
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3 
75

7 
84

0
A

1
*EP003757840A1*

(11) EP 3 757 840 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 
30.12.2020 Bulletin 2020/53

(21) Application number: 20175877.8

(22) Date of filing: 21.05.2020

(51) Int Cl.:
G06F 21/57 (2013.01) H04L 29/06 (2006.01)

(84) Designated Contracting States: 
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 
PL PT RO RS SE SI SK SM TR
Designated Extension States: 
BA ME
Designated Validation States: 
KH MA MD TN

(30) Priority: 27.06.2019 US 201916454256

(71) Applicant: BlackBerry Limited
Waterloo, Ontario N2K 0A7 (CA)

(72) Inventor: Boulton, Adam John
Waterloo, Ontario N2K 0A7 (CA)

(74) Representative: Hanna Moore + Curley
Garryard House 
25-26 Earlsfort Terrace
Dublin 2, D02 PX51 (IE)

(54) BINARY STATIC ANALYSIS OF APPLICATION STRUCTURE TO IDENTIFY VULNERABILITIES

(57) Described are methods and devices to identify
vulnerabilities in a software package that includes two or
more build files. The build files include at least an appli-
cation file and one or more resource files. The method
includes scanning the build files to identify strings. Strings
that appear in one of the resource files and are not ref-

erenced in the application file are labelled orphaned.
Strings that appear in the application file and are node
defined in any of the resources files are labelled hard-
coded. The identity of hardcoded and orphaned strings
is output as potential vulnerabilities or data leakage
points.



EP 3 757 840 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

FIELD

[0001] The present application generally relates to
software vulnerabilities and, in particular, to devices and
methods for identifying software vulnerabilities in pre-re-
lease software.

BACKGROUND

[0002] Modern software is often large and complex.
The size and complexity, along with the staged develop-
ment and testing, can sometimes lead to vulnerabilities
in a final software build. In many cases, a complex soft-
ware package may include code developed by a number
of different vendors. Poorly-designed software that does
not reflect best practices in software design may make
maintenance and patching more difficult. The staged de-
velopment of software packages may also lead to vul-
nerabilities in terms of data leakage; that is, exposure of
information that was not intended to be public.

SUMMARY

[0003] Accordingly there is provided a method, a com-
puting device, and a computer program as detailed in the
claims that follow.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Reference will now be made, by way of exam-
ple, to the accompanying drawings which show example
embodiments of the present application, and in which:

Figure 1 shows, in flowchart form, one example
method of identifying vulnerabilities in a software
package;

Figure 2 shows, in flowchart form, another example
method of identifying vulnerabilities and scoring the
build quality of a software package; and

Figure 3 shows, in block diagram form, one simplified
example of a computing device for identifying vul-
nerabilities in a software package.

[0005] Similar reference numerals may have been
used in different figures to denote similar components.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0006] The present application describes one or more
methods and devices to identify vulnerabilities in a soft-
ware package. The package includes build files, which
include at least an application file and one or more re-
source files. The method includes scanning the build files
to identify strings. Strings that appear in one of the re-

