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A digital twin data model driven high-performance virtual
simulation method and system, including: based on a prod-
uct design process, paying attention to variable operating
conditions or variable product structures to obtain three
kinds of data relevant to a design product, relevant products,
or operating conditions: sensor data, mechanism simulation
data, and fusion data obtained by correcting the mechanism
simulation data with the sensor data; processing the obtained
data, reversely resolving a running mechanism according to
a data driven algorithm, and building a data model driven
high-performance virtual simulation model; and based on
new operating conditions of the design product or improved
new products, calling the built data model driven high-
performance virtual simulation model to obtain the virtual
simulation results. The method and system can be used for
performance analysis and prediction on design products
instead of modeling simulation and physical experiments.
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DIGITAL TWIN DATA MODEL DRIVEN
HIGH-PERFORMANCE VIRTUAL
SIMULATION METHOD AND SYSTEM

[0001] The present invention claims the priority of the
Chinese Patent Application 202211272262.4 filed to the
China National Intellectual Property Administration on Oct.
18, 2022, and entitled “DIGITAL TWIN DATA MODEL
DRIVEN HIGH-PERFORMANCE VIRTUAL SIMULA-
TION METHOD AND SYSTEM”, which is incorporated
herein by reference in its entirety.

TECHNICAL FIELD

[0002] The present invention belongs to the technical field
of industrial equipment intelligentization and digitization,
and in particular to a digital twin data model driven high-
performance virtual simulation method and system.

BACKGROUND

[0003] The description in this section merely provides
background information related to the present invention and
does not necessarily constitute the related art.

[0004] As is well-known, in order to verify the perfor-
mance of new products during design, formation, and opti-
mization and improvement stages, it is necessary to perform
product validation experiments by simulating product run-
ning environment. However, physical experiments have
high verification cost and time cost. Particularly for product
design with complicated structures and complicated operat-
ing conditions, accurate simulation of the real product
running condition through sample piece physical tests for
conducting performance evaluation is limited by economic
and manual experiment cost sometimes, and has poor imple-
mentation. In recent years, with the development of numeri-
cal simulation and computer performance, a computer simu-
lation technology has become an effective tool for
performing experiment verification instead of sample piece
physical experiments.

[0005] At present, according to a method adopted by the
computer simulation technology, product physical experi-
ment conditions are simulated by using simulation software,
and product performance characterization virtual simulation
results are obtained through digital simulation, and are used
for evaluating/verifying the product performance. However,
the requirement on the computer performance is high in the
whole process of a conventional digital simulation method,
and simulation solution periods are long. Particularly, during
the product iterative optimization design and analysis on the
product performance under continuous running conditions,
the simulation calculation is complicated, the duration of the
simulation period is generally very long and is difficult to
estimate, and such a condition occurs even in a high-
performance computer cluster. At present, a method for
solving the above problem is to build reduced-order models
to shorten the simulation solution time by reducing the
dimension of the state space model. However, the solution
time reduction by the method is limited, the precision loss is
difficult to control, and moreover, the method is not appli-
cable to all simulation software. Additionally, during the
product iterative optimization design and analysis of the
design product performance under continuous running con-
ditions, the problem of long simulation period of the per-
formance verification evaluation cannot be still fundamen-
tally solved.
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[0006] With the development of a new generation of
information technology, an effective method is provided for
the product virtual performance verification through the
appearance of a digital twin (DT) concept. The DT is
considered as an effective enabling measure for realizing
cyber-physical fusion, and is considered as a simulation
technology integrating multiple-disciplinary, multiple-
physical quantity, multiple-scale, and multiple-probability,
and digital system implementation factors include three
parts: a mechanism model, a data model, and an algorithm
model. Through the DT technology, reliable data informa-
tion may be obtained from product DT models or a physical
space, and the application algorithm model is used, which
provides the possibility for carrying out product design
performance verification.

[0007] Based on the above, how to utilize the DT tech-
nology to fast obtain the virtual experiment data similar to
the digital simulation or physical simulation experiment/
running experiment during the product design stage, realize
product performance prediction and analysis, and accelerate
the product forward design and iteration is a challenge for
performing virtual experiment verification at present.

SUMMARY

[0008] In order to overcome the defects in the related art,
the present invention provides a DT data model driven
high-performance virtual simulation method and system.
The method and system are applicable to two situations,
including product iterative optimization design and perfor-
mance analysis of the design product under continuous
running conditions. Mechanism models of relevant prod-
ucts/design product are built by using a DT technology. One
or more of the mechanism simulation data, running moni-
toring data or physical experiment simulation data and
fusion data that characterize product performance are
obtained. Then, a single data or fusion data driven high-
performance virtual simulation model is built for a simula-
tion requirement. Product mechanism models are reversely
resolved according to a data driven algorithm, so as to
achieve running mechanism simulation and performance
evaluation of the physical space required by the same type
of design products or design under different operating con-
ditions, replacing modeling simulation or physical experi-
ments, conducting design product performance analysis and
prediction, and shortening the time for design product per-
formance verification.

[0009] In order to achieve the above objective, one or
more embodiments of the present invention provide the
following technical solutions:

[0010] In a first aspect, the present invention provides a
DT data model driven high-performance virtual simulation
method.

[0011] The DT data model driven high-performance vir-
tual simulation method includes:

[0012] based on a product design process, paying atten-
tion to variable operating conditions or variable product
structures to obtain three kinds of data relevant to a
design product, relevant products, or operating condi-
tions: sensor data, mechanism simulation data, and
fusion data obtained by correcting the mechanism
simulation data with the sensor data;

[0013] processing the obtained data, reversely resolving
the running mechanism according to the data driven
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algorithm, and building a data model driven high-
performance virtual simulation model;

[0014] based on new operating conditions of the design
product or improved new products, calling the built
data model driven high-performance virtual simulation
model to obtain virtual simulation results; and

[0015] analyzing performance of design product under
new operating conditions or new products according to
the virtual simulation results to provide feedback guid-
ance for product design.

[0016] In a second aspect, the present invention provides
a DT data model driven high-performance virtual simulation
system.

