US 20170344406A1

a2y Patent Application Publication o) Pub. No.: US 2017/0344406 A1

a9y United States

YAMAURA et al. 43) Pub. Date: Nov. 30, 2017
(54) DATA PROCESSING APPARATUS, DATA GOG6F 9/455 (2006.01)
PROCESSING METHOD, AND T04L 29/06 (2006.01)
NON-TRANSITORY COMPUTER READABLE
MEDIUM (52) US. CL
CPCcc..... GO6F 9/545 (2013.01); HO4L 69/16
(71) Applicant: KABUSHIKI KAISHA TOSHIBA, (2013.01); GO6F 9/30 (2013.01); GO6F
Tokyo (IP) 9/45545 (2013.01)
(72) Inventors: Takahiro YAMAURA, Kawasaki (JP);
Takeshi ISHIHARA, Yokohama (JP) (57) ABSTRACT
(73) Assignee: KABUSHIKI KAISHA TOSHIBA,
Tokyo (JP) A data processing apparatus according to the embodiment of
] the present invention includes a storing device configured to
(21) - Appl. No.: 15/444,730 store a file, and an OS configured to operate in the kernel
(22) Filed: Feb. 28, 2017 space. The OS includes a file access manager, a presence
determiner, and a writer. The file access manager detects a
(30) Foreign Application Priority Data file access to a file in the storing device by an application

May 31, 2016 (JP) 2016-108714

Publication Classification

(51) Int. CL
GOGF 9/54
GOGF 9/30

(2006.01)
(2006.01)

operating in the user space. The presence determiner deter-
mines whether the file pertaining to the file access detected
by the file access manager is stored in the storing device.
When the presence determiner determines that the file
pertaining to the file access is not stored in the storing
device, the writer writes the file pertaining to the file access
detected by the file access manager into the storing device.

SOETWARE LAYER

S

e

APPLICATION C

,,, OSKERNEL SPACE)
3 FILE SYSTEM |
; FILE ACCESS MANAGER (DETECTOR) ;
[£ % ey :
i i T ——
A0CESS RIGHT PRESENCE 4 :
DETERMINER DETERMINER ¥, i ; 109
/\“/ 3 / o 8 ”] } i . /"../l
05 106 = APEE ; | JCOMMUNICATION
READER / 108 4~ PROCESSOR
:_‘,,,m, & i Y] JA;_‘
107 WRITER e

| |COMMUNICATOR fe—t—+ NETWORK

101

HARDWARE LAYER

US 2017/0344406 A1

Nov. 30,2017 Sheet 1 of 17

Patent Application Publication

AHOMLSN

™

!

P

"0l

Ol

NQ“,,:,‘N

JIAVYT] YV MAGYH

o : w,
D SELR
1 [0l
5 g s
40SS3004d _ |
NOLLY OINANNOD [T ddv3d 901 G501
- ! s \x ¢
e ¢ : i ¢ ¥ o
6ol ¢ .) NN 150 SANINEE 130
: 71 30NTsd LHOM $S300V
s s i .qu L - .
; S 4 j]
(M0107130) ¥IOVNVA 55300 T
FEISCENE . : 4
@ovds memso T T A T
mt)()ti{}?!\ilili v e i e o e d”(.a«.k(.z(.:e.?.\,:eik\.t\.\\r.(\.v,«..\.w_.,‘:.b,k.\,,2...\.;\1...\ e e e e A e rr:r»,(,vr,» e e el .r»r.,,m.,w,
: 0 NOLLYOI1ddY g NOILYO!1ddY ¥ NOLLYOMTddY |}
o} jAvdSddsn o oeop o 8eob o ¥eoL

wmobqof:ézo@

JOIASd ONIHO LS

US 2017/0344406 A1

Nov. 30,2017 Sheet 2 of 17

Patent Application Publication

AHOM LN

¢ Dl
IHYHOLS
e0z
MO L1dvay ” MO Ldvay
MHOM LIN YAl Sng 1SOH
¥07& : .
sng &
" g0z
” AMONIN OSSIO0Ud Ls~yqz
207
R —
{

US 2017/0344406 A1

Nov. 30,2017 Sheet 3 of 17

Patent Application Publication

HAYN

AV

A

NN
ERE

SN

Ad0 L1034

)

e
Apog
Japesy
e
Apoy

isiEsy

iapeay

goly

B

\Mbwriiwli /08 - /840 siduirys —

£ old

HAGINNN
LH0d

A

JNYN
150H
A

A

A
[Sennes

anasst n

/w0 ajdwexe —— /011y =

............... - JABA

Rl <1 t Sy

Bl et

~
jol

—

U

/8ypen jd
/1004
\.Cﬁ : ¢

US 2017/0344406 A1

o —~ 28 3 NOLLYOddY
S 18 & NOILY O ddY
803 K :
0o TS ¥ NOLLYOIddY
SENO38 438N e NOILVOTTddy
WO OL drovn 980 ONILYN3E0 314

v Old

Nov. 30,2017 Sheet 4 of 17

490 frdd ;_G LNOAXS NOISSINHAd NCILLN3dXd) /08 /B0 Bcuexe
NOLLEIHOY ONLLMM NOILIGIHCH DNLLREA a8 L3 ' L_.; JBunED)
NOILIGHONCO NIOY 3 NOISSINGA- ONIGY 3 Lo

NOISSINGTd NOLLNOIXT
NOILIGHOEd ONLLIYAM
NOLLIFIHOHJD NIOV3d

mwm_\/&u.hm/ JEXH NOSSINGDd NOLLNJEXH . /R /LN 8thuEY S
NOLLIBIHOM S ONEL RIM 08 L8 C .
NOISSIA M A DNIC

193 NOISSINYTIC DNIGY Y

_ S NOIS5INAd NOLLNOEIX . _
NOLLIGIHO MG ONLLIIM 0% 48 /BYoED/
NOISSIANTS ONIGY TN

NOISSiNHAd NOLLNOIX NG
'NCILIGHD e DNILIM A
NOILLIGHCY D Z_Q(m_m

[

YIS H3HA0 dNCHD GANMO

NOLLYINO SN NOISSING S

Patent Application Publication

Patent Application Publication Nov. 30, 2017

FILE ACCESS MANAGER
DETECTS FILE ACCESS

%

Sheet S of 17 US 2017/0344406 A1

£~ 8101

ACCESS RIGHT DETERMINER DETERMINES
FILE ACCESS PERMISSION OR PROHIBITION

58102

<75 THE FILE™ NO

“ACCESS TYPE e
5106 |READ

&«

X . 4

5107

i .
o ¥

5104

READING
PROCESS

WRITING
PROCESS

FILE ACCESS MANAGER
NOTIFIES ERROR

3

TRANSMIT FILE TO APPLICATION
’l’\ FILE ACCESS MANAGER

Patent Application Publication Nov. 30,2017 Sheet 6 of 17 US 2017/0344406 A1
PRESENCE DETERMINER DETERMINES 1
WHETHER PRESENCE OF VALID FILE {5201
§202 ,
- 18 TPIE NO 3203
e FILE PRESENT? FE——— :
) w‘__,e-"fvf kit i
VES COMMUNICATION PROCESSOR OBTAINS FILE
.
WRITER OBTAINS FILE FROM {.. 204
COMMUNICATION PROCESSOR
¥
WRITER WRITES FLEIN 1__g905
STORING DEVICE
« I
k3
READER READS FILE -~ 5206
§207 +
I ' e TRANSMIT FILE
= ,,»\rQTEx\, CALL w:ﬂ- e
READ FILE COMMUNICATION PROCESSOR 5208
l TRANSMITS FILE

FIG.6

Patent Application Publication Nov. 30,2017 Sheet 7 of 17

FILE ACCESS MANAGER PASSES FILE
FROM APPLICATION TO WRITER

ZR

WRITER WRITES FILE iIN STORING DEVICE

%

FILE ACCESS MANAGER NOTIFIES
COMPLETION OF WRITING

US 2017/0344406 A1

5301

&

S302

T N

5303

8 9Old

¢Ol-, AV JHYMTHVH

J0IA30 ONIHOLS

US 2017/0344406 A1

Nov. 30,2017 Sheet 8 of 17

Patent Application Publication

3 &

e e Ty ESAS 314)

N HALOAS J i

o0k % = £01 e

k , W 801 = % M :
MOSSIOOUA N | | N 2 S :
OLLYONNNAOO | 7 7 ey 901 Go1

y & M w i w. I M..\ 3
R S S SO 4 W A :
: broox b MOLONYISNE | S MENIARIELEE RENIETEE &
Lo (e SOOI PN OngEud 1HOW 5300V | |
2 L iSE] , + M
PR - (MOLOTLIC) HIDYNY $5300Y T4 :
R) PN (& $5300Y IT:: ;
4 W m o vol y 7 M
gt o widitlil.‘,iili 111111 B S i S iy B R R S e ot e st
(JOVdS TINNINSO
e e BSOS S T
M ; i 5 L4
w 3 ANV 0 SNOILYOddY ﬁ O ONV § VY SNOILYOIddV
W. o s
; 3601 Q01 _0gol mmom ¥EOL H0VdS ¥3SH !
L\r/w?m MWJ\EL.LOM