source files and are not referenced in the application file
are labelled orphaned. Strings that appear in the appli-
cation file and are node defined in any of the resources
files are labelled hardcoded. The identity of hardcoded
and orphaned strings is output as potential vulnerabilities
or data leakage points.
[0007] In one aspect, the present application describes
a method of identifying vulnerabilities in a software pack-
age that includes two or more build files, the build files
including at least an application file and one or more re-
source files. The method may include scanning the build
files to identify strings; labelling at least one of the iden-
tified strings as an orphaned string based on it appearing
in one of the resource files and it not being referenced in
the application file; labelling at least one of the identified
strings as a hardcoded string based on it appearing in
the application file and not in any of the resource files;
and outputting the identity of the orphaned strings and
the hardcoded strings.
[0008] In some implementations, the method may fur-
ther include classifying the identified strings and wherein
outputting includes displaying at least some of the iden-
tified strings grouped by classification. In some such im-
plementations, classifications include at least one of uni-
form resource locators, email addresses, IP addresses,
passphrases, or usernames.
[0009] In some implementations, the outputting in-
cludes outputting a graphical user interface display con-
taining respective lists of the orphaned strings and the
hardcoded strings.
[0010] In some implementations, the method may fur-
ther include determining a build quality score for the soft-
ware package. In some such implementations, determin-
ing the build quality score includes determining the build
quality score based on a count of orphaned strings and
hardcoded strings. In some such implementations, de-
termining the build quality score is based on the count
relative to a total string count or to a total size of the build
files.
[0011] In some implementations, the application file
may define components and their interaction and the re-
source files contain definitions. The resource files may
include a string.xml file.
[0012] In some implementations, the method may fur-
ther include first determining that a platform on which the
software package is based supports separation of con-
cerns design principles.
[0013] In another aspect, the present application de-
scribes a computing device for identifying vulnerabilities
in a software package that includes two or more build
files, the build files including at least an application file
and one or more resource files. The computing device
may include one or more processors; memory storing
the build files; and a software vulnerability analysis ap-
plication stored in memory. The application may contain
instructions that, when executed by the one or more proc-
essors, are to cause the processors to scan the build files
to identify strings, label at least one of the identified

1 2 



EP 3 757 840 A1

3

5

10

15

20

25

30

35

40

45

50

55

strings as an orphaned string based on it appearing in
one of the resource files and it not being referenced in
the application file, label at least one of the identified
strings as a hardcoded string based on it appearing in
the application file and not in any of the resource files,
and output the identity of the orphaned strings and the
hardcoded strings.
[0014] In yet a further aspect, the present application
describes non-transitory computer-readable media stor-
ing computer-executable program instructions which,
when executed, cause one or more processors to per-
form the described methods.
[0015] Other aspects and features of the present ap-
plication will be understood by those of ordinary skill in
the art from a review of the following description of ex-
amples in conjunction with the accompanying figures.
[0016] Any feature described in relation to one aspect
or embodiment of the invention may also be used in re-
spect of one or more other aspects/embodiments. These
and other aspects of the present invention will be appar-
ent from, and elucidated with reference to, the embodi-
ments described herein.
[0017] In the present application, the term "and/or" is
intended to cover all possible combinations and sub-
combinations of the listed elements, including any one
of the listed elements alone, any sub-combination, or all
of the elements, and without necessarily excluding addi-
tional elements.
[0018] In the present application, the phrase "at least
one of ... or..." is intended to cover any one or more of
the listed elements, including any one of the listed ele-
ments alone, any sub-combination, or all of the elements,
without necessarily excluding any additional elements,
and without necessarily requiring all of the elements.
[0019] Modern software is often large and complex.
The size and complexity, along with the staged develop-
ment and testing, can sometimes lead to vulnerabilities
in a final software build. In many cases, a complex build
incorporates portions developed by different vendors.
The quality of the software development may vary among
vendors. It is a daunting task for a software developer to
ensure that its final customer-ready product does not in-
advertently contain vulnerabilities, such as the exposure
of information or development details that should not be
public, particularly if that software incorporates code from
a number of different vendors. Moreover, poorly-de-
signed software that does not conform to best practices
in software development may make maintenance and
patching more difficult.
[0020] Accordingly, it would be advantageous to have
a computer automatically scan all the files of release-
ready code, e.g. build files, to identify potential issues
and permit revision or redesign prior to general release.
One possible option is to unpackage a build to obtain an
application file or files and one or more resource files,
and to scan all the files to identify strings. The identified
strings may then be listed and software developer may
then manually review the list in hopes of noticing any