[0017] The DT data model driven high-performance vir-
tual simulation system includes:

[0018] a data obtaining module, configured to: based on
a product design process, pay attention to variable
operating conditions or variable product structures to
obtain three kinds of data relevant to a design product,
relevant products, or operating conditions: sensor data,
mechanism simulation data, and fusion data obtained
by correcting the mechanism simulation data with the
sensor data;

[0019] a model building module, configured to: process
the obtained data, reversely analyze the running mecha-
nism according to the data driven algorithm, and build
a data model driven high-performance virtual simula-
tion model;

[0020] a wvirtual simulation result obtaining module,
configured to: based on new operating conditions of the
design product or improved new products, call the built
data model driven high-performance virtual simulation
model to obtain virtual simulation results; and

[0021] afeedback guidance module, configured to: ana-
lyze performance of design product under new operat-
ing conditions or new products according to the virtual
simulation results to provide feedback guidance for
product design.

[0022] In a third aspect, the present invention provides a
computer-readable storage medium, storing a program. The
program implements the steps of the DT data model driven
high-performance virtual simulation method according to
the first aspect of the present invention when being executed
by a processor.

[0023] In a fourth aspect, the present invention provides
an electronic device, including a memory, a processor, and
a program stored on the memory and capable of running on
the processor. The processor implements the steps of the DT
data model driven high-performance virtual simulation
method according to the first aspect of the present invention
when executing the program.

[0024] The above one or more technical solutions have the
following beneficial effects:

[0025] The present invention utilizes the DT technology,
builds design or relevant product mechanism models and
data model driven high-performance virtual simulation
model, obtains simulation data, sensor data and fusion data,
performs digital simulation solution for new products or new
operating conditions from a data driven aspect to obtain the
running mechanism and perform performance evaluation,
thereby solving the problems of high cost of the physical
experiment and long solution time of computer simulation,
and favoring accelerating the product forward performance
verification.
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[0026] The present invention utilizes the DT technology,
obtains use process sensor data, physical experiment sensor
data, or simulation data of multi-field DT mechanism mod-
els of the design product under discrete operating conditions
or fusion data of the above data that characterize product
performance for the discrete operating conditions of the
design product, drives the high-performance virtual simula-
tion model to analyze the physical space running mechanism
and digital simulation running mechanism of the design
product under the discrete operating conditions, and ana-
lyzes the performance of the design product under continu-
ous operating conditions.

[0027] The present invention utilizes the DT technology,
obtains the use process sensor data, physical experiment
sensor data or simulation data of multi-field DT mechanism
models of relevant products under the same operating con-
dition or the fusion data of the above data that characterize
product performance for the variable product structures of
the same operating condition, drives the high-performance
virtual simulation model to analyze the physical space
running mechanism and digital simulation running mecha-
nism of the relevant products under the same operating
condition, and promotes the optimization iteration design of
the design product.

[0028] The present invention utilizes one or more of three
kinds of data including the simulation data, the sensor data
and the fusion data to build the data model driven high-
performance virtual simulation model, which can replace
modeling simulation or physical experiment for perfor-
mance analysis and prediction of the design product, so that
the product performance verification time is shortened, and
the product forward design and iteration is accelerated.
[0029] The advantages in additional aspects of the present
invention will be set forth in part in the description below,
parts of which will become apparent from the description
below, or will be understood by the practice of the present
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] The accompanying drawings constituting a part of
the present invention are used to provide a further under-
standing of the present invention. The exemplary examples
of the present invention and descriptions thereof are used to
explain the present invention, and do not constitute an
improper limitation of the present invention.

[0031] FIG. 1 is a flowchart of a method according to
Embodiment 1 of the present invention.

[0032] FIG. 2 is a flowchart of a building process of
multi-field DT models according to Embodiment 1 of the
present invention.

[0033] FIG. 3 is a flowchart of a process of correcting
simulation data by using sensor data according to Embodi-
ment 1 of the present invention.

[0034] FIG. 4 is a flowchart showing a building process of
a DT data model driven high-performance virtual simulation
system according to Embodiment 1 of the present invention.
[0035] FIG. 5 is a flowchart of virtual simulation (perfor-
mance verification prediction and analysis) of a design
product according to Embodiment 1 of the present inven-
tion.

[0036] FIG. 6 is a flowchart of product virtual simulation
(performance prediction and analysis) based on a constant
operating condition according to Embodiment 1 of the
present invention.



US 2024/0184940 A1

[0037] FIG. 7 is a flowchart of product virtual simulation
(performance prediction and analysis) based on a constant
design product according to Embodiment 1 of the present
invention.

[0038] FIG. 8 is a schematic structural diagram of
Embodiment 2 of the present invention.

[0039] FIG. 9 is a schematic diagram of a Junker test
experiment according to Embodiment 1 of the present
invention.

[0040] FIG. 10 is a variation curve diagram of preload
with a number of cycles under different transverse vibration
amplitudes in a physical experiment according to Embodi-
ment 1 of the present invention.

[0041] FIG. 11 is a profile diagram of a thread cross
section according to Embodiment 1 of the present invention.
[0042] FIG. 12 is a flowchart of constructing the hexahe-
dral mesh finite element model of a bolted joint according to
Embodiment 1 of the present invention.

[0043] FIG. 13 is a diagram for the bolted joint DT model
according to Embodiment 1 of the present invention.

[0044] FIG. 14 is a variation curve diagram of preload
with the number of cycles under different transverse vibra-
tion amplitudes according to Embodiment 1 of the present
invention: (a) digital simulation (b) data fitting.

[0045] FIG. 15 is a digital simulation data organization
diagram according to Embodiment 1 of the present inven-
tion: (a) for given IP and VA (b) for 33 combinations
between [P and VA (c) all data testing data and training data.
[0046] FIG. 16 is a structural diagram of the bolted joint
preload Rapid Virtual Simulation Model (RVSM) according
to Embodiment 1 of the present invention.

[0047] FIG. 17 is a schematic diagram of evaluation
metrics variation with epochs according to Embodiment 1 of
the present invention: (a) MSE (b) MAE (c) MSLE.

[0048] FIG. 18 is a partial comparison diagram between
the RVSM-based and digital simulation results under trans-
verse vibration amplitudes ranging from 0.4 mm to 0.45 mm
according to Embodiment 1 of the present invention: (a)
31.79 KN, 0.41 mm (b) 34.23 KN, 0.44 mm (c) 36.68 KN,
0.43 mm.

DETAILED DESCRIPTION

[0049] It should be noted that, the following detailed
descriptions are all exemplary, and are intended to provide
further descriptions of the present disclosure. Unless other-
wise specified, all technical and scientific terms used herein
have the same meanings as those usually understood by a
person of ordinary skill in the art to which the present
disclosure belongs.

