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(57) Abstract: A method of improving an audio signal is taught herein. The method comprising: outputting an audio waveform from
a sound source; capturing the audio waveform from a first microphone and capturing the audio waveform from a second microphone
capsule aligned beside the first microphone; and sending the captured audio waveforms to a digital audio processing system having a
neural network. The neural network is configured to learn differences between the first audio waveform and the second audio waveform.
The audio signals processed from the first microphone differing from the audio signal processed from second microphone. The sound
source may comprise a curated data set consisting of test signals, representative audio signals.
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SYSTEM AND METHOD OF IMPROVING AN AUDIO SIGNAL
FIELD OF THE DESCRIPTION

[100] The following relates to audio signals generated from audio devices such as
microphones and speakers. The following more specifically relates to the improvement and processing

of these audio signals.
BACKGROUND

[200] FIG. 1 provides a schematic diagram of a conventional condenser microphone.
Condenser microphones work on the principle of capacitance. Capacitors consist of parallel
conducting plates that store charge and are used to smooth out signals like voltage variations in a
power supply. In a condenser microphone, the incoming sound 1 vibrates the diaphragm 2 of a
capacitor. This varies the capacitance between the diaphragm 2 and the back plate 3. The varying
capacitance is converted into a corresponding electrical signal 4.

[300] FIG. 2 provides a schematic diagram of a conventional dynamic microphone. A
dynamic microphone converts sound into a small electrical current. Sound waves 1 hit a diaphragm 2
that vibrates, moving a magnet 8 near a coil 7. This produces an electric current 9.

[400] Both the condenser and dynamic microphones are transducers; they transform sound
pressure waves into voltage, through the movement of the microphone diaphragm 2. The selection of
diaphragm 2 and accompanying electrical circuit determine the voltage that represents the sound, and
thus determine the perceptual quality of the sound. Itis very expensive to design and build high quality,
professional microphones. When product designers need microphones in products, the size and
expense of the microphone is weighed against the perceptual benefits of having a high-quality
microphone in the system.

[500] One factor affecting the quality of the microphone is the build quality of the diaphragm
2, The sensitivity of the diaphragm is dependent on the size of the diaphragm 2. Diaphragm material,
design, thickness, and diameter can help to determine a microphone’s frequency, transient and polar
responsiveness. In turn, the microphone quality is limited by, for example, the material, design,
thickness, and diameter of the Diaphragm 2.

[600] Typically, diaphragms 2 can be categorized into three sizes—large, medium, and
small. Larger diaphragm microphones are typically more sensitive due to their increased surface area,

but also have a more limited frequency response since sound waves have to move more mass.

[700] Small diaphragm microphones are capable of handling higher sound pressure levels
due to their stiffer diaphragms. They also have an increased frequency response, particularly in the

higher end of the frequency spectrum. Their decreased sensitivity relative to large diaphragm
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microphones makes them less susceptible to proximity effect and ambient noise due to their directional

characteristics.

[800] As such, manufacturers of phones and other devices which use microphones are
required to choose between a lower cost per unit or a higher quality of sound. Significant efforts have

been made to develop lower cost microphones, that can achieve high level of sound.

[900] Furthermore, the characteristics of various microphones make them more suitable for
certain applications. For instance, condenser microphones are better suited for high frequency
applications such as recording a vocalist in an isolation booth, recording an acoustic guitar to capture
definition, recording a group of singers, recording an acoustic piano, recording sound effects, or

recording a podcast voice in a quiet or acoustically treated room.

[1000] On the other hand, dynamic microphones are not as sensitive, which makes them
better suited for low frequency applications such as recording drums, recording guitar amplifiers,
recording multiple individuals’ voices sitting around a table, or recording one or more speakers on a

stage when you need to avoid picking up other sounds.

[1100] As such, the same microphone cannot be used for a variety of applications. This can
lead to microphone users having to purchase many different microphones to record different kinds of

sounds, which can be expensive.
[1200] Improved systems are needed.
SUMMARY OF THE DESCRIPTION

[1300] In one aspect, there is provided a method of improving an audio signal comprising:
outputting an audio waveform from a sound source; capturing the audio waveform from a first
microphone and capturing the audio waveform from a second microphone capsule aligned beside the
first microphone; and sending the captured audio waveforms to a digital audio processing system
having a neural network. The neural network is configured to learn differences between the first audio
waveform and the second audio waveform. The audio signals processed from the first microphone
differing from the audio signal processed from second microphone. The sound source may comprise

a curated data set consisting of test signals, representative audio signals.