Patent Application Publication Nov. 30,2017 Sheet 9 of 17 US 2017/0344406 A1

TARGET PATH APPLICATION
/cache/http/example.com/80/ APPLICATION D
/Caohe‘,‘/http/exampie,org/é';;’mwWW‘A‘ZPPE_ICAT]ON D

/cache/ APPLICATION &

FIG.9

Patent Application Publication Nov. 30,2017 Sheet 10 of 17 US 2017/0344406 A1

e 9201

WHETHER PRESENCE OF VALIDD FILE

S202
A

DTS THE e NO
e FILE PRESENT? o 5401

k:
oy EXECUTION INSTRUCTOR ISSUES
YES| FILE OBTAINING NSTRUCTION | o409

Fat

3 2
INSTRUCTED APPLICATION OBTAINS
FILE VIA COMMUNICATION PROCESSOR

W
INSTRUCTED APPLICATION CALLS
SYSTEM CALL FOR DATA WRITING,
AND WAITS FOR COMPLETION OF

WRITING
% ‘i *\,
; 5403
READER READS FILE ~er 5206
75 Rm— S
. e TRANSMIT FILE 5209
- A
READ FILE COMMUNICATION

PROCESSOR TRANSMITS FILE

TRANSMIT FILE TO APPLICATION § 5208
- VIA FILE ACCESS MANAGER f

FIG.10

L1914

______ T TTTTTAVIAARQVH

¢Ol~ I0IAZ0 DNMOLS :

&

N e e O e i £ e i o 8 0 8 AL e T NS D A 8 0 50 a0 o 50 g 4Bt A A e 0y e 1 o 0 e e 4 0 0 0 e 50 e 0 80 B8 0 0 0

US 2017/0344406 A1

ALOM LN =

B3

£31 401 YONDIINOD N /ol

&
%,
ee]
<,
T 3
RS
e
SN

3
H05S-4004d
NOILVOINNIANGD [

: SElEN

el

e i e v e i e v o

Nov. 30,2017 Sheet 11 of 17

: MIAYT 3UYMLA0S

| g 1 : MIAVTI0L
], e e e e
: ; > P MOLOMMISNE 1 L 5, RENANEIE NEVEEER W,
; . : e 5 ”_M NOILNDIXT & ,x 4 AONASHHd THO SS330Y 4 &
S limEi W Iy rai ;
i Mm £ 4T o) o Lo o) :
I A i ;| (4OLDT13Q) YIDVNYIN $8I00Y 314 ;
5 ;] oMl W3LSAS I e g ;
,m (30YdS TENETNSO
w .ml.li!i.wcaw!i&}i!!{.i.!,i(‘!i?ti!.i.sii.r,ill‘il,”llllw.,,llnlulitlll,!iLt.iiit.,l).wﬂ,\.,\\ﬁfv\\\,\!s.t,\!.}t:.).\. e im
nm m , I ONY SNOILYOIddY w O ANY 8 'V SNOLLYOMddY ;
g w o~ e i o
s A ~ 3£01'qe0t | O£01'E0L'YEOL 3OVdS ¥3sN ;
m i1 AR S A s ke b o ey ki e i e in o N T N S . R R R e i AL . L S o b, R e e etk o g at il . At s oo e . Al g
<«
=
[P
=
=W

Patent Application Publication Nov. 30,2017 Sheet 12 of 17 US 2017/0344406 A1

N
%
S
=
}_
L
(@]
=
o
o
< o)
TN . Can NI
o o A o o
< <
s \
P N
o
> N
< L
= Ll ®
L L g
=
O & O
}--‘ 20000000
L
.
S
(e8]
[0p]
£
&)
o
o
[
7
— 7
<
[N]

Patent Application Publication Nov. 30,2017 Sheet 13 of 17 US 2017/0344406 A1

(LSTART)

PRESENCE DETERMINER DETERMINES | _ §201
WHETHER PRESENCE OF VALID FILE-

5202 i
ey IS THE v NO
o FILE PRESENj?/_J 1
YESM | EXECUTION INSTRUCTOR ISSUES {5401
FILE OBTAINING INSTRUCTION
. ! 5501
INSTRUCTED APPLICATION CALLS
“recviile” SYSTEM CALL 8507
] /

DETECTION AND ACCESS RIGHT DETERMINA TION
ARE PERFORMED,AND THEN COMMUNICATION
PROCESSOR OBTAINS FILE

COMMUNICATION PROCESSOR ... 5503
PASSES FILE TO WRITER
T
WRITER WRITES FLEIN | .. 8504
STORING DEVICE
e

e
*

%

READER READS FILE 5206

s507 %
A e TRANSMIT FILE
T SYSTEM CALL TYPE =

COMMUNICATION 5209

READ FILE |
PROCESSOR TRANSMITS FILE

TRANSMIT FILE TO APPLICATION i-»-\--8208
VIA FILE ACCESS MANAGER | |

) F1G.13

Patent Application Publication

APPLICATION

AL THACHR
RV TURTI R TION
SOFTWARE

OS OF PHYSICAL INSTANGE (HOST 0S)

PHYSICAL MACHINE

FIG.14A

0S OF PPYS CAL 'NS AN"E ‘F‘{DEPV!SOW

PHYSICAL MACHINE

FIG.14B

APPLICATION

: NTANER
CONTANER TYRE YRTUALIZATION
SOFTWARE

0S OF PHYSICAL INSTANCE (HOST 0S)

PHYSICAL MACHINE

1G.14C

Nov. 30,2017 Sheet 14 of 17 US 2017/0344406 A1

— USER SPACE

1 KERNEL SPACE

AAOM LN #

US 2017/0344406 A1

§1°9O

Nov. 30,2017 Sheet 15 of 17

Patent Application Publication
g | N

wt 0L Y JINOWWOD

4

F0IAZ0 ONRIOLS

m HHAV
AV A GHVH

o i e e e B e a5 e e

HA LM

L0}

S e i L e A

T &l
1 SOV 301
08530084) , L L S i
sl Ui Tein WiV a! I k i, A
NOLLDINONROD | : Q&m; Lf ¥ vwﬁ%ﬁmmg
LWL ; C1NOLLNOEXE ; 4
LR S 5 t H f
b-ores ; i 4
RN i (40103130) ¥39¥ NV 55300Y 3
S J . S, S
kot et (30Vc

.|5M|:I||Eii:i|lll

i e e o o e i i

PR

Ay

i

t

¥
3
2
€
4
3
{
H
4

Y]

AN g

A e

,l ,qj ,52; EQ\W

Patent Application Publication Nov. 30,2017 Sheet 16 of 17 US 2017/0344406 A1

INSTANC ACCESS RIGHT INFORMATION

PHYSICAL INSTANGE

READING PERMISSION,
WRITING PERMISSION
READING PERMISSION,
WRITING PROHIBITION
READING PERMISSION,
WRITING PROHIBITION
READING PERMISSION,
WRITING PERMISSION
READING PERMISSION,
WRITING PERMISSION

VIRTUAL INSTANCE 1

VIRTUAL INSTANCE 2

VIRTUAL INSTANCE 3

PHYSICAL INSTANCE

FIG.16

TARGET PATH EXECUTION APPLICATION
/cache/http/ APPLICATION D OF VIRTUAL
example.com/80/ INSTANCE 3
/cache/http/ COMMUNICATION PROCESSOR OF
example.org/80/ 1 VIRTUAL INSTANCE 3
/cache/http/ APPLICATION E OF PHYSICAL
toshibacojp/80/ { INSTANCE
Joache/ COF‘AF\«"&UNICAT!QN PROCESSOR OF
' ' PHYSICAL INSTANCE

FIG.17

Patent Application Publication Nov. 30,2017 Sheet 17 of 17 US 2017/0344406 A1

FLE ACCESS RELAY |~ S601
DETECTS SYSTEM CALL
*

FILE ACCESS RELAY RELAYS SYSTEM | ~ 8602
CALL TO FILE ACCESS MANAGER

F—

FILE ACCESS MANAGER ~ 3101

DETECTS FILE ACCESS
{

w ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ACCESS RIGHT DETERMINER DETERMINES | + 51029
FILE ACCESS PERMISSION OR PROHIBITION |

5103 .
VIS THE
<ZFILE ACCESS ENABLE

D NO

S1056
A e WRITE

s1os | "EAD 5107 $104
\% w ,r“} % {‘.j'\f'

READING WRITING FILE ACCESS MANAGER
PROCESS PROCESS NOTIFIES ERROR

¥

#

END

FIG.18

US 2017/0344406 Al

DATA PROCESSING APPARATUS, DATA
PROCESSING METHOD, AND
NON-TRANSITORY COMPUTER READABLE
MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application is based upon and claims the
benefit of priority from Japanese Patent Application No.
2016-108714, filed May 31, 2016; the entire contents of
which are incorporated herein by reference.