[0050] It should be noted that the terms used herein are
merely used for describing specific implementations, and are
not intended to limit exemplary implementations of the
present disclosure.

[0051] The embodiments in the present invention and
features in the embodiments may be mutually combined in
case that no conflict occurs.

Embodiment 1

[0052] This embodiment discloses a DT data model driven
high-performance virtual simulation method.
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[0053] As shown in FIG. 1, the DT data model driven
high-performance virtual simulation method includes:

[0054] based on a product design process, attention is
paid to variable operating conditions or variable prod-
uct structures to obtain three kinds of data relevant to
the design product, relevant products, or operating
conditions: sensor data, mechanism simulation data,
and fusion data obtained by correcting the mechanism
simulation data with the sensor data;

[0055] the obtained data is processed, the running
mechanism is reversely resolved according to the data
driven algorithm, and a data model driven high-perfor-
mance virtual simulation model is built;

[0056] based on new operating conditions of the design
product or improved new products, the built data model
driven high-performance virtual simulation model is
called to obtain virtual simulation results; and

[0057] performance of design product under new oper-
ating conditions or new products is analyzed according
to the virtual simulation results to provide feedback
guidance for product design.

[0058] In data obtaining, based on a product design pro-
cess, attention is paid to variable operating conditions or
variable product structures to obtain three kinds of data
relevant to a design product, relevant products, or operating
conditions: the sensor data, obtained through the product use
process or physical experiment relevant to the product
design; the mechanism simulation data, obtained by building
multi-field DT models of relevant or design product and
performing mechanism simulation on the relevant or design
product and running conditions; and the fusion data,
obtained by correcting the simulation data with the sensor
data through a data correction algorithm.

[0059] In data driven modeling, one or more of the three
kinds of data are processed, and the processed data is further
concluded to a database. Then, relying on the data driven
algorithm, through one or more of the three kinds of data, the
running mechanism is reversely resolved according to an
operating condition set or a product model set to build a data
model driven high-performance virtual simulation model.
[0060] In virtual simulation, according to requirements of
designers, based on new operating conditions of the design
product or improved new products, the built data model
driven high-performance virtual simulation model is called,
product performance characterization virtual simulation
results similar to digital simulation or a physical experiment
are obtained, the performance of the design product under
new operating conditions or new products is analyzed
according to the simulation result, and feedback guidance is
provided for product design.

[0061] The sensor data is obtained from the existing
physical experiment relevant to the design product or the
product running process, and has an effect of replacing
simulation data or correcting simulation data. By consider-
ing the limitation of practical application scenarios, not all
design products have the conditions for sensing physical
data. Therefore, the sensor data is not available in all
applications.

[0062] A reason for using a data fusion method is as
follows: the quantity of the performance characterization
sensor data obtained in practical process/physical experi-
ment is small, but a great amount of performance charac-
terization data is needed for building the data model driven
high-performance virtual simulation model. Therefore,
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according to data correction algorithms, the performance
characterization data obtained by mechanism simulation is
corrected through the obtained performance characterization
sensor data, so that the performance characterization data is
more accurate, and the fusion data is obtained. The data
correction algorithms include a particle swarm optimization
(PSO) algorithm, a genetic algorithm, and an ant colony
algorithm.

[0063] In a product high-performance virtual simulation
process, the amount of product performance characterization
data samples obtained through physical experiment/product
practical running/DT mechanism model simulation respec-
tively performed by focusing the above two situations needs
to be great enough. Only in this way, the three kinds of
obtained data can meet the requirement of respectively
building the high-performance virtual simulation model in
both cases.

[0064] As shown in FIG. 2, a building process of the
multi-field DT models of relevant products or design prod-
uct is as follows:

[0065] based on a product design process, attention is
paid to variable operating conditions or variable prod-
uct structures, and twin parameters related to the prod-
uct design in physical space are mapped, and are
respectively the same operating condition of the rel-
evant and design product and the structure attribute of
relevant products, and the design product per se and
variable operating conditions of the design product;

[0066] multi-field relevant products DT models under a
constant operating condition or multi-field design prod-
uct DT models under discrete operating conditions
including different systems such as a mechanical sys-
tem, a control system and an electromagnetic system
are built based on modeling tools, model correction
algorithms, and the mapped twin parameters.

[0067] The model correction mainly refers to the correc-
tion on the model twin parameters, and includes global
optimization, local optimization, and combined optimization
on the model by using model correction algorithms such as
Bayesian and the genetic algorithm.

[0068] As shown in FIG. 3, a specific process of correcting
the simulation data by the product performance character-
ization sensor data is as follows:

[0069] according to the variable operating conditions or
variable product structures relevant to product design,
a small amount of sensor data in the product use
process/physical experiment and the mechanism simu-
lation result of multi-field DT models of design or
relevant products are obtained, and the DT model
building theory is converted into a state space model;

[0070] a proper model correction algorithm is selected,
and a correction threshold is set according to applica-
tion requirements. Moreover, the sensor data is set to be
an observation equation of the data model correction
process, the state model is fused into a state equation of
the correction algorithm, and the obtained mechanism
simulation result is used as an internal value of the
correction algorithm;

[0071] the obtained mechanism simulation data is input
into the model correction algorithm to output result
data, the performance of the design product or relevant
products is evaluated, the distribution trends of the
sensor data, the simulation data, and the result data are
compared, and whether the result data meets the set
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threshold condition or not is analyzed. If the result data
meets the set threshold, the fusion/correction data is
outputted, and if the result data does not meet the set
threshold, the model correction algorithm is selected
again for iteration.
[0072] As shown in FIG. 4, a specific building process of
a DT data model driven high-performance virtual simulation
system is as follows:

[0073] the sensor data of the physical experiment/prod-
uct use process based on the constant operating con-
dition or design product, the mechanism simulation
result data of the built multi-field DT models of rel-
evant products or design product, and the fusion data
obtained through the data correction algorithm are
obtained;

[0074] one or more of the three kinds of data are
processed, and the processed data is further concluded
to a database for subsequent data mining;

[0075] from an aspect of big data, the processed data is
stored into a database for order management and rel-
evant data organization;

[0076] the product design condition of the variable
operating conditions or variable product structures is
set, a regression algorithm is selected and trained
according to multi-type multi-index and multi-dimen-
sion product data, and the data model driven high-
performance virtual simulation model is built.

