
registers . In this example , eight registers are implemented to
reduce circuit size and complexity . Each register of L2 / S2
local vector register file 232 can be read from or written to
as 64 - bits of scalar data designated BLO to BL7 . Each
register of L2 / S2 local vector register file 232 can be read
from or written to as 512 - bits of vector data designated
VBLO to VBL7 . The instruction type determines the data
size . All vector data path side B 116 functional units (L2 unit
241 , S2 unit 242 , M2 unit 243 , N2 unit 24 , C unit 245 and
P unit 246) can write to L2 / S2 local vector register file 232 .
L2 unit 241 and S2 unit 242 can read from L2 / S2 local
vector register file 232 .

[0088] FIG . 10 illustrates M2 / N2 / C local register file 233 .
In this example , eight independent 512 - bit wide vector
registers are implemented . In this example , the instruction
coding permits M2 / N2 / C local register file 233 to include up
to sixteen registers . In this example , eight registers are
implemented to reduce circuit size and complexity . Each
register of M2 / N2 / C local vector register file 233 can be read
from or written to as 64 - bits of scalar data designated BMO
to BM7 . Each register of M2 / N2 / C local vector register file
233 can be read from or written to as 512 - bits of vector data
designated VBM0 to VBM7 . All vector data path side B 116
functional units (L2 unit 241 , S2 unit 242 , M2 unit 243 , N2
unit 244 , C unit 245 and P unit 246) can write to M2 / N2 / C
local vector register file 233. M2 unit 243 , N2 unit 244 and
C unit 245 can read from M2 / N2 / C local vector register file
233 .
[0089] The provision of global register files accessible by
all functional units of a side and local register files accessible
by some of the functional units of a side is a design choice .
In another example , a different accessibility provision could
be made , such as employing one type of register file corre
sponding to the global register files described herein .
[0090] Cross path 117 permits limited exchange of data
between scalar data path side A 115 and vector data path side
B 116. During each operational cycle one 64 - bit data word
can be recalled from global scalar register file A 211 for use
as an operand by one or more functional units of vector data
path side B 116 and one 64 - bit data word can be recalled
from global vector register file 231 for use as an operand by
one or more functional units of scalar data path side A 115 .
Any scalar data path side A 115 functional unit (L1 unit 221 ,
S1 unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225 and D2
unit 226) can read a 64 - bit operand from global vector
register file 231. This 64 - bit operand is the least significant
bits of the 512 - bit data in the accessed register of global
vector register file 231. Multiple scalar data path side A 115
functional units can employ the same 64 - bit cross path data
as an operand during the same operational cycle . However ,
a single 64 - bit operand is transferred from vector data path
side B 116 to scalar data path side A 115 in a single
operational cycle . Any vector data path side B 116 functional
unit (L2 unit 241 , S2 unit 242 , M2 unit 243 , N2 unit 244 , C
unit 245 and P unit 246) can read a 64 - bit operand from
global scalar register file 211. If the corresponding instruc
tion is a scalar instruction , the cross - path operand data is
treated as a 64 - bit operand . If the corresponding instruction
is a vector instruction , the upper 448 bits of the operand are
zero filled . Multiple vector data path side B 116 functional
units can employ the same 64 - bit cross path data as an
operand during the same operational cycle . In one example ,
a single 64 - bit operand is transferred from scalar data path
side A 115 to vector data path side B 116 in a single
operational cycle .
[0091] Streaming engine 125 (FIG . 1) transfers data in
certain restricted circumstances . Streaming engine 125 con
trols two data streams . A stream includes of a sequence of
elements of a particular type . Programs that operate on
streams read the data sequentially , operating on each ele
ment in turn . Every stream has the following basic proper
ties : the stream data have a well - defined beginning and
ending in time ; the stream data have fixed element size and
type throughout the stream ; and , the stream data have a fixed
sequence of elements . Once a stream is opened , streaming
engine 125 performs the following operations : calculates the

US 2020/0285470 A1 Sep. 10 , 2020
7

address ; fetches the defined data type from L2 unified cache
130 (which may require cache service from a higher level
memory , e.g. , in the event of a cache miss in L2) ; performs
data type manipulation such as zero extension , sign exten
sion , data element sorting / swapping such as matrix trans
position ; and delivers the data directly to the programmed
data register file within processor core 110. Streaming
engine 125 is thus useful for real - time digital filtering
operations on well - behaved data . Streaming engine 125
frees the corresponding processor from these memory fetch
tasks , thus enabling other processing functions .
[0092] Streaming engine 125 provides several benefits .
For example , streaming engine 125 permits multi - dimen
sional memory accesses , increases the available bandwidth
to the functional units minimizes the number of cache miss
stalls since the stream buffer bypasses LID cache 123 , and
reduces the number of scalar operations required to maintain
a loop . Streaming engine 125 also manages address pointers
and handles address generation which frees up the address
generation instruction slots and D1 unit 225 and D2 unit 226
for other computations .
[0093] Processor core 110 (FIG . 1) operates on an instruc
tion pipeline . Instructions are fetched in instruction packets
of fixed length as further described below . All instructions
require the same number of pipeline phases for fetch and
decode but require a varying number of execute phases .
[0094] FIG . 11 illustrates the following pipeline phases :
program fetch phase 1110 , dispatch and decode phases 1120 ,
and execution phases 1130. Program fetch phase 1110
includes three stages for all instructions . Dispatch and
decode phases 1120 include three stages for all instructions .
Execution phase 1130 includes one to four stages depending
on the instruction .
[0095] Fetch phase 1110 includes program address gen
eration (PG) stage 1111 , program access (PA) stage 1112 and
program receive (PR) stage 1113. During program address
generation stage 1111 , the program address is generated in
the processor and the read request is sent to the memory
controller for the LlI cache . During the program access
stage 1112 , the LlI cache processes the req accesses the
data in its memory and sends a fetch packet to the processor
boundary . During the program receive stage 1113 , the pro
cessor registers the fetch packet .
[0096] Instructions are fetched in a fetch packet that
includes sixteen 32 - bit wide words . FIG . 12 illustrates
sixteen instructions 1201 to 1216 of a single fetch packet .
Fetch packets are aligned on 512 - bit (16 - word) boundaries .
This example employs a fixed 32 - bit instruction length
which enables decoder alignment . A properly aligned
instruction fetch can load multiple instructions into parallel
instruction decoders . Such a properly aligned instruction
fetch can be achieved by predetermined instruction align
ment when stored in memory by having fetch packets
aligned on 512 - bit boundaries coupled with a fixed instruc
tion packet fetch . Conversely , variable length instructions
require an initial step of locating each instruction boundary
before decoding . A fixed length instruction set generally
permits more regular layout of instruction fields which
simplifies the construction of each decoder which is an
advantage for a wide issue VLIW processor .
[0097] The execution of the individual instructions is
partially controlled by a p bit in each instruction . In this
example , the p bit is bit 0 of the 32 - bit wide slot . The p bit
determines whether an instruction executes in parallel with

the next instruction . In this example , instructions are
scanned from lower to higher address . If the p bit of an
instruction is 1 , then the next following instruction (higher
memory address) is executed in parallel with in the same
cycle as) that instruction . If the p bit of an instruction is 0 ,
then the next following instruction is executed in the cycle
after the instruction .
[0098] Processor core 110 (FIG . 1) and L1I cache 121
pipelines (FIG . 1) are de - coupled from each other . Fetch
packet returns from LlI cache can take a different number of
clock cycles , depending on external circumstances such as
whether there is a hit in Lil cache 121 or a hit in L2
combined cache 130. Therefore , program access stage 1112
can take several clock cycles instead of one clock cycle as
in the other stages .
[0099] The instructions executing in parallel constitute an
execute packet . In this example , an execute packet can
contain up to sixteen 32 - bit wide slots for sixteen instruc
tions . No two instructions in an execute packet can use the
same functional unit . A slot is one of five types : 1) a
self - contained instruction executed on one of the functional
units of processor core 110 (L1 unit 221 , S1 unit 222 , M1
unit 223 , N1 unit 224 , D1 unit 225 , D2 unit 226 , L2 unit 241 ,
S2 unit 242 , M2 unit 243 , N2 unit 244 , C unit 245 and P unit
246) ; 2) a unitless instruction such as a NOP (no operation)
instruction or multiple NOP instruction ; 3) a branch instruc
tion ; 4) a constant field extension ; and 5) a conditional code
extension . Some of these slot types are further explained
herein .
[0100] Dispatch and decode phases 1120 (FIG . 11) include
instruction dispatch to appropriate execution unit (DS) stage
1121 , instruction pre - decode (DC1) stage 1122 , and instruc
tion decode , operand read (DC2) stage 1123. During instruc
tion dispatch to appropriate execution unit stage 1121 , the
fetch packets are split into execute packets and assigned to
the appropriate functional units . During the instruction pre
decode stage 1122 , the source registers , destination registers ,
and associated paths are decoded for the execution of the
instructions in the functional units . During the instruction
decode , operand read stage 1123 , more detailed unit decodes
are performed and operands are read from the register files .
[0101] Execution phase 1130 includes execution (E1 to
E5) stages 1131 to 1135. Different types of instructions
require different numbers of such stages to complete execu
tion . The execution stages of the pipeline play an important
role in understanding the device state at processor cycle
boundaries .
[0102] During El stage 1131 , the conditions for the
instructions are evaluated and operands are operated on . As
illustrated in FIG . 11 , E1 stage 1131 can receive operands
from a stream buffer 1141 and one of the register files shown
schematically as 1142. For load and store instructions ,
address generation is performed , and address modifications
are written to a register file . For branch instructions , the
branch fetch packet in PG phase 1111 is affected . As
illustrated in FIG . 11 , load and store instructions access
memory here shown schematically as memory 1151. For
single - cycle instructions , results are written to a destination
register file when any conditions for the instructions are
evaluated as true . If a condition is evaluated as false , the
instruction does not write any results or have any pipeline
operation after E1 stage 1131 .
[0103] During E2 stage 1132 , load instructions send the
address to memory . Store instructions send the address and

US 2020/0285470 A1 Sep. 10 , 2020
8

data to memory . Single - cycle instructions that saturate
results set the SAT bit in the control status register (CSR) if
saturation occurs . For 2 - cycle instructions , results are writ
ten to a destination register file .
[0104] During E3 stage 1133 , data memory accesses are
performed . Any multiply instructions that saturate results set
the SAT bit in the control status register (CSR) if saturation
occurs . For 3 - cycle instructions , results are written to a
destination register file .
[0105] During E4 stage 1134 , load instructions bring data
to the processor boundary . For 4 - cycle instructions , results
are written to a destination register file .
[010] During E5 stage 1135 , load instructions write data
into a register as illustrated schematically in FIG . 11 with
input from memory 1151 to E5 stage 1135 .
[0107] FIG . 13 illustrates an example of the instruction
coding 1300 of functional unit instructions used by this
example . Each instruction includes 32 bits and controls the
operation of one of the individually controllable functional
units (L1 unit 221 , S1 unit 222 , M1 unit 223 , N1 unit 224 ,
D1 unit 225 , D2 unit 226 , L2 unit 241 , S2 unit 242 , M2 unit
243 , N2 unit 244 , C unit 245 and P unit 246) .
[0108] The creg field 1301 (bits 29 to 31) and the z bit
1302 (bit 28) are optional fields used in conditional instruc
tions . The bits are used for conditional instructions to
identify the predicate register and the condition . The z bit
1302 (bit 28) indicates whether the predication is based upon
zero or not zero in the predicate register . If z = 1 , the test is
for equality with zero . If z = 0 , the test is for nonzero . The
case of creg = 0 and z = 0 is treated as true to allow uncondi
tional instruction execution . The creg field 1301 and the z
field 1302 are encoded in the instruction as shown in Table
1 .

unconditional instructions) . One meaning specifies a register
of a corresponding register file as the second operand .
Another meaning is an immediate constant . Depending on
the instruction type , the field 1304 is treated as an unsigned
integer and zero extended to a specified data length or is
treated as a signed integer and sign extended to the specified
data length .
[0112] The src1 field 1305 (bits 13 to 17) specifies a
register in a corresponding register file as the first source
operand .
[0113] The opcode field 1306 (bits 3 to 12) for all instruc
tions (and additionally bits 28 to 31 for unconditional
instructions) specifies the type of instruction and designates
appropriate instruction options including unambiguous des
ignation of the functional unit used and operation per
formed . A detailed explanation of the opcode is beyond the
scope of this description except for the instruction options
described below .
[0114] The e bit 1307 (bit 2) is used for immediate
constant instructions where the constant can be extended . If
e = 1 , then the immediate constant is extended in a manner
described below . If e = 0 , then the immediate constant is not
extended and the immediate constant is specified by the
src2 / cst field 1304 (bits 18 to 22) . Note that the e bit 1307
is used for some instructions . Accordingly , with proper
coding , the e bit 1307 can be omitted from some instructions
and the bit can be used as an additional opcode bit .
[0115] The s bit 1308 (bit 1) designates scalar data path
side A 115 or vector data path side B 116. Ifs = 0 , then scalar
data path side A 115 is selected which limits the functional
unit to L1 unit 221 , S1 unit 222 , M1 unit 223 , N1 unit 224 ,
D1 unit 225 and D2 unit 226 and the corresponding register
files illustrated in FIG . 2. Similarly , s = 1 selects vector data
path side B 116 which limits the functional unit to L2 unit
241 , S2 unit 242 , M2 unit 243 , N2 unit 244 , P unit 246 and
the corresponding register file illustrated in FIG . 2 .
[0116] The ? bit 1309 (bit 0) marks the execute packets .
The p - bit determines whether the instruction executes in
parallel with the following instruction . The p - bits are
scanned from lower to higher address . If p = 1 for the current
instruction , then the next instruction executes in parallel
with the current instruction . If p = 0 for the current instruc
tion , then the next instruction executes in the cycle after the
current instruction . All instructions executing in parallel
constitute an execute packet . An execute packet can contain
up to sixteen instructions . Each instruction in an execute
packet uses a different functional unit .
[0117] There are two different condition code extension
slots . Each execute packet can contain one each of these
unique 32 - bit condition code extension slots which contains
the 4 - bit creg / z fields for the instructions in the same execute
packet . FIG . 14 illustrates the coding for condition code
extension slot 0 and FIG . 15 illustrates the coding for
condition code extension slot 1 .
[0118] FIG . 14 illustrates the coding for condition code
extension slot 0 1400 having 32 bits . Field 1401 (bits 28 to
31) specifies 4 creg / z bits assigned to the L1 unit 221
instruction in the same execute packet . Field 1402 (bits 27
to 24) specifies four creg / z bits assigned to the L2 unit 241
instruction in the same execute packet . Field 1403 (bits 20
to 23) specifies four creg / z bits assigned to the S1 unit 222
instruction in the same execute packet . Field 1404 (bits 16
to 19) specifies four creg / z bits assigned to the S2 unit 242
instruction in the same execute packet . Field 1405 (bits 12

TABLE 1

Conditional creg Z

Register 31 30 29 28

0
0
0

0
0

0
1
Z

Z

Unconditional
Reserved
A0
A1
A2
A3
A4
A5
Reserved

0

0
0
0
1
1
0
0
1
1

1
0
1
0
1

Z

Z 1
1 Z

1 0 Z
1 X X

[0109] Execution of a conditional instruction is condi
tional upon the value stored in the specified data register .
The data register is in the global scalar register file 211 for
all functional units . Note that “ Z ” in the z bit column refers
to the zero / not zero comparison selection noted above and
“ x ” is a don't care state . This coding specifies a subset of the
sixteen global registers as predicate registers which pre
serves bits in the instruction coding . Note that unconditional
instructions do not have the optional bits . For unconditional
instructions , the bits in fields 1301 and 1302 (28 to 31) are
used as additional opcode bits .
[0110] The dst field 1303 (bits 23 to 27) specifies a register
in a corresponding register file as the destination of the
instruction results .
[0111] The src2 / cst field 1304 (bits 18 to 22) has several
meanings depending on the instruction opcode field (bits 3
to 12 for all instructions and additionally bits 28 to 31 for

US 2020/0285470 A1 Sep. 10 , 2020
9

to 15) specifies four creg / z bits assigned to the D1 unit 225
instruction in the same execute packet . Field 1406 (bits 8 to
11) specifies four creg / z bits assigned to the D2 unit 226
instruction in the same execute packet . Field 1407 (bits 6
and 7) is unused / reserved . Field 1408 (bits 0 to 5) is coded
as a set of unique bits (CCEXO) to identify the condition
code extension slot 0. Once the unique ID of condition code
extension slot 0 is detected , the corresponding creg / z bits are
employed to control conditional execution of any L1 unit
221 , L2 unit 241 , S1 unit 222 , S2 unit 242 , D1 unit 225 and
D2 unit 226 instruction in the same execution packet . The
creg / z bits are interpreted as shown in Table 1. If the
corresponding instruction is conditional includes creg / z
bits) , the corresponding bits in the condition code extension
slot 0 override the condition code bits in the instruction .
Setting the creg / z bits equal to “ 0000 ” makes the instruction
unconditional . Thus , a properly coded condition code exten
sion slot 0 can make some corresponding instructions con
ditional and some unconditional .
[0119] FIG . 15 illustrates the coding for condition code
extension slot 1 1500 having 32 bits . Field 1501 (bits 28 to
31) specifies four creg / z bits assigned to the M1 unit 223
instruction in the same execute packet . Field 1502 (bits 27
to 24) specifies four creg / z bits assigned to the M2 unit 243
instruction in the same execute packet . Field 1503 (bits 19
to 23) specifies four creg / z bits assigned to the C unit 245
instruction in the same execute packet . Field 1504 (bits 16
to 19) specifies four creg / z bits assigned to the N1 unit 224
instruction in the same execute packet . Field 1505 (bits 12
to 15) specifies four creg / z bits assigned to the N2 unit 244
instruction in the same execute packet . Field 1506 (bits 6 to
11) is unused / reserved . Field 1507 (bits 0 to 5) is coded as
a set of unique bits (CCEX1) to identify the condition code
extension slot 1. Once the unique ID of condition code
extension slot 1 is detected , the corresponding creg / z bits are
employed to control conditional execution of any M1 unit
223 , M2 unit 243 , C unit 245 , N1 unit 224 and N2 unit 244
instruction in the same execution packet . These creg / z bits
are interpreted as shown in Table 1. If the corresponding
instruction is conditional (includes creg / z bits) , the corre
sponding bits in the condition code extension slot 1 override
the condition code bits in the instruction . Setting the creg / z
bits equal to “ 0000 ” makes the instruction unconditional .
Thus , a properly coded condition code extension slot 1 can
make some instructions conditional and some unconditional .
[0120] Both condition code extension slot 0 and condition
code extension slot 1 can include a p bit to define an execute
packet as described above in conjunction with FIG . 13. In
this example , as illustrated in FIGS . 14 and 15 , code
extension slot 0 and condition code extension slot 1 have bit
0 (p bit) encoded as 1. Thus , neither condition code exten
sion slot 0 nor condition code extension slot 1 can be in the
last instruction slot of an execute packet .
[0121] There are two different 32 - bit constant extension
slots . Each execute packet can contain one each of the
unique constant extension slots which contains 27 bits to be
concatenated as high order bits with the 5 - bit constant field
1305 to form a 32 - bit constant . As noted in the instruction
coding description above , some instructions define the src2 /
cst field 1304 as a constant rather than a source register
identifier . At least some of such instructions can employ a
constant extension slot to extend the constant to 32 bits .
[0122] FIG . 16 illustrates the fields of constant extension
slot 0 1600. Each execute packet can include one instance of

