
(19) United States
US 2010.0058029A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0058029 A1
Li et al. (43) Pub. Date: Mar. 4, 2010

(54) INVOKING MULTI-LIBRARY
APPLICATIONS ON A MULTIPLE
PROCESSOR SYSTEM

Hui Li, Beijing (CN); Hong Bo
Peng, Beijing (CN); Bai Ling
Wang, Weihai (CN)

(75) Inventors:

Correspondence Address:
IBM CORP. (WIP)
fo WALDER INTELLECTUAL PROPERTY
LAW, P.C.
17330 PRESTON ROAD, SUITE 100B
DALLAS, TX 75252 (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(73) Assignee:

(21) Appl. No.: 12/549,505

(22) Filed: Aug. 28, 2009

(30) Foreign Application Priority Data

Aug. 28, 2008 (CN) 200810214486.3

invoke itseats 2

isvaks irasy:
uMaraaa-Wraaaa-si

- -----ax.

----------1a .

y
t -S383 . .

Publication Classification

(51) Int. Cl.
G06F 5/76 (2006.01)
G06F 9/06 (2006.01)

(52) U.S. Cl. 712/30; 712/220; 712/E09.003

(57) ABSTRACT

A mechanism is provided for invoking a multi-library appli
cation on a multiple processor system, wherein the multiple
processor system comprises a Power Processing Element
(PPE) and a plurality of Synergistic Processing Element
(SPE). Applications including multi-libraries run in the
memory of the PPE. The mechanism comprises maintaining
the status of each SPE in the application running on the PPE.
where there are SPE agents for capturing the instructions
from the PPE in the SPEs that have been started. In response
to a request for invoking a library, the PPE determines
whether the number of available SPEs for invoking the library
is adequate based on the current status of SPEs. If the number
of available SPEs is adequate, the PPE sends a run instruction
to selected SPEs. After finishing the invocation of all librar
ies, the PPE sends termination instructions to all started SPEs.
IBM confidential

Patent Application Publication Mar. 4, 2010 Sheet 1 of 5 US 2010/0058029 A1

i.

SE secess

star - S38: SS grocess
t SE

s SE:8: -
- TI - Si

yyyy

al axaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaarakarar

war.

- - - - - - - - -r Seixack}owi&isserts&E

Wsii is 8kiswissisters at Sit s
k r----...saxxxxaaaaarxxxxxx-aa.

inten?ion ree
44Assass

Wait for sizia six striciix is x}} :f Yrs 88.

inexugh reso: Maraaaaaaaaaaaaaaaa-ee
--- $23
---, S388. '

saaa.

respate di: ;isc sexists stic8 to SPE rxxess tie teceives clais
8::::::::::::, resis is

Oaxacao XXXXXXXXX commo

* .
r w 'c'

Frayawasawraa. kukuruxerrerrerwyerereeswwwere

Figure 2

Patent Application Publication Mar. 4, 2010 Sheet 2 of 5 US 2010/0058029 A1

SEE recess :
seawa,

8 sitti
is...Yoo-o-o:

'e SS esviroisiest

arxxxzxzxzxzxxxx xxxx reextrass-a-Yarra

f. - Ys" Wait for data atc. ixistrictics: iro: $3:

skscass site feceisei
sis: axi &isi &sits

Ess'sswy-WWWWWWWWWWWWYYYYYYYYYYYYYYYYYYYYXYYYYYrrx

Saraaaaaaaaaaa. aaaaaaaaaaaaaaa, a
s

*
.

w

-S388 v.
s 'a g savake: iii) say * , w releasara-arease

. re.
so y S. s Process is teceived

S3:S -. 's sista 8ts ex: 'essits
- a---

---ax . Y.
i- --- s w
ry is seves ess . Yi

X --- * &
--- r , .

Y&S
Y.

orms396 r; ' d - .

X

, & S.S. ex: citeit
, ---
V eases Assaxxx xxxaaaaaaa.

is Serciaekakwiedgement
.

N s: X , waii is sistas assi
Y. stricit is 3: S.

*

y o
R. ss. R the received

i
i

R is:
'Mrrearrara

figure 3

Patent Application Publication Mar. 4, 2010 Sheet 3 of 5 US 2010/0058029 A1

38
". S$8 Six it -- {}
i.