[0077] The data processing may include data preprocess-
ing, data expansion, feature extraction, and feature selection,
the feature extraction and the feature selection are selec-
tively determined according to the data driven algorithm,
which is unnecessary, and the data expansion is expansion
on the magnitude of the simulation data through the algo-
rithm

[0078] The data model driven high-performance virtual
simulation model is a data regression black box model built
using regression algorithms with the product design condi-
tion as input and the performance characterization data as
output. The regression algorithm includes CNN, ANN,
SVM, etc.

[0079] The data model driven high-performance virtual
simulation model built according to the application require-
ment for the constant operating condition or design product
is multifunctional. For example, the virtual simulation
analysis on the variable product structures stress and strain
under the same operating condition only needs to build a
data model driven high-performance virtual simulation
model for stress and strain, so that the improved product
performance analysis is supported.

[0080] As shown in FIG. 5, an implementation process of
design product virtual simulation (performance prediction
and analysis) is as follows:

[0081] based on the design product’s new operating
conditions or new improved products, a regression
model driven by the data model for the constant oper-
ating condition or constant design product is respec-
tively called, and the virtual simulation results similar
to the digital simulation/physical experiment/running
experiment are outputted;

[0082] the performance of the design product is further
analyzed and predicted by data methods such as sta-
tistical analysis, data visualization, and interpolation
processing to guide the product design.
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[0083] Specifically, based on the virtual simulation (prod-
uct performance verification) under the constant operating
condition, as shown in FIG. 6, firstly, the sensor data of
relevant products under the constant operating condition is
obtained based on the existing physical experiment/running
experiment, the mechanism simulation of relevant products
is performed to obtain the mechanism simulation data, and
moreover, the fusion data is obtained based on the data
correction algorithm. Then, the high-performance virtual
simulation model is built based on one or more of the above
three product performance characterization data. Finally,
virtual simulation data of the improved new product is
predicted, and the performance of the improved new product
is analyzed through statistical analysis, data visualization,
etc.

[0084] Specifically, based on the virtual simulation (prod-
uct performance verification) of the constant design product,
as shown in FIG. 7, firstly, the sensor data of the design
product under the variable operating conditions is obtained
based on the existing physical experiment/running experi-
ment, the mechanism simulation on variable operating con-
ditions is performed to obtain the mechanism simulation
data, and moreover, the fusion data is obtained based on the
data correction algorithm. Then, the high-performance vir-
tual simulation model is built based on one or more data in
the three above product performance characterization data.
Finally, the virtual simulation data under new operating
conditions is deduced, the data is fused into the product
performance characterization data through statistical analy-
sis, interpolation processing, etc., and the performance of the
design product under continuous operating conditions is
analyzed.

[0085] As mentioned above, the high performance virtual
simulation method driven by the digital twin data model
provided in this embodiment is applicable to the iterative
optimization design of the product and the analysis of the
performance of the design product under continuous oper-
ating conditions, that is, the embodiment is aimed at the two
conditions of variable operating conditions or variable prod-
uct structures. Next, a DT data-driven product performance
rapid virtual simulation method for variable operating con-
ditions is proposed in this embodiment.

[0086] According to evaluating a critical loosening load of
a bolted joint, the effectiveness and operability of the DT
data-driven product performance rapid virtual simulation
method for variable operating conditions are verified.

[0087] The bolted joint operating conditions description
are as follows:
[0088] The form of external load on the bolt is complex

and generally equivalent to cyclic load: force and displace-
ment. The external cyclic load displacement can be
expressed as follows:

A=, sin(wr) 7 (6]

[0089] Where A, is a maximum value of displacement
amplitude, ® is an angular velocity and the relationship
between the angular velocity and frequency fis expressed as
follows.

w2mnf 2)

[0090] It is found that both vibration amplitude and fre-
quency are factors that affect bolted joint loosening failure,
but amplitude is the main factor. Therefore, in this embodi-
ment, the 8.8 M12*55 bolt is selected as the research object,
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and the transverse load displacement amplitude is set
according to the vibration conditions. The key parameters of
the bolt are: the thread diameter is 12 mm, the pitch is 1.75
mm, the total length is 55 mm, the thread length is 30 mm,
and the bolt head diameter is 20mm.

Product Performance Rapid Virtual Simulation
Approach Driven by DT Data for Critical
Loosening Load Evaluation of Bolted Joint

[0091] To make the DT data-driven product performance
rapid virtual simulation method for variable operating con-
ditions better serve critical loosening load evaluation of the
bolted joint, the following will introduce in detail from twin
data acquisition of bolted joint under different operating
conditions, twin data-driven preload Rapid Virtual Simula-
tion Model (RVSM) construction for critical loosening load
evaluation of bolted joint, and critical loosening load-rapid
evaluation of bolted joint based on RVSM.

Twin Data Acquisition for Bolted Joint under
Different Operating Conditions

[0092] Digital simulation data of the bolted joint under
different operating conditions are selected as the data source
for application verification, and a small amount of sensor
data is obtained to provide characteristic information for the
construction of bolted joint DT models.

(1) Sensor Data Acquisition for Bolted Joint under
Different Operating Conditions

[0093] Inthe embodiment, a limited amount of sensor data
is obtained through the physical experiment. As shown in
FIG. 9, a fastener transverse vibration test device (Junker
test equipment) is utilized. During the test process, a sample
clamping device fixes the bolt and nut, and a servo-tighten-
ing device applies a set initial preload to the bolt and nut.
Then, a transverse displacement is set, and a transverse
vibration applied to the bolted joint is generated by an
amplitude adjustment device. Meanwhile, three sensors are
used to monitor transverse force, preload, and transverse
displacement. As a loss of preload directly reflects a degree
of bolt loosening, a variation of preload with a number of
cycles is selected as performance characterization data in
this embodiment. Three test conditions are set. At the same
time, to ensure the effectiveness of the data, each condition
is tested three times. Experiment results are shown in FIG.
10.

[0094] The conditions such as amplitude (A), cycles,
frequency, and initial preload set in the physical experiment
are twin information to construct DT models of the bolted
joint under different operating conditions. However, in this
embodiment, in addition to setting the transverse vibration
amplitude as a condition variable, the influence of initial
preload on the critical loosening load of the bolted joint is
also considered, and initial preload is also a condition
variable. In this embodiment, only partial vibration ampli-
tude under one initial preload is set, and the variation results
of preload under different initial preloads are not obtained.
The detailed operating conditions for the loosening analysis
of the bolted joint are described in the acquisition of digital
simulation data.