constant extension slot 0 and one instance of constant
extension slot 1. FIG . 16 illustrates that constant extension
slot 0 1600 includes two fields . Field 1601 (bits 5 to 31)
constitutes the most significant 27 bits of an extended 32 - bit
constant including the target instruction scr2 / cst field 1304
as the five least significant bits . Field 1602 (bits 0 to 4) is
coded as a set of unique bits (CSTXO) to identify the
constant extension slot 0. In this example , constant exten
sion slot 0 1600 can be used to extend the constant of one
of an L1 unit 221 instruction , data in a D1 unit 225
instruction , an S2 unit 242 instruction , an offset in a D2 unit
226 instruction , an M2 unit 243 instruction , an N2 unit 244
instruction , a branch instruction , or a C unit 245 instruction
in the same execute packet . Constant extension slot 1 is
similar to constant extension slot 0 except that bits 0 to 4 are
coded as a set of unique bits (CSTX1) to identify the
constant extension slot 1. In this example , constant exten
sion slot 1 can be used to extend the constant of one of an
L2 unit 241 instruction , data in a D2 unit 226 instruction , an
S1 unit 222 instruction , an offset in a D1 unit 225 instruc
tion , an M1 unit 223 instruction or an N1 unit 224 instruction
in the same execute packet .
[0123] Constant extension slot (and constant extension
slot 1 are used as follows . The target instruction is of the type
permitting constant specification . In this example , the exten
sion is implemented by replacing one input operand register
specification field with the least significant bits of the
constant as described above with respect to scr2 / cst field
1304. Instruction decoder 113 determines this case , known
as an immediate field , from the instruction opcode bits . The
target instruction also includes one constant extension bit (e
bit 1307) dedicated to signaling whether the specified con
stant is not extended (constant extension bit = 0) or extended
(constant extension bit = 1) . If instruction decoder 113 detects
a constant extension slot 0 or a constant extension slot 1 ,
instruction decoder 113 further checks the other instructions
within the execute packet for an instruction corresponding to
the detected constant extension slot . A constant extension is
made if one corresponding instruction has a constant exten
sion bit (e bit 1307) equal to 1 .
[0124] FIG . 17 is a partial block diagram 1700 illustrating
constant extension . FIG . 17 assumes that instruction decoder
113 (FIG . 1) detects a constant extension slot and a corre
sponding instruction in the same execute packet . Instruction
decoder 113 supplies the twenty - seven extension bits from
the constant extension slot (bit field 1601) and the five
constant bits (bit field 1305) from the corresponding instruc
tion to concatenator 1701. Concatenator 1701 forms a single
32 - bit word from these two parts . In this example , the
twenty - seven extension bits from the constant extension slot
(bit field 1601) are the most significant bits and the five
constant bits (bit field 1305) are the least significant bits . The
combined 32 - bit word is supplied to one input of multiplexer
1702. The five constant bits from the corresponding instruc
tion field 1305 supply a second input to multiplexer 1702 .
Selection of multiplexer 1702 is controlled by the status of
the constant extension bit . If the constant extension bit (e bit
1307) is 1 (extended) , multiplexer 1702 selects the concat
enated 32 - bit input . If the constant extension bit is (not
extended) , multiplexer 1702 selects the five constant bits
from the corresponding instruction field 1305. The output of
multiplexer 1702 supplies an input of sign extension unit
1703 .

US 2020/0285470 A1 Sep. 10 , 2020
10

[0125] Sign extension unit 1703 forms the final operand
value from the input from multiplexer 1703. Sign extension
unit 1703 receives control inputs Scalar / Vector and Data
Size . The Scalar / Vector input indicates whether the corre
sponding instruction is a scalar instruction or a vector
instruction . The functional units of data path side A 115 (L1
unit 221 , S1 unit 222 , M1 unit 223 , N1 unit 224 , D1 unit 225
and D2 unit 226) perform scalar instructions . Any instruc
tion directed to one of these functional units is a scalar
instruction . Data path side B functional units L2 unit 241 , S2
unit 242 , M2 unit 243 , N2 unit 244 and C unit 245 can
perform scalar instructions or vector instructions . Instruction
decoder 113 determines whether the instruction is a scalar
instruction or a vector instruction from the opcode bits . P
unit 246 may performs scalar instructions . The Data Size can
be eight bits (byte B) , sixteen bits (half - word H) , 32 bits
(word W) , or 64 bits (double word D) .
[0126] Table 2 lists the operation of sign extension unit
1703 for the various options .

mined slots . SIMD operation is enabled by carry control at
the data boundaries . Such carry control enables operations
on varying data widths .
[0130] FIG . 18 illustrates the carry control logic . AND
gate 1801 receives the carry output of bit N within the
operand wide arithmetic logic unit (64 bits for scalar data
path side A 115 functional units and 512 bits for vector data
path side B 116 functional units) . AND gate 1801 also
receives a carry control signal which is further explained
below . The output of AND gate 1801 is supplied to the carry
input of bit N + 1 of the operand wide arithmetic logic unit .
AND gates such as AND gate 1801 are disposed between
every pair of bits at a possible data boundary . For example ,
for 8 - bit data such an AND gate will be between bits 7 and
8 , bits 15 and 16 , bits 23 and 24 , etc. Each such AND gate
receives a corresponding carry control signal . If the data size
is the minimum size , each carry control signal is 0 , effec
tively blocking carry transmission between the adjacent bits .
The corresponding carry control signal is 1 if the selected
data size requires both arithmetic logic unit sections . Table
3 below shows example carry control signals for the case of
a 512 - bit wide operand as used by vector data path side B
116 functional units which can be divided into sections of 8
bits , 16 bits , 32 bits , 64 bits , 128 bits or 256 bits . In Table
3 , the upper 32 bits control the upper bits (bits 128 to 511)
carries and the lower 32 bits control the lower bits (bits 0 to
127) carries . No control of the carry output of the most
significant bit is needed , thus only 63 carry control signals
are required .

TABLE 2

Instruction
Type

Operand
Size

Constant
Length Action

Scalar
Scalar
Vector

B / H / W / D
B / H / W / D
B / H / W / D

5 bits Sign extend to 64 bits
32 bits Sign extend to 64 bits
5 bits Sign extend to operand size and

replicate across whole vector
32 bits Replicate 32 - bit constant across

each 32 - bit (W) lane
32 bits Sign extend to 64 bits and replicate

across each 64 - bit (D) lane

Vector B / H / W

Vector D

TABLE 3

Data Size Carry Control Signals

8 bits (B)

16 bits (H)

32 bits (W)

-000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
-101 0101 0101 0101 0101 0101 0101 0101
0101 0101 0101 0101 0101 0101 0101 0101
-111 0111 0111 0111 0111 0111 0111 0111
0111 0111 0111 0111 0111 0111 0111 0111
-111 1111 0111 1111 0111 1111 0111 1111
0111 1111 0111 1111 0111 1111 0111 1111
-111 1111 1111 1111 0111 1111 1111 1111
0111 1111 1111 1111 0111 1111 1111 1111
-111 1111 1111 1111 1111 1111 1111 1111
0111 1111 1111 1111 1111 1111 1111 1111

64 bits (D)

128 bits

256 bits

[0127] Both constant extension slot 0 and constant exten
sion slot 1 can include a p bit to define an execute packet as
described above in conjunction with FIG . 13. In this
example , as in the case of the condition code extension slots ,
constant extension slot 0 and constant extension slot 1 have
bit 0 (p bit) encoded as 1. Thus , neither constant extension
slot 0 nor constant extension slot 1 can be in the last
instruction slot of an execute packet .
[0128] An execute packet can include a constant extension
slot 0 or 1 and more than one corresponding instruction
marked constant extended (e bit = 1) . For such an occurrence ,
for constant extension slot 0 , more than one of an L1 unit
221 instruction , data in a D1 unit 225 instruction , an S2 unit
242 instruction , an offset in a D2 unit 226 instruction , an M2
unit 243 instruction or an N2 unit 244 instruction in an
execute packet can have an e bit of 1. For such an occur
rence , for constant extension slot 1 , more than one of an L2
unit 241 instruction , data in a D2 unit 226 instruction , an S1
unit 222 instruction , an offset in a D1 unit 225 instruction ,
an M1 unit 223 instruction or an N1 unit 224 instruction in
an execute packet can have an e bit of 1. In one example ,
instruction decoder 113 determines that such an occurrence
is an invalid operation and not supported . Alternately , the
combination can be supported with extension bits of the
constant extension slot applied to each corresponding func
tional unit instruction marked constant extended .
[0129] L1 unit 221 , S1 unit 222 , L2 unit 241 , S2 unit 242
and C unit 245 often operate in a single instruction multiple
data (SIMD) mode . In this SIMD mode , the same instruction
is applied to packed data from the two operands . Each
operand holds multiple data elements disposed in predeter

[0131] Operation on data sizes that are integral powers of
2 (2M) is common . However , the carry control technique is
not limited to integral powers of 2 and can be applied to
other data sizes and operand widths .
[0132] In this example , at least L unit 241 and S unit 242
employ two types of SIMD instructions using registers in
predicate register file 234. In this example , the SIMD vector
predicate instructions operate on an instruction specified
data size . The data sizes include byte (8 bit) data , half word
(16 bit) data , word (32 bit) data , double word (64 bit) data ,
quad word (128 bit) data and half vector (256 bit) data . In
the first of these instruction types , the functional unit (L unit
241 or S unit 242) performs a SIMD comparison on packed
data in two general data registers and supplies results to a
predicate data register . The instruction specifies a data size ,
the two general data register operands , and the destination
predicate register . In this example , each predicate data
register includes one bit corresponding to each minimal data
size portion of the general data registers . In the current
example , the general data registers are 512 bits (64 bytes)

US 2020/0285470 A1 Sep. 10 , 2020
11

and the predicate data registers are 64 bits (8 bytes) . Each bit
of a predicate data register corresponds to eight bits of a
general data register . The comparison is performed on a
specified data size (8 , 16 , 32 , 64 , 128 or 256 bits) . If the
comparison is true , then the functional unit supplies 1’s to all
predicate register bits corresponding the that data size por
tion . If the comparison is false , the functional unit supplies
zeroes to the predicate register bits corresponding to that
data size portion . In this example , the enabled comparison
operations include : less than , greater than , and equal to .
[0133] In the second of the instruction types , the func
tional unit (L unit 241 or S unit 242) separately performs a
first SIMD operation or a second SIMD operation on packed
data in general data registers based upon the state of data in
a predicate data register . The instruction specifies a data size ,
one or two general data register operands , a controlling
predicate register , and a general data register destination . For
example , a functional unit can select , for each data sized
portion of two vector operands , a first data element of a first
operand or a second data element of a second operand
dependent upon the I / O state of corresponding bits in the
predicate data register to store in the destination register . In
another example , the data elements of a single vector
operand can be saved to memory or not saved dependent
upon the data of the corresponding bits of the predicate
register .
[0134] The operations of P unit 245 permit a variety of
compound vector SIMD operations based upon more than
one vector comparison . For example , a range determination
can be made using two comparisons . In a SIMD operation ,
a candidate vector is compared with a vector reference
having the minimum of the range packed within a data
register . The greater than result is scalar data with bits
corresponding to the SIMD data width set to 0 or 1 depend
ing upon the SIMD comparison and is stored in a predicate
data register . Another SIMD comparison of the candidate
vector is performed with another reference vector having the
maximum of the range packed within a different data register
produces another scalar with less than results stored in
another predicate register . The P unit then ANDs the two
predicate registers . The AND result indicates whether each
SIMD data part of the candidate vector is within range or out
of range . AP unit BITCNT instruction of the AND result can
produce a count of the data elements within the comparison
range . The P unit NEG function can be used to convert : a
less than comparison result to a greater than or equal
comparison result ; a greater than comparison result to a less
than or equal to comparison result ; or , an equal to compari
son result to a not equal to comparison result .

memory 1902 and provides data formatting according to the
stream definition . This process is described in more detail
herein . Streaming engine 1900 supplies the formatted data
elements from data formatter 1903 to the processor 1920. A
program executing on processor 1920 consumes the data and
generates an output .
[0136] Stream elements typically reside in system
memory . The memory imposes no particular structure upon
the stream . Programs define streams and thereby impose
structure by specifying the stream attributes such as address
of the first element of the stream , size and type of the
elements in the stream , formatting for data in the stream , and
the address sequence associated with the stream .
[0137] The streaming engine defines an address sequence
for elements of the stream in terms of a pointer walking
through memory . A multiple - level nested loop controls the
path the pointer takes . An iteration count for a loop level
indicates the number of times the level repeats . A dimension
gives the distance between pointer positions of the loop
level .
[0138] In a basic forward stream , the innermost loop
consumes physically contiguous elements from memory as
the implicit dimension of the innermost loop is one element .
The pointer moves from element to element in consecutive ,
increasing order . In each level outside the inner loop , that
loop moves the pointer to a new location based on the size
of the dimension of the loop level .
[0139] This form of addressing allows programs to specify
regular paths through memory using a small number of
parameters . Table 4 lists the addressing parameters of a basic
stream .

TABLE 4

Parameter Definition

ELEM BYTES
ICNTO

ICNT1
DIM1

ICNT2
DIM2

Size of each element in bytes
Number of iterations for the innermost loop level 0 .
At loop level 0 all elements are physically contiguous .
Implied DIMO ELEM BYTES
Number of iterations for loop level 1
Number of bytes between the starting points for
consecutive iterations of loop level 1
Number of iterations for loop level 2
Number of bytes between the starting points for
consecutive iterations of loop level 2
Number of iterations for loop level 3
Number of bytes between the starting points for
consecutive iterations of loop level 3
Number of iterations for loop level 4
Number of bytes between the starting points for
consecutive iterations of loop level 4
Number of iterations for loop level 5
Number of bytes between the starting points for
consecutive iterations of loop level 5

ICNT3
DIM3

ICNT4
DIM4

ICNT5
DIMS

[0140] In this example , ELEM_BYTES ranges from 1 to
64 bytes as shown in Table 5 .

TABLE 5

Streaming Engine
[0135] FIG . 19 is a conceptual view of the streaming
engine 125 of the example processor 100 of FIG . 1. FIG . 19
illustrates the processing of a single stream representative of
the two streams controlled by streaming engine 125. Stream
ing engine 1900 includes stream address generator 1901 .
Stream address generator 1901 sequentially generates
addresses of the elements of the stream and supplies these
element addresses to system memory 1910. Memory 1910
recalls data stored at the element addresses (data elements)
and supplies these data elements to data first - in - first - out
(FIFO) buffer 1902. Data FIFO buffer 1902 provides buff
ering between memory 1910 and processor 1920. Data
formatter 1903 receives the data elements from data FIFO

ELEM_BYTES Stream Element Length
000
001
010
011
100
101

1 byte
2 bytes
4 bytes
8 bytes

16 bytes
32 bytes

US 2020/0285470 A1 Sep. 10 , 2020
12

TABLE 5 - continued

ELEM_BYTES Stream Element Length
110
111

64 bytes
Reserved

(1)

[0141] The definition above maps consecutive elements of
the stream to increasing addresses in memory which is
appropriate for many algorithms . Some algorithms are better
served by reading elements in decreasing memory address
order or reverse stream addressing . For example , a discrete
convolution computes vector dot - products , as illustrated by
expression (1)

(f * g) [1] = xx / [x] g [t - x]
[0142] In expression (1) , f [] and g [] represent arrays in
memory . For each output , the algorithm reads f [] in the
forward direction and reads g [] in the reverse direction .
Practical filters limit the range of indices for [x] and [t - x] to
a finite number of elements . To support this pattern , the
streaming engine supports reading elements in decreasing
address order .
[0143] Matrix multiplication presents a unique problem to
the streaming engine . Each element in the matrix product is
a vector dot product between a row from the first matrix and
a column from the second . Programs typically store matrices
in row - major or column - major order . Row - major order
stores all the elements of a single row contiguously in
memory . Column - major order stores all elements of a single
column contiguously in memory . Matrices are typically
stored in the same order as the default array order for the
language . As a result , only one of the two matrices in a
matrix multiplication map on to the 2 - dimensional stream
definition of the streaming engine . In a typical example , an
index steps through columns on one array and rows of the
other array . The streaming engine supports implicit matrix
transposition with transposed streams . Transposed streams
avoid the cost of explicitly transforming the data in memory .
Instead of accessing data in strictly consecutive - element
order , the streaming engine effectively interchanges the
inner two loop dimensions of the traversal order , fetching
elements along the second dimension into contiguous vector
lanes .
[0144] This algorithm works but is impractical to imple
ment for small element sizes . Some algorithms work on
matrix tiles which are multiple columns and rows together .
Therefore , the streaming engine defines a separate transpo
sition granularity . The hardware imposes a minimum granu
larity . The transpose granularity needs to be at least as large
as the element size . Transposition granularity causes the
streaming engine to fetch one or more consecutive elements
from dimension 0 before moving along dimension 1. When
the granularity equals the element size , a single column from
a row - major array is fetched . Otherwise , the granularity
specifies fetching two , four or more columns at a time from
a row - major array . This is also applicable for column - major
layout by exchanging row and column in the description . A
parameter GRANULE indicates the transposition granular
ity in bytes
[0145] Another common matrix multiplication technique
exchanges the innermost two loops of the matrix multiply .
The resulting inner loop no longer reads down the column of
one matrix while reading across the row of another . For
example , the algorithm may hoist one term outside the inner

loop , replacing it with the scalar value . The innermost loop
can be implemented with a single scalar by vector multiply
followed by a vector add . Or , the scalar value can be
duplicated across the length of the vector and a vector by
vector multiply used . The streaming engine of this example
directly supports the latter case and related use models with
an element duplication mode . In this mode , the streaming
engine reads a granule smaller than the full vector size and
replicates that granule to fill the next vector output .
[0146] The streaming engine treats each complex number
as a single element with two sub - elements that give the real
and imaginary (rectangular) or magnitude and angle (polar)
portions of the complex number . Not all programs or periph
erals agree what order these sub - elements should appear in
memory . Therefore , the streaming engine offers the ability to
swap the two sub - elements of a complex number with no
cost . The feature swaps the halves of an element without
interpreting the contents of the element and can be used to
swap pairs of sub - elements of any type , not just complex
numbers .
[0147] Algorithms generally prefer to work at high preci
sion , but high precision values require more storage and
bandwidth than lower precision values . Commonly , pro
grams store data in memory at low precision , promote those
values to a higher precision for calculation , and then demote
the values to lower precision for storage . The streaming
engine supports such operations directly by allowing algo
rithms to specify one level of type promotion . In this
example , every sub - element can be promoted to a larger type
size with either sign or zero extension for integer types . In
some examples , the streaming engine supports floating point
promotion , promoting 16 - bit and 32 - bit floating point values
to 32 - bit and 64 - bit formats , respectively .
[0148] While the streaming engine defines a stream as a
discrete sequence of data elements , the processing unit core
110 consumes data elements packed contiguously in vectors .
The vectors resemble streams as the vectors contain multiple
homogeneous elements with some implicit sequence .
Because the streaming engine reads streams , but the pro
cessing unit core 110 consumes vectors , the streaming
engine maps streams onto vectors in a consistent way .
[0149] Vectors include equal - sized lanes , each lane con
taining a sub - element . The processing unit core 110 desig
nates the rightmost lane of the vector as lane 0 , regardless of
current endian mode . Lane numbers increase right - to - left .
The actual number of lanes within a vector varies depending
on the length of the vector and the data size of the sub
element .
[0150] FIG . 20 illustrates the sequence of the formatting
operations of formatter 1903. Formatter 1903 includes three
sections : input section 2010 , formatting section 2020 , and
output section 2030. Input section 2010 receives the data
recalled from system memory 1910 as accessed by stream
address generator 1901. The data can be via linear fetch
stream 2011 or transposed fetch stream 2012 .
[0151] Formatting section 2020 includes various format
ting blocks . The formatting performed within formatter
1903 by the blocks is further described below . Complex
swap block 2021 optionally swaps two sub - elements form
ing a complex number element . Type promotion block 2022
optionally promotes each data element into a larger data
size . Promotion includes zero extension for unsigned inte
gers and sign extension for signed integers . Decimation
block 2023 optionally decimates the data elements . In this