FIELD

[0002] Embodiments described herein relate generally to a
data processing apparatus, a data processing method and a
non-transitory computer readable medium.

BACKGROUND

[0003] In a data processing apparatus mounted with an
Operating System (OS), an application and the like to be
executed by a user is executed in a user space while the OS
and the like that operate hardware are executed in a kernel
space. Consequently, programs executed in the user space
cannot directly access the hardware.

[0004] Operation of a file and the like stored in a storage
requires a process (system call) of calling a function of the
OS which is executed in the kernel space. Even if a storage
or the like that can be shared by a plurality of applications
are provided, there is a problem in that a load or delay due
to a system call occurs.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG.1is ablock diagram illustrating an example of
a schematic configuration of a data processing apparatus
according to a first embodiment;

[0006] FIG. 2 is ablock diagram illustrating an example of
a hardware configuration according to the first embodiment;
[0007] FIG. 3 is a diagram illustrating a configuration of
a file system of the data processing apparatus according to
the first embodiment;

[0008] FIGS. 4A, 4B and 4C are diagrams illustrating
examples of access right information according to the first
embodiment;

[0009] FIG. 5 is a diagram illustrating an example of a
flowchart of a schematic process of the data processing
apparatus according to the first embodiment;

[0010] FIG. 6 is a diagram illustrating an example of a
flowchart of a reading process of the data processing appa-
ratus according to the first embodiment;

[0011] FIG. 7 is a diagram illustrating an example of a
flowchart of a writing process of the data processing appa-
ratus according to the first embodiment;

[0012] FIG. 8is a block diagram illustrating an example of
a schematic configuration of a data processing apparatus
according to a second embodiment;

[0013] FIG. 9 is a diagram illustrating an example of
instruction information;

[0014] FIG. 10 is a diagram illustrating an example of a
flowchart of a reading process of the data processing appa-
ratus according to the second embodiment;

[0015] FIG. 11 is a block diagram illustrating an example
of a schematic configuration of a data processing apparatus
according to a third embodiment;

Nov. 30, 2017

[0016] FIG. 12 is a block diagram illustrating an example
of a hardware configuration according to the third embodi-
ment;

[0017] FIG. 13 is a diagram illustrating an example of a
flowchart of a reading process of the data processing appa-
ratus according to the third embodiment;

[0018] FIGS. 14A, 14B and 14C are diagrams illustrating
examples of virtualization techniques;

[0019] FIG. 15 is a block diagram illustrating an example
of a schematic configuration of a data processing apparatus
according to a fourth embodiment;

[0020] FIG. 16 is a diagram illustrating an example of
access right information according to the fourth embodi-
ment;

[0021] FIG. 17 is a diagram illustrating an example of
instruction information according to the fourth embodiment;
and

[0022] FIG. 18 is a diagram illustrating an example of a
flowchart of the data processing apparatus according to the
fourth embodiment.

DETAILED DESCRIPTION

[0023] An embodiment of the present invention reduces
the number of processes between a user space and a kernel
space, thereby reducing the load on or delay of processing.
[0024] A data processing apparatus according to the
embodiment of the present invention includes a storing
device configured to store a file, and an OS configured to
operate in the kernel space. The OS includes a file access
manager, a presence determiner, and a writer.

[0025] The file access manager detects a file access to a
file in the storing device by an application operating in the
user space.

[0026] The presence determiner determines whether the
file pertaining to the file access detected by the file access
manager is stored in the storing device.

[0027] When the presence determiner determines that the
file pertaining to the file access is not stored in the storing
device, the writer writes the file pertaining to the file access
detected by the file access manager into the storing device.
[0028] Below, a description is given of embodiments of
the present invention with reference to the drawings. The
present invention is not limited to the embodiments.

First Embodiment

[0029] FIG. 1is ablock diagram illustrating an example of
a schematic configuration of a data processing apparatus 1
according to a first embodiment. The data processing appa-
ratus 1 according to the first embodiment includes a com-
municator 101, a storing device 102, at least one application
103, a file access manager (detector) 104, an access right
determiner 105, a presence determiner 106, a reader 107, a
writer 108, and a communication processor 109. When a
plurality of applications 103 are to be discriminated from
each other in the description, the discrimination is made
based on alphabetical subscripts as indicated in FIG. 1 such
as applications 103A to 103C.

[0030] The data processing apparatus 1 of this embodi-
ment is mounted with any OS and is implemented as a
general computer apparatus that causes software (programs)
to operate. Among configuration elements of the data pro-
cessing apparatus 1, elements implemented by software
processing are represented in a software layer, while ele-

US 2017/0344406 Al

ments implemented by hardware processing are represented
in a hardware layer. The type of the data processing appa-
ratus 1 is not specifically limited. This apparatus may be, for
example, a PC (Personal Computer), a server, a tablet or the
like.

[0031] In an address space where software operates, a
space (kernel space) in which the OS operates and a space
(user space) in which programs used by a user operate are
separated from each other. Here, the programs that operate
in the user space are called “applications”.

[0032] As illustrated in FIG. 1, the applications 103 oper-
ate in the user space. The file access manager 104, the access
right determiner 105, the presence determiner 106, the
reader 107, the writer 108, and the communication processor
109 operate as a part of the OS in the kernel space. The
storing device 102 and the communicator 101 operate in the
hardware layer. The file access manager 104, the access right
determiner 105, the presence determiner 106, the reader 107,
and the writer 108 may be implemented as a single file
system in the OS of the data processing apparatus 1.
[0033] FIG.2is ablock diagram illustrating an example of
a hardware configuration of the data processing apparatus 1
according to the first embodiment. In the example of FIG. 2,
the data processing apparatus 1 is represented as a computer
apparatus 2 that includes a processor 201, a memory 202, a
storage 203, a network adaptor 204, and a host bus adaptor
205. The processor 201, the memory 202, the network
adaptor 204, and the host bus adaptor 205 are connected via
a bus to each other. The host bus adaptor 205 is connected
to the storage 203. The network adaptor 204 is connected to
an external network. Besides these elements, an input device
and an output device may further be provided. Each con-
figuration element of the hardware may be a single element
as in FIG. 2, or a plurality of elements.

[0034] The processor 201 is an electric circuit that
includes a control device and an operation device of the
computer. The term “processor” should be widely construed,
and encompasses a Central Processing Unit (CPU), a micro-
processor and the like. The term may further encompass
processors for assisting the processor. The processors may
be a digital signal processor, a graphic processor, a processor
for peripheral devices.

[0035] The memory 202 is a memory device that tempo-
rarily stores instructions to be executed by the processor
201, various types of data and the like. This memory may be
avolatile memory, such as DRAM, or a nonvolatile memory,
such as MRAM.

[0036] The storage 203 is a storage device that perma-
nently stores programs, data and the like. The storage may
be, for example, a hard disk, an SAN (Storage Area Net-
work), an optical disk, a flash memory, magnetic tape or the
like.

[0037] The network adaptor 204 is an interface for wire-
less or wired connection to a communication network. The
network adaptor 204 may be an adopter that conforms to an
existing communication standard.

[0038] The host bus adaptor 205 is an interface for con-
nection to the storage. The connection standard is not
specifically limited.

[0039] The processor 201 executes programs stored in the
memory 202 or the storage 203, thereby implementing the
application 103, the file access manager 104, the access right
determiner 105, the presence determiner 106, the reader 107,
the writer 108, and the communication processor 109.

Nov. 30, 2017

[0040] The storing device 102 is implemented any or both
of the memory 202 and the storage 203. The communicator
101 is implemented by a network adaptor.

[0041] The data processing apparatus 1 according to this
embodiment may be implemented by preinstalling programs
to be executed. Alternatively, this apparatus may be imple-
mented by storing the programs in a storing medium, such
as CD-ROM, or distribution via a network and by appro-
priately installing the programs.

[0042] The details of each of the elements that constitute
the data processing apparatus 1 are described.

[0043] The communicator 101 is a network interface for
communication with an external apparatus via a communi-
cation network according to a communication scheme
defined by IEEE 802.3 standard or the like. In this embodi-
ment, for example, communication is performed in a case
where the data processing apparatus 1 receives a file or the
like that this apparatus does not hold from an external
apparatus (origin server) and a case where the data process-
ing apparatus 1 transmits a file that this apparatus holds to
an external apparatus (client). The communicator 101 may
be a virtual interface created by a VLAN (Virtual Local Area
Network), VXLAN (Virtual eXtensible Local Area Net-
work), or VPN (Virtual Private Network).

[0044] The storing device 102 stores data, such as files.
For example, the stored data may be a cache (temporarily
used data), such as of files downloaded by the communicator
101. The storing device 102 may store access right infor-
mation to be used by the access right determiner 105. A
storing device 102 that stores files and a storing device 102
that stores access right information may be achieved by
different memories or storages. The details of the access
right information are described later.

[0045] The application 103 performs a file access to the
file in the storing device 102. The file access means instruc-
tions pertaining to the file, such as creating, reading, writing,
deleting, and transmitting. More specifically, the file access
means a system call to the OS of the data processing
apparatus 1.