[0095] From FIG. 10, it can be seen that an increase in
vibration amplitude has a significant influence on the varia-
tion of preload during bolt loosening. The experiment results



US 2024/0184940 A1

are in line with theoretical expectations, and the obtained
sensor data are feasible. The sensor data is further used for
constructing the high-fidelity DT model of bolted joint.

(2) Digital Simulation Data Acquisition for Bolted
Joint under Different Operating Conditions

[0096] To respond to physical experimental scenarios and
obtain digital simulation data on the variation of preload
with the number of cycles under different transverse vibra-
tion amplitudes, this embodiment uses an Abaqus and a
HyperMesh modeling software to construct the bolted joint
DT models. With reference to the Junker experiment, the DT
model of the bolted joint comprises four parts: an upper
connected part, a lower connected part, a bolt, and a nut.
[0097] During the process of constructing DT models,
considering the influence of thread rising angle on the
loosening of the bolted joint, a hexahedral finite element
modeling method proposed by Fukuoka is utilized to con-
struct the fine model of the bolted joint. In this method, a
thread cross section along a bolt axis is shown in FIG. 11(a),
and the cross section profile of an external thread perpen-
dicular to the bolt axis is shown in FIG. 11(b). A equation
expression of the external thread profile is as follows.

d 7 P2 (&)
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[0098] Where P is an external thread pitch, p is a root
radius of the external thread, and d and H are a nominal
diameter and thread overlap. In addition, an internal thread
profile has the same characteristics and can be expressed by
a similar mathematical equation, which is no further elabo-
ration here.

[0099] Based on the above methods, in this embodiment,
a process of fine finite element model of the bolted joint is
constructed by HyperMesh software, as presented in FIG.
12, and a specific procedure is as follows.

[0100] (a) Firstly, a one-pitch hollow mesh model of the
external thread is constructed using HyperMesh and
MATLAB software. MATLAB is mainly used to cal-
culate a node information of the external thread using
the above equation. Then, a structured hexahedral mesh
is generated by the stretching method to fill a hollow
area of a bolt core, and the one-pitch thread fine finite
element model is constructed, as shown in FIG. 12(a).

[0101] (b) The one-pitch fine finite element model of
the external thread is translated and copied to construct
the threaded part fine finite element model, as shown in
FIG. 12(b). Assuming that a length of the threaded part
is H and one pitch is h, then copy times are H/h.

[0102] (c) A actual geometric dimensions of a screw
(without thread) and a bolt head are established. Then,
based on a bolt core mesh model, the mesh is smoothed
onto the screw and head in a common node manner, and
the fine finite element model of a remaining part of the
bolt is constructed, as shown in FIG. 12(c).
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[0103] (d) A threaded part model and the remaining bolt
part model are assembled and fused, and the bolt fine
finite element model is constructed, as shown in FIG.
12(d).

[0104] (e) A nut fine finite element model is created in
the same way, as shown in FIG. 12(e).

[0105] (f) The geometric dimensions of the upper and
lower connected parts are established, which are 35
mmx35 mmx20.5 mm, and mesh divisions of the
connected parts are carried out. Then, the constructed
bolt model, nut model, and upper and lower connected
part model are assembled and fused, and the hexahedral
mesh finite element model of the bolted joint is con-
structed, as shown in FIG. 12(f).

[0106] Then, the fine finite element model of the bolted
joint built above is imported into Abaqus software. Subse-
quently, twin information is set, such as material properties
and operating conditions, to simulate actual physical experi-
ment scenarios. The bolt and nut are considered elastic-
plastic models, and connected parts are considered elastic
models. The friction coefficient between the internal and
external thread is set to 0.15, while that of the other parts is
0.1. At the same time, the preload is applied to the bolted
joint with the rotation angle method, which is variable. The
lower connected part remains fixed, and the upper connected
part is subjected to the transverse load in the form of
displacement. The displacement function is equation (1),
where the vibration amplitude is variable, and f is 12.5 Hz.
Finally, the DT model of the bolted joint is constructed and
presented in FIG. 13.

[0107] For the verification of the DT model of the bolted
joint, variation results of preload obtained by experiment
test and digital simulation are compared. First, with refer-
ence to the experiment conditions set above, the constructed
DT model of the bolted joint is solved in the Abaqus
software, the number of transverse loading cycles is 15, and
digital simulation data under three conditions are acquired.
The digital simulation results are shown in FIG. 14(a). Then,
curve fitting is carried out on the simulation results in
MATLAB software, followed by a similar operation imple-
mented in the first 15 cycles of experiment results. Data
fitting results are shown in FIG. 14 (b).

[0108] It shows that there is good consistency between the
experiment result and the digital simulation result. To quan-
titatively analyze the error between the two results, a devia-
tion percentage of a preload decrease value is used as an
evaluation index, expressed as follows.

AP, — AP, (CH]
T AP,

[0109] Where AP, represents the preload decrease in digi-
tal simulation, AP, represents the preload decrease in the
experiment. D_, is the deviation between the simulated
preload decrease value and the experimental preload
decrease value. In this embodiment, the initial preload is P,
the preload after 15 cycles is P, and the preload decrease
is AP=P,—P,s.

[0110] At the same time, the deviation between them
calculated by equation (4) is about 11%, which is acceptable.
Therefore, the accuracy of the DT model is verified. The set
parameters will serve as necessary twin information for
constructing DT models of the bolted joint under different
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operating conditions (different initial preload and different
transverse vibration amplitudes) here.

[0111] To obtain sufficient digital simulation data, the
vibration amplitude and initial preload are listed in detail
here. The variation amplitude of the bolted joint ranges from
0.1 mm to 0.6 mm, where the increment value between each
digital simulation is 0.05 mm. There are three different
initial preloads, which are 31.79 KN, 34.23 KN, and 36.68
KN. Finally, 33 bolted joint DT models are constructed and
simulated in Abaqus, including three models constructed
above FIG. 14. Then, 33 sets of digital simulation data are
acquired, which will be utilized to construct the twin data-
driven bolted joint preload RVSM.