- .

- S.43
{reate axi isaintais &c.; Sis sists.
838 &gis is gay invasia:

rat-lara al------aaaaaaaaa-Clar-s-s --

& if it asic is Sixtief
iro S.

------- rest S&S
- Nürnber of SPE rea. - instruction? --

s fig --
Frocess this geceivec
data and retu: fest its

s ----- ---...is exiii Sr. * ar

*\rses : s

r . &riasis a SS
Y&S --------S$ii

--Nisei Yiri wrks w kaaaaaar Need: it w8k & -
^-exists' --

S&c & 3.C. Sta'sitty & SE -

Figare 4

Patent Application Publication Mar. 4, 2010 Sheet 4 of 5 US 2010/0058029 A1

morrorio. star -Si $3utiisi &is 333itixis &act S3 sists, x Stax -
. k y, w and xegi; isatay is vocati: * SSS

r isitiaia & SE assississix it,
s' create:SE agent

sexus-review-eeeeeers-sur

i: i is of &c.
irst cior $8Y $8.

w a.

- iesirisatio: Y
- instruction? r s -r

No a
: rs3:ess the received iais
8:8 ci}{ {3} is

Receive results from SE and giate
S$8; Si3t:S.

arraraaaa-ra-relalelessarrassarayaaaarlaaaaaaaaaa-a-a-a-a-a-ars

S. s
L-L-

sayias & Sis
w w

- Need K. invoke ---
--ext stra:y? -- al r i YA

No s58 X. f

so terraination - S$f 88& S. S.

-M&M-
is

s D-S Narreror

Patent Application Publication Mar. 4, 2010 Sheet 5 of 5 US 2010/0058029 A1

" "

Sisi.

Aysicaix f{}i

Siš status traitsitiis
fixie 632

rassrear

S3 is agent creasis; 3:ydia

insistica:
&:

igi'e
..

US 2010/0058O29 A1

INVOKING MULTI-LIBRARY
APPLICATIONS ON A MULTIPLE

PROCESSOR SYSTEM

BACKGROUND

0001. The present invention generally relates to computer
Software technology and particularly to an invoking multi
library applications on a multiple processor System.
0002. A multiple processor system (MPS) may comprise a
Power Processing Element (PPE) and a plurality of Synergis
tic Processing Elements (SPEs). The PPE and the plurality of
SPEs share the main memory and each SPE has its own
memory. IBM's Cell Broadband Engine is one kind of MPS.
0003 IBM's CBE is a MPS on a single chip, as shown in
FIG. 1, having 9 processing units that share the same main
memory, in which one is a (PPE) and the other eight are
(SPEs). Based on such system architecture, the CBE can
provide terrific system capabilities and CBE overcomes the
three important performance limitations that are on other
MPSs, i.e., power usage, memory usage and processor fre
quency. Therefore, the CBE has been widely used in signal
processing, pattern matching, model building, object deter
mining, mapping, communication, and encryption, etc. CBE
has taken a leading position, especially in High Performance
Computing. For high performance computing or other com
putation sensitive applications, more and more libraries have
been rewritten to be suitable for running on CBE. However,
the running efficiency and development efficiency that mul
tiple libraries run on a single CBE is becoming an obvious
problem.
0004 Each computation sensitive application running on
CBE mainly depends on an SPE to execute computing.
Before an SPE begins to compute, the SPE will create a
system thread and an SPE thread, and then destroy these
threads after the SPE finishes computing. For invoking a
multi-library application, thread creation and destruction has
to be completed when invoking the first library; and the same
applies when invoking the second and follow on libraries.
Thread creation and destruction needs time. For huge com
puting tasks, the time for thread creation and destruction may
not be significant. However, for Small and computation sen
sitive applications that invoke dense libraries, such creation
and destruction will consume a lot of time, which lowers the
efficiency of the whole system and tasks.