US 2020/0285470 A1 Sep. 10 , 2020
13

example , decimation can be 2 : 1 retaining every other data
element or 4 : 1 retaining every fourth data element . Element
duplication block 2024 optionally duplicates individual data
elements . In this example , the data element duplication is an
integer power of 2 (2N , where N is an integer) including 2x ,
4x , 8x , 16x , 32x and 64x . In this example , data duplication
can extend over multiple destination vectors . Vector length
masking / group duplication block 2025 has two primary
functions . An independently specified vector length
VECLEN controls the data elements supplied to each output
data vector . When group duplication is off , excess lanes in
the output data vector are zero filled and these lanes are
marked invalid . When group duplication is on , input data
elements of the specified vector length are duplicated to fill
the output data vector .
[0152] Output section 2030 holds the data for output to the
corresponding functional units . Register and buffer for pro
cessor 2031 stores a formatted vector of data to be used as
an operand by the functional units of processing unit core
110 (FIG . 1) .
[0153] FIG . 21 illustrates an example of lane allocation in
a vector . Vector 2100 is divided into eight 64 - bit lanes (8x64
bits = 512 bits , the vector length) . Lane (includes bits 0 to
63 , lane 1 includes bits 64 to 127 , lane 2 includes bits 128
to 191 , lane 3 includes bits 192 to 255 , lane 4 includes bits
256 to 319 , lane 5 includes bits 320 to 383 , lane 6 includes
bits 384 to 447 , and lane 7 includes bits 448 to 511 .
[0154] FIG . 22 illustrates another example of lane alloca
tion in a vector . Vector 2210 is divided into sixteen 32 - bit
lanes (16x32 bits = 512 bits , the vector length) . Lane 0
includes bits 0 to 31 , lane 1 includes bits 32 to 63 , lane 2
includes bits 64 to 95 , lane 3 includes bits 96 to 127 , lane 4
includes bits 128 to 159 , lane 5 includes bits 160 to 191 , lane
6 includes bits 192 to 223 , lane 7 includes bits 224 to 255 ,
lane 8 includes bits 256 to 287 , lane 9 includes bits 288 to
319 , lane 10 includes bits 320 to 351 , lane 11 includes bits
352 to 383 , lane 12 includes bits 384 to 415 , lane 13 includes
bits 416 to 447 , lane 14 includes bits 448 to 479 , and lane
15 includes bits 480 to 511 .
[0155] The streaming engine maps the innermost stream
dimension directly to vector lanes . The streaming engine
maps earlier elements within the innermost stream dimen
sion to lower lane numbers and later elements to higher lane
numbers , regardless of whether the stream advances in
increasing or decreasing address order . Whatever order the
stream defines , the streaming engine deposits elements in
vectors in increasing - lane order . For non - complex data , the
streaming engine places the first element in lane () of the
vector processing unit core 110 (FIG . 1) fetches , the second
in lane 1 , and so on . For complex data , the streaming engine
places the first element in lanes 0 and 1 , the second element
in lanes 2 and 3 , and so on . Sub - elements within an element
retain the same relative ordering regardless of the stream
direction . For non - swapped complex elements , the sub
elements with the lower address of each pair are placed in
the even numbered lanes , and the sub - elements with the
higher address of each pair are placed in the odd numbered
lanes . For swapped complex elements , the placement is
reversed .
(0156] The streaming engine fills each vector processing
unit core 110 fetches with as many elements as possible from
the innermost stream dimension . If the innermost dimension
is not a multiple of the vector length , the streaming engine
zero pads the dimension to a multiple of the vector length .

As noted below , the streaming engine also marks the lanes
invalid . Thus , for higher - dimension streams , the first ele
ment from each iteration of an outer dimension arrives in
lane 0 of a vector . The streaming engine maps the innermost
dimension to consecutive lanes in a vector . For transposed
streams , the innermost dimension includes groups of sub
elements along dimension 1 , not dimension 0 , as transposi
tion exchanges these two dimensions .
[0157] Two - dimensional (2D) streams exhibit greater
variety as compared to one - dimensional streams . A basic 2D
stream extracts a smaller rectangle from a larger rectangle .
A transposed 2D stream reads a rectangle column - wise
instead of row - wise . A looping stream , where the second
dimension overlaps first , executes a finite impulse response
(FIR) filter taps which loops repeatedly over FIR filter
samples providing a sliding window of input samples .
[0158] FIG . 23 illustrates a region of memory that can be
accessed using a basic two - dimensional stream . The inner
two dimensions , represented by ELEM_BYTES , ICNTO ,
DIM1 and ICNT1 (refer to Table 4) , give sufficient flexibil
ity to describe extracting a smaller rectangle 2320 having
dimensions 2321 and 2322 from a larger rectangle 2310
having dimensions 2311 and 2312. In this example , rect
angle 2320 is a 9 by 13 rectangle of 64 - bit values and
rectangle 2310 is a larger 11 by 19 rectangle . The following
stream parameters define this stream : ICNTO = 9 , ELEM_
BYTES = 8 , ICNT1 = 13 , and DIM1 = 88 (11 times 8) .
[0159] Thus , the iteration count in the O - dimension 2321
is nine and the iteration count in the 1 - dimension 2322 is
thirteen . Note that the ELEM_BYTES scales the innermost
dimension . The first dimension has ICNTO elements of size
ELEM_BYTES . The stream address generator does not
scale the outer dimensions . Therefore , DIM1 = 88 , which is
eleven elements scaled by eight bytes per element .
[0160] FIG . 24 illustrates the order of elements within the
example stream of FIG . 23. The streaming engine fetches
elements for the stream in the order illustrated in order 2400 .
The first nine elements come from the first row of rectangle
2320 , left - to - right in hops 1 to 8. The 10th through 24th
elements comes from the second row , and so on . When the
stream moves from the 9th element to the 10th element (hop
9 in FIG . 24) , the streaming engine computes the new
location based on the position of the pointer at the start of the
inner loop , not the position of the pointer at the end of the
first dimension . Thus , DIM1 is independent of ELEM_
BYTES and ICNTO . DIM1 represents the distance between
the first bytes of each consecutive row .
[0161] Transposed streams are accessed along dimension
1 before dimension 0. The following examples illustrate
transposed streams with varying transposition granularity .
FIG . 25 illustrates extracting a smaller rectangle 2520 (12x
8) having dimensions 2521 and 2522 from a larger rectangle
2510 (14x13) having dimensions 2511 and 2512. In FIG . 25 ,
ELEM_BYTES equal 2 .
[0162] FIG . 26 illustrates how the streaming engine
fetches the stream of the example stream of FIG . 25 with a
transposition granularity of four bytes . Fetch pattern 2600
fetches pairs of elements from each row (because the granu
larity of four is twice the ELEM_BYTES of two) , but
otherwise moves down the columns . Once the streaming
engine reaches the bottom of a pair of columns , the stream
ing engine repeats the pattern with the next pair of columns .
[0163] FIG . 27 illustrates how the streaming engine
fetches the stream of the example stream of FIG . 25 with a

US 2020/0285470 A1 Sep. 10 , 2020
14

data , and a last reference value indicating the most recent
reference to this slot in the reference queue . The storage
allocation and tracking are further described herein .
[0170] Respective reference queue 2815/2825 stores the
sequence of references generated by the respective corre
sponding address generator 2811/2821 . The reference
sequence enables the data formatting network to present data
to processing unit core 110 in the correct order . Each entry
in respective reference queue 2815/2825 contains the infor
mation necessary to read data out of the data store and align
the data for processing unit core 110. Respective reference
queue 2815/2825 maintains the information listed in Table 6
in each slot .

TABLE 6
Data Slot Low

Data Slot High

Slot number for the lower half of data associated with
aouto

Slot number for the upper half of data associated with
aout1
Number of bytes to rotate data to align next element
with lane 0
Number of valid bytes in this reference

Rotation

Length

transposition granularity of eight bytes . The overall structure
remains the same . The streaming engine fetches four ele
ments from each row (because the granularity of eight is four
times the ELEM_BYTES of two) before moving to the next
row in the column as shown in fetch pattern 2700 .
[0164] The streams examined so far read each element
from memory exactly once . A stream can read a given
element from memory multiple times , in effect looping over
a portion of memory . FIR filters exhibit two common
looping patterns : re - reading the same filter taps for each
output and reading input samples from a sliding window .
Two consecutive outputs need inputs from two overlapping
windows .
[0165] FIG . 28 illustrates the details of streaming engine
125 of FIG . 1. Streaming engine 125 contains three major
sections : Stream (2810 ; Stream 1 2820 ; and Shared L2
Interfaces 2830. Stream 0 2810 and Stream 1 2820 both
contain identical hardware that operates in parallel . Stream
0 2810 and Stream 1 2820 both share L2 interfaces 2830 .
Each stream 2810 and 2820 provides processing unit core
110 (FIG . 1) data at a rate of up to 512 bits / cycle , every
cycle , which is enabled by the dedicated stream paths and
shared dual L2 interfaces .
[0166] Each streaming engine 125 includes a respective
dedicated 6 - dimensional (6D) stream address generator
2811/2821 that can each generate one new non - aligned
request per cycle . As is further described herein , address
generators 2811/2821 output 512 - bit aligned addresses that
overlap the elements in the sequence defined by the stream
parameters .
[0167] Each address generator 2811/2821 connects to a
respective dedicated micro table look - aside buffer (uTLB)
2812/2822 . The uTLB 2812/2822 converts a single 48 - bit
virtual address to a 44 - bit physical address each cycle . Each
uTLB 2812/2822 has 8 entries , covering a minimum of 32
kB with 4 kB pages or a maximum of 16 MB with 2 MB
pages . Each address generator 2811/2821 generates 2
addresses per cycle . The uTLB 2812/2822 only translates
one address per cycle . To maintain throughput , streaming
engine 125 operates under the assumption that most stream
references are within the same 4 kB page . Thus , the address
translation does not modify bits 0 to 11 of the address . If
aout0 and aoul line in the same 4 kB page (aout0 [47:12] are
the same aout1 [47:12]) , then the uTLB 2812/2822 only
translates aout0 and reuses the translation for the upper bits
of both addresses .
[0168] Translated addresses are queued in respective com
mand queue 2813/2823 . These addresses are aligned with
information from the respective corresponding Storage Allo
cation and Tracking block 2814/2824 . Streaming engine 125
does not explicitly manage uTLB 2812/2822 . The system
memory management unit (MMU) invalidates uTLBs as
necessary during context switches .
[0169] Storage Allocation and Tracking 2814/2824 man
ages the internal storage of the stream , discovering data
reuse and tracking the lifetime of each piece of data . The
block accepts two virtual addresses per cycle and binds
those addresses to slots in the internal storage . The data store
is organized as an array of slots . The streaming engine
maintains following metadata to track the contents and
lifetime of the data in each slot : 49 - bit virtual address
associated with the slot , valid bit indicating valid address ,
ready bit indicating data has arrived for the address , active
bit indicating if there are any references outstanding to this

[0171] Storage allocation and tracking 2814/2824 inserts
references in reference queue 2815/2825 as address genera
tor 2811/2821 generates new addresses . Storage allocation
and tracking 2814/2824 removes references from reference
queue 2815/2825 when the data becomes available and there
is room in the stream head registers . As storage allocation
and tracking 2814/2824 removes slot references from ref
erence queue 2815/2825 and formats data , the references are
checked for the last reference to the corresponding slots .
Storage allocation and tracking 2814/2824 compares refer
ence queue 2815/2825 removal pointer against the recorded
last reference of the slot . If the pointer and the recorded last
reference match , then storage allocation and tracking 2814 /
2824 marks the slot inactive once the data is no longer
needed .
[0172] Streaming engine 125 has respective data storage
2816/2826 for a selected number of elements . Deep buffer
ing allows the streaming engine to fetch far ahead in the
stream , hiding memory system latency . Each data storage
2816/2826 accommodates two simultaneous read operations
and two simultaneous write operations per cycle and each is
therefore referred to a two - read , two - write (2r2w) data
storage . In other examples , the amount of buffering can be
different . In the current example , streaming engine 125
dedicates 32 slots to each stream with each slot tagged by a
virtual address . Each slot holds 64 bytes of data in eight
banks of eight bytes .
[0173] Data storage 2816/2826 and the respective storage
allocation / tracking logic 2814/2824 and reference queues
2815/2825 implement the data FIFO 1902 discussed with
reference to FIG . 19 .
[0174] Respective butterfly network 2817/2827 includes a
seven - stage butterfly network . Butterfly network 2817/2827
receives 128 bytes of input and generates 64 bytes of output .
The first stage of the butterfly is actually a half - stage that
collects bytes from both slots that match a non - aligned fetch
and merges the collected bytes into a single , rotated 64 - byte
array . The remaining six stages form a standard butterfly
network . Respective butterfly network 2817/2827 performs
the following operations : rotates the next element down to
byte lane 0 ; promotes data types by a power of two , if

US 2020/0285470 A1 Sep. 10 , 2020
15

[0180] FIG . 29 illustrates an example stream template
register 2900. The stream definition template provides the
full structure of a stream that contains data . The iteration
counts and dimensions provide most of the structure , while
the various flags provide the rest of the details . In this
example , a single stream template 2900 is defined for all
data - containing streams . All stream types supported by the
streaming engine are covered by the template 2900. The
streaming engine supports a six - level loop nest for address
ing elements within the stream . Most of the fields in the
stream template 2900 map directly to the parameters in that
algorithm . The numbers above the fields are bit numbers
within a 256 - bit vector . Table 7 shows the stream field
definitions of a stream template , which includes ICNTO field
(2901) , ICNT1 field (2902) , ICNT2 field (2903) , ICNT3
field (2904) , ICNT4 field (2905) , ICNT5 field (2906) , DIM1
field (2911) , DIM2 field (2912) , DIM3 field (2913) , DIM4
field (2914) , DIM5 field (2915) , and FLAGS field (2921) .

TABLE 7

Field
Name

FIG . 29
Reference
Number

Size
Bits Description

requested ; swaps real and imaginary components of com
plex numbers , if requested ; and converts big endian to little
endian if processing unit core 110 is presently in big endian
mode . The user specifies element size , type promotion , and
real / imaginary swap as part of the parameters of the stream .
[0175] Streaming engine 125 attempts to fetch and format
data ahead of processing unit core 110's demand in order to
maintain full throughput . Respective stream head registers
2818/2828 provide a small amount of buffering so that the
process remains fully pipelined . Respective stream head
registers 2818/2828 are not directly architecturally visible .
Each stream also has a respective stream valid register
2819/2829 . Valid registers 2819/2829 indicate which ele
ments in the corresponding stream head registers 2818/2828
are valid .
[0176] The two streams 2810/2820 share a pair of inde
pendent L2 interfaces 2830 : L2 Interface A (IFA) 2833 and
L2 Interface B (IFB) 2834. Each L2 interface provides 512
bits / cycle throughput direct to the L2 controller 130 (FIG . 1)
via respective buses 147/149 for an aggregate bandwidth of
1024 bits / cycle . The L2 interfaces use the credit - based
multicore bus architecture (MBA) protocol . The MBA pro
tocol is described in more detail in U.S. Pat . No. 9,904,645 ,
“ Multicore Bus Architecture with Non - Blocking High Per
formance Transaction Credit System , ” which is incorporated
by reference herein . The L2 controller assigns a pool of
command credits to each interface . The pool has sufficient
credits so that each interface can send sufficient requests to
achieve full read - return bandwidth when reading L2 RAM ,
L2 cache and multicore shared memory controller (MSMC)
memory , as described in more detail herein .
[0177] To maximize performance , in this example both
streams can use both L2 interfaces , allowing a single stream
to send a peak command rate of two requests per cycle . Each
interface prefers one stream over the other , but this prefer
ence changes dynamically from request to request . IFA 2833
and IFB 2834 prefer opposite streams , when IFA 2833
prefers Stream O , IFB 2834 prefers Stream 1 and vice versa .
[0178] Respective arbiter 2831/2832 ahead of each
respective interface 2833/2834 applies the follo ing basic
protocol on every cycle having credits available . Arbiter
2831/2832 checks if the preferred stream has a command
ready to send . If so , arbiter 2831/2832 chooses that com
mand . Arbiter 2831/2832 next checks if an alternate stream
has at least two requests ready to send , or one command and
no credits . If so , arbiter 2831/2832 pulls a command from
the alternate stream . If either interface issues a command ,
the notion of preferred and alternate streams swap for the
next request . Using this algorithm , the two interfaces dis
patch requests as quickly as possible while retaining fairness
between the two streams . The first rule ensures that each
stream can send a request on every cycle that has available
credits . The second rule provides a mechanism for one
stream to borrow the interface of the other when the second
interface is idle . The third rule spreads the bandwidth
demand for each stream across both interfaces , ensuring
neither interface becomes a bottleneck .
[0179] Respective coarse grain rotator 2835/2836 enables
streaming engine 125 to support a transposed matrix
addressing mode . In this mode , streaming engine 125 inter
changes the two innermost dimensions of the multidimen
sional loop to access an array column - wise rather than
row - wise . Respective rotators 2835/2836 are not architec
turally visible .