Twin Data-Driven Preload RVSM Realization for
Critical Loosening Load Evaluation of Bolted Joint

[0112] An Artificial Neural Network (ANN) is selected as
a data-driven algorithm to construct the bolted joint preload
RVSM. The twin data-driven preload RVSM for critical
loosening load evaluation of the bolted joint is realized in
this section. The whole process is carried out in Jupyter
Notebook, in which the Python language is used. The
following will briefly describe the realization process.

(a) Determination of an Output Variable and an Input
Variable

[0113] As mentioned above, the initial preload and trans-
verse vibration amplitude are variable, and the variation of
preload with the number of cycles is the performance
characterization data. Therefore, the variation of preload is
dominated by these two condition variables. At the same
time, the variation of preload is closely related to the number
of cycles. Therefore, the input variables of the ANN model
are initial preload (IP), transverse vibration amplitude (VA),
and transverse vibration loading cycles (L.C), while the
output variable is preload variation (PV).

(b) Digital Simulation Data Organization and Processing

[0114] For digital simulation data organization, each oper-
ating condition for a given initial preload and vibration
amplitude corresponds to a CSV file, which presents the
above four-dimensional variables, as depicted in FIG. 15(a).
Since 3 types of initial preload and 11 types of vibration
amplitude are set, 33 digital simulations are conducted in
Abaqus software to obtain 33 sets of digital simulation data
related to the initial preload and vibration amplitude, as
shown in FIG. 15(b). The data points of each operating
condition are 200. Finally, all data related to different
operating conditions from different CSV files are organized
into one file, as illustrated in FIG. 15(c), with the support of
the Pandas library. Since the dataset gathered in this embodi-
ment is not considered big data, data organization is not
performed by a database.

[0115] For digital simulation data processing, to improve
the effectiveness of ANN model training, the data organized
is normalized by a MinMaxScaler function, which can map
all data to the range of [0, 1]. At the same time, it is
necessary to divide the data into training data and testing
data. Thus, data splitting is achieved by a train_test_split
function, which can randomly divide all data. For the
embodiment, a ratio of training data to testing data is 8:2,
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and random_state is 2022. Digital simulation data normal-
ization and splitting are both done by calling a Sklearn
library.

(c) Bolted Joint Preload RVSM Structure Construction

[0116] The preload RVSM structure for (ANN regression
model) is constructed by a Sequential model, which is
composed of five fully connected layers (dense/hidden
layer) and a output layer (dense layer). For this model,
except for the output layer, a ReLLU is used as an activation
function in each layer. As the input layer, a first layer
contains 218 neurons and accepts three input variables. Next
four fully connected layers have 218, 64,32, and 16 neurons,
respectively. In a last layer (output layer), there is only one
neuron, which is used to output the regression results (an
output variable), and the activation function is linear. The
preload RVSM structure construction is done by calling a
TensorFlow 2.5.0 library. The structure of bolted joint
preload RVSM based on the ANN network is shown in FIG.
16.

[0117] Further, the model is compiled. A loss function is a
mean square error (MSE), and an adaptive moment estima-
tion (Adam) is selected as the optimizer to update param-
eters. In addition, a mean absolute error (MAE), a mean
square logarithmic error (MSLE), and the MSE are desig-
nated as evaluation metrics.

(d) Bolted Joint Preload RVSM Training and Testing Based
on Digital Simulation Data

[0118] After building the bolted joint preload RVSM
structure, a fit method is used to train the model.

[0119] The variation of evaluation metrics with epochs is
listed in FIG. 17. It can be seen that after 131 epochs, these
metrics stabilize, indicating that training the model requires
131 epochs. In addition, the training time takes 27.3 s.
Meanwhile, during both model training and validation, three
evaluation metrics decrease with increasing the number of
epochs. Moreover, as one of evaluation indicators, MSE also
serves as the loss function, thus showing a similar trend.
Overall, the validation results demonstrate that the model
has a good generalization performance.

[0120] After the training, the model performance is evalu-
ated by using test data. The loss function and evaluation
metrics of the model are calculated. The obtained results are
LOSS=9.4557¢-04, MAE-0.0205, MSE=9.4557e-04, and
MSLE=3.7634e-04. The evaluation metrics perform well,
demonstrating the feasibility of the constructed bolted joint
preload RVSM. Later, it will be used to rapidly predict the
variation of preload under new operating conditions, thereby
promoting the rapid estimation of the critical loosening load
of the bolted joint.

Critical Loosening Load Rapid-Evaluation of
Bolted Joint Based on RVSM

[0121] As can be seen from the above, the bolted joint
preload RVSM can be used to rapidly predict the variation
result of preload with the number of cycles under new
operating conditions. In this embodiment, the critical loos-
ening load of the bolted joint can be determined rapidly
based on the constructed RVSM.

[0122] Firstly, to preliminarily measure a loosening degree
of the bolt, a decreasing rate of preload for 33 sets of digital
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simulation results obtained above is calculated. The results
are shown in Table 1. The decreasing rate of preload is
expressed as follows.

P 5
D%:a—ﬁ)xloo ©)
0

[0123] where Py is also the initial preload value and P, 5 is
also the preload value after 15 cycles.

[0124] It can be seen from the Table 1 that the preload of
the bolted joint shows a decreasing trend under different
vibration amplitudes. At the same time, for the three differ-
ent initial preloads, when the vibration amplitude is less than
or equal to 0.4 mm, after 15 vibration cycles, the decreasing
rate of preload is all not more than 10%, and the variation
of decreasing rate between adjacent amplitudes is all around
2%. However, when the amplitude is transitioned from 0.4
mm to 0.45 mm, the decreasing rate of preload reaches over
10%, and the variation of the decreasing rate significantly
increases. Therefore, for the three different initial preloads,
the transverse vibration amplitude corresponding to the
critical loosening load of the bolted joint should be between
0.4 mm and 0.45 mm.