[1400] The method may further comprise applying the learned differences to a third audio
waveform recorded from a third microphone; such that the third microphone has similar characteristics

to the first microphone.

[1500] The first microphone may have a non-ideal set of characteristics, and the second

microphone may have an ideal set of characteristics for a specific function. The specific function can
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be selected from at least one of the following: conversation, lyrical, music, noise cancellation, and

instrumental.

[1600] The third microphone can be located on a mobile device. The third microphone records
audio from a telephone conversation such that the digital audio processing system processes the
conversation in real-time. The digital audio processing system can be located on an application on the

mobile device.

[1700] The method can also be used for polar pattern translation, wherein the first microphone
comprises a first polar pattern from one of a unidirectional, bidirectional, and omnidirectional patterns,
and the second microphone comprises a second polar pattern, from one of a unidirectional,
bidirectional, and omnidirectional microphones. The third microphone may comprise the first polar
pattern and wherein the learned differences between the first and second microphone can be applied

to a third audio waveform recorded from the third microphone to match the second polar pattern.
BRIEF DESCRIPTION OF THE FIGURES

[1800] The features of certain embodiments will become more apparent in the following

detailed description in which reference is made to the appended figures wherein:

[1900] FIG. 1 depicts a schematic diagram of a condenser microphone;

[2000] FIG. 2 depicts a schematic diagram of a dynamic microphone;

[2100] FIG. 3 depicts a schematic diagram of recording a training model dataset;
[2200] FIG. 4 depicts a schematic diagram of the model training inputs;

[2300] FIG. 5 depicts a schematic diagram of the digital audio processing system algorithm;
[2400] FIG. 6 depicts an embodiment of the application of the invention;

[2500] FIG. 7 depicts a further embodiment of the application of the invention;
[2600] FIG. 8A depicts a schematic diagram of a unidirectional polar pattern;
[2700] FIG. 8B depicts a schematic diagram of a bi-directional polar pattern;
[2800] FIG. 8C depicts a schematic diagram of an omnidirectional polar pattern;
[2900] FIG. 9A depicts a schematic diagram of the digital audio processing system;
[3000] FIG. 9B depicts a schematic diagram of the digital audio processing system;
[3100] FIG. 10 depicts a schematic diagram of the deep neural network algorithm;
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[3200] FIG. 11 depicts a schematic diagram of the digital audio processing system algorithm

for upgrading a speaker;
[3300] FIG. 12A depicts one example of the training model; and
[3400] FIG. 12B lists the equations used by the training model.

DETAILED DESCRIPTION

nowu »oou

[3500] The terms “comprise”, “comprises”, “comprised” or “comprising” may be used in the
present description. As used herein (including the specification and/or the claims), these terms are to
be interpreted as specifying the presence of the stated features, integers, steps, or components, but
not as precluding the presence of one or more other feature, integer, step, component, or a group
thereof as would be apparent to persons having ordinary skill in the relevant art. Thus, the term
"comprising” as used in this specification means "consisting at least in part of. When interpreting
statements in this specification that include that term, the features, prefaced by that term in each
statement, all need to be present but other features can also be present. Related terms such as

"comprise" and "comprised"” are to be interpreted in the same manner.

[3600] Unless stated otherwise herein, the article “a” when used to identify any element is not
intended to constitute a limitation of just one and will, instead, be understood to mean “at least one” or

“one or more”.

[3700] The invention provides a Digital Audio Processing System 100 having a neural net
audio processing translation from one distinct microphone to another microphone. This invention
allows small and cheap microphones to take on the spectral characteristics (i.e. the particular sound)

of a large high-quality microphone.

[3800] The Digital Audio Processing System 100 uses a neural network to learn the difference
between audio signals captured by model microphones and audio signals captured by lower-quality
microphones. The system then applies the trained model differences on the audio signals of other
lower-quality microphones to produce high-quality sounds from the lower-quality microphones.