ICNTO
ICNT1
ICNT2
ICNT3
ICNT4
ICNT5
DIM1
DIM2
DIM3
DIM4
DIM5
FLAGS

2901
2902
2903
2904
2905
2906
2911
2912
2913
2914
2915
2921

Iteration count for loop 0
Iteration count for loop 1
Iteration count for loop 2
Iteration count for loop 3
Iteration count for loop 4
Iteration count for loop 5
Signed dimension for loop 1
Signed dimension for loop 2
Signed dimension for loop 3
Signed dimension for loop 4
Signed dimension for loop 5
Stream modifier flags

32
32
32
32
32
32
32
32
32
32
32
64

[0181] Loop O is the innermost loop and loop 5 is the
outermost loop . In the current example , DIMO is equal to
ELEM_BYTES defining physically contiguous data . Thus ,
the stream template register 2900 does not define DIMO .
Streaming engine 125 interprets iteration counts as unsigned
integers and dimensions as unscaled signed integers . An
iteration count of zero at any level (ICNTO , ICNT1 , ICNT2 ,
ICNT3 , ICNT4 or ICNT5) indicates an empty stream . Each
iteration count must be at least one to define a valid stream .
The template above specifies the type of elements , length
and dimensions of the stream . The stream instructions
separately specify a start address , e.g. , by specification of a
scalar register in scalar register file 211 which stores the start
address . Thus , a program can open multiple streams using
the same template but different registers storing the start
address .

[0182] FIG . 30 illustrates an example of sub - field defini
tions of the flags field 2911 shown in FIG . 29. As shown in
FIG . 30 , the flags field 2911 is 6 bytes or 48 bits . FIG . 30
shows bit numbers of the fields . Table 8 shows the definition
of these fields , which include ELTYPE field (3001) ,
TRANSPOSE field (3002) , PROMOTE field (3003) ,
VECLEN field (3004) , ELDUP field (3005) , GRDUP field
(3006) , DECIM field (3007) , THROTTLE field (3008) ,
DIMFMT field (3009) , DIR field (3010) , CBKO field (3011) ,
CBK1 field (3012) , AMO field (3013) , AM1 field (3014) ,
AM2 field (3015) , AM3 field (3016) , AM4 field (3017) , and
AM5 field (3018) .

US 2020/0285470 A1 Sep. 10 , 2020
16

TABLE 8

FIG . 30
Reference
Number Description

Size
Bits Field Name

ELTYPE
TRANSPOSE
PROMOTE
VECLEN
ELDUP
GRDUP
DECIM
THROTTLE
DIMFMT
DIR

3001
3002
3003
3004
3005
3006
3007
3008
3009
3010

4
3
3
3
3
1
2
2
3
1

Type of data element
Two - dimensional transpose mode
Promotion mode
Stream vector length
Element duplication
Group duplication
Element decimation
Fetch ahead throttle mode
Stream dimensions format
Stream direction
O forward direction
1 reverse direction
First circular block size number
Second circular block size number
Addressing mode for loop 0
Addressing mode for loop 1
Addressing mode for loop 2
Addressing mode for loop 3
Addressing mode for loop 4
Addressing mode for loop 5

(FIG . 1) operates in big endian mode , as the core 110 lays
out vectors in little endian order .
[0186] Total Element Size specifies the minimal granular
ity of the stream which determines the number of bytes the
stream fetches for each iteration of the innermost loop .
Streams read whole elements , either in increasing or
decreasing order . Therefore , the innermost dimension of a
stream spans ICNTOxtotal - element - size bytes .
[0187] The TRANSPOSE field 3002 determines whether
the streaming engine accesses the stream in a transposed
order . The transposed order exchanges the inner two
addressing levels . The TRANSPOSE field 3002 also indi
cated the granularity for transposing the stream . The coding
of the three bits of the TRANSPOSE field 3002 is defined as
shown in Table 10 for normal 2D operations . CBKO

CBK1
AMO
AM1
AM2
AM3
AM4
AMS

TABLE 10

3011
3012
3013
3014
3015
3016
3017
3018

4
4
2
2
2 Transpose Meaning

[0183] The Element Type (ELTYPE) field 3001 defines
the data type of the elements in the stream . The coding of the
four bits of the ELTYPE field 3001 is defined as shown in
Table 9 .

000
001
010
011
100
101
110
111

Transpose disabled
Transpose on 8 - bit boundaries
Transpose on 16 - bit boundaries
Transpose on 32 - bit boundaries
Transpose on 64 - bit boundaries
Transpose on 128 - bit boundaries
Transpose on 256 - bit boundaries
Reserved

TABLE 9

Real /
Complex

Sub - element
Size Bits

Total Element
Size Bits ELTYPE

real
real
real
real

8
16
32

8
16
32
64

[0188] Streaming engine 125 can transpose data elements
at a different granularity than the element size thus allowing
programs to fetch multiple columns of elements from each
row . The transpose granularity cannot be smaller than the
element size . The TRANSPOSE field 3002 interacts with the
DIMFMT field 3009 in a manner further described below .
[0189] The PROMOTE field 3003 controls whether the
streaming engine promotes sub - elements in the stream and
the type of promotion . When enabled , streaming engine 125
promotes types by powers - of - 2 sizes . The coding of the
three bits of the PROMOTE field 3003 is defined as shown
in Table 11 .

0000
0001
0010
0011
0100
0101
0110
0111
1000

64
reserved
reserved
reserved
reserved
8 16

1001 16 32

1010 TABLE 11 32 64

1011 64 128 Promotion Promotion Resulting Sub - element Size

complex
no swap
complex
no swap
complex
no swap
complex
no swap
complex
swapped
complex
swapped
complex
swapped
complex
swapped

1100 PROMOTE Factor 8 - bit 16 - bit Type 16 32 - bit 64 - bit 8

1101 16 32 000
001
010
011
100

lx
2x
4x
8x

N / A
zero extend
zero extend
zero extend

8 - bit 16 - bit
16 - bit 32 - bit
32 - bit 64 - bit
64 - bit Invalid
reserved

32 - bit
64 - bit
Invalid
Invalid

64 - bit
Invalid
Invalid
Invalid 1110 32 64

1111 64 128

101
110
111

2x
4x
8x

sign extend
sign extend
sign extend

16 - bit 32 - bit
32 - bit 64 - bit
64 - bit Invalid

64 - bit
Invalid
Invalid

Invalid
Invalid
Invalid [0184] Real / Complex Type determines whether the

streaming engine treats each element as a real number or two
parts (real / imaginary or magnitude / angle) of a complex
number and also specifies whether to swap the two parts of
complex numbers . Complex types have a total element size
twice the sub - element size . Otherwise , the sub - element size
equals the total element size .
[0185] Sub - Element Size determines the type for purposes
of type promotion and vector lane width . For example ,
16 - bit sub - elements get promoted to 32 - bit sub - elements or
64 - bit sub - elements when a stream requests type promotion .
The vector lane width matters when processing unit core 110

[0190] When PROMOTE is 000 , corresponding to a 1x
promotion , each sub - element is unchanged and occupies a
vector lane equal in width to the size specified by ELTYPE .
When PROMOTE is 001 , corresponding to a 2x promotion
and zero extend , each sub - element is treated as an unsigned
integer and zero extended to a vector lane twice the width
specified by ELTYPE . A 2x promotion is invalid for an
initial sub - element size of 64 bits . When PROMOTE is 010 ,
corresponding to a 4x promotion and zero extend , each
sub - element is treated as an unsigned integer and zero

US 2020/0285470 A1 Sep. 10 , 2020
17

TABLE 13 - continued

ELDUP Duplication Factor
100
101
110
111

16 times
32 times
64 times
Reserved

extended to a vector lane four times the width specified by
ELTYPE . A 4x promotion is invalid for an initial sub
element size of 32 or 64 bits . When PROMOTE is 011 ,
corresponding to an 8x promotion and zero extend , each
sub - element is treated as an unsigned integer and zero
extended to a vector lane eight times the width specified by
ELTYPE . An 8x promotion is invalid for an initial sub
element size of 16 , 32 or 64 bits . When PROMOTE is 101 ,
corresponding to a 2x promotion and sign extend , each
sub - element is treated as a signed integer and sign extended
to a vector lane twice the width specified by ELTYPE . A 2x
promotion is invalid for an initial sub - element size of 64
bits . When PROMOTE is 110 , corresponding to a 4x
promotion and sign extend , each sub - element is treated as a
signed integer and sign extended to a vector lane four times
the width specified by ELTYPE . A 4x promotion is invalid
for an initial sub - element size of 32 or 64 bits . When
PROMOTE is 111 , corresponding to an 8x promotion and
zero extend , each sub - element is treated as a signed integer
and sign extended to a vector lane eight times the width
specified by ELTYPE . An 8x promotion is invalid for an
initial sub - element size of 16 , 32 or 64 bits .
[0191] The VECLEN field 3004 defines the stream vector
length for the stream in bytes .
[0192] Streaming engine 125 breaks the stream into
groups of elements that are VECLEN bytes long . The coding
of the three bits of the VECLEN field 3004 is defined as
shown in Table 12 .

TABLE 12

Stream Vector
Length VECLEN

000
001
010
011
100
101
110
111

1 byte
2 bytes
4 bytes
8 bytes
16 bytes
32 bytes
64 bytes

[0195] The ELDUP field 3005 interacts with VECLEN
field 3004 and GRDUP field 3006 in a manner detailed
below . The nature of the relationship between the permitted
element size , the element duplication factor , and the desti
nation vector length requires that a duplicated element that
overflows the first destination register fills an integer number
of destination registers upon completion of duplication . The
data of the additional destination registers eventually sup
plies the respective stream head register 2818/2828 . Upon
completion of duplication of a first data element , the next
data element is rotated down to the least significant bits of
source register 3100 discarding the first data element . The
process then repeats for the new data element .
[0196] The GRDUP bit 3006 determines whether group
duplication is enabled . If GRDUP bit 3006 is 0 , then group
duplication is disabled . If the GRDUP bit 3006 is 1 , then
group duplication is enabled . When enabled by GRDUP bit
3006 , streaming engine 125 duplicates a group of elements
to fill the vector width . VECLEN field 3004 defines the
length of the group to replicate . When VECLEN field 3004
is less than the vector length of processing unit core 110 and
GRDUP bit 3006 enables group duplication , streaming
engine 125 fills the extra lanes (see FIGS . 21 and 22) with
additional copies of the stream vector . Because stream
vector length and vector length of processing unit core 110
are integral powers of two , group duplication produces an
integral number of duplicate copies . Note GRDUP and
VECLEN do not specify the number of duplications . The
number of duplications performed is based upon the ratio of
VECLEN to the native vector length , which is 64 bytes / 512
bits in this example .
[0197] The GRDUP field 3006 specifies how stream
engine 125 pads stream vectors for bits following the
VECLEN length to the vector length of processing unit core
110. When GRDUP bit 3006 is 0 , streaming engine 125 fills
the extra lanes with zeros and marks the extra vector lanes
invalid . When GRDUP bit 3006 is 1 , streaming engine 125
fills extra lanes with copies of the group of elements in each
stream vector . Setting GRDUP bit 3006 to 1 has no effect
when VECLEN is set to the native vector width of process
ing unit core 110. VECLEN must be at least as large as the
product of ELEM_BYTES and the element duplication
factor ELDUP . That is , an element or the duplication factor
number of elements cannot be separated using VECLEN .
[0198] Group duplication operates to the destination vec
tor size . Group duplication does not change the data supplied
when the product of the element size ELEM_BYTES and
element duplication factor ELDUP equals or exceeds the
destination vector width . Under such conditions , the states
of the GRDUP bit 3006 and the VECLEN field 3004 have
no effect on the supplied data .
[0199] The set of examples below illustrate the interaction
between VECLEN and GRDUP . Each of the following
examples show how the streaming engine maps a stream
onto vectors across different stream vector lengths and the
vector size of vector data path side B 116. The stream of this

Reserved

[0193] VECLEN cannot be less than the product of the
element size in bytes and the duplication factor . As shown in
Table 11 , the maximum VECLEN of 64 bytes equals the
preferred vector size of vector data path side B 116. When
VECLEN is shorter than the native vector width of process
ing unit core 110 , streaming engine 125 pads the extra lanes
in the vector provided to processing unit core 110. The
GRDUP field 3006 determines the type of padding . The
VECLEN field 3004 interacts with ELDUP field 3005 and
GRDUP field 3006 in a manner detailed below .
[0194] The ELDUP field 3005 specifies the number of
times to duplicate each element . The element size multiplied
with the element duplication amount cannot exceed the 64
bytes . The coding of the three bits of the ELDUP field 3005
is defined as shown in Table 13 .

TABLE 13

ELDUP Duplication Factor
000
001
010
011

No Duplication
2 times
4 times
8 times

US 2020/0285470 A1 Sep. 10 , 2020
18

TABLE 16 - continued

Processor
Vectors

Lane Lane
7 6

Lane
5

Lane
4

Lane Lane
3 2

Lane Lane
1 0

example includes twenty - nine elements (EO to E28) of 64
bits / 8 bytes . The stream can be a linear stream of twenty
nine elements or an inner loop of 29 elements . The tables
illustrate eight byte lanes such as shown in FIG . 21. Each
illustrated vector is stored in the respective stream head
register 2818/2828 in turn .
[0200] Table 14 illustrates how the example stream maps
onto bits within the 64 - byte processor vectors when
VECLEN is 64 bytes .

14
15

0
0

0
0

0
0

0
0

0
0

0
0

E27
0

E26
E28

TABLE 14

[0205] The twenty - nine elements of the stream are dis
tributed over lane 0 and lane 1 in fifteen vectors . Extra lanes
2 to 7 in vectors 1-14 are zero filled . In vector 15 , lane 1 has
a stream element (E28) and the other lanes are zero filled .
[0206] Table 17 shows the same parameters as shown in
Table 14 , except with VECLEN of eight bytes . Group
duplicate is disabled (GRDUP = 0) .

Processor
Vectors

Lane
7

Lane
6

Lane
5

Lane Lane Lane
4 3 2

Lane Lane
1 0

EO 1
2
3
4

E7 E6
E15 E14
E23 E22
0 0

E5
E13
E21
0

E4
E12
E20
E28

E3
E11
E19
E27

E2
E10
E18
E26

E1
E9
E17
E25

E8
E16
E24 TABLE 17

Lane Lane Lane Lane Processor
Vectors 7 6

Lane
5

Lane Lane Lane
4 3 2 1 0

0
0

0
0
0

0
0
0
0

0
0
0 0

0 0

[0201] As shown in Table 14 , the stream extends over four
vectors . As previously described , the lanes within vector 4
that extend beyond the stream are zero filled . When
VECLEN has a size equal to the native vector length , the
value of GRDUP does not matter as no duplication can take
place with such a VECLEN .
[0202] Table 15 shows the same parameters as shown in
Table 20 , except with VECLEN of 32 bytes . Group duplicate
is disabled (GRDUP = 0) .

0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0

0 0 0 0 0
0 0 0 0

0 0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0 0

0
0

0
0
0
0
0

0
0
0

TABLE 15
0
0
0

0
0
0
0 Processor

Vectors
Lane
7

Lane
6

Lane
5

Lane
4 .

Lane
3

Lane
2

Lane
1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Lane
0

0 0

EO
E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25
E26
E27
E28

0 0

0 0 0
0 0 0

1
2
3
4

0
0 0

0

0
0
0
0
0
0

E3
E7
E11
E15
E19
E23
E27

E2
E6
E10
E14
E18
E22
E26

0
0
0
0
0

0
0
0
0
0

E1
E5
E9
E13
E17
E21
E25

EO
E4
E8
E12
E16
E20
E24

0

6
7
8

0
0
0

0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0 0 0 0 0 E28 0

0
0
0
0
0
0

0
0

0
0
0 0 0 0

0 0 0 0 0 0 0
[0203] The twenty - nine elements of the stream are dis
tributed over lanes 0 to 3 in eight vectors . Extra lanes 4 to
7 in vectors 1-7 are zero filled . In vector 8 , lane 1 has a
stream element (E28) and the other lanes are zero filled .
[0204] Table 16 shows the same parameters as shown in
Table 22 , except with VECLEN of sixteen bytes . Group
duplicate is disabled (GRDUP = 0) .

[0207] The twenty - nine elements of the stream appear in
lane 0 in twenty - nine vectors . Extra lanes 1-7 in vectors 1-29
are zero filled .

[0208] Table 18 shows the same parameters as shown in
Table 15 , except with VECLEN of thirty - two bytes and
group duplicate is enabled (GRDUP = 1) .

TABLE 16
Processor
Vectors

Lane
7

Lane
6 Çane Lane Lane

5 4 ?ane Lane
3

Lane
2

Lane
1

Lane
0

TABLE 18
0 0 0

0
0
0
0
0

0
0
0
0

0
0

0
0
0

Processor
Vectors

Lane
7

Lane
6

Lane
5

Lane
4

Lane
3

Lane
2

Lane
1

Lane
0 0

0 0
0 0 0

0
0
0
0
0
0
0
0
0

1
2 0 0

1
2
3
4
5
6
7
8
9

10
11
12
13

0
0
0
0

E1
E3
E5
E7
E9
E11
E13
E15
E17
E19
E21
E23
E25

EO
E2
E4
E6
E8
E10
E12
E14
E16
E18
E20
E22
E24

E3
E7
E11
E15
E19
E23
E27
0

0
0
0
0
0
0
0

E2
E6
E10
E14
E18
E22
E26
0

E1
E5
E9
E13
E17
E21
E25
0

3
4
5
6
7
8

EO
F4
E8
E12
E16
E20
E24
E28

E3
E7
E11
E15
E19
E23
E27
0

E2
E6
E10
E14
E18
E22
E26
0

E1
E5
E9
E13
E17
E21
E25
0

0

EO
E4
E8
E12
E16
E20
E24
E28

0
0

0
0 0 0

0
0
0

0
0
0

0
0
0

0
0
0 0

US 2020/0285470 A1 Sep. 10 , 2020
19

TABLE 20 - continued

Processor
Vectors

Lane Lane
7 6

Lane
5

Lane
4

Lane Lane
3 2

Lane Lane
1 0

24

[0209] The twenty - nine elements of the stream are dis
tributed over lanes 0-7 in eight vectors . Each vector 1-7
includes four elements duplicated . The duplication factor (2)
results because VECLEN (32 bytes) is half the native vector
length of 64 bytes . In vector 8 , lane 0 has a stream element
(E28) and lanes 1-3 are zero filled . Lanes 4-7 of vector 9
duplicate this pattern .
[0210] Table 19 shows the same parameters as shown in
Table 16 , except with VECLEN of sixteen bytes . Group
duplicate is enabled (GRDUP = 1) .