[0046] When a program operating in the user space uses a
function of the OS operating in the kernel space or a
resource in the hardware, a system call is used. The system
call calls the function of the OS operating in the kernel
space, such as a file system, and allows the file and the like
stored in the hardware to be used. Depending on the type of
OS, instead of the name of system call, which is sometimes
referred to as another name, such as a service call, supervisor
call, or API (Application Programming Interface). Here, a
process of the application for calling a program operating in
the kernel space is uniformly referred to as a system call.
[0047] The application 103 calls an “open” system call
with designation of the path of a file, thereby obtaining a file
descriptor corresponding to the desired file. The application
103 can perform various processes using the file descriptor.
[0048] For example, calling a “read” system call with
designation of a memory from which reading is to be made
and the length of reading allows the data on a file in the
storing device 102 to be read. Calling a “sendfile” system
call with designation of the file descriptor, the offset of data
in the file, the length of data, and the socket for communi-
cation allows the data of the file in the storing device 102 to
be transmitted to the communication processor 109 via the
socket. Calling a “write” system call with designation of the
address of memory where the data on the file to be written

US 2017/0344406 Al

is stored and the length of the data allows the designated file
to be written in the storing device 102. Even in a case of the
same process, different system calls may be used according
to the situations. For example, to read the data on the file, the
“read” system call may be used in some cases and the
“mmap” system call may be used in other cases.

[0049] The file access manager (detector) 104 is an inter-
face of the file system. When the application 103 calls a
system call pertaining to a file in the storing device 102, the
file access manager 104 detects this system call.

[0050] FIG. 3 is a diagram illustrating a configuration of
a file system of the data processing apparatus 1 according to
the first embodiment. “/” at the upper left of FIG. 3 indicates
a root directory. Directory trees, such as “/bin”, “/boot”,
“/cache”, “fusr” and “/var”, immediately below the root
directory are implemented by each file system provided by
the OS.

[0051] For example, the application 103 is a web server
that provides web services, and transmits files, such as web
pages, cached in the storing device 102. It is assumed that a
file to be transmitted resides under the “/cache” directory
directly below the root directory. In such an example, the file
access manager 104 in the file system mounted on the
“/cache” directory receives a system call from the applica-
tion 103.

[0052] In the above example, it is assumed that the appli-
cation 103 tries file access through an “open” system call
with designation of a path, such as “/cache/schema name/
host name/port number/directory name/file name/area
name”, as illustrated in FIG. 3. For example, when the body
part of URI (Uniform Resource Identifier), “http://example.
com/dirl/file1”, is required, the application 103 converts the
URI into a path, “/cache/http/example.com/80/dirl/filel/
body” and performs a file access. When the header part is
required, conversion is performed into “/cache/http/ex-
ample.com/80/dirl/filel/header”. When all the parts are
required, conversion is performed into “/cache/http/ex-
ample.com/80/dirl/filel/all”. The area names are different
according to the schemers.

[0053] The file access manager 104 obtains path informa-
tion, access type information, and application execution
information, from the “open” system call. These pieces of
information are transmitted to the access right determiner
105, the presence determiner 106 and the like. The path
information is information related to the path of the file
pertaining to the file access. The access type information is
information related to the file access type, such as reading,
writing, and executing. The application execution informa-
tion is information related to the application 103 that per-
forms the file access. For example, the application execution
information contains an application identifier for identifying
the application 103, a user identifier for identifying a user
who are executing the application 103, and a group identifier
for identifying a group to which the user belongs. The
application identifier may be a process 1D assigned by the
OS, for example.

[0054] The file access manager 104 returns a process
result by the system call to the application 103 having called
the system call. The process result by the system call may be
a required file descriptor, the number of processed bytes, an
error in a case of failure in the request or the like.

[0055] When the process is completed, the application 103
calls a “close” system call and closes the file descriptor. At
this time, the file access manager 104 may detect the “close”

Nov. 30, 2017

system call in the writing process, and notify the completion
of the process to the reader 107, writer 108 and the other
applications 103 and the like, which are waiting for the
completion of writing. The notification may be issued to all
the elements that are waiting for the completion of writing.
Alternatively, the notification may be issued to some ele-
ments with a priority. Instead of the file access manager 104,
the application 103 may issue the notification. The file
access manager 104 may receive a report of the completion
of the process from the access right determiner 105, the
presence determiner 106, the reader 107, the writer 108 or
the like and then notify start of the next process to the
corresponding elements.

[0056] The access right determiner 105 determines file
access permission or prohibition detected by the file access
manager, on the basis of the access right information. The
access right information indicates the access right where file
access permission or prohibition is set on a file-by-file basis
or a directory-by-directory basis.

[0057] FIGS. 4A, 4B and 4C are diagrams illustrating
examples of access right information according to the first
embodiment. FIG. 4A illustrates an example of access right
information on each path. FIG. 4B illustrates the relationship
between the applications 103 and users executing the respec-
tive applications 103. FIG. 4C illustrates the relationship
between the users and groups to which the users belong. The
identifiers of the users and the groups are uniquely assigned
by the OS.

[0058] FIG. 4A illustrates the path of the file, and owner
information and permission information on the file. The
owner information includes the identifier of an owner user
and the identifier of an owner group. In the example of this
diagram, the pieces of permission information are classified
into those for the owner users, owner groups, and other
users. The access rights of execution, reading and writing in
each classification are illustrated (permission or prohibition
in FIG. 4A). There may be another classification which is
not illustrated.

[0059] The access right determiner 105 refers to the access
right information as in FIGS. 4A, 4B and 4C, and determines
the file access permission or prohibition using the path
information, access type information and application execu-
tion information obtained from the file access manager 104.
For example, provided that each application 103 is executed
by the user illustrated in FIG. 4B, a file access to the file
under “/cache” directory by the application 103C is deter-
mined not to permitted (prohibited). A user who has a user
ID of “82” and executes the application 103C is not the
owner user and does not belong to the owner group. Con-
sequently, the user is classified into one of the other users.
The other users are prohibited from reading, writing and
executing the file. Thus, such determination is made. On the
other hand, the users executing the applications 103A and
103B are the owner user or belong to the owner group.
Consequently, in cases of reading and execution, file
accesses to “/cache” by the applications 103A and 103B are
determined to be permitted. In a case of writing, the file
accesses are determined not to be permitted (prohibited).
[0060] File access permission or prohibition of a file
having not been created may be determined such that the
access right information on the directory higher on the path
is inherited.

[0061] The access right determiner 105 notifies the deter-
mination result to the file access manager 104. When the

US 2017/0344406 Al

determination result is “prohibited”, that is, when file access
cannot be performed, the file access manager 104 sets the
return value of the system call to an error and issues
notification to the application 103. For example, when the
applications 103 A and 103B try to perform writing to the file
in the “/cache” directory, an error is notified to the corre-
sponding applications 103 because writing is prohibited.
[0062] The access right determiner 105 thus determines
the file access permission or prohibition from the application
103. Consequently, a file access from the application 103
having a high security risk can be prevented. On the other
hand, the application 103 that is permitted to perform
reading can use the file in the storing device. Consequently,
unnecessary communication can be avoided.

[0063] The presence determiner 106 determines whether
the file pertaining to the file access detected by the file access
manager 104 is stored in the storing device 102 on the basis
of the path information. In a case where the file is stored in
the file storing device 102, it may further be determined
whether the file is valid. For example, when a predetermined
expiration time after the file being cached has been reached,
the determination result may be set to “prohibited” because
no valid file resides.

[0064] The method of determining whether the file is valid
or invalid is different according to each schemer. For
example, in a case of HTTP, determination may be per-
formed using “Expires”, “max-age”, “Last-Modified”,
“Date” fields and the like, which are contained in a header.
Through “Expires”, “max-age” or the like, it can be deter-
mined whether the expiration time has not currently been
reached yet. Alternatively, the validity of the file may be
estimated using “Date” and “Last-Modified”, and determi-
nation may then be made. The presence determiner 106 may
obtain these fields from the HTTP header stored in the
storing device 102.

[0065] Thus the validity of the file can be secured.
[0066] The communication processor 109 is actually
implemented using, for example, a TCP/IP protocol stack, a
network device driver or the like, and controls the commu-
nicator 101 to communicate.

[0067] The communication processor 109 controls the
communicator 101 to thereby receive the file and the like
pertaining to the file access detected by the file access
manager 104, from an external apparatus, e.g., a server on a
network or the like. For example, when the application 103
performs a file access to “/cache/http/example.com/80/dirl/
filel/body”, the communication processor 109 receives the
file using a character string after ‘“/cache/”, i.e., “http://
example.com/80/dirl/filel”. The method of receiving the
file is different according to each scheme. For example, in a
case of HTTP, connection is established to the port “80” of
example.com in TCP (Transmission Control Protocol), and
subsequently, the file is received using a “HEAD” method,
a “GET” method and the like of HTTP. For example, first,
information on the header may be received using the
“HEAD” method, it may be determined whether the file
stored in the storing device 102 is updated, and information
on the body may be received through the “GET” method as
required.

