a2 United States Patent

US011860907B2

ao) Patent No.: US 11,860,907 B2

Zhang et al. 45) Date of Patent: *Jan. 2, 2024
(54) SHUFFLE-LESS RECLUSTERING OF (56) References Cited
CLUSTERED TABLES U.S. PATENT DOCUMENTS
(71) Applicant: Google LLC, Mountain View, CA (US) 0.607.019 BL* 32017 SWift oo GOGF 16/2462
. 2011/0302226 A1 12/2011 Abadi et al.
(72) Inventors: Hua Zhang, Mountaln.\/“lew, CA (US); 2014/0344221 A1* 11/2014 Novik ..oovevveve.... GO6F 16/2379
Pavan Edara, Mountain View, CA 707/633
(CUAS)(;UDST?an Nguyen, Mountain View, (Continued)
. o FOREIGN PATENT DOCUMENTS
(73) Assignee: Google LL.C, Mountain View, CA (US)
CN 110100242 A 8/2019
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 0 days.
Thi . bi inal di International Search Report for the related Application No. PCT/
1 15 patent 1s subject to a termunal dis- (jg3071/026932, dated Apr. 12, 2021, 102 pages.
claimer. .
(Continued)
(21) Appl. No.: 17/817,147 Primary Examiner — Anhtai V Tran
(22) Filed: Aug. 3, 2022 (74) Attorney, Agent, or Firm — Honigman LLP; Brett A.
: .3,
Krueger
(65) Prior Publication Data (57) ABSTRACT
US 2022/0374455 Al Nov. 24, 2022 A method for shuffle-less reclustering of clustered tables
includes receiving a first and second group of clustered data
Related U.S. Application Data blocks sorted by a clustering key value. A range of clustering
o o key values of one or more the data blocks in the second
(63) Continuation of application No. 16/848,810, filed on group overlaps with the range of clustering key values of a
Apr. 14, 2020, now Pat. No. 11,436,261. data block in the first group. The method also includes
generating split points for partitioning the first and second
(1) Int. Cl. groups of clustered data blocks into a third group. The
Go6l’ 16/00 (2019.01) method also includes partitioning using the split points, the
GO6F 16/28 (2019.01) first and second groups into the third group. Each data block
GO6l 21/64 (2013.01) in the third group includes a range of clustering key values
(52) US. CL that do not overlap with any other data block in the third
CPC .o GO6F 16/285 (2019.01); GO6F 21/64 group. Each split point defines an upper limit or lower limit
(2013.01) for the range of clustering key values a data block in the third
(58) Field of Classification Search group.

None
See application file for complete search history.

20 Claims, 8 Drawing Sheets

v/-1300

BLOCK SETS SORTED

RECEIVING A FIRST GROUP OF CLUSTERED DATA

BY A CLUSTERING KEY
302

RECEIVING A SECOND GROUP OF CLUSTERED DATA
BLOCK SETS SORTED BY THE CLUSTERING KEY

304

PARTITIONING THE FIRST

GENERATING ONE OR MORE SPLIT POINTS FOR

CLUSTERED DATA BLOCK SETS INTQ ATHIRD
GROUP OF CLUSTERED DATA BLOCK SETS 306

AND SECOND GROUPS OF

PARTITIONING, USING THE ONE ORE MORE
GENERATED SPLIT PONITS, THE FIRST AND SECOND
GROUP OF CLUSTERED DATA BLOCK SETS INTO THE

THIRD GROUP OF CLUSTERED DATA BLOCK SETS

US 11,860,907 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2017/0046394 Al 2/2017 Skidanov et al.

OTHER PUBLICATIONS

Azza Abouzied et al.: “Invisible loading” , Extending Database
Technology, ACM, 2 Penn Plaza, Suite 701 New York, NY 10121-
0701 USA, Mar. 18, 2013 (Mar. 18, 2013), pp. 1-10, XP058014223,
DOI: 10.1145/2452376.2452377 ISBN: 978-1-4503-1597-5 p. 2,
right-hand col. paragraph 1—p. 6, left-hand col. paragraph I; figure
1, 12 pages.

* cited by examiner

US 11,860,907 B2

Sheet 1 of 8

Jan. 2, 2024

U.S. Patent

l Old

08l Jsuonied
%90lIg eled

u-eglLe ‘0Le
Jssl egsl

0/1 Jojelausn)
Julod yids

Jalaisnppay Yoolg eyeq

Bg8G1

< e

.

\

u-eysl ‘vl o
2=—~ 285
651 ~J \
u-egg 1 hww_«

: | 2101S EleQ
<N2Nm:, = -.|) w001 erea

ZMV/
sxo0|g ejeq

ovl

US 11,860,907 B2

Sheet 2 of 8

Jan. 2, 2024

U.S. Patent

V¢ Old

Gl SNEAMOOIG Bled

\\ lllllllllllllllllllllllllll N\
_ I
| 525l 3251 J251 I
assh ~y ¥oo|g eleq oolg eleQ oolg Bleq “
\
//||)|||\:||\|||KHH|/|\|I|IU ||| T T ’
u-eoyG| u-edygl u-e3pysl
acsr YA =F4e]) VZar
¥oolg ejeq yoo|g ejeq 3o0|g eleq yoo|g Eeleq
- - o VRN y
u-eqarsi u-edysgL u-egysi U-eyyGl

US 11,860,907 B2

Sheet 3 of 8

Jan. 2, 2024

U.S. Patent

d¢ ol

G1 anjeA Xo0|g eleq

aple ‘0le

PoOLE ‘0LE oo—‘mh\o_\m

Qoomk

qole ‘0l€ B0l

\

€ole

US 11,860,907 B2

Sheet 4 of 8

Jan. 2, 2024

U.S. Patent

¢ Old

ST anjea yooid eled

U-eNpG | U-BIAYG | u-eTps 1 u-eM¥SG1 U-elpGL U-BHPGI
9261 4261 3¢St
aozsl \
(T R R A T TN
TN |y
I NN NN I
GBSE AL AR RS
{ zX///////H/// SO NNNONN _
N s gl B Iy s o §
BOZG1 q3zs 1 eaZS)
azst 0251 gzsl vZsl
aazsi 4\ aozsl .\ agest \
g o it gl vk ik g s] ey i
RN SN _
N RRRRRRRY ARRRRSN Y ARARN
| NN NN Y |
w51~ NN W\ EN AN
| N NN \ NN \ N |
Sy Ft-—-———|- c------- |T||...\|.-|m.|-il evzs
Jatd]) BOZS| BEZSL OVZSL | qyes)
a0le POLE o01E LS pod oLc