25
26
27
28
29

E23
E24
E25
E26
E27
E28

E23
E24
E25
E26
E27
E28

E23
E24
E25
E26
E27
E28

E23
E24
E25
E26
E27
E28

E23
E24
E25
E26
E27
E28

E23
E24
E25
E26
E27
E28

E23
E24
E25
E26
E27
E28

E23
E24
E25
E26
E27
E28

TABLE 19

processor
Vectors

Lane
7

Lane
6

Lane
5

Lane
4

Lane
3

Lane
2

Lane
1

Lane
0

EO E1 E1 EO
E2 E2 E3 E3
E4

1
2
3
4
5
6

8

E1
E3
ES
E7
E9
E11
E13
E15
E17
E19
E21
E23
E25
E27
0

E4
E6
E8
E10
E12
E14
E16
E18
E20
E22
E24
E26
E28

EO
E2
E4
E6
E8
E10
E12
E14
E16
E18
E20
E22
E24
E26
E28

E5
E7
E9
E11
E13
E15
E17
E19
E21
E23
E25
E27
0

9
10
11
12
13
14
15

EO
E2
E4
E6
E8
E10
E12
E14
E16
E18
E20
E22
E24
E26
E28

E5
E7
E9
E11
E13
E15
E17
E19
E21
E23
E25
E27
0

E1
E3
E5
E7
E9
E11
E13
E15
E17
E19
E21
E23
E25
E27
0

E6
E8
E10
E12
E14
E16
E18
E20
E22
E24
E26
E28

[0211] The twenty - nine elements of the stream are distrib
uted over lanes 0-7 in fifteen vectors . Each vector 1-7
includes two elements duplicated four times . The duplica
tion factor (4) results because VECLEN (16 bytes) is one
quarter the native vector length of 64 bytes . In vector 15 ,
lane O has a stream element (E28) and lane 1 is zero filled .
This pattern is duplicated in lanes 2 and 3 , lanes 4 and 5 , and
lanes 6 and 7 of vector 15 .
[0212] Table 20 shows the same parameters as shown in
Table 17 , except with VECLEN of eight bytes . Group
duplicate is enabled (GRDUP = 1) .

[0213] The twenty - nine elements of the stream all appear
on lanes 0 to 7 in twenty - nine vectors . Each vector includes
one element duplicated eight times . The duplication factor
(8) results because VECLEN (8 bytes) is one eighth the
native vector length of 64 bytes . Thus , each lane is the same
in vectors 1-29 .
[0214] FIG . 31 illustrates an example of vector length
masking / group duplication block 2025 (see FIG . 20) that is
included within formatter block 1903 of FIG . 19. Input
register 3100 receives a vector input from element duplica
tion block 2024 shown in FIG . 20. Input register 3100
includes 64 bytes arranged in 64 1 - byte blocks byte0 to
byte63 . Note that bytes byte) to byte63 are each equal in
length to the minimum of ELEM_BYTES . A set of multi
plexers 3101 to 3163 couple input bytes from source register
3100 to output register 3170. Each respective multiplexer
3101 to 3163 supplies an input to a respective bytel to
byte63 of output register 3170. Not all input bytes byte0 to
byte63 of input register 3100 are coupled to every multi
plexer 3101 to 3163. Note there is no multiplexer supplying
byte0 of output register 3170. In this example , bytel of
output register 3170 is supplied by bytel of input register
3100 .
[0215] Multiplexers 3101 to 3163 are controlled by mul
tiplexer control encoder 3180. Multiplexer control encoder
3180 receives ELEM_BYTES , VECLEN and GRDUP input
signals and generates respective control signals for multi
plexers 3101 to 3163. ELEM_BYTES and ELDUP are
supplied to multiplexer control encoder 3180 to check to see
that ECLEN is at least as great as the product of ELEM_
BYTES and ELDUP . In operation , multiplexer control
encoder 3180 controls multiplexers 3101 to 3163 to transfer
least significant bits equal in number to VECLEN from input
register 3100 to output register 3170. If GRDUP = 0 indicat
ing group duplication disabled , then multiplexer control
encoder 3180 controls the remaining multiplexers 3101 to
3163 to transfer zeros to all bits in the remaining most
significant lanes of output register 3170. If GRDUP = 1
indicating group duplication enabled , then multiplexer con
trol encoder 3180 controls the remaining multiplexers 3101
to 3163 to duplicate the VECLEN number of least signifi
cant bits of input register 3100 into the most significant lanes
of output register 3170. This control is similar to the element
duplication control described above and fills the output
register 3170 with the first vector . For the next vector , data
within input register 3100 is rotated down by VECLEN ,
discarding the previous VECLEN least significant bits . The
rate of data movement in formatter 1903 (FIG . 19) is set by
the rate of consumption of data by processing unit core 110
(FIG . 1) via stream read and advance instructions described
below . The group duplication formatting repeats as long as
the stream includes additional data elements .
[0216] Element duplication (ELDUP) and group duplica
tion (GRUDP) are independent . Note these features include

TABLE 20

Processor
Vectors

Lane
7 Lane Lane

6
Lane Lane
5 4

Lane
3

Lane
2

Lane
1

Lane
0

EO EO EO
E1 E1 E1

E2 E2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22

E2
E3
E4
E5
E6
E7
ES
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22

EO
E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22

EO
E1
E2
E3
E4
E5
E6
E7
ES
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22

EO
E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22

EO
E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22

EO
E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22

E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22

US 2020/0285470 A1 Sep. 10 , 2020
20

independent specification and parameter setting . Thus , ele
ment duplication and group duplication can be used together
or separately . Because of how these are specified , element
duplication permits overflow to the next vector while group
duplication does not .
[0217] Referring again to FIG . 30 , the DECIM field 3007
controls data element decimation of the corresponding
stream . Streaming engine 125 deletes data elements from the
stream upon storage in respective stream head registers
2818/2828 for presentation to the requesting functional unit .
Decimation removes whole data elements , not sub - elements .
The DECIM field 3007 is defined as listed in Table 21 .

[0220] THROTTLE does not change the meaning of the
stream and serves only as a hint . The streaming engine can
ignore this field . Programs should not rely on the specific
throttle behavior for program correctness , because the archi
tecture does not specify the precise throttle behavior .
THROTTLE allows programmers to provide hints to the
hardware about the program behavior . By default , the
streaming engine attempts to get as far ahead of processing
unit core 110 as possible to hide as much latency as possible
(equivalent to THROTTLE = 11) , while providing full stream
throughput to processing unit core 110. While some appli
cations need this level of throughput , such throughput can
cause bad system level behavior for others . For example , the
streaming engine discards all fetched data across context
switches . Therefore , aggressive fetch - ahead can lead to
wasted bandwidth in a system with large numbers of context
switches .

TABLE 21

DECIM Decimation Factor

00
01
10
11

No Decimation
2 times
4 times
Reserved [0221] The DIMFMT field 3009 defines which of the loop

count fields ICNTO 2901 , ICNT1 2902 , ICNT2 2903 ,
ICNT3 2804 , ICNT4 2905 and ICNT5 2906 , of the loop
dimension fields DIM1 2911 , DIM2 2912 , DIM3 2913 ,
DIM4 2914 and DIM5 2915 and of the addressing mode
fields AMO 3013 , AM1 3014 , AM2 3015 , AM3 3016 , AM4
3017 and AM5 3018 (part of FLAGS field 2921) of the
stream template register 2900 are active for the particular
stream . Table 23 lists the active loops for various values of
the DIMFMT field 3009. Each active loop count must be at
least 1 and the outer active loop count must be greater than
1 .

TABLE 23

DIMFMT Loop5 Loop4 Loop3 Loop2 Loop1 Loopo

[0218] If DECIM field 3007 equals 00 , then no decimation
occurs . The data elements are passed to the corresponding
stream head registers 2818/2828 without change . If DECIM
field 3007 equals 01 , then 2 : 1 decimation occurs . Streaming
engine 125 removes odd number elements from the data
stream upon storage in the stream head registers 2818/2828 .
Limitations in the formatting network require 2 : 1 decima
tion to be employed with data promotion by at least 2x
(PROMOTE cannot be 000) , ICNTO must be multiple of 2 ,
and the total vector length (VECLEN) must be large enough
to hold a single promoted , duplicated element . For trans
posed streams (TRANSPOSE 0) , the transpose granule must
be at least twice the element size in bytes before promotion .
If DECIM field 3007 equals 10 , then 4 : 1 decimation occurs .
Streaming engine 125 retains every fourth data element
removing three elements from the data stream upon storage
in the stream head registers 2818/2828 . Limitations in the
formatting network require 4 : 1 decimation to be employed
with data promotion by at least 4x (PROMOTE cannot be
000 , 001 or 101) , ICNTO must be a multiple of 4 and the
total vector length (VECLEN) must be large enough to hold
a single promoted , duplicated element . For transposed
streams (TRANSPOSE + 0) , in one example , decimation
removes columns , and does not remove rows . Thus , in such
cases , the transpose granule must be at least twice the
element size in bytes before promotion for 2 : 1 decimation
(GRANULE 2XELEM_BYTES) and at least four times the
element size in bytes before promotion for 4 : 1 decimation
(GRANULE 4XELEM_BYTES) .
[0219] The THROTTLE field 3008 controls how aggres
sively the streaming engine fetches ahead of processing unit
core 110. The coding of the two bits of this field is defined
as shown in Table 22 .

000
001
010
011
100
101
110-111

Inactive Inactive
Inactive Inactive
Inactive Inactive
Inactive Inactive
Inactive Active
Active Active

Inactive Inactive Inactive Active
Inactive Inactive Active Active
Inactive Active Active Active
Active Active Active Active
Active Active Active Active
Active Active Active Active

Reserved

[0222] The DIR bit 3010 determines the direction of fetch
of the inner loop (Loopo) . If the DIR bit 3010 is 0 , Loopo
fetches are in the forward direction toward increasing
addresses . If the DIR bit 3010 is 1 , Loopo fetches are in the
backward direction toward decreasing addresses . The fetch
direction of other loops is determined by the sign of the
corresponding loop dimension DIMI , DIM2 , DIM3 , DIM4
and DIM5 .

[0223] The CBKO field 3011 and the CBK1 field 3012
control the circular block size upon selection of circular
addressing . The manner of determining the circular block
size is described herein .

[0224] The AMO field 3013 , AM1 field 3014 , AM2 field
3015 , AM3 field 3016 , AM4 field 3017 and AM5 field 3018
control the addressing mode of a corresponding loop , thus
permitting the addressing mode to be independently speci
fied for each loop . Each of AMO field 3013 , AM1 field 3014 ,
AM2 field 3015 , AM3 field 3016 , AM4 field 3017 and AM5
field 3018 are three bits and are decoded as listed in Table
24 .

TABLE 22

THROTTLE Description

00
01
10
11

Minimum throttling , maximum fetch ahead
Less throttling , more fetch ahead
More throttling , less fetch ahead
Maximum throttling , minimum fetch ahead

US 2020/0285470 A1 Sep. 10 , 2020
21

TABLE 24

AN / Tx field Meaning

00
01

Linear addressing
Circular addressing block size set by
CBKO
Circular addressing block size set by
CBKO + CBK1 + 1
reserved

10

first block size (AMx of 01) and CBKO + CBK1 + 1 for the
second block size (AMx of 10) .
[0226] The processing unit 110 (FIG . 1) exposes the
streaming engine 125 (FIG . 28) to programs through a small
number of instructions and specialized registers . Programs
start and end streams with SEOPEN and SECLOSE .
SEOPEN opens a new stream and the stream remains open
until terminated explicitly by SECLOSE or replaced by a
new stream with SEOPEN . The SEOPEN instruction speci
fies a stream number indicating opening stream 0 or stream
1. The SEOPEN instruction specifies a data register storing
the start address of the stream . The SEOPEN instruction also
specifies a stream template register that stores the stream
template as described above . The arguments of the SEOPEN
instruction are listed in Table 26 .

11

In linear addressing , the address advances according to the
address arithmetic whether forward or reverse . In circular
addressing , the address remains within a defined address
block . Upon reaching the end of the circular address block
the address wraps around to the beginning limit of the block .
Circular addressing blocks are limited to 2N addresses
where N is an integer . Circular address arithmetic can
operate by cutting the carry chain between bits and not
allowing a selected number of most significant bits to
change . Thus , arithmetic beyond the end of the circular
block changes only the least significant bits . The block size
is set as listed in Table 25 .

TABLE 26

Argument Description

Stream Start Address
Register
Stream Number
Stream Template
Register

Scalar register storing stream
start address
Stream 0 or Stream 1
Vector register storing stream
template data

TABLE 25

Encoded Block Size
CBKO or CBKO +
CBK1 + 1

Block Size
(bytes)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

512
1 K
2 K
4 K
8 K

16 K
32 K
64 K

128 K
256 K
512 K

1 M
2 M
4 M
8 M

16 M
32 M
64 M

128 M
256 M
512 M

1 G
2G
4 G
8 G

16 G
32 G
64 G

Reserved
Reserved
Reserved
Reserved

[0227] The stream start address register is a register in
general scalar register file 211 (FIG . 2) in this example . The
SEOPEN instruction can specify the stream start address
register via scr1 field 1305 (FIG . 13) of example instruction
coding 1300 (FIG . 13) . The SEOPEN instruction specifies
stream 0 or stream 1 in the opcode . The stream template
register is a vector register in general vector register file 221
in this example . The SEOPEN instruction can specify the
stream template register via scr2 / cst field 1304 (FIG . 13) . If
the specified stream is active , the SEOPEN instruction
closes the prior stream and replaces the stream with the
specified stream .
[0228] SECLOSE explicitly marks a stream inactive ,
flushing any outstanding activity . Any further references to
the stream trigger exceptions . SECLOSE also allows a
program to prematurely terminate one or both streams .
[0229] An SESAVE instruction saves the state of a stream
by capturing sufficient state information of a specified
stream to restart that stream in the future . An SERSTR
instruction restores a previously saved stream . An SESAVE
instruction saves the stream metadata and does not save any
of the stream data . The stream re - fetches stream data in
response to an SERSTR instruction .
[0230] Each stream can be in one of three states : inactive ,
active , or frozen after reset . Both streams begin in the
inactive state . Opening a stream moves the stream to the
active state . Closing the stream returns the stream to the
inactive state . In the absence of interrupts and exceptions ,
streams ordinarily do not make other state transitions . To
account for interrupts , the streaming engine adds a third
state : frozen . The frozen state represents an interrupted
active stream .
(0231] In this example , four bits , two bits per stream ,
define the state of both streams . One bit per stream resides
within the streaming engine , and the other bit resides within
the processor core 110. The streaming engine internally
tracks whether each stream holds a parameter set associated
with an active stream . This bit distinguishes an inactive
stream from a not - inactive stream . The processor core 110

[0225] In this example , the circular block size is set by the
number encoded by CBKO (first circular address mode 01)
or the number encoded by CBKO + CBK1 + 1 (second circular
address mode 10) . For example , in the first circular address
mode , the circular address block size can range from 512
bytes to 16 M bytes . For the second circular address mode ,
the circular address block size can range from 1 K bytes to
64 G bytes . Thus , the encoded block size is 2 (B + 9) bytes ,
where B is the encoded block number which is CBKO for the

US 2020/0285470 A1 Sep. 10 , 2020
22

and then store the combined data to memory using the valid
data indications as a mask , thus enabling the same process
to be used for the end of loop data as is used for cases where
all the lanes are valid which avoids storing invalid data . The
valid indication stored in predicate register file 234 can be
used as a mask or an operand in other processes . P unit 246
(FIG . 2) can have an instruction to count the number of l’s
in a predicate register (BITCNT , which can be used to
determine the count of valid data elements from a predicate
register .
[0237] FIG . 32 illustrates example hardware 3200 to pro
duce the valid / invalid indications stored in the valid register
2819 (FIG . 28) . FIG . 32 illustrates hardware for stream 0 ;
stream 1 includes corresponding hardware . Hardware 3200
operates to generate one valid word each time data is
updated in stream head register 2818 (FIG . 28) . A first input
ELTYPE is supplied to decoder 3201. Decoder 3201 pro
duces an output TOTAL ELEMENT SIZE corresponding to
the minimum data size based upon the element size ELEM_
BYTES and whether the elements are real numbers or
complex numbers . The meanings of various codings of
ELTYPE are shown in Table 9. Table 27 shows an example
output of decoder 3201 in bytes for the various ELTYPE
codings . Note Table 9 lists bits and Table 27 lists bytes . As
shown in Table 27 , TOTAL ELEMENT SIZE is 1 , 2 , 4 or 8
bytes if the element is real and 2 , 4 , 8 or 16 bytes if the
element is complex .

TABLE 27

Total Element
Size Bytes ELTYPE Real / Complex

separately tracks the state of each stream with a dedicated bit
per stream in the Task State Register (TSR) : TSR.SEO for
stream 0 , and TSR.SE1 for stream 1. These bits distinguish
between active and inactive streams .
[0232] Opening a stream moves the stream to the active
state . Closing a stream moves the stream to the inactive
state . If a program opens a new stream over a frozen stream ,
the new stream replaces the old stream and the streaming
engine discards the contents of the previous stream . The
streaming engine supports opening a new stream on a
currently active stream . The streaming engine discards the
contents of the previous stream , flushes the pipeline , and
starts fetching data for the new opened stream . Data to
processor is asserted once the data has returned . If a program
closes an already closed stream , nothing happens . If a
program closes an open or frozen stream , the streaming
engine discards all state related to the stream , clears the
internal stream - active bit , and clears the counter , tag and
address registers . Closing a stream serves two purposes .
Closing an active stream allows a program to specifically
state the stream and the resources associated with the stream
are no longer needed . Closing a frozen stream also allows
context switching code to clear the state of the frozen
stream , so that other tasks do not see it .
[0233] As noted above , there are circumstances when
some data within a stream holding register 2818 or 2828 is
not valid . As described above , such a state can occur at the
end of an inner loop when the number of stream elements is
less than the respective stream holding register 2818/2828
size or at the end of an inner loop when the number of stream
elements remaining is less than the lanes defined by
VECLEN . For times not at the end of an inner loop , if
VECLEN is less than the width of stream holding register
2818/2828 and GRDUP is disabled , then lanes in stream
holding register 2818/2828 in excess of VECLEN are
invalid .
[0234] Referring again to FIG . 28 , in this example stream
ing engine 125 further includes valid registers 2819 and
2829. Valid register 2819 indicates the valid lanes in stream
head register 2818. Valid register 2829 indicates the valid
lanes in stream head register 2828. Respective valid regis
ters 2819/2829 include one bit for each minimum ELEM_
BYTES lane within the corresponding stream head register
2818/2828 . In this example , the minimum ELEM_BYTES
15 1 byte . The preferred data path width of processor 100
and the data length of stream head registers 2818/2828 is 64
bytes (512 bits) . Valid registers 2819/2829 accordingly have
a data width of 64 bits . Each bit in valid registers 2819/2829
indicates whether a corresponding byte in stream head
registers 2818/2828 is valid . In this example , a 0 indicates
the corresponding byte within the stream head register is
invalid , and a 1 indicates the corresponding byte is valid .
[0235] In this example , upon reading a respective one of
the stream head registers 2818/2828 and transferring of data
to the requesting functional unit , the invalid / valid data in the
respective valid register 2819/2829 is automatically trans
ferred to a data register within predicate register file 234
(FIG . 2) corresponding to the particular stream . In this
example the valid data for stream 0 is stored in predicate
register PO and the valid data for stream 1 is stored in
predicate register P1 .
[0236] The valid data stored in the predicate register file
234 can be used in a variety of ways . The functional unit can
combine the vector stream data with another set of vectors

0000
0001
0010
0011
0100
0101
0110
0110
1000
1001
1010
1011
1100
1101
1110
1111

Real
Real
Real
Real

Reserved
Reserved
Reserved
Reserved

Complex , Not Swapped
Complex , Not Swapped
Complex , Not Swapped
Complex , Not Swapped
Complex , Swapped
Complex , Swapped
Complex , Swapped
Complex , Swapped

1
2
4
8

Reserved
Reserved
Reserved
Reserved

2
4
8

16
2
4
8

16

[0238] A second input PROMOTE is supplied to decoder
3202. Decoder 3202 produces an output promotion factor
corresponding to the PROMOTE input . The meaning of
various codings of PROMOTE are shown in Table 28 , which
shows an example output of decoder 3202 in bytes for the
various PROMOTE codings . The difference in extension
type (zero extension or sign extension) is not relevant to
decoder 3202 .