[0068] The reader 107 reads the file from the storing
device 102 according to the type of the system call, and
provides the read file to each element that requires the file.
[0069] For example, when the file access manager 104
detects reading of the file through the system call, such as

Nov. 30, 2017

“read”, the reader 107 reads the file from the storing device
102, and transmits the file through the file access manager
104 to the application 103 having called the system call.
More specifically, the reader 107 writes the data read from
the storing device 102 in a memory area set by the appli-
cation 103 at the time of system call, and notifies the number
of bytes written as a processing result to the application 103.
When the file access manager 104 detects file transmission
by the system call, such as “sendfile”, the reader 107 reads
the file from the storing device 102 and then transmits the
file to the communication processor 109.

[0070] The writer 108 writes the received file in the
storing device 102. The writer 108 may obtain the data on
the file from the application 103 through the file access
manager 104. For example, when the file access manager
104 detects file writing by the system call, such as “write”,
the data is read from the memory area set by the application
103 at the time of system call, and the writer 108 writes the
data as a file in the storing device 102. The number of
written bytes is notified to the application 103 via the file
access manager 104. The data on the file may be obtained
from the communication processor 109 without intervention
of the application 103. In this embodiment, when the file
called by the application 103 is absent in the storing device
102, the writer 108 obtains the file from the communication
processor 109 and writes the file in the storing device 102
even without a writing instruction from the application 103
having performed the file access. That is, when the file called
by the application 103 is absent in the storing device 102, file
access pertaining to writing by the application 103 is not
performed.

[0071] A typical web server and the like obtain, from an
external apparatus or the like, the file requested by the web
server, when the file is absent. Consequently, exchange of
data between the user space and the kernel space occurs
many times. However, as with this embodiment, execution
of the writing process in the OS even without any writing
instruction by the application 103 can reduce exchange of
data between the user space and the kernel space to reduce
the delay of and load on the process.

[0072] The destination of writing is determined on the
basis of the path information. The path information may be
obtained from the file access manager 104, reader 107 or the
like. Alternatively, a configuration may be adopted where
the necessity of writing is determined on the basis of the
update time of each file obtained, and the file determined to
be without necessity of writing is not written.

[0073] Next, the flow of process of this embodiment is
described. FIG. 5 is a diagram illustrating an example of a
flowchart of the data processing apparatus 1 according to the
first embodiment. The description is made assuming that the
application 103 of this embodiment is a web server that
transmits a file requested by an external apparatus, not
illustrated, on a network. This flow is started when the
application 103 calls the system call.

[0074] The application 103 calls a system call, which
allows the file access manager 104 to detect the file access
(S101). The file access manager 104 transmits the path
information, access type information and application execu-
tion information included in the system call to the access
right determiner 105, and the access right determiner 105
determines file access permission or prohibition on the basis
of these pieces of information and the access right informa-
tion (S102).

US 2017/0344406 Al

[0075] When the determination result by the access right
determiner 105 is “prohibited”, that is, when the file access
is disabled (NO in S103), the reading process, writing
process or the like is not performed, the determination result
is returned to the file access manager 104, and the file access
manager 104 notifies an error to the application 103 having
called the system call (S104), and this process is finished.
When the determination result by the access right determiner
105 is “permitted”, that is, when the file access is enabled
(YES in S103), corresponding measures are different
according to the access types.

[0076] When the system call is “read”, “sendfile” or the
like, that is, when the system call is of an access type that
requires file reading (“READ” in S105), the reading process
is performed (S106). When the system call is “write” or the
like, that is, when the system call is of an access type that
requires file writing (“WRITE” in S105), the writing process
is performed (S107).

[0077] After the reading process or the writing process is
completed, this flow is finished. The flows of the reading
process and the writing process are described later.

[0078] FIG. 6 is a diagram illustrating an example of a
flowchart of a reading process of the data processing appa-
ratus 1 according to the first embodiment. The presence
determiner 106 determines whether a valid file pertaining to
the file access is present in the storing device 102 (S201).
The presence determiner 106 may obtain the path informa-
tion, the access type information and the application execu-
tion information from the access right determiner 105 or
from the file access manager 104.

[0079] When it is determined that the determination result
is false, that is, determined that the file pertaining to the file
access is absent in the storing device 102 (NO in S202), the
communication processor 109 obtains the file on the basis of
the path information (S203). The writer 108 then obtains the
file from the communication processor 109 (S204), and
writes the file in the storing device 102 (S205).

[0080] When the determination result is true, that is, when
the file pertaining to the file access is present in the storing
device 102 (YES in S202), or after the writer 108 writes the
file in the storing device 102 (after the process of S205), the
reader 107 reads the file pertaining to the file access (S206).
After the reader 107 reads the file (after the process of S206),
corresponding measures are different according to the sys-
tem call types.

[0081] When the access type is the file reading process,
such as “read” (“READ FILE” in S207), the reader 107
passes the read file through the file access manager 104 to
the application 103 having called the system call (S208) and
this process is finished. When the access type is the file
transmission process, such as “sendfile” (file transmission in
S206), the read file is transmitted to the communication
processor 109, and the communication processor 109 trans-
mits the file (S209) and this flow is finished. The file access
manager 104 may read the transmission destination of the
file from the system call, and transmit the destination to the
communication processor 109.

[0082] FIG. 7 is a diagram illustrating an example of a
flowchart of a writing process of the data processing appa-
ratus 1 according to the first embodiment. The writer 108
writes the data on the file transmitted from the application
103 via the file access manager 104, in an area of the storing
device 102 corresponding to the designated path (S302). The

Nov. 30, 2017

file access manager 104 notifies completion of writing to the
application 103 (S303), and this flow is finished.

[0083] In some cases, not all the files can be written at one
time. In such cases, the application 103 may repeatedly call
the “write” system call.

[0084] As described above, this embodiment can reduce
exchange of data between the user space and the kernel
space to reduce the delay of and load on the process. The
plurality of applications 103 are allowed to share the file,
and can reduce the number of times of obtaining files
through the communicator 101. Furthermore, the expiration
time of the file can be determined, and the validity of the file
can be secured. Moreover, file writing by the application 103
that is not allowed to access the file can be limited, which
can improve the reliability of the file.

Second Embodiment

[0085] In the first embodiment, when the file pertaining to
the file access is absent, the file is written in the storing
device 102 without intervention of the application 103
having performed the file access. However, in some cases,
the application 103 to be allowed to perform writing is
desired to be designated. A second embodiment assumes that
a desired application 103 is caused to execute a process,
such as obtaining of a file.

[0086] FIG. 8 is a block diagram illustrating an example of
a schematic configuration of a data processing apparatus 1
according to a second embodiment. This embodiment fur-
ther includes an execution instructor 110, and applications
103 that are instructed to execute a process. In FIG. 8,
applications 103D and 103E are illustrated as candidates of
the applications 103 that are instructed to execute the
process. Description on points analogous to those of the first
embodiment is omitted. The hardware configuration of the
data processing apparatus 1 according to the second embodi-
ment is analogous to that of the first embodiment.

[0087] As with the file access manager 104, the execution
instructor 110 operates, as a part of the OS, in the kernel
space. When the presence determiner 106 determines that no
valid file is present, the execution instructor 110 instructs the
application 103 or the communication processor 109 to
obtain a file. The application 103 instructed to obtain the file
is determined on the basis of both the path information
pertaining to the file to be obtained and predetermined
instruction information. The path information may be
obtained from the presence determiner 106 or from the file
access manager 104. The instruction information may be
stored in the storing device 102, or in another storing device
102, not illustrated.

[0088] FIG. 9 is a diagram illustrating an example of
instruction information. The instruction information is rep-
resented in a table of correspondence between the paths and
applications 103 as illustrated in FIG. 9, for example. The
execution instructor 110 selects a target path that has the
longest character string coinciding with that of the path of
the obtained path information. Then, the execution instructor
110 instructs the application 103 associated with the selected
target path. In the example of FIG. 9, when file access is
performed to a file under the directory “/cache/http/example.
com/80/” or “/cache/http/example.org/80/”, the application
103D is instructed. When file access is performed to a file
that is not under any of the two directories but is under the
directory “/cache/” instead, the application 103E is
instructed.

US 2017/0344406 Al

[0089] It is assumed that the application 103 having per-
formed the file access is different from the application 103
provided with the file obtaining instruction. Alternatively,
the files may be identical to each other. A case may be
adopted where the application 103 is not instructed to obtain
the file. The communication processor 109 may be
instructed to obtain the file as with the first embodiment, or
an error may be notified without issuance of the obtaining
instruction.

[0090] The application 103 provided with the file obtain-
ing instruction is instructed by the execution instructor.
Accordingly, this application opens a predetermined file,
such as a device file system, through the “open” system call,
calls a “select” system call and a “poll” system call, and
waits for an execution instruction. The execution instructor
110 instructs the application 103 via the device file system.
Consequently, in the instruction information described
above, the file name such as of the device file system may
be associated with the path. A file obtaining instruction may
be issued using the file name.