SUMMARY

0005. In one illustrative embodiment, a mechanism is pro
vided for invoking a multi-library application on a multiple
processor System. In the illustrative embodiment, the mul
tiple processor System comprises a Power Processing Ele
ment (PPE) and a plurality of Synergistic Processing Ele
ments (SPEs), in a single chip. In the illustrative embodiment,
the multi-library application including multi-libraries that
run in memory on the PPE. The illustrative embodiment
maintains a status of each of the plurality of SPEs in the
multi-library application running on the PPE. In the illustra
tive embodiment, there are SPE agents for capturing instruc
tions from the PPE in each of the plurality of SPEs that have
been started. In response to a request for invoking a library in
the multi-library application, the illustrative embodiment
determines whether a number of available SPEs of the plu
rality of SPEs for invoking the library is adequate based on a
current status of each of the SPEs in the plurality of SPEs.

Mar. 4, 2010

Responsive to the number of available SPEs being adequate,
the illustrative embodiment sends a run instruction to selected
SPEs. After finishing an invocation of all libraries, the illus
trative embodiment sends termination instructions to all of
the Selected SPEs.
0006. In other illustrative embodiments, a computer pro
gram product comprising a computer useable or readable
medium having a computer readable program is provided.
The computer readable program, when executed on a com
puting device, causes the computing device to perform vari
ous ones, and combinations of the operations outlined above
with regard to the method illustrative embodiment.
0007. In yet another illustrative embodiment, a system/
apparatus is provided. The system/apparatus may comprise
one or more processors and a memory coupled to the one or
more processors. The memory may comprise instructions
which, when executed by the one or more processors, cause
the one or more processors to perform various ones, and
combinations of the operations outlined above with regard to
the method illustrative embodiment.
0008. These and other features and advantages of the
present invention will be described in, or will become appar
ent to those of ordinary skill in the artin view of, the following
detailed description of the example embodiments of the
present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0009. The foregoing and other objects, features and
advantages of the invention will be apparent from the follow
ing more particular descriptions of exemplary embodiments
of the invention as illustrated in the accompanying drawings
wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.
0010 FIG. 1 shows the exemplary system diagram of
CBE;
(0011 FIG. 2 shows the PPE and SPE process when invok
ing a library in CBE system in accordance with an illustrative
embodiment;
(0012 FIG.3 shows the PPE and SPE process when invok
ing multi-library in CBE system in accordance with an illus
trative embodiment;
(0013 FIG. 4 shows the PPE and SPE process when invok
ing multi-library in CBE system in accordance with an illus
trative embodiment;
(0014 FIG. 5 shows the PPE and SPE detailed process
when invoking multi-library in CBE system in accordance
with an illustrative embodiment; and
0015 FIG. 6 shows a system for invoking multi-library in
accordance with an illustrative embodiment.

DETAILED DESCRIPTION

0016 Preferred embodiments of the present invention will
now be described more fully hereinafter in more detail with
reference to the accompanying drawings, in which preferred
embodiments of the invention are shown. This invention may,
however, be embodied in different forms and should not be
construed as limited to the embodiments set forth herein.
Rather, these embodiments are provided so that this disclo
sure will be thorough and complete, and will fully convey the
scope of the invention to those skilled in the art.
(0017 Referring to FIG. 2, in which the Power Processing
Element (PPE) and Synergistic Processing Elements (SPE)