US 11,860,907 B2

Sheet 5 of 8

Jan. 2, 2024

U.S. Patent

dc ©Old

G1 SNiEA ¥o0ig ejed

U TR GNUIS GWR WURS NSRS VSN WSS GWN WU WS GEUR NN GNUN GUNMN G NN NN WSS N WSS WM SRR NN WS WSS R WSS GUNR GUNS GWNR USRS WWS AW A S —
/ \
| N S ' h'd) I
! NZGr WZST MeGh Trear 28T |
2851~ NZG NZST MZs VA4S 26T |
_ N\ A\ N AN _
N oo e ek o b b ————— L L
9751 4gst azsl HeGl
gwmmJ \N
4__2_ LA -
\ ™. ™. -
g NNA!
| AR Y NN NN NGNN]
AN, AN,
ot AR Ry
J
/llll%lll. IIIIIIIIIII 11!?!!!!
BOZSI q3zst e3esi
azsli ozs1 azsl vZs1h
aazs! 4\ SNWMF N\ Qmwwlv \
_ A B - d_ /Ny~ _d__ /L ___
T . i -
i YA NN
| N R AR R S
egg| NN NN, NN, N
™~ NSRRI WY W
N o e e T A TRT BN S e o]
< ¢ —~(-
BAZS1 BOZSL BEZSE oyeg)
~ r~ ~ ! ~
voomk» o0l pole 201€ aole eolg ‘0LE

US 11,860,907 B2

Sheet 6 of 8

Jan. 2, 2024

U.S. Patent

d¢ 9ld

pracy rest Icsl HZCGl
L1l Y0019 eleq 01 Y20id eie(6 Y00ig Ble(] Qoold eleq
_ _ _ _
_ | _ _
| PZ19 _ oZ19 | azle _ eZ1L9 |
e N Ve N\~ N N N\ — Y~
N 5oTgemubnp payy TOTS OIMUBND puoses EOTG amYenDISHA e ol Homov_m mﬂm
5 S A
(N
| o Eri2 T |
agsl ~q| £>Poig ered 9 00| Bjed G Yoqig eleq “
{
||||| ~ — — — | |I..|..l|..l|l.-|..l|..l|.....|l..|..llu..|u.|||l|..lh||:l|ul|..l|..l|l..|.l||l||l||“\| [E—
/ N\
| 4 - _ . . N i
| acst oSl gecsl vest |
BgGL ~ ¥ %00|g ele(£ 300|g ele(¢ 20|g ele(| %2019 EleQ |
N |
N R e e /
~ ~ ~~
ol 6olLe e

moom.\»

U.S. Patent Jan. 2, 2024 Sheet 7 of 8 US 11,860,907 B2

v/- 300

RECEIVING A FIRST GROUP OF CLUSTERED DATA
BLOCK SETS SORTED BY A CLUSTERING KEY
02

Y

RECEIVING A SECOND GROUP OF CLUSTERED DATA
BLOCK SETS SORTED BY THE CLUSTERING KEY
304

4
GENERATING ONE OR MORE SPLIT POINTS FOR
PARTITIONING THE FIRST AND SECOND GROUPS OF
CLUSTERED DATA BLOCK SETS INTO A THIRD

GROUP OF CLUSTERED DATA BLOCK SETS 306

Y

PARTITIONING, USING THE ONE ORE MORE
GENERATED SPLIT PONITS, THE FIRST AND SECOND
GROUP OF CLUSTERED DATA BLOCK SETS INTO THE

THIRD GROUP OF CLUSTERED DATA BLOCK SETS
308

FIG. 3

US 11,860,907 B2

Sheet 8 of 8

Jan. 2, 2024

U.S. Patent

/

0
//
00

v Old

US 11,860,907 B2

1
SHUFFLE-LESS RECLUSTERING OF
CLUSTERED TABLES

CROSS REFERENCE TO RELATED
APPLICATIONS

This U.S. Patent Application is a continuation of, and
claims priority under 35 U.S.C. § 120 from, U.S. patent
application Ser. No. 16/848,810, filed on Apr. 14, 2020. The
disclosure of this prior art application is considered part of
the disclosure of this application and is hereby incorporated
by reference in its entirety.

TECHNICAL FIELD

This disclosure relates to shuffle-less reclustering of clus-
tered tables.

BACKGROUND

As cloud storage has become more popular, clustered data
structures (e.g., a column data store) are increasingly being
used to reduce query cost and improve query performance
by clustering data into non-overlapping data blocks.
Because the size of many tables necessitates splitting the
table across many different servers, clusters of data blocks
are typically sorted by a clustering key in order to co-locate
related data. Each data block includes a range of clustering
key values. Typically, the range of the clustering key values
associated with each data block do not overlap any other
data block within the clustered data blocks. When new data
is appended to the clustered data blocks, often the ranges of
the clustering key values of the new data blocks will have
some overlap with the original data blocks, and the data
blocks must be sorted again to maintain performance.

SUMMARY

One aspect of the disclosure provides a method for
shuffle-less reclustering of clustered tables. The method
includes receiving, at data processing hardware, a first group
of clustered data blocks sorted by a clustering key value. The
clustered data blocks in the first group of clustered data
blocks may include a respective range of the clustering key
values that do not overlap with any of the ranges of
clustering key values of the other clustered data blocks in the
first group of clustered data blocks. The method also
includes receiving, at the data processing hardware, a second
group of clustered data blocks sorted by the clustering key
value. Each clustered data block in the second group of
clustered data blocks may include a respective range of
clustering key values that do not overlap with any of the
ranges of clustering key values of the other clustered data
blocks in the second group of clustered data blocks. The
method also includes generating, by the data processing
hardware, one or more split points for partitioning the first
and second groups of clustered data blocks into a third group
of clustered data blocks. The method also includes parti-
tioning, by the data processing hardware, using the one or
more generated split points, the first and second groups of
clustered data blocks into the third group of clustered data
blocks. Each clustered data block in the third group of
clustered data blocks may include a respective range of
clustering key values that do not overlap with any of the
ranges of clustering key values of the other clustered data
blocks in the third group of clustered data blocks. Each split
point of the one or more generated split points defines an

10

15

20

25

30

35

40

45

50

55

60

65

2

upper limit or a lower limit for the respective range of
clustering key values of one of the clustered data blocks in
the third group of clustered data blocks.