TABLE 28

Promotion
Factor PROMOTE

000
001
010
011
100

1
2
4
8

Reserved

US 2020/0285470 A1 Sep. 10 , 2020
23

TABLE 28 - continued

Promotion
Factor PROMOTE

101
110
111

2
4
8

[0239] The outputs of decoders 3201 and 3202 are sup
plied to multiplier 3203. The product produced by multiplier
3203 is the lane size corresponding to the TOTAL ELE
MENT SIZE and the promotion factor . Because the promo
tion factor is an integral power of 2 (2M) , the multiplication
can be achieved by corresponding shifting of the TOTAL
ELEMENT SIZE , e.g. , no shift for a promotion factor of 1 ,
a one - bit shift for a promotion factor of 2 , a two - bit shift for
a promotion factor of 4 , and a three - bit shift for a promotion
factor of 8 .
[0240] NUMBER OF LANES unit 3204 receives the
vector length VECLEN and the LANE SIZE and generates
the NUMBER OF LANES . Table 29 shows an example
decoding of the number of lanes for lane size in bytes and
the vector length VECLEN .

TABLE 29

LANE VECLEN

SIZE 000 001 010 011 100 101 110

1 2 4
2
1

8
4 1

1
2
4
8

16
32
64

16
8
4
2
1

32
16
8
4
2
1

64
32
16
8
4
2

1

included with address generator 2811. The first loop of the
stream employs Loopo count register 3311 , adder 3312 ,
multiplier 3313 and comparator 3314. Loop count register
3311 stores the working copy of the iteration count of the
first loop (Loopo) . For each iteration of Loopo , adder 3312 ,
as triggered by the Next Address signal , adds 1 to the loop
count , which is stored back in Loop count register 3311 .
Multiplier 3313 multiplies the current loop count and the
quantity ELEM_BYTES . ELEM_BYTES is the size of each
data element in loop () in bytes . Loopo traverses data
elements physically contiguous in memory with an iteration
step size of ELEM_BYTES .
[0244] Comparator 3314 compares the count stored in
Loop count register 3311 (after incrementing by adder
3313) with the value of ICNTO 2901 (FIG . 29) from the
corresponding stream template register 2900 (FIG . 29) .
When the output of adder 3312 equals the value of ICNTO
2901 of the stream template register 2900 , an iteration of
Loop is complete . Comparator 3314 generates an active
Loop End signal . Loop0 count register 3311 is reset to 0
and an iteration of the next higher loop , in this case Loop1 ,
is triggered .
[0245] Circuits for the higher loops (Loop1 , Loop2 ,
Loop3 , Loop4 and Loop5) are similar to that illustrated in
FIG . 33. Each loop includes a respective working loop count
register , adder , multiplier and comparator . The adder of each
loop is triggered by the loop end signal of the prior loop . The
second input to each multiplier is the corresponding dimen
sion DIMI , DIM2 , DIM3 , DIM4 and DIM5 from the
corresponding stream template . The comparator of each
loop compares the working loop register count with the
corresponding iteration value ICNTI , ICNT2 , ICNT3 ,
ICNT4 and ICNT5 of the corresponding stream template
register 2900. A loop end signal generates an iteration of the
next higher loop . A loop end signal from Loop5 ends the
stream .

[0246] FIG . 33 also illustrates the generation of Loop
count . Loop0 count equals the updated data stored in the
corresponding working count register 3311. Loop count is
updated on each change of working Loop count register
3311. The loop counts for the higher loops (Loop1 , Loop2 ,
Loop3 , Loop4 and Loop5) are similarly generated .
[0247] FIG . 33 also illustrates the generation of Loop
address . Loopo address equals the data output from multi
plier 3313. Loop0 address is updated on each change of
working Loop count register 3311. Similar circuits for
Loop1 , Loop2 , Loop3 , Loop4 and Loop5 produce corre
sponding loop addresses . In this example , Loopo count
register 3311 and the other loop count registers are imple
mented as count up registers . In another example , initial
ization and comparisons operate as count down circuits .
[0248] Referring again to FIG . 32 , the value of the loop
down count , such as Loop , is given by expression (2) .

Loopx / = ICNTx - Loopx (2)

[0249] That is , the loop down count is the difference
between the initial iteration count specified in the stream
template register and the loop up count produced as illus
trated in FIG . 33 .
[0250] LANE / REMAINING ELEMENTS CONTROL
WORD unit 3211 (FIG . 32) generates a control word 3213
based upon the number of lanes from NUMBER OF LANES
unit 3204 and the loop down count selected by multiplexer
3212. The control input to multiplexer 3212 is the TRANS

|

[0241] As previously stated , VECLEN must be greater
than or equal to the product of the element size and the
duplication factor . As shown in Table 29 , VECLEN must
also be greater than or equal to the product of the element
size and the promotion factor . This means that VECLEN
must be large enough to guarantee that an element cannot be
separated from its extension produced by type promotion
block 2022 (FIG . 20) . The cells below the diagonal in Table
29 marked indicate an unpermitted combination of
parameters .
[0242] The NUMBER OF LANES output of unit 3204
serves as one input to LANE / REMAINING ELEMENTS
CONTROL WORD unit 3211. A second input comes from
multiplexer 3212. Multiplexer 3212 receives a Loop input
and a Loop1 input . The Loop input and the Loop1 input
represent the number of remaining elements in the current
iteration of the corresponding loop .
[0243] FIG . 33 illustrates a partial schematic view of
address generator 2811 shown in FIG . 28. Address generator
2811 forms an address for fetching the next element in the
defined stream of the corresponding streaming engine . Start
address register 3301 stores a start address of the data
stream . As previously described above , in this example , start
address register 3301 is a scalar register in global scalar
register file 211 designated by the SEOPEN instruction that
opened the corresponding stream . The start address can be
copied from the specified scalar register and stored locally at
the respective address generator 2811/2821 by control logic

US 2020/0285470 A1 Sep. 10 , 2020
24

POSE signal from field 3002 of FIG . 30. If TRANSPOSE is
disabled (" 000 ”) , multiplexer 3212 selects the Loop down
count Loop0 / . For all other legal values of TRANSPOSE
(" 001 ” , “ 010 ” , “ 011 ” , “ 100 ” , “ 101 ” and “ 110 ”) multiplexer
3212 selects the Loop1 down count Loop1 / . The streaming
engine maps the innermost dimension to consecutive lanes
in a vector . For normal streams this is Loopo . For transposed
streams , this is Loop1 , because transposition exchanges the
two dimensions .
[0251] LANE / REMAINING ELEMENTS CONTROL
WORD unit 3211 generates control word 3213 as follows .
Control word 3213 has a number of bits equal to the number
of lanes from unit 3204. If the remaining count of elements
of the selected loop is greater than or equal to the number of
lanes , then all lanes are valid . For this case , control word
3213 is all ones , indicating that all lanes within the vector
length VECLEN are valid . If the remaining count of ele
ments of the selected loop is nonzero and less than the
number of lanes , then some lanes are valid and some are
invalid . According to the lane allocation described above in
conjunction with FIGS . 21 and 22 , stream elements are
allocated lanes starting with the least significant lanes .
Under these circumstances . control word 3213 includes a
number of least significant bits set to one equal to the
number of the selected loop down count . All other bits of
control word 3213 are set to zero . In the example illustrated
in FIG . 32 , the number of lanes equals eight and there are
five valid (1) least significant bits followed by three invalid
(0) most significant bits which corresponds to a loop having
five elements remaining in the final iteration .
[0252] Control word expansion unit 3214 expands the
control word 3213 based upon the magnitude of LANE
SIZE . The expanded control word includes one bit for each
minimally sized lane . In this example , the minimum stream
element size , and thus the minimum lane size , is one byte (8
bits) . In this example , the size of holding registers 2818 /
2828 equals the vector size of 64 bytes (512 bits) . Thus , the
expanded control word has 64 bits , one bit for each byte of
stream holding registers 2818/2828 . This expanded control
word fills the least significant bits of the corresponding valid
register 2819 and 2829 (FIG . 28) .
[0253] For the case when VECLEN equals the vector
length , the description is complete . The expanded control
word includes bits for all places within respective valid
register 2819/2829 . There are some additional consider
ations when VECLEN does not equal the vector length .
When VECLEN does not equal the vector length , the
expanded control word does not have enough bits to fill the
corresponding valid register 2819/2829 . As illustrated in
FIG . 32 , the expanded control word fills the least significant
bits of the corresponding valid register 2819/2829 , thus
providing the valid / invalid bits for lanes within the
VECLEN width . Another mechanism is provided for lanes
beyond the VECLEN width up to the data width of stream
head register 2818 .
[0254] Referring still to FIG . 32 , multiplexer 3215 and
group duplicate unit 3216 are illustrated to provide the
needed additional valid / invalid bits . Referring to the
description of VECLEN , if group duplication is not enabled
(GRDUP = 0) , then the excess lanes are not valid . A first input
of multiplexer 3215 is an INVALID O signal that includes
multiple bits equal in number to VEDLEN . When
GRDUP = 0 , multiplexer 3215 selects this input . Group
duplicate unit 3216 duplicates this input to all excess lanes

of stream head register 2818. Thus , the most significant bits
of valid register 2819 are set to zero indicating the corre
sponding bytes of stream head register 2818 are invalid . This
occurs for vectors 1-7 of the example shown in Table 15 ,
vectors 1-14 of the example shown in Table 16 , and vectors
1-29 of the example shown in Table 17 .
[0255] In another example , mux 3215 and group duplicate
block 3216 are replaced with group duplicate logic that is
similar to the group duplicate logic 2025 illustrated in FIG .
31 .
[0256] As previously described , if group duplication is
enabled (GRDUP = 1) , then the excess lanes of stream head
register 2818 (FIG . 28) are filled with copies of the least
significant bits . A second input of multiplexer 3215 is the
expanded control word from control word expansion unit
3214. When GRDUP = 1 , multiplexer 3215 selects this input .
Group duplicate unit 3216 duplicates this input to all excess
lanes of stream head register 2818 .
[0257] There are two possible outcomes . In one outcome ,
in most cases , all the lanes within VECLEN are valid and the
bits from control word expansion unit 3214 are all ones . This
occurs for vectors 1-7 of the group duplication example
shown in Table 18 and vectors 1-14 of the group duplication
example shown in Table 19. Under these conditions , all bits
of the expanded control word from control word expansion
unit 3214 are one and all lanes of stream head register 2818
are valid . Group duplicate unit 3216 thus fills all the excess
lanes with ones . In the other outcome , the number of
remaining stream data elements is less than the number of
lanes within VECLEN . This occurs for vector 8 in the group
duplication example shown in Table 18 and vector 15 in the
group duplication example shown in Table 19. Under these
conditions , some lanes within VECLEN are valid and some
are invalid . Group duplicate unit 3216 fills the excess lanes
with bits having the same pattern as the expanded control
word bits . In either case , the excess lanes are filled corre
sponding to the expanded control bits .
[0258] Referring still to FIG . 32 , a boundary 3217 is
illustrated between the least significant bits and the most
significant bits . The location of this boundary is set by the
size of VECLEN relative to the size of stream head register
2818 .
[0259] FIG . 34 is a partial schematic diagram 3400 illus
trating the stream input operand coding described above .
FIG . 34 illustrates a portion of instruction decoder 113 (see
FIG . 1) decoding srcl field 1305 of one instruction to control
corresponding srcl input of functional unit 3420. These
same or similar circuits are duplicated for src2 / cst field 1304
of an instruction controlling functional unit 3420. In addi
tion , these circuits are duplicated for each instruction within
an execute packet capable of employing stream data as an
operand that are dispatched simultaneously .
[0260] Instruction decoder 113 receives bits 13-17 of src1
field 1305 of an instruction . The opcode field (bits 3-12 for
all instructions and additionally bits 28-31 for unconditional
instructions) unambiguously specifies a corresponding func
tional unit 3420 and the function to be performed . In this
example , functional unit 3420 can be L2 unit 241 , S2 unit
242 , M2 unit 243 , N2 unit 244 or C unit 245. The relevant
part of instruction decoder 113 illustrated in FIG . 34 decodes
src1 bit field 1305. Sub - decoder 3411 determines whether
src1 bit field 1305 is in the range from 00000 to 01111. If this
is the case , sub - decoder 3411 supplies a corresponding
register number to global vector register file 231. In this

US 2020/0285470 A1 Sep. 10 , 2020
25

example , the register number is the four least significant bits
of src1 bit field 1305. Global vector register file 231 recalls
data stored in the register corresponding to the register
number and supplies the data to the srcl input of functional
unit 3420 .
[0261] Sub - decoder 3412 determines whether src1 bit
field 1305 is in the range from 10000 to 10111. If this is the
case , sub - decoder 3412 supplies a corresponding register
number to the corresponding local vector register file . If the
instruction is directed to L2 unit 241 or S2 unit 242 , the
corresponding local vector register file is local vector reg
ister file 232. If the instruction is directed to M2 unit 243 , N2
unit 244 or C unit 245 , the corresponding local vector
register file is local vector register file 233. In this example ,
the register number is the three least significant bits of src1
bit field 1305. The corresponding local vector register file
232/233 recalls data stored in the register corresponding to
the register number and supplies the data to the srcl input of
functional unit 3420 .
[0262] Sub - decoder 3413 determines whether src1 bit
field 1305 is 11100. If this is the case , sub - decoder 3413
supplies a stream O read signal to streaming engine 125 .
Streaming engine 125 then supplies stream 0 data stored in
holding register 2818 to the srcl input of functional unit
3420 .
[0263] Sub - decoder 3414 determines whether srcl bit
field 1305 is 11101. If this is the case , sub - decoder 3414
supplies a stream O read signal to streaming engine 125 .
Streaming engine 125 then supplies stream 0 data stored in
holding register 2818 to the src1 input of functional unit
3420. Sub - decoder 3414 also supplies an advance signal to
stream 0. As previously described , streaming engine 125
advances to store the next sequential vector of data elements
of stream 0 in holding register 2818 .
[0264] Supply of a stream 0 read signal to streaming
engine 125 by either sub - decoder 3413 or sub - decoder 3414
triggers another data movement . Upon such a stream 0 read
signal , streaming engine 125 supplies the data stored in valid
register 2819 to predicate register file 234 for storage . In
accordance with this example , this is a predetermined data
register within predicate register file 234. In this example ,
data register PO corresponds to stream 0 .
[0265] Sub - decoder 3415 determines whether src1 bit
field 1305 is 11110. If this is the case , sub - decoder 3415
supplies a stream 1 read signal to streaming engine 125 .
Streaming engine 125 then supplies stream 1 data stored in
holding register 2828 to the src1 input of functional unit
3420 .
[0266] Sub - decoder 3416 determines whether src1 bit
field 1305 is 11111. If this is the case , sub - decoder 3416
supplies a stream 1 read signal to streaming engine 125 .
Streaming engine 125 then supplies stream 1 data stored in
holding register 2828 to the src1 input of functional unit
3420. Sub - decoder 3414 also supplies an advance signal to
stream 1. As previously described , streaming engine 125
advances to store the next sequential vector of data elements
of stream 1 in holding register 2828 .
[0267] Supply of a stream 1 read signal to streaming
engine 125 by either sub - decoder 3415 or sub - decoder 3416
triggers another data movement . Upon such a stream 1 read
signal , streaming engine 125 supplies the data stored in valid
register 2829 to predicate register file 234 for storage . In
accordance with this example , this is a predetermined data

register within predicate register file 234. In this example ,
data register P1 corresponds to stream 1 .
[0268] Similar circuits are used to select data supplied to
scr2 input of functional unit 3402 in response to the bit
coding of src2 / cst field 1304. The src2 input of functional
unit 3420 can be supplied with a constant input in a manner
described above . If instruction decoder 113 generates a read
signal for stream O from either scrl field 1305 or scr2 / cst
field 1304 , streaming engine 125 supplies the data stored in
valid register 2819 to predicate register PO of predicate
register file 234 for storage . If instruction decode 113
generates a read signal for stream 1 from either scrl field
1305 or scr2 / cst field 1304 , streaming engine 125 supplies
the data stored in valid register 2829 to predicate register P1
of predicate register file 234 for storage .
[0269] The exact number of instruction bits devoted to
operand specification and the number of data registers and
streams are design choices . In particular , the specification of
a single global vector register file and omission of local
vector register files is feasible . This example employs a bit
coding of an input operand selection field to designate a
stream read and another bit coding to designate a stream read
and advancing the stream .
[0270] The process illustrated in FIG . 34 automatically
transfers valid data into predicate register file 234 each time
stream data is read . The transferred valid data can then be
used by P unit 246 for further calculation of meta data . The
transferred valid data can also be used as a mask or as an
operand for other operations by one or more of vector data
path side B 116 functional units including L2 unit 241 , S2
unit 242 , M2 unit 243 , N2 unit 244 and C unit 245. There are
numerous feasible compound logic operations employing
this stream valid data .
[0271] FIG . 35 is a partial schematic diagram 3500 illus
trating another example configuration for selecting operand
sources . In this example , the respective stream valid register
2819/2829 need not be automatically loaded to a predeter
mined register in predicate register file 234. Instead , an
explicit instruction to P unit 246 is used to move the data .
FIG . 35 illustrates a portion of instruction decoder 113 (see
FIG . 1) decoding srcl field 1305 of one instruction to control
a corresponding srcl input of P unit 246. These same or
similar circuits can be duplicated for src2 / cst field 1304
(FIG . 13) of an instruction controlling P unit 246 .
[0272] Instruction decoder 113 receives bits 13-17 of src1
field 1305 of an instruction . The opcode field opcode field
(bits 3-12 for all instructions and additionally bits 28-31 for
unconditional instructions) unambiguously specifies P unit
246 and the function to be performed . The relevant part of
instruction decoder 113 illustrated in FIG . 35 decodes src1
bit field 1305. Sub - decoder 3511 determines whether src1
bit field 1305 is in the range 00000 to 01111. If this is the
case , sub - decoder 3511 supplies a corresponding register
number to global vector register file 231. In this example , the
register number is the four least significant bits of src1 bit
field 1305. Global vector register file 231 recalls data stored
in the register corresponding to the register number and
supplies the data to the srcl input of P unit 246 .
[0273] Sub - decoder 3512 determines whether src1 bit
field 1305 is in the range 10000 to 10111. If this is the case ,
sub - decoder 3512 supplies a decoded register number to the
predicate register file 234. In this example , the register
number is the three least significant bits of src1 bit field
1305. The predicate register file 234 recalls data stored in the

US 2020/0285470 A1 Sep. 10 , 2020
26

register corresponding to the register number and supplies
the data to the src1 input of predicate unit 246 .
[0274] Sub - decoder 3513 determines whether src1 bit
field 1305 is 11100. If this is the case , sub - decoder 3513
supplies a stream 0 valid read signal to streaming engine
125. Streaming engine 125 then supplies valid data stored in
valid register 2819 to the srel input of P unit 246 .
[0275] Sub - decoder 3514 determines whether src1 bit
field 1305 is 11101. If this is the case , sub - decoder 3514
supplies a stream 1 valid read signal to streaming engine
125. Streaming engine 125 then supplies stream 1 valid data
stored in valid register 2829 to the srcl input of P unit 246 .
[0276] The P unit 246 instruction employing the stream
valid register 2819/2829 as an operand can be any P unit
instruction previously described such as NEG , BITCNT ,
RMBD , DECIMATE , EXPAND , AND , NAND , OR , NOR ,
and XOR .
[0277] The special instructions noted above can be limited
to P unit 242. Thus , the operations outlined in FIGS . 34 and
35 can be used together . If the functional unit specified by
the instruction is L2 unit 241 , S2 unit 242 , M2 unit 243 , N2
unit 244 or C unit 245 , then src1 field 1305 is interpreted as
outlined with respect to FIG . 34. If the functional unit
specified by the instruction is Punit 246 , then src1 field 1305
is interpreted as outlined with respect to FIG . 35. Alterna
tively , the automatic saving of the stream valid register to a
predetermined predicate register illustrated in FIG . 34 can be
implemented in one example and not implemented in
another example .