Machine learning allows us to learn the complex effect that microphones have when capturing sound.

[3900] FIG. 3 depicts a schematic diagram of recording a training model dataset. An
unprocessed audio dataset 101 is played on a speaker 102. The unprocessed audio dataset 101 may
be any type of unprocessed audio such as a recording of a group of people having a conversation, a
recording of a musical instrument, a recording of a person or group of people singing, musical songs,
etc. In another embodiment, the unprocessed audio dataset may be any source of sound, such as a
group of people having a conversation, a musical instrument, a person, or group of people singing,

etc.
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[4000] At the same time, two microphones 103, 104 are used to capture and record the
unprocessed audio signal 101 simultaneously. The two microphones 103, 104 are preferably capsule
aligned such that they are capturing an identical audio wavefront. Capsule aligned refers to the
physical alignment of the diaphragm 2 of two or more microphones.

[4100] In one embodiment, one of the microphones 103 may be of lesser quality than the
other microphone 104. The build quality of the microphone will affect the sound quality recorded by
the microphone. For instance, diaphragm material, design, thickness, and diameter can help to
determine a microphone’s frequency, transient and polar responsiveness. In turn, the microphone
quality is limited by, for example, the material, design, thickness, and diameter of the diaphragm. For
instance, microphone 103 may be a simple, inexpensive microphone and microphone 104 can be a

high-quality recording microphone which is expensive.

[4200] In this embodiment, since the first microphone 103 is of lesser quality than the second
microphone 104, the resulting audio recordings or datasets 105, 106 will be of varying quality. The first
dataset 105 is the audio recorded by the first microphone 103. The second dataset 106 is the audio
recorded by the second microphone 104. In this embodiment, we assume the second microphone 104
is of higher quality, and thus the recorded audio signal 106 will have a higher sound quality (i.e., less
distortion, less static noise, high bit rate, etc.) than audio signal 105. Consequently, we assume that if
the first microphone 103 is of lesser quality, the audio signal 105 recorded by the first microphone 103
will have a lower sound quality compared to the audio signal 106 recorded by the second microphone
104. As such, audio signal 105 is expected to have more distortion, more static noise, low bit rate,

than audio signal 106 as audio signal 105 is recorded from a low-quality microphone 103.

[4300] In another embodiment, the first microphone 103 can have a first set of characteristics
and the second microphone 104 can have a second set of characteristics. These characteristics may
include differences in the microphone’s capturing frequency, quality, type of sound, etc. In a third
embodiment, the first microphone 103 may be a condenser-type of microphone and the second
microphone 104 may be a dynamic-type of microphone. As such, the resulting dataset 105 recorded
by the first microphone 103 will be different from the dataset 106 recorded by the second microphone
104.

[4400] The varying recorded audio signals 105 and 106 is then input into a deep neural
network (DNN) 107. The difference between the audio signals 105, 106 of the two different
microphones 103, 104 is captured, the neural network 107 is configured to learn the difference
between the microphones 103, 104. The Digital Audio Processing System 100 can then apply this
difference to new audio signals. FIG. 4 shows a schematic diagram of the model training inputs to be

used by the deep neural network 107 and Digital Audio Processing System 100.
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[4500] Many different high quality microphones can be used to train the neural network 107
since the characteristics of different microphones make them more suitable for certain applications.
For instance, condenser microphones are better suited for high frequency applications such as
recording a vocalist in an isolation booth, recording an acoustic guitar to capture definition, recording
a group of singers, recording an acoustic piano, recording sound effects, or recording a podcast voice
in a quiet or acoustically treated room. On the other hand, dynamic microphones are better suited for
low frequency applications such as recording drums, recording guitar amplifiers, recording multiple
individuals’ voices sitting around a table, or recording one or more speakers on a stage when you need
to avoid picking up other sounds. As such, varying types of microphones can be used to train the data
models for varying applications. In another embodiment, a plurality of high quality microphones can

be used simultaneously to train the model.