US 2010/0058O29 A1

processes for invoking a library in Cell Broadband Engine
(CBE) system is shown in accordance with an illustrative
embodiment. The following steps are in the PPE process. In
step S201, the PPE starts to invoke the SPE process; in step
S202, the PPE creates an operation system thread, and then
sends the instruction of creating an SPE thread to an SPE in
step S203. After sending the instruction, the PPE waits for an
acknowledgement from the SPE in step S204. After the SPE
sends an acknowledgement, the PPE receives the acknowl
edgement and determines whether the resource is adequate in
step S205. If the resource is not adequate, the PPE returns to
step S202, in which the creation of the operating system
thread is continued. If the resource is adequate, the PPE enters
step S206, in which data are prepared and an instruction is
sent to the SPE. In step S207, the PPE waits for the termina
tion of the SPE thread. Once the SPE thread ends, the PPE
releases the corresponding SPE resource, and then in step
S209, the process ends.
0018 FIG. 2 also shows the corresponding SPE process.
In response to the PPE request, the SPE is started in step S210.
The SPE initializes its environment in step S211. In response
to the step S204 in the PPE, the SPE sends the acknowledge
ment to confirm that the initialization has ended. In step S213,
the SPE waits for data and the instruction from the PPE and
then in response to the step S206 in the PPE, the SPE pro
cesses the received data and returns results in step S214. The
SPE process ends in step S215.
0019. From FIG. 2, those skilled in the art know that once
the PPE invokes a library, the PPE needs to create an operat
ing system thread and instruction to create an SPE thread, and
needs to release this kind of resource after invoking.
0020 Now referring to FIG. 3, in which the PPE and SPE
processes for invoking a multi-library application in a CBE
system is shown in accordance with an illustrative embodi
ment. In FIG. 3, the PPE starts its process in step S301. The
PPE will invoke a multi-library application, here we suppose
that N libraries will be invoked. In step S302, library 1 is
invoked. The SPE process is the same as the SPE process
shown in FIG. 2. And in step S303, library 2 is invoked. . . .
and in step S304, library N is invoked. The PPE process in
each library invocation is the same as the PPE process in FIG.
2, and the SPE process in each library invocation is the same
as the SPE process in FIG. 2. In step S305, the PPE deter
mines whether the problem has been solved, i.e. whether all
libraries that should be invoked have been invoked. If yes, the
PPE enters step S306, in which the PPE process ends. Other
wise, the PPE continues to invoke libraries, here, library 1 is
shown as an example. Comparing FIG. 3 with FIG. 2, one of
ordinary skill in the art would understand that for every
library invocation, the step of creating operating system
thread (S202) and the step of instructing to create SPE thread
(S203) are repeated from the PPE perspective. And the step of
initializing the SPE environment and step of destroying the
SPE thread are repeated from the SPE perspective. All these
processes and the communication established between PPE/
SPE consume a lot of time. Although the time may not be
significant for huge computing tasks, the required time may
not be ignored for those Small and computation sensitive
applications. The processes of frequently creating and
destroying threads consume a lot of time and lower the effi
ciency of the whole system and tasks.
0021. The core idea of the illustrative embodiments is that,
when invoking a multi-library application, the processes of
creating and destroying threads are cancelled. The created

Mar. 4, 2010

thread is kept until all the libraries are invoked and instructed
by the PPE to terminate. With the illustrative embodiments,
the process of frequently creating and destroying threads may
be avoided, thus the efficiency of the whole system and tasks
may be improved.
(0022 FIG. 4 shows the PPE and SPE process for invoking
multi-library in a CBE system in accordance with an illustra
tive embodiment. The process presents a method for invoking
multi-library applications on a multiple processor System,
wherein the multiple processor system comprises a Power
Processing Element (PPE) and a plurality of Synergistic Pro
cessing Element (SPE). Applications including multiple
libraries run in the memory of the PPE. In step S400, the PPE
process starts and then in step S402, status of each SPE are
maintained in the application running on the PPE, wherein
there are SPE agents in the SPEs that have been started, for
capturing the instructions from the PPE. The function of SPE
agents will be described in detail later. In step S406, the PPE
checks the status of each SPE. In step S408, the PPE deter
mines, based on the current status of each SPE, whether the
number of available SPEs is adequate for invoking the library.
If the number of available SPEs is adequate, the PPE sends a
run instruction to selected SPEs in Step S410. In step S412,
the PPE receives results that SPE has processed. Then in step
S414, the PPE checks whether there is a need to invoke the
next library. The PPE will not send the termination instruction
to all started SPEs until all libraries have been invoked, as
shown in step S416. Each SPE corresponding process is: the
SPE waits for a run instruction or a termination instruction
from the PPE in step S422, and the PPE determines the type
of instruction in step S424. If the instruction is not a termi
nation instruction, the SPE processes according to the run
instruction in step S426, i.e., processing data and returning
results. If the instruction is a termination instruction, the SPE
terminates itself in step S428.
0023 Thus, in this illustrative embodiment, the PPE deter
mines how many SPEs may support current library invocation
by maintaining the status of each SPE. Only when the number
of the current SPEs that are in IDLE status is not adequate, the
SPEs that have not been started will be started, such that the
SPEs do not need to be created and destroyed frequently.
(0024 Turning to FIG. 5, in which the PPE and SPE pro
cess for invoking multi-library applications in a CBE System
in accordance with an illustrative embodiment, is shown in
detail. In step S500, the PPE process starts. And in step S501,
the PPE establishes and maintains the status of each SPE. The
status of each SPE includes BUSY, IDLE, and NOT
STARTED, where the NOT STARTED status denotes that the
SPE has not been started; the BUSY status denotes that the
SPE has been started and is executing tasks; and the IDLE
status denotes that the SPE has been started and is not execut
ing tasks. The status of each SPE may be stored in cache or
memory, and may be updated according to the status change
of each SPE so that the latest status could be maintained.
When the library begins to be invoked, in step S502, the PPE
creates an operation system thread first, and then sends out an
instruction to an SPE to create an SPE thread. The SPE agent
that receives the instruction from the PPE determines the type
of instruction. Then the PPE waits for an acknowledgement
from the SPE to confirm that above operations have been done
in step S504. After receiving the acknowledgement, the PPE
checks the status of each SPE in step S505 and determines
whether the number of available SPEs is adequate for invok
ing the library in step S506. In the determination process, the