suspicious strings. However, in any sizable software
package this would result in a huge list of strings. Most
strings are benign and perfectly suitable. Manual review
would be costly in terms of time and likely to result in
missed vulnerabilities due to human error.
[0021] Most modern software development follows a
"separation of concerns" (SoC) principle. The SoC prin-
ciple effectively promotes abstraction and layered design
that results in "modular" programs where discrete func-
tions or tasks are carried out by discrete sections or por-
tion of code and those functions or tasks are referenced
by other portions of code when those functions or tasks
are needed. Likewise, labels, text information, icons, and
other details of presentation or implementation are ab-
stracted out of the main program and put in reference
files or other associated files. This enables easy updates
for changes, such as to alter language or layout. In a
program that embodies SoC principles, most details are
not hardcoded into an application file.
[0022] Certain software languages and development
platforms are designed to enable SoC whereas some are
not. For example, the Android™ operating system and
its associated software development kit (SDK) supports
SoC design principles. Applications running on An-
droid™ may, for example, use Java and C++ program-
ming languages, each of which supports SoC. Languag-
es that are well designed to support SoC are often those
classed as "object-oriented", "service-oriented" or "as-
pect-oriented" languages. Conversely, some platforms
or programming languages, typically older languages like
C, Pascal or Fortran, may not so easily support SoC prin-
ciples. These languages are typically procedural lan-
guages.
[0023] In one example, a build that complies with the
SoC principle will include at least one application file and
one or more resource files. The resource files contain
specifics and definitions, such as specific strings for dis-
play, specific URLs to be accessed, specific layout details
or parameters for a screen size, specific labels for user
interface elements, etc. In one example, a resource file
is a non-executable data file that is used by an application
file. For example, it can include one or more string re-
sources that can be null-terminated Unicode or ASCII
strings. Usually, when an application is executed (from
the application file), it loads the one or more string re-
sources. The file extension of a resource file is linked to
the programming language used for creating the appli-
cation. For example, a resource file associated with an
ASP.NET application uses the .resx extension and is in
XML format. The application file may contain higher level
organization of components and their interaction. It will
make reference to generically named parameters, vari-
ables, etc., for which the resource files supply the actual
string, URL, parameter, label, etc. In some cases, the
resource files include multiple alternatives for a generi-
cally named parameter to account of various device con-
figurations possibilities.
[0024] Accordingly, an application file is intended to be

3 4 



EP 3 757 840 A1

4

5

10

15

20

25

30

35

40

45

50

55

executed, and relies on a resource file for getting and/or
substituting values associated with strings. An applica-
tion file may be a binary file (such as an executable pro-
gram), or an assembly code file, or a source code file.
As an example, in the case of an Andriod™-based de-
vice, the application file may be a DEX file, or in the case
of a Linux-based device, the application file may be an
ELF file.
[0025] In accordance with one aspect of the present
application, a build may be automatically analyzed to
identify potential vulnerabilities. In particular, a comput-
ing device may unpackage a build to obtain an application
file and resource files and may scan those files to identify
potential vulnerabilities. In one example, a vulnerability
may include a string that is hardcoded in the application
file instead of being defined in a resource file and refer-
enced in the application file. In another example, a vul-
nerability may include a string that is orphaned by being
included in the resource file but never referenced in the
application file. Either case may indicate a string that was
inadvertently either hardcoded or orphaned during the
development process. Such strings may indicate poor
design that could lead to software update or patching
challenges in the future and/or may indicate potential
leakage of data from earlier development stages that is
not intended for public availability. Results from the anal-
ysis may be output, for example to a display screen, and
may highlight strings identified as hardcoded or or-
phaned. In some implementations, a measurement of
build quality may be determined or scored and presented.
[0026] Many of the examples herein refer to identifying
"strings". The term "string" in this application refers to
alphanumeric text within the code. In some cases a
"string" may be intended for output in a message, display,
or other user interface. In some cases, a "string" may be
an internal label assigned to a variable or parameter with-
in the code. In some cases, a "string" may be a parameter
that is passed to a process as an argument, for example.
Strings may include, for example, labels for variables,
parameter names, labels for input fields or buttons, GUI
elements, text output, URLs, email addresses, pass-
phrases, etc. Those ordinarily skilled in the art will be
familiar with the mechanisms for scanning files and iden-
tifying strings and the various algorithms that may be
used identify certain categories of strings. In some im-
plementations, a string can be a sequence of characters
associated with data or values. Examples of "strings" in-
clude ASCII and UTF-8 character sequences. In some
examples, the sequence may need to be at or above a
minimum length to qualify as a string. Examples include
two characters, three characters, four characters, or
more.
[0027] In some implementations, the computing device
may be operated by the software developer for analyzing
its pre-release software builds. In some other implemen-
tations, the computing device may be operated by a serv-
ice provider that offers to analyze pre-release software
builds for software developers. In the latter case, the soft-