[4600] The audio dataset 105 processed by the first microphone 103 and the audio dataset
106 processed by the second microphone 104, once recorded through an analog to digital converter
and into a digital audio workstation 113, can be used as digital audio inputs to the deep neural network
107. The neural network 107 can use distinct digital audio inputs 105 and 106 and learn the differences

between the wave forms.

[4700] FIG. 5 depicts a schematic diagram of the digital audio processing system algorithm
for upgrading a microphone. A microphone use-case model, or representative model is to be
determined 501. This can be done via a computational processor or as a user input. The representative
models include (but are not limited to): ameliorating microphone quality, polar pattern translation,
microphone position modelling, noise cancellation, singing, conversational audio, lyrical, instrumental
audio, etc. Audio data from the use case is then obtained 502. At least a first and second microphone
103, 104 are then obtained 503. These microphones can be differing in some way such as quality,
polar pattern, position, etc.). Any number of microphones can be used to train the data. Subsequently,
a form of audio is played on a speaker and recorded on microphones 103, 104. The form audio is
ideally related to the use case (i.e. conversation, music, lyrical, noise cancellation, instrumental, etc.).
It is also ideal if the diaphragms of the microphones 103, 104 are aligned. The audio signals 105 and
106 can be obtained by simultaneously recording the audio on microphones 103 and 104 (see 504 of
FIG. 5). As a result, at least two datasets 105, 106 are obtained from the recording captured by
microphones 103, 104 (see 505 and 506 of FIG. 5). The audio dataset 505 and 506 can then be used
as an input for a deep neural network 107 (see 507 of FIG. 5). The neural network outputs a set of
learned weights for the deep neural network layers (508). Neural network architecture is implemented
to learn processing (509). The learned weights, or learned differences, can then be applied to new
audio that has not been seen by the DNN (510). The new audio may be in the form of a pre-recorded

digital signal or on real-time audio converted to a digital signal. As a result, the new audio, which may
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have been recorded on a microphone of lesser quality, or microphone of non-ideal characteristics,
may be upgraded to sound like audio recorded on a high quality microphone, or a microphone of ideal

characteristics.

[4800] The deep neural network 107 training model expects to receive representative audio
(502), consisting of the types of signals the in order to perform the transformation. For instance, a
microphone upgrade model for a music application would require singing voice and live instrument

training data, while a microphone upgrade for meeting applications would require speech signals.

[4900] Sonic characteristics include time and frequency domain characteristics, frequencies,
and signal amplitudes. Various test signals comprising of singular tones, and complex combinations,

at particular frequencies, for particular durations can be used as input audio signals.

[5000] This system can be used for digital emulation of specific microphone models used for
recording music. In one instance, the system may be used to upgrade a budget microphone to a top-
of-the-line microphone. The invention includes a neural net trained on different diaphragm aligned
microphones, and the real time audio processing allowing the translation of a signal recorded with a
first, lower quality microphones to sound like it was recorded with a different, higher quality

microphone.

[5100] FIG. 6 depicts an embodiment of the application of the invention. In this embodiment,
sound waves are captured by a new microphone 108. Microphone 108 may be of lesser quality or
have a different set of characteristics than an ideal microphone 104. Microphone 108 ideally has
similar characteristics as the microphone 103 that was used to train the model. The audio 110 captured
by microphone 108 can be imported to the digital audio processing system 100 taught by this invention.
The Digital Audio Processing System (DAPS) 100 would have been trained using the model of a high
quality or, ideal microphone 104. The model trained by the ideal microphone 104 can then be applied
to the signal of the new microphone 108. This ameliorates the audio 110 recorded by the new
microphone 108 as the model trained by ideal microphone 104 is applied to the audio 110 of new
microphone 108. The model is first trained by learning the difference between a less-than-ideal
microphone 103 and an ideal microphone 104. The output of the DAPS 100 is audio 111 which sounds

like it came from an ideal microphone.