US 2010/0058O29 A1

number of required SPEs for invoking the current library is
determined first based on current SPE status; and then the
number of SPEs in IDLE status is determined; if the number
of SPEs that are in IDLE status is more than the number of
required SPEs for invoking the current library, then the num
ber of available SPEs for invoking the library is adequate. If
the number of available SPEs for invoking the library is
adequate, the PPE sends the task of invoking the library to
selected SPEs. That is, the SPEs that are in IDLE status. There
may be a plurality of current SPEs that are in IDLE status, and
there may be many methods to select SPEs, for example, to
select SPEs randomly, or according to SPE sequence number,
or any other methods known to those skilled in the art. After
selection, the PPE sends the run instruction to the selected
SPEs in step S507, and then updates the SPE status as BUSY.
When the PPE receives the result from the SPEs, the PPE
updates the SPE status as IDLE in step S508. Then the PPE
determines whether there is a need to invoke the next library
in step S509. If needed, the PPE process returns to step s505.
If the number of available SPEs for invoking the library is not
adequate, more SPEs need to be started. In more detailed
description, the PPE process returns to Step S502 from Step
S506, in which another SPE is started. If all SPEs have been
started, the process has to wait in step S506. If all the libraries
have been invoked, the PPE sends a termination instruction,
in step S510, to all SPEs started, and waits for the termination
of all SPE threads in step S511. After all SPE threads are
terminated, the PPE releases the resource of each SPE in step
S512. Then the PPE process ends in step S513.
0025 Referring to FIG.5 again, a responding SPE process

is also shown, in which an SPE is started in Step S514. In step
S515, in response to the PPE request, the SPE initializes its
environment and creates an SPE agent to capture the PPE
instruction and determine the type of instruction. Then the
SPE sends an acknowledgement that the SPE initialization
process has ended in step S516. When the SPE agent begins to
run in step S517, the SPE agent will capture a run instruction
or termination instruction. In the existing technology, there is
no such kind of agent, so the SPE termination is not controlled
by the PPE. That is, after the SPE finishes its task, the SPE
will be terminated and the PPE is notified automatically. In
the illustrative embodiments, the objective is to control the
SPE by the PPE by creating such SPE agent in the SPE. The
SPE agent, for capturing the instructions from the PPE.
executes the following steps: receiving an instruction from
the PPE; determining whether the instruction is a termination
instruction or a run instruction; if the instruction is a termi
nation instruction, terminating the SPE; if the instruction is a
run instruction, instructing the SPE to execute the instruction.
That is, to process the received data and send the result back
in response to the PPE request.
0026. Based on the same illustrative embodiment concept,
there is provided a system for invoking multi-library applica
tions on a multiple processor System. Referring to FIG. 6, a
system for invoking multi-library applications is shown in
accordance with an illustrative embodiment. The system for
invoking multi-library applications on a multiple processor
system comprises a Power Processing Element (PPE) and a
plurality of Synergistic Processing Element (SPE), e.g. 600
1,600-2,..., 600-N. Application 601 includes multi-libraries
(M libraries) running in the memory of the PPE. The M
libraries are shown as 6001, 6002. . . , 600M in FIG. 6. The
PPE also comprises SPE status maintaining module 602, for
maintaining the status of each SPE in the application of PPE;