Implementations of the disclosure may include one or
more of the following optional features. In some implemen-
tations a columnar database table stores the first and second
groups of clustered data blocks. A number of the one or more
split points generated may be based on a number of data
blocks in the first and second groups of clustered data blocks
and a size of each of the data blocks. In some examples,
partitioning the first and second groups of clustered data
blocks into the third group of clustered data blocks occurs
without performing any shuffling operation on the data
blocks in the first and second groups of clustered data
blocks.

In some examples, the method further includes identify-
ing which clustering key values in the first group of clustered
data blocks and the second group of clustered data blocks
fall between adjacent split points and for each clustered data
block in the third group of clustered data blocks, merging the
identified clustering key values that fall within the corre-
sponding adjacent split points. At least one clustered data
block in the third group of clustered data blocks may include
a portion of the respective range from one of the data blocks
of the first or second groups of clustered data blocks that
does not overlap with any of the respective ranges of the
other clustered data blocks of the other one of the first or
second groups of clustered data blocks.

Additionally, one clustered data block in the third group
of clustered data blocks may include a portion of the
respective range from one of the data blocks of the first or
second groups of clustered data blocks and one of the data
blocks from the other one of the first or second groups of
clustered data blocks. At least one clustered data block in the
third group of clustered data blocks may include a portion of
the respective range from two of the data blocks of the first
or second groups of clustered data blocks and one of the data
blocks from the other one of the first or second groups of
clustered data blocks.

Optionally, generating the one or more split points
includes determining a plurality of quantiles for the first and
second groups of clustered data blocks and each split point
of the one or more split points corresponds to a different
quantile of the plurality of quantiles. In some examples, the
method further includes determining, by the data processing
hardware, a first sum of data values associated with the first
and second groups of clustered data blocks and determining,
by the data processing hardware, a second sum of data
values associated with the third group of clustered data
blocks. The method may also include verifying, by the data
processing hardware, that the first sum is equivalent to the
second sum. In some examples, the respective range of
clustering key values of one or more the clustered data
blocks in the second group of clustered data blocks overlaps
with the respective range of clustering key values of at least
one of the clustered data blocks in the first group of clustered
data blocks.

Another aspect of the disclosure provides a system of
shuflle-less reclustering of clustered tables. The system
includes memory hardware in communication with the data
processing hardware. The memory hardware stores instruc-
tions that when executed on the data processing hardware
cause the data processing hardware to perform operations.
The operations include receiving, at data processing hard-
ware, a first group of clustered data blocks sorted by a
clustering key value. The clustered data block in the first
group of clustered data blocks includes a respective range of

US 11,860,907 B2

3

the clustering key values that do not overlap with any of the
ranges of clustering key values of the other clustered data
blocks in the first group of clustered data blocks. The
operation also includes receiving a second group of clus-
tered data blocks sorted by the clustering key value. Each
clustered data block in the second group of clustered data
blocks includes a respective range of clustering key values
that do not overlap with any of the ranges of clustering key
values of the other clustered data blocks in the second group
of clustered data blocks. The operation also includes gen-
erating one or more split points for partitioning the first and
second groups of clustered data blocks into a third group of
clustered data blocks. The operations also include partition-
ing using the one or more generated split points, the first and
second groups of clustered data blocks into the third group
of clustered data blocks. Each clustered data block in the
third group of clustered data blocks may include a respective
range of clustering key values that do not overlap with any
of the ranges of clustering key values of the other clustered
data blocks in the third group of clustered data blocks and
each split point of the one or more generated split points
defines an upper limit or a lower limit for the respective
range of clustering key values of one of the clustered data
blocks in the third group of clustered data blocks.

Implementations of the disclosure may include one or
more of the following optional features. In some implemen-
tations a columnar database table stores the first and second
groups of clustered data blocks. A number of the one or more
split points generated is based on a number of data blocks in
the first and second groups of clustered data blocks and a
size of each of the data blocks. Partitioning the first and
second groups of clustered data blocks into the third group
of clustered data blocks occurs without performing any
shuflling operation on the data blocks in the first and second
groups of clustered data blocks.

In some examples, the operations include identifying
which clustering key values in the first group of clustered
data blocks and the second group of clustered data blocks
fall between adjacent split points and for each clustered data
block in the third group of clustered data blocks and merging
the identified clustering key values that fall within the
corresponding adjacent split points. At least one clustered
data block in the third group of clustered data blocks may
include a portion of the respective range from one of the data
blocks of the first or second groups of clustered data blocks
that does not overlap with any of the respective ranges of the
other clustered data blocks of the other one of the first or
second groups of clustered data blocks.

Additionally, one clustered data block in the third group
of clustered data blocks may include a portion of the
respective range from one of the data blocks of the first or
second groups of clustered data blocks and one of the data
blocks from the other one of the first or second groups of
clustered data blocks. At least one clustered data block in the
third group of clustered data blocks may include a portion of
the respective range from two of the data blocks of the first
or second groups of clustered data blocks and one of the data
blocks from the other one of the first or second groups of
clustered data blocks.

Optionally, generating the one or more split points may
include determining a plurality of quantiles for the first and
second groups of clustered data blocks and each split point
of the one or more split points corresponds to a different
quantile of the plurality of quantiles. In some examples, the
operations include determining a first sum of data values
associated with the first and second groups of clustered data
blocks and determining a second sum of data values asso-

25

30

35

40

45

50

4

ciated with the third group of clustered data blocks. The
operations may also include verifying that the first sum is
equivalent to the second sum. In some examples, the respec-
tive range of clustering key values of one or more the
clustered data blocks in the second group of clustered data
blocks overlaps with the respective range of clustering key
values of at least one of the clustered data blocks in the first
group of clustered data blocks.

The details of one or more implementations of the dis-
closure are set forth in the accompanying drawings and the
description below. Other aspects, features, and advantages
will be apparent from the description and drawings, and
from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic view of an example system for
shuflle-less reclustering of clustered tables.

FIG. 2A is a schematic view of a graph of a first and
second group of clustered data blocks over a range of
clustering key values.

FIG. 2B is a schematic view of a graph of the first and
second group of clustered data blocks over the range of
clustering key values of FIG. 2A with a plurality of split
points.

FIG. 2C is a schematic view of a graph of the first and
second group of clustered data blocks of FIG. 2A indicating
partitions based on the split points.

FIG. 2D is a schematic view of the first and second group
of clustered data blocks of FIG. 2A merged to form a third
group of clustered data blocks.

FIG. 2E is a schematic view of the first and second group
of data blocks from FIG. 2 partitioned based on a plurality
of quantiles.

FIG. 3 is a flowchart of an example arrangement of
operations for a method of shuffle-less reclustering of clus-
tered tables.