[0091] In instructing the application 103, the execution
instructor 110 transmits the path information to the appli-
cation 103. In this case, the header information on the file
may be passed to the application 103. The application 103
can determine whether the header and body are required to
be updated on the basis of the fields, such as “Expires”,
“max-age”, “Last-Modified” and “Date” of the header infor-
mation, for example. Thus, it is possible to prevent unnec-
essary writing from occurring even without necessity of
update. When writing is unnecessary, the application 103
may notify the unnecessity to the other applications 103, the
reader 107, the writer 108 and the like which are waiting for
completion of writing, via the device file system and the like.
[0092] In a case where the data processing apparatus 1 is
connected to the network via a plurality of communicators
101, the execution instructor 110 may designate a commu-
nicator 101 to be used by this application 103. For example,
the communicator 101 may be designated by transmitting
the identifier of the communicator 101 to the application 103
to be instructed by the execution instructor 110.

[0093] For example, a case is assumed where a first
communicator 101 is connected to a first communication
line, a second communicator 101 is connected to a second
communication line, and the first communication line has a
higher usage fee but has a higher band than the second
communication line does. In such a case, the second com-
munication line is normally used, while the first communi-
cation line may sometimes be desired to be used for a
specific file or a specific source of obtainment. The execu-
tion instructor 110 selects the communication line to be
used, on the basis of the situation of the communication line
and the file to be obtained, and transmits, to the application
103, the identifier of the communicator 101 connected to the
communication line to be used. The application 103 obtains
the file via the communicator 101 associated with the
identifier. The desired communication line can thus be used.

[0094] Alternatively, the application 103 may use a pre-
liminarily associated communicator 101. For example, it is
preliminarily defined that the application 103D uses the first
communicator 101 connected to the first communication
line, and the application 103E uses the second communica-
tor 101 connected to the second communication line. Then,
a target path associated with the application 103D is pre-
liminarily registered in the instruction information. The

Nov. 30, 2017

target path is pertaining to a file to be transmitted in the first
communication line or the communication destination with
which communication is to be made via the first communi-
cation line. Thus, the execution instructor 110 provides an
instruction of obtaining the file to be transmitted in the first
communication line for the application 103D preliminarily
associated with the first communicator 101. Consequently,
the desired communication line can be used.

[0095] When the applications 103D and 103E receive an
instruction from the execution instructor 110, a file receiving
instruction is issued to the communication processor 109 to
thereby obtain the file via the communication processor 109.
It is assumed that the applications 103D and 103E are, for
example, proxy servers (cache servers) or the like that write
an obtained web page and the like as cache.

[0096] The applications 103D and 103E instruct the com-
munication processor 109 to obtain the data, on the basis of
the path information. For example, when the path informa-
tion is “/cache/http/example.com/80/dirl/filel/body”, the
file of “http://example.com:80/dirl/filel” is tried to be
obtained.

[0097] The file obtaining methods are different according
to the schemers. In a case of HTTP, the application 103
requests the OS to create a socket for communicating in TCP
with the port “80” of “example.com”, and tries to obtain the
file using a “GET” method or the like after establishment of
connection. Unlike the first embodiment, the file obtained by
the communication processor 109 is not passed to the writer
108 but is passed to the application 103D or 103E. Thus, the
file is passed between the application 103D or 103D and the
communication processor 109 via the socket.

[0098] The applications 103D and 103E call the system
call for writing in order to write, in the storing device 102,
the file obtained from the communication processor 109.
The process pertaining to file writing is analogous to that of
the first embodiment.

[0099] Next, the flow of process of this embodiment is
described. The schematic process of the data processing
apparatus 1 according to this embodiment is analogous to
that of the first embodiment. However, the reading process
is different from that of the first embodiment. FIG. 10 is a
diagram illustrating an example of a flowchart of a reading
process of the data processing apparatus 1 according to the
second embodiment. This flow is a flow of allowing the
application 103 to obtain the file.

[0100] The process in the case where the determination
result of the presence determiner 106 is true (YES in S202)
is analogous to that of the first embodiment. When the
determination result of the presence determiner 106 is false
(NO in S202), unlike the first embodiment the execution
instructor 110 instructs the application 103 to obtain the file
on the basis of the path information and the Instruction
information (S401). When the obtaining instruction is
issued, the path information is transmitted in order to obtain
the file.

[0101] The application 103 having received the obtaining
instruction obtains the designated file via the communication
processor 109 on the basis of the path information (S402).
The application 103 having received the designated file calls
the system call for writing the file, and waits for completion
of writing (S403). The flow of the process in response to the
system call for writing the file is performed according to the
schematic process flow and the writing process flow of the
first embodiment. Finally, the file access manager 104

US 2017/0344406 Al

notifies completion of writing to the reader 107. As with the
first embodiment, the reader 107 to which the completion of
writing has been notified reads the file (5206) and performs
the process according to the type of the system call (S208
and S209), and this flow is finished.

[0102] As described above, this embodiment allows the
application 103 different from the application 103 having
requested the file to execute the process of obtaining the file
and the like. Thus, only the reliable application 103 is
allowed to perform the writing process, thereby enabling the
reliability to be improved. Furthermore, the communication
line to be used can be selected according to the specific file
or the specific source of obtainment. Thus, in consideration
of the usage fee, band, load, delay and the like of the
communication line, the communication line is appropri-
ately used.

Third Embodiment

[0103] In a third embodiment, through use of a TCP/IP
offload engine (TOE), the processes pertaining to the reader
107, the writer 108 and the communication processor 109
are executed in hardware. This execution reduces the pro-
cessing load on the processor in comparison with the above
embodiments, and increases the speed of the process.
[0104] FIG. 11 is a block diagram illustrating an example
of a schematic configuration of a data processing apparatus
1 according to the third embodiment. The reader 107, the
writer 108 and the communication processor 109 are illus-
trated in a hardware layer. FIG. 11 illustrates an example that
implements the second embodiment in TOE. Alternatively,
the first embodiment may be implemented in TOE.

[0105] FIG. 12 is a block diagram illustrating an example
of a hardware configuration according to the third embodi-
ment. In the hardware configuration according to the third
embodiment, instead of the network adaptor 204, a TOE 207
is connected to a bus 206. Without the host bus adaptor 205,
the storage 203 is connected to the TOE 207, and is
connected to the bus 206 via the TOE 207.

[0106] The TOE 207 implements the reader 107, the writer
108, the communication processor 109 and the communi-
cator 101. The storage 203 implements the storing device
102. Thus, data is exchanged between the storage 203 and
the TOE 207 at high speed through the hardware. For
example, advantageous effects are exerted in a case where
the communication processor 109 reads the file from the
storing device 102 and transmits the file, and in a case where
the file obtained by the communication processor 109 is
directly written in the storing device 102.

[0107] The TOE 207 device driver operating in the kernel
space enables data to be exchanged between the memory
202 and the TOE 207 and enables a program operating in the
kernel space to access the storage 203. This allows pro-
cesses, such as reading of the access right information in the
storing device 102 by the access right determiner 105,
determination of presence of a valid cache by the presence
determiner 106, and reading of the instruction information
by the execution instructor 110, to be performed as with the
above embodiments.

[0108] According to the third embodiment, in a case
where the “sendfile” system call is called for the reading
process and a valid file is present in the storing device 102,
the function of the TOE 207 allows the reader 107 to read
data directly from the storing device 102 and allows the data

Nov. 30, 2017

to be transmitted via the communication processor 109
without intervention of the processor 201.

[0109] In the third embodiment, the process in a case
where any valid file is not present in the storing device 102
in the reading process is different from that in the second
embodiment. According to the second embodiment, in the
above case, the application 103 provided with the obtaining
instruction by the execution instructor 110 obtains the file
via the communication processor 109 and then calls the
system call for writing, thus performing the writing process.
In the writing process, the writer 108 obtains the file from
the application 103 through the file access manager 104. On
the other hand, in the third embodiment, the writer 108
directly obtains the file from the communication processor
109. Thus, the process of software is reduced, and the speed
of the process is increased.

[0110] According to the third embodiment, when the
application 103 provided with the obtaining instruction by
the execution instructor 110 obtains the file via the commu-
nication processor 109, this application uses a “recvfile”
system call, which is intrinsic to the TOE 207.

[0111] The “recvfile” system call performs an operation
inverted to that of “sendfile”.

[0112] According to the “recvfile” system call, when the
socket, the file descriptor, the file offset, and the length of
data are designated, data received through the socket is
written by the designated length from the offset position in
the file. That is, receiving and writing of the file is performed
in an integrated manner.

[0113] The application 103 provided with the file obtain-
ing instruction identifies the schemer, the host name and the
port number on the basis of the path information, and creates
the socket. Next, the file whose data is to be stored is opened
through the “open” system call, and an instruction for
writing the received file is issued through the “recvfile”
system call. For example, in the case of HTTP, the TCP
socket is created using the Identified host name and port
number. Next, a file is created through the “open” system
call for each of the header and body. Through the “send”
system call for the socket, the “GET” method, “HEAD”
method of HTTP are issued, and then the “recvfile” system
call is called.