Mar. 4, 2010

SPE agent creating module 603, for creating an SPE agent for
capturing instructions from the PPE; and instruction sending
module 604, in response to a request for invoking a library, for
determining whether the number of available SPEs for invok
ing the library is adequate based on the current status of each
SPE. If the number of available SPEs is adequate, the PPE
sends a run instruction to selected SPEs. After finishing the
invocation of all libraries, the PPE sends a termination
instruction to all SPEs started, wherein the SPEs started com
prise the SPE agents for capturing the instructions from the
PPE.

(0027. When the SPEs are instructed to start by the PPE, the
SPE status maintaining module 602 in the PPE creates and
maintains the status of each SPE. The SPE status includes
BUSY, IDLE, and NOT STARTED, wherein the NOT
STARTED status denotes that the SPE has not been started;
the BUSY status denotes that the SPE has been started and is
executing tasks; and the IDLE status denotes that the SPE has
been started and is not executing tasks. The status of each SPE
may be stored in cache or memory, and may be updated
according to status changes of SPEs such that the latest SPE
status is maintained.

(0028. When the library begins to be invoked, PPE600
creates an operation system thread first, then the SPE agent
creating module 603 instructs the SPE to create an SPE agent,
which receives instructions from the PPE and determines the
type of the instructions. Then PPE 600 waits for the acknowl
edgement from the SPE to confirm that the above operations
have been done. After receiving the acknowledgement, PPE
600 checks the status of each SPE with the SPE status main
taining module 602. And the instruction sending module 604
determines whether the number of available SPEs for invok
ing the library is adequate. In the determination process, the
instruction sending module 604 first determines the number
ofrequired SPEs for invoking the current library based on the
current SPE status, and then determines the number of SPEs
that are in IDLE status; if the number of SPEs that are in IDLE
status are more than the number of required SPEs for invoking
the current library, then the number of available SPEs for
invoking the library is adequate. If the number of available
SPEs for invoking the library is adequate, the instruction
sending module 604 sends the task of invoking the library to
selected SPEs. That is, the SPEs in IDLE status. There may be
a plurality of current SPEs that are in IDLE status, and there
may be many methods to select SPEs, for example, to select
SPEs randomly, or according to an SPE sequence number, or
any other methods known to those skilled in the art, etc. After
selection, the instruction sending module 604 sends the run
instruction to the selected SPEs, and then the SPE status
maintaining module 602 updates the SPE status as BUSY
status. When the PPE receives the result from an SPE, the SPE
status maintaining module 602 updates the SPE status as
IDLE status. Then the instruction sending module 604 deter
mines whether there is a need to invoke the next library, if
needed, the SPEs that are in NOT STARTED status will be
started. If the number of available SPEs for invoking the
library is not adequate, more SPEs need to be started. If all
SPEs have been started, the process waits. If all the libraries
have been invoked, the instruction sending module 604 sends
a termination instruction to all SPEs started, and waits until
the termination of all SPE threads. After all SPE threads are
terminated, the instruction sending module 604 releases the
resource of each SPE, and the PPE process ends.