FIG. 4 is a schematic view of an example computing
device that may be used to implement the systems and
methods described herein.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Distributed storage (i.e., cloud storage) has been increas-
ingly used to store tables of massive size. It is not uncom-
mon for a table to have a size of multiple terabytes or even
petabytes and to include millions of entries (i.e., data
blocks). Clustered data structures (e.g., a column data store)
are increasingly being used to reduce query cost and
improve query performance by clustering data into non-
overlapping data blocks. With clusters of data blocks, data
blocks are typically sorted by a clustering key, with each
data block including a range of clustering key values.
Typically, the range of the clustering key values associated
with each data block do not overlap any other data block
within the clustered data blocks. When new data is appended
to the clustered data blocks, often the ranges of the cluster-
ing key values of the new data blocks will have some
overlap with the original data blocks, and to maintain an
optimal clustering state, the data blocks must be reclustered.
This is normally accomplished by shuffling the data, which
involves writing some or all of the data out to a new location,
which is computationally expensive and slow.

Implementations herein are directed toward a data block
reclusterer that reclusters data without requiring shuffling.

US 11,860,907 B2

5

The data block reclusterer receives a first and second group
of clustered data blocks sorted by a clustering key value. The
data block reclusterer generates one or more split points for
partitioning the first and second group of clustered data
blocks into a third group of clustered data blocks. The data
block reclusterer partitions, using the one or more split
points, the first and second groups of clustered data blocks
into the third group of clustered data blocks.

Referring now to FIG. 1, in some implementations, an
example system 100 includes a remote system 140. The
remote system 140 may be a single computer, multiple
computers, or a distributed system (e.g., a cloud environ-
ment) having scalable/elastic computing resources 144 (e.g.,
data processing hardware) and/or storage resources 142
(e.g., memory hardware). A data store 146 (i.e., a remote
storage device 146) may be overlain on the storage resources
142 to allow scalable use of the storage resources 142 by one
or more of the client or computing resources 144. The data
store 146 includes a data block data store 150 configured to
store a plurality of data blocks 152, 152a-r within a group
158, 158a-n of clustered data blocks 152. The data store 150
may store any number of groups 158 of clustered data blocks
152 at any point in time. In some examples, the clustered
data blocks are stored within a columnar database table or
clustered table 159.

Each group of clustered data blocks is sorted by a clus-
tering key value 154, 154a-n. For example, in the clustered
table 159 (i.e., one or more groups 158 of clustered data
blocks 152), one or more columns of the table 159 is selected
to represent the clustering key with each row of the table 159
having a corresponding clustering key value 154. The data
of the clustered table 159 is organized around the clustering
key to, for example, co-locate related data, as large tables
159 are typically split into multiple data blocks 152 stored
on multiple different servers. Each data block 152 in the
group 158 of clustered data blocks 152 includes a range of
clustering key values 154 that do not overlap with any of the
ranges of clustering key values 154 of the other data blocks
152 in the same group 158.

The remote system 140 is configured to receive tabled
data 14. For example, the remote system 140 receives the
tabled data 14 from a user device 10 associated with a
respective user 12 in communication with a remote system
140 via a network 112. The user device 10 may correspond
to any computing device, such as a desktop workstation, a
laptop workstation, or a mobile device (i.e., a smart phone).
The user device 10 includes computing resources 18 (e.g.,
data processing hardware) and/or storage resources 16 (e.g.,
memory hardware). In another example, the remote system
140 receives the tabled data 14 from another a different table
stored on the data store 150 or from another remote system
140.

In some implementations, the remote system 140 gener-
ates a first group 158a of clustered data blocks 152 from the
tabled data 14 to form a clustered table 159. The remote
system 140 organizes the tabled data 14 based on a cluster-
ing key 15 and splits the tabled data 14 into a plurality of
clustered data blocks 152 with each clustered data block 152
including a respective range of the clustering key values 154
that do not overlap with any of the ranges of clustering key
values 154 of the other clustered data blocks 152 in the first
group 158a of clustered data blocks 152. That is, each
clustered data block 152 stores a portion of the tabled data
14 within the clustered table 159. The first group 158a is
stored at the data block data store 150.

In some examples, the remote system 140 receives (e.g.,
from the user device 10) additional tabled data 14 to add to

20

25

40

45

65

6

the clustered table 159. The remote system 140 generates a
second group 1585 of clustered data blocks 152 from the
additional tabled data 14. Each clustered data block 152 in
the second group 1585 includes a respective range of
clustering key values 154 that do not overlap with any of the
ranges of clustering key values 154 of the other clustered
data blocks 152 in the second group 1585. However, the
respective range of clustering key values 154 of one or more
of the clustered data blocks 152 in the second group 1585
may overlap with the respective range of clustering key
values 154 of at least one of the clustered data blocks 152 in
the first group 158a of clustered data blocks 152. That is, at
least one data block 152 of the second group 1585 may have
a range of clustering key values 154 that overlaps with a
range of clustering key values 154 of a data block 152 of the
first group 158a of the clustered table 159.

The remote system 140 executes a data block reclusterer
160 to recluster the first group 1584 and second group 1586
of'data blocks 152. As discussed in more detail below, a split
point generator 170 of data block reclusterer 160 receives
the first and second groups 158a, 1585 and generates one or
more split points 310, 310a-z (FIG. 2B) for partitioning the
first and second groups 158a, 1585 of clustered data blocks
152 into a third group 158¢ of clustered data blocks 152.
Each split point 310 defines an upper limit or a lower limit
for the respective range of clustering key values 154 of one
of the clustered data blocks 152 in the third group 158¢ of
clustered data blocks 152. The split point generator 170
passes the first and second groups 1584, 1585 and the one or
more split points 310 to a data block partitioner 180.

The data block partitioner 180 partitions, using the one or
more generated split points 310, the first and second groups
158a, 15854 of clustered data blocks 152 into the third group
158¢ of clustered data blocks 152. Each clustered data block
152 in the third group 158¢ includes a respective range of
clustering key values 154 that do not overlap with any of the
ranges of clustering key values 154 of the other clustered
data blocks 152 in the third group 158¢. That is, the data
block partitioner 180 reclusters the data blocks 152 of the
first and second groups 158a, 15856 (using the split points
310) such that there is no longer overlap in the ranges of
clustering key values 154 among any of the data blocks 152.
The data block partitioner 180 partitions the first and second
groups 1584, 1586 of clustered data blocks 152 into the third
group 158¢ of clustered data blocks 152 without performing
any shuflling operation on the data blocks 152 in the first and
second groups 1584, 15856 so that performance characteris-
tics of clustered tables is maintained without the associated
cost of shuffling data. The data block partitioner 180 stores
the data blocks 152 of the third group 158¢ into the data store
150.