TABLE 1

Decreasing results of preload under different transverse
vibration amplitudes and initial preloads

VA Decreasing rate of preload (%)
Case (mm) 31.79 KN 34.23 KN 36.68 KN
1 0.1 0.5% 0.6% 1.0%
2 0.15 2.5% 2.4% 1.7%
3 0.2 4.1% 3.8% 4.0%
4 0.25 52% 53% 4.8%
5 0.3 6.6% 7.2% 6.3%
6 0.35 8.3% 8.1% 7.2%
7 0.4 9.1% 9.1% 7.9%
8 045 13.6% 12.6% 11.4%
9 0.5 15.0% 14.5% 13.1%
10 0.55 22.1% 21.6% 19.5%
11 0.6 25.6% 24.7% 21.4%

[0125] Further, to quickly determine the transverse vibra-
tion amplitude corresponding to the critical loosening load
of the bolted joint, the simulation experiment of bolt loos-
ening with the vibration amplitudes ranging from 0.4 mm to
0.45 mm is performed based on the constructed RVSM.
Firstly, for three different initial preload conditions, the
amplitude is subdivided into 0.41 mm, 0.42 mm, 0.43 mm,
and 0.44 mm, resulting in the generation of 12 new operating
conditions. Then, to obtain the variation of preload with the
number of cycles, it is necessary to specify the number of
cycles. Thus, the same number of vibration cycles as the
digital simulation, which is 15 cycles, is chosen. Conse-
quently, for each of the 12 operating conditions, there are
200 data points. Finally, the bolted joint preload RVSM is
utilized, by inputting 12 new operating conditions variables
into the RVSM, including three initial preload values, 12
transverse vibration amplitudes, and 15 cycles (200 data
points), and the variation results of preload with the number
of cycles for three initial preload conditions are predicted by
RVSM. The RVSM-based predictions and digital simulation
results for three initial preload conditions are shown in FIG.
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18, with FIG. 18(a) 31.79 KN, 0.41 mm, FIG. 18() 34.23
KN, 0.44 mm, and FIG. 18(c) 36.68 KN, 0.43 mm.
[0126] Similar to previous findings, under different trans-
verse amplitude conditions ranging from 0.4 mm to 0.45
mm, the preload of the bolted joint shows a decreasing trend.
To ultimately determine the transverse vibration amplitude
corresponding to the critical loosening load from the loos-
ening degree of the bolt, the decreasing rate of preload is
further calculated, and the results are shown in Table 2.

TABLE 2

Decreasing results of preload under transverse vibration amplitudes
ranging from 0.4 mm to 0.45 mm and three initial preloads

VA Decreasing rate of preload (%)

Case (mm) 31.79 KN 34.23 KN 36.8 KN
1 0.41 9.3% 9.4% 8.4%
2 042 9.5% 9.7% 8.6%
3 043 11.6% 11.1% 10.3%
4 0.44 12.1% 11.8% 10.8%

[0127] It can be seen that, for the three different initial
preloads, when the vibration amplitude exceeds 0.42 mm,
the decreasing rate of preload exceeds 10%. Additionally,
when the amplitude increases from 0.42 mm to 0.43 mm, the
variation of decreasing rate exceeds 1%. In contrast, the
variation of decreasing rate between adjacent amplitudes in
other ranges is within 1%. Therefore, the vibration ampli-
tude corresponding to the critical loosening load should be
between 0.42 mm and 0.43 mm. From the practical safety
perspective, it is advisable to select a smaller vibration
amplitude. Therefore, for the three different initial preloads,
the transverse load corresponding to an amplitude of 0.42
mm is the critical loosening load of the bolted joint in this
embodiment.

Application Result Analysis for Product
Performance Rapid Virtual Simulation Approach
Driven by DT Data for Variable Operating
Conditions

[0128] From FIG. 18, it can be seen that RVSM-based
predictions have a similar trend to digital simulation
(Abaqus simulation) results. To more intuitively evaluate the
rapidity and accuracy of the DT data-driven product perfor-
mance rapid virtual simulation method in determining the
critical loosening load of the bolted joint, for the 12 variable
operating conditions, the RVSM-based results are compared
with the digital simulation results. A mean relative error
(MRE) is selected as the evaluation indicator. In addition,
the computational cost of two methods for solving the 12
cases is calculated. The results are shown in Table 3.

TABLE 3

Comparison results between RSM-based and digital
simulation for the 12 new operating conditions

P VA Data RSM Abaqus MRE

Case (KN) (mm) points prediction(s)  simulation(h) (%)
1 31.79 041 200 =].0s =1042 h 0.79
2 042 0.91
3 043 0.93
4 0.44 0.76
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TABLE 3-continued

Comparison results between RSM-based and digital
simulation for the 12 new operating condition

1P VA Data RSM Abaqus MRE

Case (KN) (mm) points prediction(s) simulation(h) (%)
5 3423 041 0.29

6 042 0.68

7 043 0.86

8 0.44 0.62

9 36.68 041 0.86
10 042 0.75
11 043 0.82
12 0.44 0.88

[0129] As can be seen in Table 3, in terms of accuracy, for
12 new operating conditions, the MRE between RVSM-
based results and digital simulation results is within 1%,
which indicates that the bolted joint preload RVSM con-
structed has an accuracy of up to 99% for predicting the
variation of preload with the number of cycles under vari-
able operating conditions. In terms of rapidity, RVSM is
approximately 37512 times faster than Abaqus. Compared
with the Abaqus calculation, after the model training, the
RVSM can rapidly respond to new operating conditions,
predict the variation of preload with the number of cycles,
and further facilitate accurate and rapid determination of the
transverse vibration amplitude corresponding to the critical
loosening load. Therefore, the proposed product perfor-
mance rapid virtual simulation method driven by DT data for
variable operating conditions is feasible for rapidly and
accurately evaluating the critical loosening load of the
bolted joint.

Embodiment 2

[0130] This embodiment discloses a DT data model driven
high-performance virtual simulation system.

[0131] As shown in FIG. 8, the DT data model driven
high-performance virtual simulation system includes:

[0132] a data obtaining module, configured to: based on
a product design process, pay attention to variable
operating conditions or variable product structures to
obtain three kinds of data relevant to a design product,
relevant products, or operating conditions: sensor data,
mechanism simulation data, and fusion data obtained
by correcting the mechanism simulation data with the
sensor data;

[0133] a model building module, configured to: process
the obtained data, reversely resolve running mechanism
according to the data driven algorithm, and build a data
model driven high-performance virtual simulation
model,;

[0134] a virtual simulation result obtaining module,
configured to: based on new operating conditions of the
design product or improved new products, call the built
data model driven high-performance virtual simulation
model to obtain virtual simulation results; and

[0135] a feedback guidance module, configured to: ana-
lyze performance of design products under new oper-
ating conditions or new products according to the
virtual simulation results to provide feedback guidance
for product design.
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Embodiment 3

[0136] This embodiment is directed to provide a com-
puter-readable storage medium.