US 2010/0058O29 A1

0029. There is a corresponding SPE process, in which SPE
responses to the PPE request, initializes SPE environments
and creates an SPE agent for capturing PPE instructions and
determining the type of the instructions. Then, the SPE sends
the acknowledgement that the SPE initialization process has
ended. When the SPE agent begins to run, the SPE agent will
capture the run instruction or termination instruction. In the
existing technology, there is no such kind of agent, so the SPE
termination is not controlled by the PPE, that is, after the SPE
finishes its task, the SPE will be terminated and the PPE is
notified automatically. In the illustrative embodiments, the
objective to control SPEs by the PPE is obtained by creating
such SPE agent in the SPEs. The SPE agent for capturing the
instructions from the PPE executes the following steps:
receiving an instruction from the PPE; determining whether
the instruction is a termination instruction or a run instruc
tion; if the instruction is a termination instruction, terminating
the SPE; if the instruction is a run instruction, instructing the
SPE to execute the instruction, that is to process the received
data and send the result back in response to the PPE request.
0030 A point should be made that the modules in the
system of the illustrative embodiments may be implemented
by hardware circuitry Such as Very Large Scale Integrated
Circuit or gate array, semiconductors such as logic chips and
transistors, or programmable hardware devices such as field
programmable gate array, programmable logic device, or by
Software executing on various types of processors, or by the
combination of above hardware circuitry and software.
0031. The present invention also provides a program prod
uct, which comprises the program code implementing the
above methods and medium for storing the program code.
The medium is a tangible computer readable storage medium
having the program code, which may also be referred to as a
computer readable program, recorded thereon.
0032. Although the illustrative embodiments have been
described herein with reference to the accompanying draw
ings, it is to be understood that the present invention is not
limited to those precise embodiments, and that various other
changes and modifications may be affected therein by one of
ordinary skill in the related are without departing from the
Scope or spirit of the invention. All Such changes and modi
fications are intended to be included within the scope of the
invention as described by the appended claims.

1. A method for invoking a multi-library application on a
multiple processor system, wherein the multiple processor
system comprises a First Processing Element (FPE) and a
plurality of Other Processing Elements (OPEs), in a single
chip, the multi-library application including multi-libraries
that run in memory on the FPE, comprising:

maintaining a status of each of the plurality of OPEs in the
multi-library application running on the FPE, wherein
there are OPE agents for capturing instructions from the
FPE in each of the plurality of OPEs that have been
started;

in response to a request for invoking a library in the multi
library application, determining, by the FPE, whether a
number of available OPEs of the plurality of OPEs for
invoking the library is adequate based on a current status
of each of the OPEs in the plurality of the OPEs:

responsive to the number of available OPEs being
adequate, sending by the FPE, a run instruction to
selected OPEs; and

Mar. 4, 2010

after finishing an invocation of all libraries, sending, by the
FPE, termination instructions to all of the selected
OPES.

2. The method as recited in claim 1, wherein the FPE is a
Power Processing Element and the OPEs are a Synergistic
Processing Element wherein the OPEs have a different
instruction set from the FPE.

3. The method as recited in claim 1, wherein in response to
invoking a library, responsive to determining that the number
of available OPEs for invoking the library is not adequate,
starting more OPEs by the FPE.

4. The method as recited in claims claim 3, wherein the
status of the plurality of OPEs include BUSY. IDLE, and
NOT STARTED, wherein the NOT STARTED status denotes
that the OPE has not been started, wherein the BUSY status
denotes that the OPE has been started and is executing tasks,
and wherein the IDLE status denotes that the OPE has been
started and is not executing tasks.

5. The method as recited in claim 4, wherein starting the
OPE by the FPE, comprises:

starting by the FPE, the OPE and creating an OPE thread:
and

instructing, by the FPE, the started OPEs to create OPE
agents for capturing the instructions from the FPE.

6. The method as recited in claim 4, wherein the step of the
FPE determining whether the number of available OPEs for
invoking the library is adequate further comprises:

determining a number of required OPEs for invoking the
current library;

determining a number of OPEs that are in IDLE status; and
if the number of OPEs that are in IDLE status is more than

the number of required OPE for invoking the current
library, then determining that the number of available
OPEs for invoking the library is adequate.

7. (canceled)
8. The method as recited in claim 1, wherein the OPEs are

selected either randomly or according to an OPE sequence
number.

9. The method as recited in claims 6, whereinafter sending
a run instruction to selected OPEs that are in IDLE status,
updating the OPE status as BUSY status.

10. The method as recited in claim 1, wherein the OPE
agent for capturing the instructions from the FPE executes the
following steps:

receiving an instruction from the FPE;
determining whether the instruction is a termination

instruction or a run instruction;
if the instruction is run instruction, instructing the OPE to

execute the instruction and send the result back; and
if the instruction is termination instruction, terminating the
OPE.