Referring now to FIG. 2A, a graph 200a shows an
exemplary first group 158a and second group 1585 of
clustered data blocks 152 plotted along an x-axis of clus-
tering key values 154. The first group 1584 consists of data
blocks 152a-d while the second group 1585 consists of data
blocks 152e¢-g. Each data block 152a-g includes a range 210,
210a-g of clustering key values 154. While none of the
ranges 210 within each respective group 1584, 1585 overlap,
there is overlap between ranges 210 of data blocks 152
across the groups 1584, 158b. For example, the range 210e
of data block 152e¢ overlaps the ranges 210a, 2105 of data
blocks 1524, 1524. Thus, simply including all of the data
blocks 152a-g into a single group 158 would result in
performance loss due to the overlap.

Referring now to FIG. 2B, a graph 20054 illustrates the
exemplary first group 158 and second group 1586 of FIG.

US 11,860,907 B2

7

2A graphed by clustering key values 154. Here, the split
points 310 generated by the split point generator 170 parti-
tion some of the data blocks 152a-g. For example, a split
point 310a partitions data block 152a while a split point
3106 partitions data block 152« (in the first group 158a) and
the data block 152¢ (in the second group 1585). Similarly, a
split point 310c¢ partitions data block 1524, a split point 3104
partitions data block 152¢, and a split point 310e partitions
data block 1524 and data block 152e.

Referring now to FIGS. 2C and 2D, in some implemen-
tations, the data block partitioner 180 identifies which clus-
tering key values 154 in the first group 1585 of clustered
data blocks 152 and the second group 1585 of clustered data
blocks 152 that fall between adjacent split points 310. For
each clustered data block 152 in the third group 158¢ of
clustered data blocks 152, the data block partitioner 180
merges the identified clustering key values 154 that fall
within the corresponding adjacent split points 310. For
example, a graph 200c¢ indicates the portions of the data
blocks 152a-g that fall within adjacent split points 310a-e.
Here, the graph 200c¢ illustrates that adjacent split points
310a, 3105 partition data block 152a into portions 152aa,
152ab, 152ac and data block 152¢ into portions 152eaq,
152¢b (FIG. 2C). Similarly: data block 15254 is split into
portions 152ba, 152bb; data block 152¢ is split into portions
152ca, 152¢b; data block 1524 is split into portions 152da,
152db; and data block 152g is split into portions 152ga,
152gb. Note that data block 152f is not split into any
portions, as no split points 310 pass through the data block
152f.

Each pair of adjacent split points 310 and end split point
310a, 310e form a range 410, 410a-fof clustering key values
154. In some examples, the data block partitioner 180 only
reads the rows within each partition 410 and writes each data
block 152 of the third group 158¢ (based on the read
partition 410) to the data block data store 150. In some
examples, the data block partitioner 180 only reads the
column(s) that include the clustering key value 154 instead
of the entire clustered table 159 to greatly reduce the total
amount of data read. Optionally, only portions of data blocks
152 that overlap are read by data block partitioner 180. For
example, the data block partitioner 180 does not read data
block 152f'when generating the data blocks 152 of the third
group 158¢ as no split points 310 intersect with the data
block 152f

As shown by graph 2004 of FIG. 2D, each data block
152h-n of the third group 158¢ is formed from the merged
partitions of groups 158a, 1585 within the same adjacent
pair of split points 310. Here, because split point 310q is the
left-most split point 310, the split point 310a does not have
an adjacent split point 310 to the left, and therefore portion
152aa of data block 152a forms data block 1527 of group
158¢ alone. Adjacent split points 310a, 3105 bracket por-
tions 152ab and 152ea, which are merged to form data block
152i. Similarly, adjacent split points 3106, 310¢ bound
portions 152ac, 152ba, 152¢b and merge to form 152;.
Likewise, adjacent split point 310¢, 3104 bound portions
152bb, 152ca and data block 152f and merge to form data
block 152%. Adjacent split points 3104, 310e bound portions
152¢b, 152da, 152ga and merge to form data block 152m.
Because split point 310e is the right-most split point 310,
data block portions 152db, 152gb merge to form data block
152n.

Thus, in some examples, at least one clustered data block
152 in the third group 158¢ of clustered data blocks 152
(e.g., data block 152%) includes a portion (e.g., portion
152aa) of the respective range 210 from one of the data

10

20

25

30

35

40

45

50

55

60

65

8

blocks 152 of the first or second groups 158a, 15856 of
clustered data blocks 152 that does not overlap with any of
the respective ranges of the other clustered data blocks of the
other one of the first or second groups 158a, 15856 of
clustered data blocks 152. In some implementations, at least
one clustered data block 152 in the third group 158¢ of
clustered data blocks 152 includes a portion (e.g., portion
152ab) of the respective range 210 from one of the data
blocks 152 of the first or second groups 158a, 15856 of
clustered data blocks 152 and one of the data blocks 152
(e.g., portion 152ea) from the other one of the first or second
groups 158a, 158 of clustered data blocks 152. Optionally,
at least one clustered data block 152 in the third group 158¢
of clustered data blocks 152 includes a portion (e.g., portions
152ac, 152ba) of the respective range 210 from two of the
data blocks 152 of the first or second groups 158a, 1586 of
clustered data blocks 152 and one of the data blocks 152
(e.g., portion 152eb) from the other one of the first or second
groups 158a, 1585 of clustered data blocks 152. That is, the
split points 310 may partition the data blocks 152 into any
number of portions and the data block partitioner 180 any
merge any number of portions or data blocks 152 from the
first group 1584 or the second group 1585 into data blocks
152 of the third group 158c.

Referring now to FIG. 2E, in some implementations, the
split point generator 170 generates the one or more split
points 310 by determining a plurality of quantiles 610,
610a-n for the first and second groups 158a, 1586 of
clustered data blocks 152. A quantile is a cut point that
divides the range of a distribution into intervals with each
interval having an equal or approximately equal distribution.
For example, as illustrated by graph 200e, given a range of
clustering key values 154 defined by a minimum clustering
key value 154MIN and maximum clustering key value
154MAX (determined, in this example, by the minimum and
maximum clustering key values 154 of the data blocks
152a-g of groups 158a, 158b), a first, second, and third
quantile 610a-c¢ divides the range 620 of the clustering key
values 158 into four sub-ranges 612a-d. The first range 612a
represents 25 percent (i.e., one fourth) of the distribution of
clustering key values 154, and each of the other ranges
612H-¢ also represent 25 percent of the distribution of
clustering key values 154. Each quantile 610 may represent
a location for a split point 310, and thus the number of
quantiles 610 is equivalent to the number of split points 310.
That is, each split point 310 of the one or more split points
310 corresponds to a different quantile 610 of the plurality
of quantiles 610.