[0114] FIG. 13 is a diagram illustrating an example of a
flowchart of a reading process of the data processing appa-
ratus according to the third embodiment. The processes up
to the process of the execution instructor 110 issuing a file
obtaining instruction (S401) are analogous to those in the
second embodiment.

[0115] An application instructed to obtain the file performs
necessary processes such as socket creating in order to call
the “recvfile” system call (S501). The called “recvfile”
system call is processed in a manner analogous to that of the
other system calls, such as “read” and “write”.

[0116] That is, as illustrated in the flow of the schematic
process in FIG. 5, the “recvfile” system call is detected by
the file access manager 104, the determination process by
the access right determiner 105 is performed. When the
determination result is permitted, that is, the file access is
permitted, the process of the “recvfile” system call (8502 to
S504 in FIG. 13) not illustrated in FIG. 5 is started. The
communication processor 109 obtains the file pertaining to
the obtaining instruction (S502) and passes the obtained file
to the writer 108 (S503). The writer 108 writes the file from
the communication processor 109 into the storing device

US 2017/0344406 Al

(S504). The processes thereafter are analogous to those of
the first and second embodiments.

[0117] A part of file writing may be performed through the
application 103. For example, the writer 108 may obtain the
header from the application 103, and obtain the body from
the communication processor 109.

[0118] As described above, according to this embodiment,
the received data is directly written in the storing device 102
of the storage 203 from the communication processor 109 of
the TOE 207 by the TOE 207 device driver without inter-
vention of the application 103. Thus, even when the appli-
cation 103 for obtaining the file is designated, the received
file can be written in the storing device 102 without inter-
vention of the processor 201, the memory 202 and the bus
206, thereby allowing the process to be performed at high
speed. The loads, such as the processor 201 and the memory
202, or the band of the bus 206 can be reduced.

Fourth Embodiment

[0119] A fourth embodiment assumes that the data pro-
cessing apparatus 1 has a virtual instance by a virtualization
technique (virtual machine or container), and provides a
multi-tenant service.

[0120] The virtualization technique is a technique that
creates one or more virtual data processing apparatuses on
one data processing apparatus. Here, the actual data pro-
cessing apparatus 1 that executes the virtualization tech-
nique is called a physical instance, and the virtual data
processing apparatus is called a virtual instance. The kernel
space of the virtual data processing apparatus is called a
virtual kernel space. The user space of the virtual data
processing apparatus is called a virtual user space. It is
herein assumed that the programs that operate in the virtual
user space are also included in “applications”.

[0121] FIGS. 14A, 14B and 14C are diagrams illustrating
examples of virtualization techniques. A virtualization tech-
nique for a host type OS is illustrated in FIG. 14A. A
hypervisor type virtualization technique is illustrated in FIG.
14B. A container type virtualization technique is illustrated
in FIG. 14C. In this embodiment, any of these virtualization
techniques may be used. Dotted areas indicate virtual
instances. Each virtualization technique can create one or
more virtual instances on the physical instance.

[0122] According to the host OS type virtualization tech-
nique, virtualization software that operates as a part of the
OS on the physical instance implements one or more virtual
machines. According to the host OS type virtualization
technique, a virtual OS (guest OS) is Installed on each
virtual machine, and the application 103 operates on the
guest OS. The guest OS and the host OS may be identical to
or different from each other. The guest OSs on a plurality of
virtual machines may be identical to or different from each
other. According to the host OS type virtualization tech-
nique, in the user space of the physical instance, the appli-
cation 103 other than the virtualization software can be
executed.

[0123] According to the hypervisor type virtualization
technique, a plurality of virtual machines are implemented
by the hypervisor corresponding to the OS of the physical
instance. As with the host OS type virtualization technique,
in the plurality of created virtual machines, the guest OS is
installed, and the application operates on the guest OS. The
guest OS and the host OS may be Identical to or different
from each other. The guest OSs on a plurality of virtual

Nov. 30, 2017

machines may be identical to or different from each other.
According to the hypervisor type virtualization technique,
the application cannot be executed in an area other than the
virtual machine.

[0124] According to the container type virtualization tech-
nique, virtualization software that operates as a part of the
OS on the physical instance creates a plurality of containers.
A container is a space separated from the other containers by
means of the name space, resource limitation and the like. In
the container, the application can be operated. The guest OS
of each container shares the OS of the physical instance.
Consequently, the guest OS is the same as the OS of the
physical instance.

[0125] In general, exchange of data between different
instances is performed by virtual communication through a
virtual LAN (virtual switch) created by the OS of the
physical instance. Consequently, when data is exchanged
between the instances, memory copy by network access
occurs. For example, when a web application in each
instance obtains a file from an external network, even though
a shared proxy server constructed for a certain instance is
used, the data is obtained from the shared proxy server
through virtual communication. Consequently, there is a
problem in that the processing load and time are increased.
[0126] FIG. 15 is a block diagram illustrating an example
of a schematic configuration of a data processing apparatus
1 according to a fourth embodiment. In the data processing
apparatus 1 according to the fourth embodiment, at least one
virtual instance is generated. This apparatus includes a guest
OS that operates in the virtual kernel space of the virtual
instance.

[0127] Itis assumed that the applications 103A, 103B and
103C are executed in the user space of each virtual instance.
It is assumed that the application 103D is executed in the
user space of the physical instance. The type of the appli-
cation 103 is not specifically limited. For example, the
application may be the kernel or an application for managing
another application 103. Description is herein made assum-
ing that the applications 103 A and 103B are web servers that
transmit files, and the applications 103C and 103D are proxy
servers that obtain the files.

[0128] FIG. 15 illustrates the user space of the physical
instance where the application 103D is present. In a case
where the hypervisor type virtualization technique is used,
the user space of the physical instance is absent.

[0129] As with the second embodiment, the file access
manager 104, the access right determiner 105, the presence
determiner 106, the reader 107, the writer 108, the commu-
nication processor 109, and the execution instructor 110 are
executed in the kernel space of a physical instance. In the
case where the file is obtained directly by the communica-
tion processor 109 as with the first embodiment, the execu-
tion instructor 110 is not necessarily provided.

[0130] This embodiment further includes a file access
relay 112 and a virtual communication processor 113 which
operate in the kernel space of each virtual instance, and a
communication relay 111 which operates in the kernel space
of the physical instance.

[0131] The file access relay 112 is an interface of the file
system in the virtual instance. When the application 103
operating in the virtual user space calls a system call
pertaining to a file in the storing device 102, the file access
relay 112 in the same virtual instance detects this system
call.

US 2017/0344406 Al

[0132] The file access relay 112 can access the file system
to which the file access manager 104 of the physical instance
belongs, and relays the obtained system call to the file access
manager 104. Thus, the file access manager 104 can detect
the system call of the application 103 operating in the virtual
user space. Consequently, the application 103 operating in
the virtual instance can perform the file access to the file in
the storing device 102 of the hardware via the file access
relay 112 and the file access manager 104.

[0133] The virtual communication processor 113 is the
communication processor 109 in the kernel space of the
virtual instance. The application 103 of the virtual instance
performs transmission and reception of the file with an
external apparatus via the virtual communication processor
113. The virtual communication processor 113 exchanges
data with the communication relay 111 operating in the
kernel space in the physical instance.

[0134] The communication relay 111 is for establishing
communication connection between each virtual communi-
cation processor 113 of the corresponding virtual instance
and the communicator 101 in the hardware layer. The
communication processor 109 of the physical instance may
also be connected to the communicator 101 via the com-
munication relay 111.

[0135] In this embodiment, information on the instance
where the application 103 operates may be included in the
application execution information included in the system
call. The access right determiner 105 may determine file
access permission or prohibition on the basis of the infor-
mation on the instance where the application 103 operates.
[0136] FIG. 16 is a diagram illustrating an example of
access right information according to the fourth embodi-
ment. In the access right information illustrated in FIG. 16,
the permission information is defined on an instance-by-
instance basis. Thus, the access right information according
to this embodiment may include the permission information
pertaining to the instance. Consequently, the access right
determiner 105 can determine the file access permission or
prohibition on an instance-by-instance basis. As with the
previous embodiments, the access right may be determined
in each of the applications 103. The file access permission or
prohibition may be determined on the basis of both the
instance and the application 103.

[0137] As with the second embodiment, it is assumed that
when the execution instructor 110 issues an instruction of
obtaining the file on the basis of instruction information, the
instruction information used by the execution instructor 110
contains the instance where the application 103 operates.
FIG. 17 is a diagram illustrating an example of instruction
information according to the fourth embodiment. Not only
the application 103 but also an instance where the applica-
tion 103 operates is illustrated. Thus, the execution instruc-
tor 110 can recognize the instance where the application 103
operates. Alternatively, the execution instructor 110 may
issue the file obtaining instruction, not to the application
103, but to the communication processor 109 or the virtual
communication processor 113 of the virtual instance where
the application 103 operates.