ware developer may cause a build to be uploaded to a
server operated by the service provider to have its build
analyzed and the results may then be provided to the
software developer.
[0028] Reference is now made to Figure 1, which
shows, in flowchart form, one example method 100 for
identifying potential vulnerabilities in a software build.
The method 100 is carried out by a computing device
that obtains, in operation 102, build files for a software
build. The build files may be uploaded or transmitted to
the computing device. Obtaining the files may include
unpackaging, decrypting, unzipping or otherwise extract-
ing the files from a software container or package in which
they are provided. The build files include at least one
application file and one or more resource files. In general,
the application file contains operational flow instructions
and references the resource files. The resource files may
include files of various types, but generally they provide
specifics of an implementation. For example, a resource
file may include specific labels, text, or values that are
mapped to more generic references that are used by the
application file. To use Android™ as an example, a man-
ifest file will declare the components of an application
and various features and permissions required for the
application. The components may include activities,
services, broadcast receivers and content providers.
However, all the details of the visual presentation, includ-
ing icons, images, audio, video, menus, layout, text, etc.,
are all defined in xml resource files grouped in a res/
directory. Within that general resources directory are a
set of subdirectories for various things, such as values,
layout, font, menu, etc. Those subdirectories may hold
various resources files. For example, the values subdi-
rectory may hold a strings.xml file.
[0029] In operation 104 the computing device scans
the files to identify strings. In one example, when the
application file is a binary file, a reverse engineering pro-
gram (such as IDA Pro, etc.) may be used for identifying
strings.
[0030] Operations 106 to 114 involve assessing
whether the identified strings include any "hardcoded" or
"orphaned" strings. In this example, each string is eval-
uated in turn to see if it is hardcoded or orphaned, al-
though this is just one example illustration and other pro-
cedures may be used to make the same assessment. In
this example, in operation 106, the computing device as-
sesses whether a string appears in the application file
but not in any resource file. That is, the string is not a
generic label that is further defined in a resource file, but
instead is hardcoded in the application file. If so, then in
operation 108 that string is identified, e.g. labelled, as a
"hardcoded" string. This may include, for example, stor-
ing the string and details of its location in a list or other
data structure for identified hardcoded strings.
[0031] In operation 110, the string is evaluated to see
if it appears in a resource file but is not referenced in any
application file. If so, then the string is identified, e.g. la-
belled, as an "orphaned" string in operation 112.

5 6 



EP 3 757 840 A1

5

5

10

15

20

25

30

35

40

45

50

55

[0032] A hardcoded string is a potential vulnerability in
that it is indicative of a lack of separation of concerns and
may lead to future problems in maintaining or updating
the application. An orphaned string is a potential vulner-
ability in that it may have been left in the files accidentally
and may be left over from earlier development work,
which could result in leak of development information or
other data not meant for public access.
[0033] In operation 114, the computing device deter-
mines whether any more strings remain to be evaluated.
If not, then in operation 116 the computing device outputs
the identity of the identified hardcoded and orphaned
strings. This may include displaying respective lists of
the hardcoded strings and the orphaned strings. The dis-
play may include information on where the strings were
located in the build files.
[0034] Figure 2 illustrates another example method
200 of identifying vulnerabilities in a software package.
In operation 202, the build package is received by a com-
puter system implementing the method 200. The com-
puter system may receive the build package in any suit-
able manner, including through an electronic file transfer.
The computer system may then need to unpackage the
build files in operation 204, spending on the format in
which the build package is received.
[0035] In this example method 200, in operation 206
the computer system assesses whether the build files
are of a type that should reflect a separation of concerns.
This assessment may be based, for example on the de-
velopment platform, the operating system for which the
build files are designed, the programming language
used, or any other set of factors that may contribute to
an assessment of whether the build files are of a class
that SoC would indicate high quality design. If not, then
the method 200 might not be suitable for assessing the
build files, and the software package may be scored ac-
cordingly and the method 200 may end.
[0036] Alternatively or additionally, in operation 206,
the computer system may assess whether the structure
of the build files is such that they appear to reflect SoC
in their overall organization. That is, the computer system
may evaluate whether the manifest file or other equiva-
lent programming structure indicates a general SoC de-
sign to the software package. If not, then the software
package may be scored accordingly in operation 208.
[0037] Operation 206 may additionally or alternatively
include assessing the size of the software package. This
may include counting the number of files and their re-
spective sizes. It may further include assessing whether
any of the files is not used or referenced by any of the
other files. In one embodiment, this information may be
displayed in operation 218, which is described further
below.
[0038] Assuming that the computer system determines
that the method 200 should continue in operation 206,
then in operation 210 the build files are scanned to iden-
tify strings and in operation 212 the strings may be clas-
sified. The classification may include identifying certain