The split point generator 170 may determine any number
of quantiles 610 (and thus split points 310). The split point
generator 170 may determine a number of the one or more
split points 310 generated based on a number of data blocks
152 in the first and second groups 158a, 1585 of clustered
data blocks 152 and a size of each of the data blocks 152. In
some examples, each data block 152 is a configurable size
(e.g., 32 MB to 256 MB) and the split point generator 170
determines the number of quantiles 610 by determining a
total size of the first group 158a and the second group 1585
divided by the configured data block size. In the example
shown, the split point generator 170 determines three quan-
tiles 610a-610c¢ (corresponding to three split points 310/-%)
to divide the range 620 of clustering key values 154 into four
sub-ranges 612a-d which each correspond to a data blocks
152h-k of the third group 158¢ of clustered data blocks 152.

In some examples, the split point generator determines
one or more quantiles 610 of the data blocks 152 of the first
and second groups 158a, 1585 based on sampling the data

US 11,860,907 B2

9

of the data blocks 152. That is, due to the potentially
enormous size of the clustered table 159, sampling the data
allows the split point generator 170 to determine the quan-
tiles 610 in a more efficient and scalable manner. In some
implementations, the split point generator 170 uses weighted
sampling to approximate one or more quantiles of the data
blocks 152 of the first group 158a and the second group
1586 of clustered data blocks 152. Alternatively, the split
point generator 170 may generate the split points 310 using
other means, such as ordered code. Ordered code provides a
byte encoding of a sequence of typed items. The resulting
bytes may be lexicographically compared to yield the same
ordering as item-wise comparison on the original sequences.
That is, ordered code has the property that comparing the
ordered code yields the same result value as comparing
values one by one.

Optionally, after partitioning the data blocks 152 into the
third group 158¢, the data block partitioner 180 determines
a first sum of data values associated with the first and second
groups 158a, 1585 of clustered data blocks 152 and deter-
mines second sum of data values associated with the third
group 158¢ of clustered data blocks 152. The data block
partitioner verifies that the first sum is equivalent to the
second sum. That is, to ensure that there was no data
corruption during the partitioning process, the data block
partitioner 180 verifies that values associated with the first
and second groups 158a, 1585 (e.g., summing a number of
rows of the clustered table 159) is the same as the corre-
sponding value of the third group 158¢. These values will
match when no data has been corrupted or misplaced. The
total number of rows in the third group 158¢ should be
equivalent to the total number of rows in the first group 158«
summed with the total number of rows in the second group
158b.

Examples herein illustrate the data block reclusterer 160
performing shuffle-less reclustering of two groups 158 of
clustered data blocks 152. However, this is exemplary only
and any number of groups may be reclustered simultane-
ously. In some examples, the respective range of clustering
key values 154 of the clustered data blocks 152 in the second
group 1586 do not overlap with the respective range of
clustering key values 154 of the clustered data blocks 152 in
the first group 158a of clustered data blocks 152. In this
scenario, the data block reclusterer 160 may merge the data
blocks without generating split points 310.

FIG. 3 is a flowchart of an exemplary arrangement of
operations for a method 300 of shuffle-less reclustering of
clustered tables. The method 300 includes, at operation 302,
receiving, at data processing hardware 144, a first group
158a of clustered data blocks 152 sorted by a clustering key
value 154. Each clustered data block 152 in the first group
158a of clustered data blocks 152 includes a respective
range 210 of the clustering key values 154 that do not
overlap with any of the ranges 210 of clustering key values
154 of the other clustered data blocks 152 in the first group
1584 of clustered data blocks 152.

At operation 304, the method 300 includes receiving, at
the data processing hardware 144, a second group 1585 of
clustered data blocks 152 sorted by the clustering key value
154. Each clustered data block 152 in the second group 1585
of clustered data blocks 152 includes a respective range 210
of clustering key values 154 that do not overlap with any of
the ranges 210 of clustering key values 154 of the other
clustered data blocks 152 in the second group 1586 of
clustered data blocks 152. The respective range 210 of
clustering key values 154 of one or more the clustered data
blocks 152 in the second group 1585 of clustered data blocks

30

40

45

10

152 overlaps with the respective range 210 of clustering key
values 154 of at least one of the clustered data blocks 152 in
the first group 158a of clustered data blocks 152.

The method 300, at operation 306, includes generating, by
the data processing hardware 144, one or more split points
310 for partitioning the first and second groups 158a, 1585
of clustered data blocks 152 into a third group 158¢ of
clustered data blocks. At operation 308, the method 300
includes partitioning, by the data processing hardware 144,
using the one or more generated split points 310, the first and
second groups 1584, 1585 of clustered data blocks 152 into
the third group 158¢ of clustered data blocks 152. Each
clustered data block 152 in the third group 158¢ of clustered
data blocks 152 includes a respective range 210 of clustering
key values 154 that do not overlap with any of the ranges
210 of clustering key values 154 of the other clustered data
blocks 152 in the third group 158¢ of clustered data blocks
152. Each split point 310 of the one or more generated split
points 310 defines an upper limit or a lower limit for the
respective range 210 of clustering key values 154 of one of
the clustered data blocks 152 in the third group 158¢ of
clustered data blocks 152.

FIG. 4 is schematic view of an example computing device
400 that may be used to implement the systems and methods
described in this document. The computing device 800 is
intended to represent various forms of digital computers,
such as laptops, desktops, workstations, personal digital
assistants, servers, blade servers, mainframes, and other
appropriate computers. The components shown here, their
connections and relationships, and their functions, are meant
to be exemplary only, and are not meant to limit implemen-
tations of the inventions described and/or claimed in this
document.

The computing device 400 includes a processor 410,
memory 420, a storage device 430, a high-speed interface/
controller 440 connecting to the memory 420 and high-
speed expansion ports 450, and a low speed interface/
controller 460 connecting to a low speed bus 470 and a
storage device 430. Each of the components 410, 420, 430,
440, 450, and 460, are interconnected using various busses,
and may be mounted on a common motherboard or in other
manners as appropriate. The processor 410 can process
instructions for execution within the computing device 400,
including instructions stored in the memory 420 or on the
storage device 430 to display graphical information for a
graphical user interface (GUI) on an external input/output
device, such as display 480 coupled to high speed interface
440. In other implementations, multiple processors and/or
multiple buses may be used, as appropriate, along with
multiple memories and types of memory. Also, multiple
computing devices 400 may be connected, with each device
providing portions of the necessary operations (e.g., as a
server bank, a group of blade servers, or a multi-processor
system).