[5200] FIG. 7 depicts a further embodiment of the application of the invention. In this
embodiment, sound waves 110 can be recorded with a small (or low quality) microphone 701 located
within a mobile device. The mobile device may include an application or program with the Digital Audio
Processing System 100 on it. The Digital Audio Processing System comprises a deep neural network
which can take the sound waves captured from the low-quality microphone 701 and apply the trained

model to those waves. The resulting sound would be sound waves 111 having the characteristics of a
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higher quality microphone. As such, this process can be used by cell phone manufacturers to process
Micro-Electro-Mechanical Systems (MEMS) microphone 701 signals to sound like a signal coming
from a higher quality microphone. The invention includes a neural net trained on audio recorded at
different microphone positions, and the real time audio processing to allow signals recorded on small
MEMS microphones 701 commonly found in mobile devices, to sound like a signal that was recorded
with a high-quality large diaphragm microphone. The mobile device may include an application or
program with the Digital Audio Processing System 100 on it which would allow real-time phone
conversations to be upgraded in real-time. In another embodiment, the DAPS 100 may be located on
an external server such as a database or cloud server, wherein the input audio 110 can be exported,
converted, and imported back to the mobile device. It can be understood that this model can be
applied to other methods of verbal communication such as: real time audio/video calls (facetime,

zoom, teams, skype, etc.), live audio streaming, live video recording/streaming, and the like.

[56300] In another embodiment, this system can be used for polar pattern translation. FIG. 8A
depicts a schematic diagram of a unidirectional polar pattern; FIG. 8B depicts a schematic diagram of
a bi-directional polar pattern; and FIG. 8C depicts a schematic diagram of an omnidirectional polar
pattern. The method taught herein can be used to translate a microphone with one specific polar
pattern to a microphone with a distinct polar pattern (i.e., unidirectional microphone to a bidirectional
microphone, etc.). The invention includes a neural net trained on microphones with different polar
pattern types, and the real time audio processing allowing the translation of a signal recorded with one
polar pattern to a signal which sounds like it was recorded with a microphone having a different polar

pattern.

[5400] In another embodiment, this system can be used for microphone position modeling.
Condition the model by microphone distance from source, as per common recording use cases. The
invention includes a neural net trained on different microphone positions, and the real time audio
processing allowing signals recorded at on distance to a signal that sounds like it was recorded at a

different distance.

[6500] In yet another embodiment, this system can be used for diaphragm frequency
modelling. For instance, if a small diaphragm microphone is used, it may only be suited for high
frequency applications. This same microphone may not be useful or ideal for low frequency
applications. As such, the model can be trained by a large diaphragm microphone used for low
frequency applications. The neural network can then be used to learn the difference in audio signals
between the small diaphragm audio signals and the large diaphragm audio signals. The learned
differences can then be applied in the future to audio signals obtained from small diaphragm
microphones and convert them to audio that sounds like it was recorded using a large diaphragm

microphone.
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[56600] FIGs. 9A and B show a schematic diagram of the model training completed by the
Digital Audio Processing System 100. The digital audio processing system 100 comprises at least a
two or more microphones 103, 104, an audio analog to digital converter 112, digital audio workstation
113, and the recorded audio signals 105, 106. FIG. 9B shows the continuation of the method of the
Digital Audio Processing System 100. The audio dataset 105 processed by the first microphone 103
and the audio dataset 106 processed by the second microphone 104, once recorded through an
analog to digital converter 112 and into a digital audio workstation 113, can be used as digital audio
inputs to the deep neural network 107. The neural network 107 can use distinct digital audio inputs
105 and 106 and learn the differences between the wave forms. The learned differences 114 between
the waveforms are then saved into a database so they can be accessed later to apply the learned

differences 114 to new audio from new microphones.

[56700] FIG. 10 depicts a schematic diagram of the deep neural network algorithm, as shown
in FIG. 5. A microphone use-case model, or representative model is to be determined 501. This can
be done via a computational processor or as a user input. The representative models include (but are
not limited to). ameliorating microphone quality, polar pattern translation, microphone position
modelling, singing, conversational audio, lyrical, instrumental audio, etc. Audio data from the use case
is then obtained 502. At least a first and second microphone 103, 104 are then obtained 503. These
microphones can be differing in some way such as quality, polar pattern, position, etc.). Any number
of microphones can be used to train the data. Subsequently, a form of audio is played on a speaker
and recorded on microphones 103, 104. The form audio is ideally related to the use case (i.e.
conversation, music, lyrical, noise cancellation, instrumental, etc.). It is also ideal if the diaphragms of
the microphones 103, 104 are aligned. The audio signals 105 and 106 can be obtained by
simultaneously recording the audio on microphones 103 and 104 (see 504 of FIG. 10). As a result, at
least two datasets 105, 106 are obtained from the recording captured by microphones 103, 104 (see
505 and 506 of FIG. 10). The audio dataset 505 and 506 can then be used as an input for a deep
neural network 107 (see 507 of FIG. 10).