categories of strings for additional analysis or to be
grouped for output later as potential vulnerabilities for
review. For example, some illustrative classes may in-
clude strings that appear to be uniform resource locators
(URLs), email addresses, passphrases, usernames, IP
addresses, or other potentially sensitive data that may
originate from earlier development work and that might
not have been intended for public release. Certain class-
es of these strings may be of potential higher risk than
others. By classifying them, review of their suitability is
facilitated without the clutter of a large number of innoc-
uous strings.
[0039] In operation 214, the computer system may
identify orphaned or hardcoded strings, as discussed
above.
[0040] In operation 216, in this example, the computer
system may determine a build quality score for the soft-
ware package. The build quality may be determined as
a measure of various factors, including those relating to
SoC. For example, a build quality score may include de-
termining a count of orphaned or hardcoded strings,
where a higher count results in a lower build quality score.
The count may be relative to the overall count of strings
in the build package, or may be relative of the collective
size of the build files in some cases. The score may be
based on the count exceeding certain thresholds. In
some cases, the impact of a hardcoded or orphaned
string on the build quality score may depend on the class
into which the string falls. That is, if the string is catego-
rized as being in one of the potential high risk classes,
such as URLs, email addresses, passphrases, IP ad-
dresses, etc., then that hardcoded or orphaned string
may have a larger negative impact on build quality scor-
ing than a hardcoded or orphaned string from a more
benign class.
[0041] The score and other data regarding the assess-
ment of build quality may be displayed in operation 218.
In some examples, a graphical user interface (GUI) dis-
play may provide the build quality score and an interface
permitting a use to browse through the categories of
strings and the respective lists of orphaned or hardcoded
strings. In some cases, links may be provided to enable
selection of the one of the listed strings that may result
in further display of a portion of the file in which the string
appears or is defined. For example, selection of an or-
phaned string may result in display of that portion of the
relevant resource file in which the string is found. Selec-
tion of a hardcoded string may result in display of that
portion of the relevant application file in which the string
is hardcoded.
[0042] In some cases, the GUI may allow for a user to
flag individual strings as vulnerabilities requiring follow
up or correction. In some cases, the GUI may allow for
a user to flag individual strings as benign requiring no
follow up or correction. A further output may be generat-
ed, by message or other communication, that indicates
elements of the build package requiring correction. The
build quality score may also be indicated.