[0138] When the execution instructor 110 issues an obtain-
ing instruction to the application 103 of the virtual instance,
the instruction is issued through another file system, such as
the device file systems of the physical instance and virtual
instance, to which the file access manager 104 and the file
access relay 112 do not belong.

Nov. 30, 2017

[0139] FIG. 18 is a diagram illustrating an example of a
schematic process of a flowchart of the data processing
apparatus 1 according to the fourth embodiment. This flow
is started when the application 103A or 103B calls the
system call.

[0140] When the application 103A or 103B calls the
system call, the application 103A or 103B operates in the
user space of the virtual instance and thus the file access
relay 112 operating in the kernel space of the virtual instance
detects the system call (S601). The file access relay 112
relays the system call to the file access manager 104 (5602).
The processes after relay of the system call by the file access
relay 112 to the file access manager 104 are analogous to
those of the first embodiment. However, data exchange
between the file access manager 104 and the application 103
of the virtual instance is performed via the file access relay
112 in the error notifying process (S104), the process of
transmitting the read file to the application 103 (S208) and
the like, for example. Data exchange between the applica-
tion 103 of the virtual instance and the communication
processor 109 is performed via the virtual communication
processor 113 when the application 103 transmits the file, for
example.

[0141] The data processing apparatus 1 may include a
plurality of communicators 101 and a plurality of commu-
nication relays 11. In this case, the execution instructor 110
may transmit the identifier of the communication relay 111
to thereby designate the communication relay 111 to be used
by the application 103 operating in the virtual user space.

[0142] Alternatively, each instance may use a preliminar-
ily associated communicator 101. For example, it is pre-
liminarily defined that the virtual instance D uses the first
communicator 101 connected to the first communication
line, and the physical instance uses the second communica-
tor 101 connected to the second communication line. The
target path pertaining to file to be transmitted in the first
communication line or the communication destination with
which communication is to be made is associated with the
application 103D. Then, the target path associated with the
application 103D is preliminarily registered in the instruc-
tion information. Thus, the execution instructor 110 provides
an instruction of obtaining the file to be transmitted in the
first communication line for any of applications of the
virtual instance D preliminarily associated with the first
communicator 101. The desired communication line can
thus be used.

[0143] Also in the fourth embodiment, the TOE 207 may
be used as with the third embodiment. Thus, the loads, such
as the processor 201 and the memory 202, or the band of the
bus 206 can be reduced.

[0144] The above embodiments describe the example of
obtainment through HTTP. Alternatively, the present inven-
tion may be applied to a content-oriented network which is
called ICN (Information Centric Networking) or CCN (Con-
tent Centric Networking).

[0145] As described above, this embodiment can achieve
advantageous effects analogous to those of the previous
embodiments even in an environment where multi-tenants
by the virtualization technique are provided. Thus, this
embodiment does not perform virtual communication,
thereby allowing increase in processing load and processing
time to be reduced.

[0146] Writing to the shared cache can be limited on an
instance-by-instance basis.

US 2017/0344406 Al

[0147] While certain embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inven-
tions. Indeed, the novel embodiments described herein may
be embodied in a variety of other forms; furthermore,
various omissions, substitutions and changes in the form of
the embodiments described herein may be made without
departing from the spirit of the inventions. The accompa-
nying claims and their equivalents are intended to cover
such forms or modifications as would fall within the scope
and spirit of the inventions.

1. A data processing apparatus including a storing device
configured to store a file, and an operating system configured
to operate in a kernel space,

wherein the operating system comprises:

a file access manager configured to detect a file access
to a file in the storing device by an application
operating in a user space;

a presence determiner configured to determine whether
the file pertaining to the file access detected by the
file access manager is stored in the storing device;
and

a writer configured to write the file pertaining to the file
access detected by the file access manager into the
storing device when the presence determiner deter-
mines that the file pertaining to the file access is not
stored in the storing device.

2. The data processing apparatus according to claim 1,

wherein when the presence determiner determines that the

file pertaining to the file access is not stored in the
storing device, the writer writes the file pertaining to
the file access detected by the file access manager into
the storing device even without a writing instruction by
an application having performed the file access
detected by the file access manager.

3. The data processing apparatus according to claim 1,
further comprising a communicator configured to commu-
nicate with an external apparatus,

wherein the operating system further comprises a com-

munication processor configured to control the com-

municator to thereby receive the file pertaining to the
file access detected by the file access manager, from the
external apparatus, and

the writer obtains, from the communication processor, the

file pertaining to the file access detected by the file

access manager.

4. The data processing apparatus according to claim 3,

wherein the operating system further comprises an execu-

tion instructor configured to issue an instruction for
obtaining the file pertaining to the file access detected
by the file access manager to an application identical to
or different from the application having performed the
file access detected by the file access manager, based on

a determination result of the presence determiner,

the communication processor receives, from the external

apparatus, the file pertaining to the file access detected

by the file access manager, according to an instruction
by the application having received the obtaining
instruction from the execution instructor, and

when the file access manager detects the writing instruc-

tion issued by the application having, received the

obtaining instruction from the execution instructor, the
writer writes, into the storing device, the file from the

Nov. 30, 2017

application having received the obtaining instruction
from the execution instructor.

5. The data processing apparatus according to claim 1,
further comprising a guest operating system configured to
operate in a virtual kernel space of a virtual instance
generated by a virtualization technique,

wherein the guest operating system comprises a file

access relay configured to detect a file access to a file
in the storing device by an application operating in a
virtual user space of the virtual instance, and relays the
file access to the file access manager, and

the file access manager detects the file access relayed by

the file access relay.

6. The data processing apparatus according to claim 4,
further comprising a guest operating system configured to
operate in a virtual kernel space of a virtual instance
generated by a virtualization technique,

wherein the guest operating system further comprises:

a file access relay configured to detect a file access to
a file in the storing device by an application operat-
ing in a virtual user space of the virtual instance, and
relay the file access to the file access manager; and

a virtual communication processor configured to con-
trol the communicator to receive, from the external
apparatus, the file subjected to the obtaining instruc-
tion by the application operating in the virtual user
space, and

the file access manager detects the file access relayed by

the file access relay,

when the application subjected to the obtaining Instruc-

tion from the execution instructor operates in the user

space, the communication processor receives the file
pertaining to the file access detected by the file access
manager, and

when the application subjected to the obtaining instruc-

tion from the execution instructor operates in the virtual

user space, the virtual communication processor
receives the file pertaining to the file access detected by
the file access manager.

7. The data processing apparatus according to claim 4,

wherein the execution instructor determines the applica-

tion that is to be provided with the obtaining instruc-
tion, based on instruction information that indicates the
application associated with a file or a directory in the
storing device.

8. The data processing apparatus according to claim 4,
comprising a plurality of communicators,

wherein the execution instructor provides the obtaining

instruction for an application preliminarily associated

with a desired communicator.

9. The data processing apparatus according to claim 4,
comprising a plurality of communicators,

wherein the execution instructor transmits an identifier of

the communicator to the application that is to be

provided with the obtaining instruction, and

the file pertaining to the file access detected by the file

access manager is received from the external apparatus

via the communicator corresponding to the identifier.

10. The data processing apparatus according to claim 3,

wherein the writer, the communicator and the communi-

cation processor are implemented by a TCP/IP offload
engine, and

the storing device is implemented by a storage connected

to the TCP/IP offload engine.

US 2017/0344406 Al
11

11. The data processing apparatus according to claim 1,

wherein the presence determiner determines whether the
file pertaining to the file access detected by the file
access manager is stored in the storing device and
expiration time has not been reached.

12. The data processing apparatus according to claim 1,

wherein the operating system further comprises an access

right determiner configured to determine permission or
prohibition of the file access detected by the file access
manager, based on an access right set in a file or a
directory in the storing device, and

when the file pertaining to the file access is determined not

to be stored in the storing device, the writer does not
write the file pertaining to the file access detected by the
file access manager into the storing device.

13. A data processing method of causing an operating
system of a data processing apparatus that includes a storing
device configured to store a file, and the operating system
configured to operate in a kernel space, to execute:

detecting a file access to a file in the storing device by an

application operating in a user space;

Nov. 30, 2017

determining whether the file pertaining to the detected file

access is stored in the storing device; and

writing the file pertaining to the detected file access into

the storing device when it is not determined that the file
pertaining to the detected file access is stored in the
storing device.

14. A non-transitory computer readable medium having a
computer program for causing an operating system of a data
processing apparatus that includes a storing device config-
ured to store a file and the operating system configured to
operate in a kernel space, to execute:

file access managing that detects a file access to a file in

the storing device by an application operating in a user
space;

presence determining that determines whether the file

pertaining to the file access detected by the file access
managing is stored in the storing device; and

writing the file pertaining to the detected file access into

the storing device when it is not determined that the file
pertaining to the detected file access is stored in the
storing device.