The memory 420 stores information non-transitorily
within the computing device 400. The memory 420 may be
a computer-readable medium, a volatile memory unit(s), or
non-volatile memory unit(s). The non-transitory memory
420 may be physical devices used to store programs (e.g.,
sequences of instructions) or data (e.g., program state infor-
mation) on a temporary or permanent basis for use by the
computing device 400. Examples of non-volatile memory
include, but are not limited to, flash memory and read-only
memory (ROM)/programmable read-only memory
(PROM)/erasable programmable read-only —memory
(EPROM)/electronically erasable programmable read-only
memory (EEPROM) (e.g., typically used for firmware, such

US 11,860,907 B2

11

as boot programs). Examples of volatile memory include,
but are not limited to, random access memory (RAM),
dynamic random access memory (DRAM), static random
access memory (SRAM), phase change memory (PCM) as
well as disks or tapes.

The storage device 430 is capable of providing mass
storage for the computing device 400. In some implemen-
tations, the storage device 430 is a computer-readable
medium. In various different implementations, the storage
device 430 may be a floppy disk device, a hard disk device,
an optical disk device, or a tape device, a flash memory or
other similar solid state memory device, or an array of
devices, including devices in a storage area network or other
configurations. In additional implementations, a computer
program product is tangibly embodied in an information
carrier. The computer program product contains instructions
that, when executed, perform one or more methods, such as
those described above. The information carrier is a com-
puter- or machine-readable medium, such as the memory
420, the storage device 430, or memory on processor 410.

The high speed controller 440 manages bandwidth-inten-
sive operations for the computing device 400, while the low
speed controller 460 manages lower bandwidth-intensive
operations. Such allocation of duties is exemplary only. In
some implementations, the high-speed controller 440 is
coupled to the memory 420, the display 480 (e.g., through a
graphics processor or accelerator), and to the high-speed
expansion ports 450, which may accept various expansion
cards (not shown). In some implementations, the low-speed
controller 460 is coupled to the storage device 430 and a
low-speed expansion port 490. The low-speed expansion
port 490, which may include various communication ports
(e.g., USB, Bluetooth, Ethernet, wireless Ethernet), may be
coupled to one or more input/output devices, such as a
keyboard, a pointing device, a scanner, or a networking
device such as a switch or router, e.g., through a network
adapter.

The computing device 400 may be implemented in a
number of different forms, as shown in the figure. For
example, it may be implemented as a standard server 400a
or multiple times in a group of such servers 4004, as a laptop
computer 4005, or as part of a rack server system 400c.

Various implementations of the systems and techniques
described herein can be realized in digital electronic and/or
optical circuitry, integrated circuitry, specially designed
ASICs (application specific integrated circuits), computer
hardware, firmware, software, and/or combinations thereof.
These various implementations can include implementation
in one or more computer programs that are executable
and/or interpretable on a programmable system including at
least one programmable processor, which may be special or
general purpose, coupled to receive data and instructions
from, and to transmit data and instructions to, a storage
system, at least one input device, and at least one output
device.

A software application (i.e., a software resource) may
refer to computer software that causes a computing device to
perform a task. In some examples, a software application
may be referred to as an “application,” an “app,” or a
“program.” Example applications include, but are not lim-
ited to, system diagnostic applications, system management
applications, system maintenance applications, word pro-
cessing applications, spreadsheet applications, messaging
applications, media streaming applications, social network-
ing applications, and gaming applications.

These computer programs (also known as programs,
software, software applications or code) include machine

20

25

30

40

45

55

65

12

instructions for a programmable processor, and can be
implemented in a high-level procedural and/or object-ori-
ented programming language, and/or in assembly/machine
language. As used herein, the terms “machine-readable
medium” and “computer-readable medium” refer to any
computer program product, non-transitory computer read-
able medium, apparatus and/or device (e.g., magnetic discs,
optical disks, memory, Programmable Logic Devices
(PLDs)) used to provide machine instructions and/or data to
a programmable processor, including a machine-readable
medium that receives machine instructions as a machine-
readable signal. The term “machine-readable signal” refers
to any signal used to provide machine instructions and/or
data to a programmable processor.

The processes and logic flows described in this specifi-
cation can be performed by one or more programmable
processors, also referred to as data processing hardware,
executing one or more computer programs to perform func-
tions by operating on input data and generating output. The
processes and logic flows can also be performed by special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application specific integrated
circuit). Processors suitable for the execution of a computer
program include, by way of example, both general and
special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a
processor will receive instructions and data from a read only
memory or a random access memory or both. The essential
elements of a computer are a processor for performing
instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such
devices. Computer readable media suitable for storing com-
puter program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry.

To provide for interaction with a user, one or more aspects
of the disclosure can be implemented on a computer having
adisplay device, e.g., a CRT (cathode ray tube), LCD (liquid
crystal display) monitor, or touch screen for displaying
information to the user and optionally a keyboard and a
pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of
devices can be used to provide interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that is used by the user; for example, by sending web
pages to a web browser on a user’s client device in response
to requests received from the web browser.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
the disclosure. Accordingly, other implementations are
within the scope of the following claims.

US 11,860,907 B2

13

What is claimed is:

1. A computer-implemented method when executed by
data processing hardware causes the data processing hard-
ware to perform operations comprising:

receiving a first group of clustered data blocks sorted by

a range of clustering key values, each clustered data
block in the first group of clustered data blocks com-
prising a respective sub-range of the clustering key
values;

receiving a second group of clustered data blocks sorted

by the range of clustering key values, each clustered
data block in the second group of clustered data blocks
comprising a respective sub-range of clustering key
values, wherein the respective sub-range of clustering
key values of at least one of the clustered data blocks
in the second group of clustered data blocks at least
partially overlaps the respective sub-range of clustering
key values of at least one of the clustered data blocks
in the first group of clustered data blocks;

generating one or more quantiles for partitioning the first

and second groups of clustered data blocks into a third
group of clustered data blocks; and

partitioning, using the one or more quantiles, the first and

second groups of clustered data blocks into the third
group of clustered data blocks, each clustered data
block in the third group of clustered data blocks com-
prising a respective equally distributed sub-range of
clustering key values from the range of clustering key
values that does not overlap with any other equally
distributed sub-ranges of clustering key values of the
other clustered data blocks in the third group of clus-
tered data blocks, wherein at least one clustered data
block in the third group of clustered data blocks com-
prises a merged clustered data block comprising the at
least one of the clustered data blocks in the second
group of clustered data blocks that at least partially
overlaps the respective sub-range of clustering key
values of the at least one of the clustered data blocks in
the first group of clustered data blocks.