7 8 



EP 3 757 840 A1

6

5

10

15

20

25

30

35

40

45

50

55

[0043] Reference is now made to Figure 3, which
shows, in block diagram form, one simplified example of
a computing device 300 for identifying vulnerabilities in
software packages. The computing device 300 may in-
clude one or more processors 302 and memory 304. The
computing device 300 may include an operating system
stored in memory and executable by the processors 302
to carry out basic device functions and to provide a plat-
form for execution of application software.
[0044] The memory 304 may include persistent data
storage and temporary data storage. The memory 304
may include a software vulnerability analysis application
306 that, when executed by the one or more processors
302, causes the processors 302 to carry out the opera-
tions described herein. The memory 304 may further in-
clude the software package and/or build files that are to
be subjected to analysis.
[0045] User interface devices 310 may include a dis-
play and/or one or more user input devices, such as a
keyboard, mouse, touchscreen, etc.
[0046] The computing device 300 may also include a
communications system 308 providing network connec-
tivity to enable the sending and receiving of data with
remote devices. In some cases, the communications sys-
tem 308 may provide for Internet connectivity, whether
through wired connection, wireless connection, or both.
[0047] It will be appreciated that the computer system
or device according to the present application may be
implemented by a number of computing devices, includ-
ing, without limitation, servers, suitably-programmed
general purpose computers, machine vision systems,
and mobile devices. The described methods may be im-
plemented in software containing instructions for config-
uring a processor or processors to carry out the functions
described herein. The software instructions may be
stored on any suitable non-transitory computer-readable
memory, including CDs, RAM, ROM, Flash memory, etc.
[0048] It will be understood that the computer system
or device described herein and the module, routine, proc-
ess, thread, or other software component implementing
the described method/process for configuring the com-
puter system or device may be realized using standard
computer programming techniques and languages. The
present application is not limited to particular processors,
computer languages, computer programming conven-
tions, data structures, other such implementation details.
Those skilled in the art will recognize that the described
processes may be implemented as a part of computer-
executable code stored in volatile or non-volatile mem-
ory, as part of an application-specific integrated chip
(ASIC), etc.
[0049] Certain adaptations and modifications of the de-
scribed embodiments can be made. Therefore, the above
discussed embodiments are considered to be illustrative
and not restrictive.

Claims

1. A method of identifying vulnerabilities in a software
package that includes two or more build files, the
build files including at least an application file and
one or more resource files, the method comprising:

scanning the build files to identify strings;
labelling at least one of the identified strings as
an orphaned string based on it appearing in one
of the resource files and it not being referenced
in the application file;
labelling at least one of the identified strings as
a hardcoded string based on it appearing in the
application file and not in any of the resource
files; and outputting the identity of the orphaned
strings and the hardcoded strings.

2. The method claimed in claim 1, further comprising
classifying the identified strings and wherein output-
ting includes displaying at least some of the identified
strings grouped by classification.

3. The method claimed in claim 2, wherein classifica-
tions include at least one of uniform resource loca-
tors, email addresses, IP addresses, passphrases,
or usernames.

4. The method claimed in any preceding claim, wherein
the outputting includes outputting a graphical user
interface display containing respective lists of the or-
phaned strings and the hardcoded strings.

5. The method claimed in any preceding claim, further
comprising determining a build quality score for the
software package.

6. The method claimed in claim 5, wherein determining
the build quality score includes determining the build
quality score based on a count of orphaned strings
and hardcoded strings.

7. The method claimed in claim 6, wherein determining
the build quality score is based on the count relative
to a total string count or to a total size of the build files.

8. The method claimed in any preceding claim, wherein
the application file defines components and their in-
teraction and the resource files contain definitions.

9. The method claimed in claim 8, wherein the resource
files include a string.xml file.

10. The method claimed in any preceding claim, further
comprising first determining that a platform on which
the software package is based supports separation
of concerns design principles.

9 10 



EP 3 757 840 A1

7

5

10

15

20

25

30

35

40

45

50

55

11. A computing device for identifying vulnerabilities in
a software package that includes two or more build
files, the build files including at least an application
file and one or more resource files, the computing
device comprising:

one or more processors;
memory storing the build files; and
a software vulnerability analysis application
stored in memory and containing instructions
that, when executed by the one or more proc-
essors, are to cause the processors to carry out
the method of any preceding claim.

12. A computer program which, when executed on a
processor of a computing device, is configured to
carry out the method of any one of claims 1 to 10.

11 12 



EP 3 757 840 A1

8



EP 3 757 840 A1

9



EP 3 757 840 A1

10



EP 3 757 840 A1

11

5

10

15

20

25

30

35

40

45

50

55



EP 3 757 840 A1

12

5

10

15

20

25

30

35

40

45

50

55


	bibliography
	abstract
	description
	claims
	drawings
	search report