11. A multiple processor system for invoking a multi
library application, wherein the multiple processor System
comprises a First Processing Element (FPE) and a plurality of
Other Processing Elements (OPEs), on a single chip, the
multi-library application including multi-libraries that run in
memory on the FPE, the system comprising:

a FPL, comprising:
a OPE status maintaining module, for maintaining status of

each of the plurality of OPEs in the multi-library appli
cation running on the FPE;

OPE agent creating module, for creating an OPE agent to
capture instructions from the FPE;

US 2010/0058O29 A1

instruction sending module, for determining whether the
number of available OPEs for invoking a library is
adequate based on the current status of each of the OPEs
in the plurality of OPEs:

responsive the available OPE number being adequate, the
FPE for sending a run instruction to selected OPEs; and

after finishing an invocation of all libraries, the FPE for
sending a termination instruction to all of the selected
OPEs,

wherein the OPEs that have been started comprising the
OPE agents for capturing the instructions from FPE.

12. The system as recited in claim 11, wherein if the
instruction sending module determines that the number of
available OPEs for invoking the library is not adequate, more
OPEs are started by the FPE.

13. The system as recited in claim 11, wherein the OPEs
have a different instruction set from the FPE.

14. The system as recited in claim 12, wherein the status of
OPE includes BUSY, IDLE, and NOT STARTED, wherein
the NOT STARTED Status denotes that the OPE has not been
started, wherein the BUSY status denotes that the OPE has
been started and is executing tasks, and wherein the IDLE
status denotes that the OPE has been started and is not execut
ing tasks.

15. The system as recited in claim 14, wherein the FPE
starts one or more OPEs and creates an OPE thread for each
OPE; and then the OPE creating module instructs the started
OPEs to create OPE agents for capturing the instructions
from the FPE.

16. The system as recited in claim 14, wherein the instruc
tion sending module determines whether the number of avail
able OPEs for invoking the library is adequate by:

determining a number of required OPE for invoking the
current library;

determining a number of OPEs that have been started and
are in IDLE status;

if the number of OPEs that have been started and are in
IDLE status is more than the number of required OPE for
invoking the current library, then the number of available
OPEs for invoking the library is adequate.

17. (canceled)
18. The system as recited in claims 16, wherein the OPEs

are selected either randomly or according to OPE sequence
number.

19. The system as recited in claims 16, wherein after send
ing run instruction to selected OPEs that are in IDLE status,
the instruction sending module updates the OPE status as
BUSY Status.

Mar. 4, 2010

20. The system as recited in claims 11, wherein the OPE
agent for capturing the instructions from the FPE executes:

receiving an instruction from the FPE;
determining whether the instruction is a termination

instruction or a run instruction;
if the instruction is run instruction, instructing the OPE to

execute the instruction and send the result back;
if the instruction is termination instruction, terminating the
OPE.

21. A program product comprising a computer readable
storage medium having a computer readable program
recorded thereon, wherein the computer readable program,
when executed on a computing device, causes the computing
device to:

maintain a status of each of a plurality of Other Processing
Elements (OPEs) in a multi-library application running
on a First Processing Element (FPE), wherein there are
OPE agents for capturing instructions from the FPE in
each of the plurality of OPEs that have been started;

in response to a request for invoking a library in the multi
library application, determine whether a number of
available OPEs of the plurality of OPEs for invoking the
library is adequate based on a current status of each of
the OPEs in the plurality of OPEs:

responsive to the number of available OPEs being
adequate, send a run instruction to selected OPEs; and

after finishing an invocation of all libraries, send termina
tion instructions to all of the selected OPEs.

22. The program product as recited in claim 21, wherein in
response to invoking a library, responsive to determining that
the number of available OPEs for invoking the library is not
adequate, the computer readable program further causes the
computing device to start more OPEs by the FPE, wherein the
status of the plurality of OPEs include BUSY. IDLE, and
NOT STARTED, wherein the NOT STARTED status denotes
that the OPE has not been started, wherein the BUSY status
denotes that the OPE has been started and is executing tasks,
wherein the IDLE status denotes that the OPE has been
started and is not executing tasks, and wherein the computer
readable program to start the OPE by the FPE, further causes
the computing device to:start the OPE and create a OPE
thread; and

instruct the started OPEs to create OPE agents for captur
ing the instructions from the FPE.

c c c c c