First , L1 instruction cache 121 may receive instructions
recalled from L2 unified cache 130 for a cache miss fill . In
this example , there is no hardware support for self - modify
ing code so that instructions stored in L1 instruction cache
121 are not altered and therefore do not require write - back .
There are two possible data movements between L1 data
cache 123 and L2 unified cache 130. The first of these data
movements is a cache miss fill from L2 unified cache 130 to
L1 data cache 123. Data may also pass from L1 data cache
123 to L2 unified cache 130. This data movement takes place
for several reasons , such as : a write miss to L1 data cache
123 which must be serviced by L2 unified cache 130 ; a
victim eviction from L1 data cache 123 to L2 unified cache
130 ; and a snoop response from L1 data cache 123 to L2
unified cache 130. Data can be moved between L2 unified
cache 130 and level 3 (L3) memory 3650. This can take
place for several reasons , such as : a cache miss to L2 unified
cache 130 service from L3 memory 3650 , or a direct
memory access 3660 data movement from L3 memory 3650
and L2 unified cache 130 configured as SRAM ; a victim
eviction from L2 unified cache 130 to L3 memory 3650 , or
a direct memory access 3660 data movement from a portion
of L2 unified cache 130 configured as SRAM to L3 memory
3650. Finally , data can move between L2 unified cache 130
and peripherals 3662. These movements take place for
several reasons , such as : a direct memory access 3660 data
movement from peripheral 3662 and L2 unified cache 130
configured as SRAM ; or a direct memory access 3660 data
movement from a portion of L2 unified cache 130 config
ured as SRAM to peripherals 3662. Data movement between
L2 unified cache 130 and L3 memory 3650 and between L2
unified cache 130 and peripherals 3662 employ data transfer
bus 3651 and may be controlled by direct memory access
unit 3660. These direct memory access data movements may
take place as result of a command from central processing
unit core 110 or a command from another digital signal
processor system .
[0282] The number and variety of possible data move
ments within digital signal processor system 3600 makes the
problem of maintaining coherence difficult . In any cache
system data coherence is a problem . The cache system
attempts to control data accesses so that each cache returns
the most recent data . As an example in a single level cache ,
a read following a write to the same memory address
maintained within the cache must return the newly written
data . This coherence should be maintained regardless of the
processes within the cache . This coherence preserves the
transparency of the cache system . That is , the programmer
need not be concerned about the data movements within the
cache and can program without regard to the presence or
absence of the cache system . This transparency feature is
important if the data processor is to properly execute pro
grams written for members of a data processor family
having no cache or varying amounts of cache . Typically , it
is preferable that the cache hardware maintain the program
mer illusion of a single memory space . An example of an
ordering hazard is a read from a cache line just victimized
and being evicted from the cache . Another example in a
non - write allocate cache is a read from a cache line follow
ing a write miss to that address with the newly written data
in a write buffer waiting write to main memory . In the
current examples , the cache system includes hardware to
detect and handle such special cases .

Block Cache Management and Preload Operations
[0278] FIG . 36 illustrates movement of data between
various levels of memory in example system 3600. In this
example , processor 100 (FIG . 1) (referred to as “ processor
A ”) is combined with a second processor 3611 (referred to
as “ proces essor B ”) and each processor is coupled to a block
of shared level three (L3) memory 3650 via bus 3651 .
Processor B includes a block of unshared level two memory
3612. A direct memory access (DMA) engine 3660 may be
programmed to transfer blocks of data / instructions from L3
memory to L2 memory 130 or L2 memory 3612 using
known or later developed DMA techniques . Various types of
peripherals 3662 are also coupled to memory bus 3651 , such
as wireless and / or wired communication controllers , etc.
[0279] In this example , processor A , processor B , L3
memory 3650 are all included in a SoC 3600 that may
encapsulated to form a package that may be mounted on a
substrate such as a printed circuit board (PCB) using known
or later developed packaging techniques . For example , SOC
3600 may be encapsulated in a ball grid array (BGA)
package . In this example , external memory interface (EMI)
3652 allows additional external bulk memory 3654 to be
accessed by processor A and / or processor B.
[0280] In this example , processor B is an ARM® proces
sor that may be used for scalar processing and control
functions . In other examples , various types of known or later
developed processors may be combined with DSP 100 .
While two processors are illustrated in this example , in
another example , multiple copies of DSP 100 and / or mul
tiple copies of processor B may be included within an SoC
and make use of the block cache management operations
(CMO) described hereinbelow in more detail .
[0281] The complex interrelation of parts of digital signal
processor system 3600 permits numerous data movements .

be

US 2020/0285470 A1 Sep. 10 , 2020
27

[0283] In the example DSP processor 100 (FIG . 1) and the
example DSP system 3600 , a second level L2 cache intro
duces additional hazards . Coherence should be maintained
between the levels of cache no matter where the most
recently written data is located . Generally , L1 data cache
will have the most recent data while the higher level L2
cache may have old data . If an access is made to the L2
cache the cache system must determine if a more recent copy
of the data is stored in the lower level LID cache . This
generally triggers a snoop cycle in which the L2 cache polls
the LID cache for more recent data before responding to the
access . A snoop is nearly like a normal access to the snooped
cache except that snoops are generally given higher priority .
Snoops are granted higher priority because another level
cache is stalled waiting on the response to the snoop . If the
data stored in the lower level LID cache has been modified
since the last write to the higher level L2 cache , then this
data is supplied to the higher level L2 cache . This is referred
to as a snoop hit . If the data stored in the lower level LID
cache is clean and thus has not been changed since the last
write to the higher level L2 cache , then this is noted in the
snoop response but no data moves . In this case the higher
level L2 cache stores a valid copy of the data and can supply
this data .
[0284] Additional hazards with a two - level cache include
snoops to a lower level cache where the corresponding data
is a victim being evicted , snoops to data during a write miss
in the lower level cache for non - write allocation systems
which places the data in a write buffer . L2 unified cache 130
may need to evict a cache entry which is also cached within
L1 instruction cache 121 or L1 data cache 123. A snoop
cycle is required to ensure the latest data is written out to the
external main memory . A write snoop cycle is transmitted to
both L1 instruction cache 121 and L1 data cache 123. This
write snoop cycle misses if this data is not cached within the
L1 caches . L1 data cache 123 reports the snoop miss to L2
unified cache 130. No cache states within L1 data cache 123
are changed . Upon receipt of the snoop miss report , L2
unified cache 130 knows that it holds the only copy of the
data and operates accordingly . If the snoop cycle hits a cache
entry within L1 data cache 123 , the response differs depend
ing on the cache state of the corresponding cache entry . If the
cache entry is not in a modified state , then L2 unified cache
130 has a current copy of the data and can operate accord
ingly . The cache entry is invalidated within L1 data cache
123. It is impractical to maintain cache coherency if L1 data
cache 123 caches the data and L2 unified cache 130 does not .
Thus , the copy of the data evicted from L2 unified cache 130
is no longer cached within Li data cache 123. It should be
understood that when an entry is invalidated at a given level
of cache , while it is no longer available and therefore no
longer cached within that level of cache , the data may still
be present until it is overwritten by a later cache fetch . If the
cache entry in L1 data cache 123 is in a modified state and
thus had been modified within that cache , then the snoop
response includes a copy of the data . L2 unified cache 130
must merge the data modified in L1 data cache 123 with data
cached within it before eviction to external memory . The
cache entry within L1 data cache 123 is invalidated .
[0285] In a similar fashion snoop cycles are sent to L1
instruction cache 121. In this example , DSP system 100
cannot modify instructions within L1 instruction cache 121 ,
therefore no snoop return is needed . Upon a snoop miss
nothing changes within L1 instruction cache 121. If there is

a snoop hit within L1 instruction cache 121 , then the
corresponding cache entry is invalidated . A later attempt to
fetch the instructions at that address will generate a cache
miss within L1 instruction cache 121. This cache miss will
be serviced from L2 unified cache 130 .
[0286] As mentioned above , it is desirable to provide a
level of control to the programmer over cache operations . In
this example , the cache system supports a writeback mecha
nism , whereby the programmer can direct the L2 cache 130
to write a block of data in the L2 cache back to external L3
shared memory 3650 for shared access by processor B 3611
which doesn't have access to the L2 cache 130. Similarly , it
is often desirable to be able to clear or invalidate L2 cache
entries so that new data can be accessed at addresses which
have been updated in the shared memory 3650. In some
applications it is desirable to be able to preload data into a
selected hierarchical level of cache in order to assure that the
data is available when accessed by a program .
[0287] In this example , in addition to its core data stream
support , the streaming engine 125 supports a range of
special “ data - less ” streams . A data - less stream may be used
move data between various levels of cache and memory ,
without bringing data to the processor . In this example , two
special instructions are provided to allow a program to
initiate a data - less stream . A block cache maintenance opera
tion is initiated by a “ BLKCMO " instruction . A block cache
preload operation is initiated with a “ BLKPLD ” instruction .
[0288] Examples of prior cache writeback and invalidate
mechanisms have required the programmer to perform mul
tiple accesses to control registers to perform programmer
directed cache operations . For example , if the programmer
wishes to remove (evict) four lines in the cache , a write to
four control register bits is normally required . In systems
which implement a control register on which programmer
directed cache operations are based , four writes must be
performed . The programmer must provide program code to
track the address between each write . While these methods
are functional , they are costly in terms of software overhead .
These methods generally require the programmer to have an
understanding of the underlying cache architecture param
eters . Suppose a block of 128 - bytes is to be copied back to
memory . If the cache architecture has a 32 - byte line size ,
then four writes must be performed to order this writeback .
If the cache architecture has a 64 - byte line size cache , then
only two writes are necessary . This prior approach natively
inhibits the portability of instruction code that controls the
cache .
[0289] In another example approach described in more
detail in U.S. Pat . No. 6,665,767 to David A. Comisky et al . ,
a program - controlled cache management technique employs
an address and word count memory mapped control register
structure . While this method is functional , it requires soft
ware overhead to correctly program the memory mapped
control registers .
[0290] FIG . 37 is a partial schematic diagram for cache
management operations using a streaming stream engine ,
such as streaming engine 125 which is shown in more detail
FIG . 28. As described hereinabove , processor 100 includes
a streaming engine 125 that includes two independent
stream engines 2810 , 2820 that can each be programmed to
fetch streams of data from the L2 unified cache / memory and
provide them to processor core 110 for consumption . In this
example , stream engine 2810 includes mode logic 3740 to
allow stream engine 2810 to execute in data - less mode . As

US 2020/0285470 A1 Sep. 10 , 2020
28

TABLE 30 - continued

BLKCMO opcodes
0x15

Ox16
Ox17
Ox18

Ox19

Ox1A

Data Cache Invalidate to the point of
Coherence , Shareable
RESERVED
RESERVED
Data Cache Clean to Point of Unification ,
Non - Shareable
Data Cache Clean and Invalidate to the
point of Unification , Non - Shareable
Data Cache Invalidate to the point of
Unification , Non - Shareable
Data Cache Clean to the point of
Coherence , Non - Shareable
Data Cache Clean and Invalidate to the
point of Coherence
Data Cache Invalidate to the point of
Coherence , Non - Shareable
RESERVED
RESERVED

Ox1B

OxiC

Ox1D

OxlE
Ox1F

described hereinabove in more detail , address generator
2811 may be programmed to generate a simple or complex
stream of addresses .
[0291] In this example , in addition to its core data stream
support , the streaming engine 2810 supports a range of
special data - less streams . A data - less stream may be used
move data between various levels of cache and memory ,
without bringing data to the processor . In this example , two
special instructions are provided to allow a program to
initiate a data - less stream . A block cache maintenance opera
tion is initiated by a “ BLKCMO ” instruction . A block cache
preload operation is initiated with a “ BLKPLD ” instruction .
[0292] In this example , block cache management opera
tions may be performed under control of a software program
being executed by processor 100 using a software instruc
tion referred to herein as a “ block cache management
operation ” (BLKCMO) instruction . The BLKCMO instruc
tion is fetched and decoded by the instruction pipeline of
processor 100 as described hereinabove in more detail . After
being decoded , a BLKCMO instruction is then “ executed ”
using the streaming engine to provide a stream of addresses ,
that may be referred to as a “ block of addresses , ” to the L2
cache 130 to clean and / or invalidate a block of memory
addresses that may or may not be present in the L2 cache
130 .

[0293] Cache maintenance operations move cache lines
out of cache levels nearer to the processor to cache levels
that are further from the processor . This allows the program
mer to manually manage when data leaves the processor's
caches . While the programmer is generally abstracted from
the underlying cache architecture of the cache , the program
mer is generally aware of the required accesses that instruc
tion code must perform and the memory usage of the
process . Consequently , the programmer is aware of the
cache cycles that are required for particular code segments .
Thus , a good solution to cache control is to provide the
programmer direct address and word count control for
programmer directed cache cycles using a BLKCMO
instruction . This is in contrast to requiring knowledge about
the cache parameters such as line size , associativity , replace
ment policies , etc. of prior techniques .
[0294] In this example , the format of a BLKCMO instruc
tion is similar to instruction format 1300 (FIG . 13) . The
assembler syntax is : BLKCMO src1 , src2 (cst) , src3 . Source
1 is the starting base address contained in a register encoded
in the srcl field 1305 , source 2 is a 5 - bit constant and is
encoded as shown in Table 30 in the src2 field 1304 , and
source 3 specifies the number of bytes involved in the
maintenance operation . Source 3 is a 32 - bit value specified
by a register encoded in dst field 1303 .

[0295] Referring still to FIG . 37 , L2 cache 130 includes
multiple cache lines 3731 that each include a tag field 3732
and a data element field 3733 for holding data that has been
fetched from higher level L3 memory 3650 (FIG . 36) . Tag
field 3732 includes address bits to specify the physical
address from which the respective data elements were
fetched in L3 memory . Tag field 3732 also includes status bit
that identify the status of the respective data field , such as
“ clean , ” and “ valid . ” A valid tag bit means the respective
data field has been loaded with data element fetched from L3
memory . A clean tag bit means the data elements have not
been modified by processor 100 since they were fetched
from L3 memory .
[0296] Snoop logic 3734 performs the various snoop
operations described hereinabove whenever an access is
made to L2 cache 130 that may require a data update . Snoop
logic 3734 performs the same snoop operations irrespective
of whether an L2 access is being made by processor 100 via
request bus 3735 or by streaming engine 2810 via L2
interface 2833. Therefore , essentially no additional control
logic is needed to support the block CMO instructions
described herein .
[0297] Streaming engine 2810 treats Clean and Clean
Invalidate operations as equivalent to reads . That is , the
Clean or Clean - Invalidate command may proceed as long as
the address range is readable by the current privilege level .
Control signal “ CMO ” 3743 is asserted to L2 cache 130 to
inform it that it does not need to provide the read data
requested by the CMO clean operations . The streaming
engine treats Invalidate operations as equivalent to writes .
Control signal “ CMO " is asserted to L2 cache 130 to inform
it that it will not be receiving any write data with the CMO
invalidate operation . The Invalidate commands may proceed
only if the address range is writable by the current privilege
level . For a Clean operation , L2 cache 130 writes back any
updates to the line that have not yet been sent to L3 memory .
For an Invalidate operation , L2 cache 130 marks the line
invalid and thereby removes it from the cache . For a
Clean - Invalidate operation , L2 cache 130 writes back any
updates to L3 memory and then marks the line invalid and
thereby removes it from the cache .
[0298] If the streaming engine detects a privilege viola
tion , it signals a fault and halts the block CMO .
[0299] Referring again to Table 30 , the " point of unifica
tion ” is the level in the cache hierarchy where instruction

TABLE 30

BLKCMO opcodes
Ox10

Ox11

Ox12

Data Cache Clean to the point of
Unification , Shareable
Data Cache Clean and Invalidate to the
point of Unification , Shareable
Data Cache Invalidate to the point of
Unification , Shareable
Data Cache Clean to the point of
Coherence , Shareable
Data Cache Clean and Invalidate to the
point of Coherence