[0137] The computer-readable storage medium stores a
computer program. The program implements the steps of the
DT data model driven high-performance virtual simulation
method according to Embodiment 1 of the present invention
when being executed by a processor.

Embodiment 4

[0138] This embodiment is directed to provide an elec-
tronic device.
[0139] The electronic device includes a memory, a pro-

cessor, and a program stored on the memory and capable of
running on the processor. The processor implements the
steps of the DT data model driven high-performance virtual
simulation method according to Embodiment 1 of the pres-
ent invention when executing the program.
[0140] Each step and method involved in the device
according to Embodiment 2, Embodiment 3, and Embodi-
ment 4 correspond to Embodiment 1, and references may be
taken to relevant descriptions in Embodiment 1 for the
specific implementations. The term “computer-readable
storage medium” should be understood as a single medium
or multiple media including one or more instruction sets, and
should be also be understood to include any medium capable
of storing, encoding or carrying instruction sets executed by
a processor and enabling the processor to perform any one
method of the present invention.
[0141] It should be understood by those skilled in the art
that each module or each step of the present invention can
be implemented by a general-purpose computer device.
Optionally, they may be implemented by using program
codes executable by a computing device, so that they may be
stored in a storage device to be executed by the computing
device, or they may be respectively made into individual
integrated circuit modules, or multiple modules or steps in
them may be made into a single integrated circuit module for
implementation. The present invention is not limited to any
specific combination of hardware and software.
[0142] The specific implementations of the present inven-
tion are described above with reference to the accompanying
drawings, but are not intended to limit the protection scope
of the present invention. A person skilled in the art should
understand that various modifications or deformations may
be made without creative efforts based on the technical
solutions of the present invention, and such modifications or
deformations shall fall within the protection scope of the
present invention.
1. A digital twin (DT) data model driven high-perfor-
mance virtual simulation method, comprising:
based on a product design process, paying attention to
variable operating conditions or variable product struc-
tures to obtain three kinds of data relevant to a design
product, relevant products, or operating conditions:
sensor data, mechanism simulation data, and fusion
data obtained by correcting the mechanism simulation
data with the sensor data; processing the obtained data,
reversely resolving the running mechanism according
to the data driven algorithm, and building a data model
driven high-performance virtual simulation model;
based on new operating conditions of the design product
or improved new products, calling the built data model
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driven high-performance virtual simulation model to
obtain virtual simulation results; and

analyzing performance of the design product under new

operating conditions or new products according to the
virtual simulation results to provide feedback guidance
for product design.

2. The DT data model driven high-performance virtual
simulation method according to claim 1, wherein the sensor
data is obtained through the product use process or the
physical experiment relevant to the product design; the
mechanism simulation data is obtained by building multi-
field DT models of relevant products or the design product
and performing mechanism simulation on the relevant prod-
ucts or the design product and running conditions; and the
fusion data is obtained by correcting the simulation data
with the sensor data.

3. The DT data model driven high-performance virtual
simulation method according to claim 2, wherein the build-
ing multi-field DT models of relevant products or the design
product specifically comprises:

based on a product design process, paying attention to

variable operating conditions or variable product struc-
tures and mapping twin parameters related to the prod-
uct design in physical space; and building multi-field
relevant product DT models under the constant oper-
ating condition or multi-field design product DT mod-
els under discrete operating conditions based on mod-
eling tools, model correction algorithms, and the
mapped twin parameters.

4. The DT data model driven high-performance virtual
simulation method according to claim 2, wherein the opera-
tion that the fusion data is obtained by correcting the
simulation data with the sensor data specifically comprises:

based on data correction algorithms, correcting the per-

formance characterization simulation data obtained by
mechanism simulation through a small amount of
obtained performance characterization sensor data, the
data correction algorithms comprising the particle
swarm optimization (PSO) algorithm, the genetic algo-
rithm, and the ant colony algorithm.

5. The DT data model driven high-performance virtual
simulation method according to claim 1, wherein the pro-
cessing the obtained data, reversely resolving the running
mechanism according to the data driven algorithm, and
building a data model driven high-performance virtual simu-
lation model specifically comprises:

performing data processing on one or more of sensor data,

mechanism simulation data, and fusion data to obtain
data processing result, selecting a regression algorithm,
training the regression algorithm based on the data
processing result, and building the data model driven
high-performance virtual simulation model.
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6. The DT data model driven high-performance virtual
simulation method according to claim 5, wherein the data
model driven high-performance virtual simulation model is
a data regression black box model built through the regres-
sion algorithm with the product design condition of variable
operating conditions or variable product structures as input
and performance characterization data as output, and the
regression algorithm comprises CNN, ANN, and SVM.

7. The DT data model driven high-performance virtual
simulation method according to claim 1, wherein the sensor
data, the mechanism simulation data, the fusion data, and the
virtual simulation results are all multi-type multi-index and
multi-dimension data, and the data model driven high-
performance virtual simulation model built for constant
operating conditions or design product is multifunctional.

8. A DT data model driven high-performance virtual
simulation system, comprising:

a data obtaining module, configured to: based on a prod-
uct design process, pay attention to variable operating
conditions or variable product structure conditions to
obtain three kinds of data relevant to a design product,
relevant products, or operating conditions: sensor data,
mechanism simulation data, and fusion data obtained
by correcting the mechanism simulation data with the
sensor data;

a model building module, configured to: process the
obtained data, reversely resolve running mechanism
according to the data driven algorithm, and build a data
model driven high-performance virtual simulation
model,;

a virtual simulation result obtaining module, configured
to: based on new operating conditions of the design
product or improved new products, call the built data
model driven high-performance virtual simulation
model to obtain virtual simulation results; and

a feedback guidance module, configured to: analyze per-
formance of the design product under new operating
conditions or new products according to the virtual
simulation results to provide feedback guidance for
product design.

9. A computer-readable storage medium, storing a pro-
gram, wherein the program implements the steps of the DT
data model driven high-performance virtual simulation
method according to claim 1 when being executed by a
processor.

10. An electronic device, comprising a memory, a pro-
cessor, and a program stored on the memory and capable of
running on the processor, the processor implementing the
steps of the DT data model driven high-performance virtual
simulation method according to claim 1 when executing the
program.