[5800] Step 507 is explained as follows. The model is divided into three parts: adaptive front-
end, synthesis back-end and latent-space DNN. The architecture is designed to model nonlinear audio
effects with short-term memory and is based on a parallel combination of cascade input filters,

trainable wave-shaping nonlinearities, and output filters.

[5900] All convolutions are along the time dimension and all strides are of unit value. This
means, during convolution, we move the filters one sample at a time. In addition, padding is done on
each side of the input feature maps so that the output maintains the resolution of the input. Dilation is

not introduced.
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[6000] One example of the training model is depicted in Table 1.1 (shown in FIG. 12A). We
can use any input frame size ( for instance, the ideal frame size is between 32 and 8192, with values
such as 32, 64, 256, 512,1024, 2048, 4096, 8192). This represents the number of samples in the
frame of audio. The audio can be sampled with acceptable hop size ranging between 2 and 8192,
with an ideally the hop size can be 256, 512, 1024. The model training sampling rate (samples per
second) can range between 8-192 KHz. The new input audio may also have a sampling rate that

matches that of the sampling rate used for model training.

[6100] In can be appreciated that a larger frame size will result in more frequency resolution,
but less time resolution. On the other hand, a lower frame size will result in a lower frequency
resolution, but a high time resolution. Different applications require varying levels of frequency
resolution/time resolution. For instance, if the audio processing needed to be completed in real-time,
a smaller frame size should be used. If the audio processing needed to be completed high frequency
resolution, a larger frame size should be used. As such, the frame size can be moderated based on
the application that needs to be achieved. In another embodiment, the DNN can be pre-set with all the
ideal parameters for one application, such as for OEM (original equipment manufacturer) MEMS
microphones. In another embodiment, the parameters can be left open to be chosen and set by the

user.

[6200] The Adaptive front-end can comprise a convolutional encoder. It can contain two
convolutional layers, one pooling layer and one residual connection. The front-end can be considered
adaptive since its convolutional layers learn a filter bank for each modeling task and directly from the

first microphone input audio dataset 105.

[6300] The first convolutional layer is followed by the absolute value as the nonlinear
activation function and the second convolutional layer are locally connected (LC). This means we
follow a filter bank architecture since each filter is only applied to its corresponding row in the input
feature map. The later layer is followed by the softplus nonlinearity. The max-pooling layer is a moving
window layer, where the maximum value within each window corresponds to the output and the
positions of the maximum values are stored and used by the back-end. The operation performed by

the first layer is shown in FIG. 12B (equations 1.2 and 1.3).

[6400] In equation 1.2 and 1.3, W1 represents the kernel matrix from the first layer, and X1
represents the feature map after the input audio x is convolved with W1. The weights W1 may comprise
any number of one-dimensional filters having a size between (2-512), ideally 64. The residual
connection R is equal to X1, which corresponds to the frequency band decomposition of the input x.

This is due the output of each filter of Conv1D can be seen as a frequency band. The operation

10
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performed by the second layer is described by the equation 1.4 shown in FIG. 12B. Equation 1.4 (see

FIG. 12B) shows an example where the filter size 128.

[6500] In equation 1.4, X2() and W2()) are the ith row of the feature map X2 and kernel matrix
W2, respectively. Thus, X2 is obtained after the LC convolution with W2, the weight matrix of Conv1D-

local, which, in this example, has 128 filters of size 128. f2() is the softplus function.

[6600] The adaptive front-end performs time-domain convolutions with the first microphone
103 input audio dataset 105 and is designed to learn a latent representation for each audio effect
modeling task, such . It also generates a residual connection which is used by the back-end to facilitate

the synthesis of the waveform based on the specific audio effect transformation.