2. The computer-implemented method of claim 1,
wherein a columnar database table stores the first and second
groups of clustered data blocks.

3. The computer-implemented method of claim 1,
wherein a number of the one or more quantiles generated is
based on a number of data blocks in the first and second
groups of clustered data blocks and a size of each of the data
blocks.

4. The computer-implemented method of claim 1,
wherein partitioning the first and second groups of clustered
data blocks into the third group of clustered data blocks
occurs without performing any shuffling operation on the
clustered data blocks in the first and second groups of
clustered data blocks.

5. The computer-implemented method of claim 1,
wherein the operations further comprise generating an over-
all total number of rows by adding a total number of rows
in the first group of clustered data blocks to a total number
of rows in the second group of clustered data blocks,
wherein a total number of rows in the third group of
clustered data blocks is equivalent to the overall total
number of rows.

6. The computer-implemented method of claim 1,
wherein partitioning the first and second groups of clustered
data blocks into the third group of clustered data blocks
comprises:

10

15

20

25

30

35

40

45

50

55

60

65

14

identifying which clustering key values in the first group
of clustered data blocks and the second group of
clustered data blocks fall between adjacent quantiles;
and

for each clustered data block in the third group of clus-

tered data blocks, merging the identified clustering key
values that fall within the corresponding adjacent quan-
tiles.

7. The computer-implemented method of claim 1,
wherein each clustered data block in the first group of
clustered data blocks comprises the respective sub-range of
clustering key values that do not overlap with any of the
respective sub-ranges of clustering key values of the other
clustered data blocks in the first group of clustered data
blocks.

8. The computer-implemented method of claim 7,
wherein each clustered data block in the second group of
clustered data blocks comprises the respective sub-range of
clustering key values that do not overlap with any of the
respective sub-ranges of clustering key values of the other
clustered data blocks in the second group of clustered data
blocks.

9. The computer-implemented method of claim 8,
wherein at least one other clustered data block in the third
group of clustered data blocks comprises a portion of the
respective sub-range from one of the clustered data blocks of
the first or second groups of clustered data blocks that does
not overlap with any of the respective sub-ranges of the
other clustered data blocks of the other one of the first or
second groups of clustered data blocks.

10. The computer-implemented method of claim 1,
wherein the respective sub-range of clustering key values of
the at least one of the clustered data blocks in the second
group of clustered data blocks fully overlaps the respective
sub-range of clustering key values of the at least one of the
clustered data blocks in the first group of clustered data
blocks.

11. A system comprising:

data processing hardware; and

memory hardware in communication with the data pro-

cessing hardware, the memory hardware storing

instructions that when executed on the data processing

hardware cause the data processing hardware to per-

form operations comprising:

receiving a first group of clustered data blocks sorted
by a range of clustering key values, each clustered
data block in the first group of clustered data blocks
comprising a respective sub-range of the clustering
key values;

receiving a second group of clustered data blocks
sorted by the range of clustering key values, each
clustered data block in the second group of clustered
data blocks comprising a respective sub-range of
clustering key values, wherein the respective sub-
range of clustering key values of at least one of the
clustered data blocks in the second group of clus-
tered data blocks at least partially overlaps the
respective sub-range of clustering key values of at
least one of the clustered data blocks in the first
group of clustered data blocks;

generating one or more quantiles for partitioning the
first and second groups of clustered data blocks into
a third group of clustered data blocks; and

partitioning, using the one or more quantiles, the first
and second groups of clustered data blocks into the
third group of clustered data blocks, each clustered
data block in the third group of clustered data blocks

US 11,860,907 B2

15

comprising a respective equally distributed sub-
range of clustering key values from the range of
clustering key values that does not overlap with any
other equally distributed sub-ranges of clustering
key values of the other clustered data blocks in the
third group of clustered data blocks, wherein at least
one clustered data block in the third group of clus-
tered data blocks comprises a merged clustered data
block comprising the at least one of the clustered
data blocks in the second group of clustered data
blocks that at least partially overlaps the respective
sub-range of clustering key values of the at least one
of the clustered data blocks in the first group of
clustered data blocks.

12. The system of claim 11, wherein a columnar database
table stores the first and second groups of clustered data
blocks.

13. The system of claim 11, wherein a number of the one
or more quantiles generated is based on a number of data
blocks in the first and second groups of clustered data blocks
and a size of each of the data blocks.

14. The system of claim 11, wherein partitioning the first
and second groups of clustered data blocks into the third
group of clustered data blocks occurs without performing
any shuffling operation on the clustered data blocks in the
first and second groups of clustered data blocks.

15. The system of claim 11, wherein the operations further
comprise generating an overall total number of rows by
adding a total number of rows in the first group of clustered
data blocks to a total number of rows in the second group of
clustered data blocks, wherein a total number of rows in the
third group of clustered data blocks is equivalent to the
overall total number of rows.

16. The system of claim 11, wherein partitioning the first
and second groups of clustered data blocks into the third
group of clustered data blocks comprises:

16

identifying which clustering key values in the first group
of clustered data blocks and the second group of
clustered data blocks fall between adjacent quantiles;
and

for each clustered data block in the third group of clus-

tered data blocks, merging the identified clustering key
values that fall within the corresponding adjacent quan-
tiles.

17. The system of claim 11, wherein each clustered data
block in the first group of clustered data blocks comprises
the respective sub-range of clustering key values that do not
overlap with any of the respective sub-ranges of clustering
key values of the other clustered data blocks in the first
group of clustered data blocks.

18. The system of claim 17, wherein each clustered data
block in the second group of clustered data blocks comprises
the respective sub-range of clustering key values that do not
overlap with any of the respective sub-ranges of clustering
key values of the other clustered data blocks in the second
group of clustered data blocks.

19. The system of claim 18, wherein at least one other
clustered data block in the third group of clustered data
blocks comprises a portion of the respective sub-range from
one of the clustered data blocks of the first or second groups
of clustered data blocks that does not overlap with any of the
respective sub-ranges of the other clustered data blocks of
the other one of the first or second groups of clustered data
blocks.

20. The system of claim 11, wherein the respective
sub-range of clustering key values of the at least one of the
clustered data blocks in the second group of clustered data
blocks fully overlaps the respective sub-range of clustering
key values of the at least one of the clustered data blocks in
the first group of clustered data blocks.

#* #* #* #* #*