Ox13

Ox14

US 2020/0285470 A1 Sep. 10 , 2020
29

and data streams meet . The “ point of coherence ” is the level
in the cache hierarchy where all masters see the updated
data . In this example , the point of unification is the L2
unified memory 130. The point of coherence is the L3
memory 3650 (FIG . 36) that is shared by processor A 100
and processor B 3611 (FIG . 36) .
[0300] Not all memory types support cache maintenance
operations . If a program issues cache maintenance opera
tions on unsupported memory types , the streaming engine
may either discard the CMOs or signal an exception similar
to a privilege violation . For example , any CMOs to memory
type marked as “ System / Device ” memory type as returned
by the uTLB 2812 would be an error and the streaming
engine would drop the command from being sent into the
memory system and return an error to the processor on the
read status packet .
[0301] In this example , the streaming engine supports a
“ fencing ” mechanism between outstanding processor stores
to L1D data cache which prevents the streaming engine from
sending requests into the system until the outstanding stores
from processor core 110 (FIG . 36) have landed . A fence is
initiated by executing an “ MFENCE ” instruction on proces
sor core 110. Execution of the MFENCE instruction is
accomplished via internal signaling between the processor
core 110 , L1D 123 , and streaming engine 125. This fencing
check is done on any new opened streams issued by pro
cessor 110. Upon receiving a stream open , the streaming
engine starts its address generation and uTLB lookups , and
prepares the request to go out . Once the request reaches the
arbitration unit , the commands are stalled until the fence is
complete . This is accomplished by monitoring the IDLE
signal 3742 from L1D 123 indicating the pertinent stores
have completed . This prevents streaming engine 2810 from
receiving old or stale data . The streaming engine asserts a
separate coherence active signal 3741 to the processor
indicating whether any CMO stream commands are still
active in the system . It asserts this signal regardless of
whether the CMO stream that generated those commands is
active , frozen or inactive . The processor's MFENCE
instruction waits for this signal to be deasserted , indicating
that all outstanding CMO operations have completed . This
may be necessary when closing a block CMO stream early ,
or during context switches .
[0302] In this example , the format of a BLKPLD instruc
tion is similar to instruction format 1300 (FIG . 13) . The
assembler syntax is : BLKPLD src1 , src2 (cst) , src3 . Source
1 is the starting base address contained in a register encoded
in the srcl field 1305 , source 2 is a 5 - bit constant and is
encoded as shown in Table 31 in the src2 field 1304 , and
source 3 specifies the number of bytes involved in the
maintenance operation . Source 3 is 32 - bit value specified
by a register encoded in dst field 1303 .

memory 3650. The goal is to ensure data is on - chip within
SOC 3600 , even if it is not yet in L2 130. This is potentially
useful for large data sets that do not fit within the L2
memory .
[0304] Preload to L2 Cache attempts to bring data to the
L2 cache 130 within processor 100. This is potentially useful
for data sets that do fit within L2 cache 130 .
[0305] Preload for Read indicates that the processor
intends to read the data , but not necessarily write it . The
streaming engine requests shared access to the data , allow
ing other caches to retain copies of the data if they already
have copies .
[0306] Preload for Write indicates that the processor
intends to write to the preloaded block . The streaming
engine requests exclusive access to the data , with the intent
of removing copies from other caches . This reduces the cost
of subsequent processor writes to those lines .
[0307] The streaming engine 2810 treats all preload
requests as reads , including Preload for Write . If a privilege
check fails , the streaming engine silently ignores it . It drops
the faulted preload command and continues with the block
preload operation .
[0308] The streaming engine only sends preload requests
for normal , cacheable memory . It silently drops preload
requests for other memory types . Preload instructions serve
as a hint to the caches . Caches may ignore the hint .
[0309] FIG . 38 is a flow diagram illustrating operation of
the cache preload operations using streaming engine 125. In
this example , data - less streams reuse the hardware 2810 for
stream engine 0 to perform their actions . Therefore , stream
O must be inactive when issuing a data - less stream instruc
tion (e.g. , it must not be in the process of streaming a data
stream as described hereinabove) .
[0310] At 3800 , a program executes an BLKPLD stream
instruction to open a data - less stream . The streaming engine
begins issuing requests to the memory system . Starting a
data - less stream asserts the task state register SEO bit (TSR .
SEO) , as described hereinabove in more detail . The stream
ing engine asserts to the processor a coherence active signal
3741 (FIG . 37) which processor 100 (FIG . 1) can monitor to
determine that an active cache preload operation is in
progress . The streaming engine will deassert the coherence
active signal 3741 when all coherence commands associated
with the data - less streams sent have returned . TSR . SEO
remains asserted until the program issues a SECLOSE for
stream 0. If the program issues a SECLOSE before the
data - less stream completes , the streaming engine stops issu
ing requests to the memory system .
[0311] Programs can synchronize with a data - less stream
by reading from it with a reference to * SEO or * SE0 ++ (see
FIG . 34) . The streaming engine will begin returning empty
data - phases to the processor once it has issued all the
commands associated with the stream , and those commands
have all completed . The streaming engine will report any
errors encountered in the fault status associated with these
data - phases .
[0312] For example , in this example the stream of
addresses used for performing the block preload is a stream
of virtual addresses in a virtual address space of the pro
cessor . As described above in more detail , uTLB 2812 (FIG .
37) converts a single 48 - bit virtual address to a 44 - bit
physical address each cycle . If a needed virtual address entry
is not in the uTLB , then an exception is generated and a new
table entry is determined by a software process . In this

TABLE 31

BLKPLD opcodes
Ox10
Ox11
Ox12
Ox13
Ox14-1F

Preload to L3 cache for read
Preload to L3 cache for write
Preload to L2 cache for read
Preload to L2 cache for write
Reserved

[0303] Preload to L3 Cache attempts to bring data to a
cache level outside processor 100 (FIG . 36) , such as L3

US 2020/0285470 A1 Sep. 10 , 2020
30

3800-3805 , the streaming engine may be operated in data
less mode to perform a block cache preload operation . This
allows a program to manage a cache by simply executing a
single stream instruction with operands to specify a starting
address and length of a block of addresses . The same address
generation hardware is used in both modes of operation ,
therefore the hardware cost for providing block cache pre
load is minimal .
[0324] The block cache management operation technique
described hereinabove that reuses the streaming engine
hardware provides a preemptive coherence vs a reactionary
coherence . This reduces snoop overhead without requiring
complex and expensive cache coherence hardware . As
described herein , a block cache management operation can
be initiated on the streaming engine by executing a single
block CMO instruction on the processor that is coupled to
the streaming engine .
[0325] The block cache preload operation technique
described hereinabove that reuses the streaming engine
hardware provides a preemptive cache load that may reduce
cache misses for a block of data . As described herein , a
block cache preload operation can be initiated on the stream
ing engine by executing a single block preload instruction on
the processor that is coupled to the streaming engine

Page Faults

manner , the stream of virtual addresses is translated into a
respective stream of physical addresses for performing the
block preload on the cache .
[0313] In some cases , the uTLB and associated control
software / firmware may determine that at least one physical
address of the stream of physical addresses is an invalid
address . In this case , an exception is generated to notify the
processor that an invalid address has been determined .
[0314] As will be described in more detail below , in some
examples a page fault may occur during a block preload
operation . In this case , an exception is generated to notify
the processor that a page fault has been detected .
[0315] In some examples , a process environment may be
created by the operating software or other control software
or firmware to define access rights for a particular software
task or section of instruction code . This may be based on
task numbers , for example . In this case , when a block
preload operation is performed , a check may be performed
to determine whether the current process has access rights to
the memory at the stream of physical addresses . If the
current process does not have access rights , then an error is
returned when the block preload is attempted .
[0316] At 3801 the processor attempts to read a single data
element from the stream . At 3802 , this stalls the processor
until the streaming engine finishes issuing the commands for
the data - less stream , and the memory system completes all
the commands . The stall occurs because the streaming
engine will return an empty data phase with error status , if
any , while the preload progresses . No data is returned
because this is a “ data - less ” operation .
[0317] At 3803 , the processor can check the error status
bus and fault status register and decide how to proceed if an
error is received . As described above for various examples ,
errors for various conditions may be detected , such as an
invalid address , a page fault , a lack of access rights , etc. At
3804 , the processor may save and restore the data - less
stream after it has corrected errors .
[0318] At 3805 , the program can execute a SECLOSE for
stream 0. TSR.SEO is deasserted to 0 , indicating TSR . SEO
is inactive . Optionally , a program may issue a SEOPEN
without a SECLOSE for a new stream while a data - less
stream is active . The processor would stall any new com
mands inside the processor until the data - less stream is done ,
as indicated by the streaming engine via the coherence
active signal 3741 .
[0319] At 3806 , these steps can be spread out in a program
allowing other computation to occur in parallel with the
data - less stream . In particular , a program may do significant
other work between 3800 and 3801 .
[0320] At 3807 , the program may execute a SEOPEN
stream instruction on SEO to cause a stream of data elements
to be fetched by the streaming engine and to be presented to
the processor , as described hereinabove in more detail .
[0321] At 3808 , the processor may consume the data
elements in the data stream as they are provided by the
streaming engine .
[0322] At 3809 , the processor may execute a SECLOSE
instruction to close the data stream .
[0323] In this manner , an autonomous streaming proces
sor , such as streaming processor 125 (FIG . 1) , may be used
in two different modes . In a first mode illustrated at 3807
3809 , a stream of data elements may be fetched by the
streaming engine and presented to a processor for consump
tion by the processor . In a second mode illustrated at

[0326] In another example , a system that performs block
cache operations as described herein may also manage a
large amount of data and / or instructions using page faults . A
page fault is a type of exception raised by computer hard
ware when a running program accesses a memory page that
is not currently mapped by the memory management unit
(MMU) into the physical address space of a process . Valid
page faults are not errors per se , and are used to increase the
amount of memory available to programs in any operating
system that utilizes virtual memory , such as : Microsoft
Windows , Unix - like systems (including macOS , Linux ,
* BSD , Solaris , AIX , and HP - UX) , z / OS , etc.
[0327] Logically , the page may be accessible to the pro
cess , but requires a mapping to be added to the process page
tables and may additionally require the actual page contents
to be loaded from a backing store such as a disk , a large
solid - state memory , or other type of bulk memory . The
exception handling software that handles page faults is
generally a part of the operating system kernel . When
handling a page fault , the operating system generally tries to
make the required page accessible at a location in physical
memory or terminates the program in case of an illegal
memory access .
[0328] The operating system may delay loading parts of a
program from bulk memory until the program attempts to
use it and a page fault is generated . The page fault handler
in the OS needs to find a free location : either a free page in
memory , or a non - free page in memory . The latter might be
used by another process , in which case the OS needs to write
out the data in that page (if it has not been written out since
it was last modified) and mark that page as not being loaded
in memory in its process page table . Once the space has been
made available , the OS can read the data for the new page
into memory , add an entry to its location in the memory
management unit , and indicate that the page is loaded . Thus ,
page faults add storage access latency to the interrupted
program's execution .

US 2020/0285470 A1 Sep. 10 , 2020
31

[0329] In such an example , a page fault may occur while
a block preload is in progress . In that case , the hardware
captures the necessary state to support resuming a block
preload after a fault . The processor therefore has the ability
to resume a block preload operation after a page fault
condition has been remedied by software . This makes the
block preload more efficient , as it does not require pinning
the corresponding pages in memory . Software can assume
the block preload is safe to issue without explicitly negoti
ating with the operating system to ensure the pages are
present throughout the lifetime of the block preload .
[0330] For example , referring again to FIG . 36 , assume
processor A 100 and processor B 3611 participate in a
distributed virtual memory (DVM) protocol . At some point ,
software on processor A 100 (FIG . 36) decides to preload a
large block of data into L2 cache 130 (FIG . 36) . Meanwhile
processor B 3611 (FIG . 36) decides to move one of the pages
in the middle of that block to a different physical address .
Software on processor B 3611 may perform a sequence
similar to that shown in Table 32. In this example , a " data
synchronization barrier ” (DSB) instruction executed by pro
cessor B 3611 causes processor B 3611 to stall until execu
tion of all prior instructions are completed .

TABLE 32

page replacement

1 - Mark the page read - only in the page TABLE .
2 - Issue an appropriate data sync barrier (DSB) and TLB invalidate
DVM , data sync barrier .
3 - Copy the data from the old physical page to the new physical page .
4 - Mark the page as invalid .
5 - Issue data sync barrier , TLB invalidate DVM , data sync barrier .
6 - Mark the page as valid , pointing to the new physical page .
7 - Issue one last data sync barrier , TLB invalidate DVM , data sync barrier .

block of memory addresses in a cache may be cleaned and / or
invalidated by the data - less stream operation .
[0334] In described examples , a complex DSP processor
with multiple function units and dual data paths is described .
In another example , a simpler DSP that is coupled to a
stream processor may be used . In another example , other
types of known or later developed processors may be
coupled to a stream processor , such as a reduced instruction
set computer (RISC) , a traditional microprocessor , etc.
[0335] In described examples , a complex autonomous
streaming engine is used to retrieve a data - less stream of
data elements . In another example , another type of stream
ing engine may be used , such as a simple direct memory
access device . In another example , the streaming engine
may be a second processor that is programmed to access data
autonomously from the processor that is consuming the data .
[0336] In another example , the system may be designed to
allow block preload instructions to extend across caches
associated with other processors in the system , such as L2
cache 3612 (FIG . 36) that is owned by processor B 3611
(FIG . 36) .
[0337] In described examples , a processor that consumes
a stream of data and a streaming engine that retrieves the
stream of data from system memory are all included within
a single integrated circuit (IC) as a system on a chip . In
another example , the processor that consumes the stream of
data may be packaged in a first IC and the streaming engine
may be packaged in a second separate IC that is coupled to
the first IC by a known or later developed communication
channel or bus .
[0338] In this description , the term " couple ” and deriva
tives thereof mean an indirect , direct , optical , and / or wire
less electrical connection . Thus , if a first device couples to
a second device , that connection may be through a direct
electrical connection , through an indirect electrical connec
tion via other devices and connections , through an optical
electrical connection , and / or through a wireless electrical
connection .
[0339] Modifications are possible in the described
examples , and other examples are possible , within the scope
of the claims .

1. A method comprising :
receiving an instruction that specifies a base address , a

data size , and a level of a cache memory to operate on ;
determining , based on the base address and the data size ,

a set of addresses associated with the instruction ; and
issuing a set of cache preload operations to the cache
memory that includes a cache preload operation for
each address in the set of addresses .

2. The method of claim 1 , wherein the cache memory
includes a level 2 (L2) cache and a level 3 (L3) cache , and
the instruction specifies whether to operate on the L2 cache
or the L3 cache .

3. The method of claim 1 , wherein the cache memory
includes a level 1 (L1) cache and a level 2 (L2) cache , and
the set of cache preload operations are issued to the L2 cache
via a data path that does not include the L1 cache .

4. The method of claim 1 , wherein the instruction speci
fies whether to preload the cache memory for read or write .

5. The method of claim 4 further comprising , when the
instruction specifies to preload the cache memory for read ,
the set of cache preload operations request to preload the
cache memory in a shared access mode .

[0331] If processor A's block preload races with processor
B's performing the sequence of Table 32 , processor A has
the opportunity to see an invalid page mapping . At that
point , processor A needs to perform a higher - level synchro
nization with processor B in software to know when the page
is valid again so that processor A can resume . This is
typically implemented through a page lock mechanism . The
SESAVE instruction can be used to store the state of the
pending block preload so that it can be restarted using a
SERSTR instruction after the page fault is corrected .
[0332] Note that if processor A did actually race with
processor B in a DVM remap as shown in Table , 32 ,
corresponding portion of the block preload may end up not
being useful due to the page - copy performed by processor B.
However , the program on processor A issuing the block
preload can remain oblivious to those machinations and still
be correct in all cases by restarting the block preload when
processor B has completed the remap , while also being
efficient in the most common case . The block preload can be
restarted using the state information that was saved when the
page fault error was detected .

a

Other Examples
[0333] In described examples , a streaming engine is used
to process a data - less stream that causes a coherence opera
tion to be performed on a designated hierarchical level of
memory without providing stream data to the processor . A
cache or bulk memory at a designated memory level may be
preloaded for later access by the processor . Similarly , a

US 2020/0285470 A1 Sep. 10 , 2020
32

6. The method of claim 4 further comprising , when the
instruction specifies to preload the cache memory for write ,
the set of cache preload operations request to preload the
cache memory in an exclusive access mode .

7. The method of claim 1 , wherein :
the instruction has an associated privilege level ; and
the method further comprises :

for each cache preload operation in the set of cache
preload operations , determining whether the privi
lege level permits preload of the respective address
of the cache preload operation ; and

when the privilege level does not permit preload of a
first cache preload operation of the set of cache
preload operations , dropping the first cache preload
operation while proceeding with a remainder of the
set of cache preload operations .

8. The method of claim 1 further comprising :
determining whether each cache preload operation of the

set of cache preload operations is directed to cacheable
memory ; and

when first cache preload operation of the set of cache
preload operations is directed to non - cacheable
memory , dropping the first cache preload operation
while proceeding with a remainder of the set of cache
preload operations .

9. The method of claim 1 , wherein the instruction is a first
instruction , the method further comprising :

asserting an indicator of the set of cache preload opera
tions during the issuing of the set of cache preload
operations to the cache memory ; and

in response to the indicator , causing a processor wait to
execute a second instruction .

10. The method of claim 1 , wherein :
the set of addresses includes a virtual address ;
the method further comprises translating the virtual

address to a physical address ; and
the issuing of a cache preload operation associated with

the virtual address uses the physical address .
11. The method of claim 1 further comprising :
determining that an address of the set of addresses is

invalid ; and
notifying a processor that the address is invalid .
12. The method of claim 1 further comprising :
determining that an address of the set of addresses causes

a page fault ; and
notifying a processor of the page fault .
13. The method of claim 12 further comprising :
saving a state of the set of cache preload operations prior

to the page fault ;
moving a new page of data into the cache memory ; and
resuming the set of cache preload operations using the

saved state .

14. A system comprising :
a processor ;
a memory coupled to the processor that includes a cache
memory ; and

a memory component coupled to the processor and the
memory , wherein the memory component is operable
to :
receive an instruction from the processor that specifies

a level of the cache memory to preload ;
determine a set of addresses associated with the instruc

tion ; and
issue a set of cache preload operations to the cache
memory that includes a cache preload operation for
each address in the set of addresses .

15. The system of claim 14 , wherein :
the instruction further specifies a base address and an

amount of data ; and
the memory component is operable to determine the set of

addresses based on the base address and the amount of
data .

16. The system of claim 14 , wherein the cache memory
includes a level 2 (L2) cache and a level 3 (L3) cache , and
the instruction specifies whether to operate on the L2 cache
or the L3 cache .

17. The system of claim 16 , wherein the memory com
ponent is coupled to the L2 cache and is operable to issue the
set of cache preload operations directly to the L2 cache .

18. The system of claim 14 , wherein the instruction
specifies whether to preload the cache memory for reading
or writing .

19. The system of claim 18 , wherein the memory com
ponent is operable to :
when the instruction specifies to preload the cache
memory for read , issue the set of cache preload opera
tions to preload the cache memory in a shared access
mode ; and

when the instruction specifies to preload the cache
memory for write , issue the set of cache preload
operations to preload the cache memory in an exclusive
access mode .

20. The system of claim 14 , wherein the memory com
ponent is operable to :

determine whether each cache preload operation of the set
of cache preload operations is directed to cacheable
memory ; and

when a first cache preload operation of the set of cache
preload operations is directed to non - cacheable
memory , drop the first cache preload operation while
proceeding with a remainder of the set of cache preload
operations .