[6700] This differs from traditional encoding practices, where the complete input data is
encoded into a latent-space, which causes each layer in the decoder to solely generate the complete

desired output.

[6800] By using the absolute value as the activation function of the first layer and by having

larger filters W2, we expect the front-end to learn smoother representations of the incoming audio.

[6900] Optionally, the latent-space DNN contains two fully-connected (FC) layers. Following
the filter bank architecture, the first layer is based on LC layers and the second layer comprises a FC
layer. The DNN modifies the latent representation Z into a new latent representation Z° which is fed
into the synthesis back-end. The first layer applies a different FC layer to each row of the matrix Z and
the second layer is applied to each row of the output matrix from the first layer. In both layers, the
number of hidden units are calculated using half the filter size, (for example, if the filter size is 128, the
number of hidden units would be 64) , are followed by an activation function such as: softplus, tanh,
reLU, etc. which can be applied to the complete latent representation rather than to the channel

dimension.

[7000] The operation performed by the latent-space DNN is shown by equations 1.5 and 1.6
shown in FIG. 12B. In equations 1.5 and 1.6, Zh"()) is the ith row of the output feature map Zh" of the
LC layers. Likewise, V1() is the ith FC layer corresponding to the weight matrix V1 of the LC layer. V2
corresponds to the weights of the FC layer. The output of the max pooling operation Z corresponds to

an optimal latent representation of the input audio.

[7100] The synthesis back-end accomplishes the nonlinear task by the following steps. First,
X2", the discrete approximation of X2, is obtained via unpooling the modified envelopes Z". Then the
feature map X17 is the result of the element-wise multiplication of the residual connection R and X2".
This can be seen as an input filtering operation, since a different envelope gain is applied to each of

the frequency band decompositions obtained in the front-end.
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[7200] The deep neural network smooth adaptive activation functions (DNN-SAAF) step
applies various wave-shaping nonlinearities to X1~. This is achieved with a processing block containing
dense layers and smooth adaptive activation functions. In one embodiment, the DNN-SAAF comprises
4 fully connected layers. However, it can be appreciated that the DNN-SAAF can be any number of

layers.

[7300] All fully connected layers are followed by an activation function such as tanh, softplus,
reLU, etc. with the exception of the last layer. Locally connected SAAFs are used as the nonlinearity
for the last layer. Overall, each function can be locally connected and composed of intervals ranging

between 2-100 (ideally having a value of 9-25) between -1 to +1.

[7400] Finally, the deconvolution layer corresponds to the deconvolution operation, which can
be implemented by transposing the first layer transform. This layer is not trainable since its kernels are
transposed versions of W1. In this way, the back-end reconstructs the audio waveform in the same
manner that the front-end decomposed it. In one embodiment, the complete waveform can be

synthesized using windowing and constant overlap-add gain.

[7500] The DNN can optimize the loss function to determine the difference between the audio
waveform 105 that was processed by the DNN 507 and the second microphone audio dataset 106.
The first microphone audio dataset 105 is process by the neural network. The second microphone
audio dataset 106, is the ideal audio dataset, and thus, is not processed by the DNN. The number of

iterations can be arbitrary and will stop once the loss function is minimized.

[7600] The neural network 507 then outputs a set of learned weights for the deep neural
network layers (508). Neural network architecture is implemented to learn processing (509). The
learned weights W, or learned differences, can then be applied to new audio that has not been seen
by the DNN (510). The new audio may be in the form of a pre-recorded digital signal or as a real-time
audio converted to a digital signal. As a result, the new audio, which may have been recorded on a
microphone of lesser quality, or microphone of non-ideal characteristics, may be upgraded to sound

like audio recorded on a high quality microphone, or a microphone of ideal characteristics.

[7700] The process taught by FIG. 11 can be used to model the difference of, and upgrade
speakers. In this embodiment, a reference microphone can be used to record the same audio dataset
through two different loudspeakers. It can be appreciated that it is ideal to keep all other acoustic
variables the same. The first speaker audio can be captured with the reference microphone, and its
audio signals processed to a first dataset. The second speaker audio can simultaneously be captured
with the reference microphone, and its audio signals processed to a second dataset. The neural
network can be used to learn the difference between these datasets. The learned differences can then

be applied to new speaker sounds in real time or recordings. It can be appreciated that the deep neural
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network learns transformations, and as such, it is possible to modify old recordings through

conventional signal processing.

[7800] FIG. 11 depicts a schematic diagram of the digital audio processing system algorithm
for upgrading a speaker. A speaker use-case model, or representative model is to be determined 601.
This can be done via a computational processor or as a user input. The representative models include
(but are not limited to): ameliorating speaker quality, interference pattern, speaker position modelling,
singing, conversational audio, lyrical, instrumental audio, etc. Audio data from the use case is then
obtained 602. At least a first and second speakers are then obtained 603. These speakers can be
differing in some way such as quality, interference pattern, position, etc.). Any number of speakers can
be used to train the data. Subsequently, a form of audio is played on a microphone and recorded on
at least two speakers. The form audio is ideally related to the use case (i.e. conversation, music, lyrical,
noise cancellation, instrumental, etc.). The audio signals can be obtained by simultaneously recording
the audio on the two speakers (see 604). As a result, at least two datasets are obtained from the
recording captured by the speakers (see 605 and 606). The differing audio datasets can then be used
as an input for a deep neural network 107 (see 607). The neural network outputs a set of learned
weights for the deep neural network layers (608). Neural network architecture is implemented to learn
processing (609). The learned weights, or learned differences, can then be applied to new audio that
has not been seen by the DNN (610). The new audio may be in the form of a pre-recorded digital
signal or on real-time audio converted to a digital signal. As a result, the new audio, which may be
playing on a lesser quality speaker, or speaker of non-ideal characteristics, may be upgraded to sound

like audio being played on a high quality speaker, or a speaker of ideal characteristics.

[7900] Although the above description includes reference to certain specific embodiments,
various modifications thereof will be apparent to those skilled in the art. Any examples provided herein
are included solely for the purpose of illustration and are not intended to be limiting in any way. Any
drawings provided herein are solely for the purpose of illustrating various aspects of the description
and are not intended to be drawn to scale or to be limiting in any way. The scope of the claims
appended hereto should not be limited by the preferred embodiments set forth in the above description
but should be given the broadest interpretation consistent with the present specification as a whole.

The disclosures of all prior art recited herein are incorporated herein by reference in their entirety.
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WE CLAIM:

1. A method of improving an audio signal comprising:
outputting an audio waveform from a sound source;

capturing the audio waveform from a first microphone and capturing the audio waveform from

a second microphone capsule aligned beside the first microphone; and

sending the captured audio waveforms to a digital audio processing system having a neural

network;

such that the neural network is configured to learn differences between the first audio

waveform and the second audio waveform; and

such that the audio signals processed from the first microphone is differing from the audio

signal processed from second microphone.

2. The method of claim 1, wherein the method further comprises: applying the learned differences
to a third audio waveform recorded from a third microphone; such that the third microphone has similar

characteristics to the first microphone.

3. The method of claim 1 wherein the sound source comprises curated data set consisting of test

signals, representative audio signals.

4, The method of claim 1 wherein the first microphone has a non-ideal set of characteristics, and

the second microphone has an ideal set of characteristics for a specific function.

5. The method of claim 4, wherein the specific function is selected from at least one of the

following: conversation, lyrical, music, noise cancellation, and instrumental function.

6. The method of claim 2, wherein the third microphone is located on a mobile device.

14
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7. The method of claim 6, wherein the third microphone records audio from a telephone

conversation such that the digital audio processing system processes the conversation in real-time.

8. The method of claim 7, wherein the digital audio processing system is located on an application

on the mobile device.

9. The method of claim 1, wherein the method is used for polar pattern translation, wherein the
first microphone comprises a first polar pattern from one of a unidirectional, bidirectional, and
omnidirectional pattern, and the second microphone comprises a second polar pattern, from one of a

unidirectional, bidirectional, and omnidirectional microphone.

10. The method of claim 9, wherein the third microphone comprises the first polar pattern and
wherein the learned differences between the first and second microphone are applied to a third audio

waveform recorded from the third microphone to match the second polar pattern.
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