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(57) ABSTRACT

A method for predicting side effects of a combination of
drugs administered concurrently includes training a multi-
modal cell complex neural network (MCXN) on a dataset.
The MCXN includes nodes representing the drugs and
proteins, pair-wise relationships between nodes representing
interactions between pairs of drugs and/or proteins, and
k-wise relationships between the nodes representing inter-
actions between k drugs and/or proteins, where k;2. The
training dataset includes a list of drugs, a list of proteins, and
pharmacological information about the drugs in the list of
drugs and proteins in the list of proteins. A specification of
the combination of at least three drugs to be administered
concurrently is input to the MCXN which predicts prob-
abilities that administering the combination of drugs con-
currently results in potential side effects. It also predicts both
frequencies of the potential side effects and severities of the
potential side effects.
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MULTIMODAL CELL COMPLEX NEURAL
NETWORKS FOR PREDICTION OF
MULTIPLE DRUG SIDE EFFECTS
SEVERITY AND FREQUENCY

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority from U.S. Provi-
sional Patent Application 63/247,008 filed Sep. 22, 2021,
which is incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention related generally to predic-
tion of side-effects when multiple drugs are administered in
combination. More specifically, it relates to techniques for
predicting drug side-effects using neural networks.

BACKGROUND OF THE INVENTION

[0003] Predicting the unintended side effects of a new
drug is a critical issue in pharmacological studies. Drug side
effects can be defined as unexpected body’s responses
beyond the drugs’ anticipated therapeutic effects. Such
responses can significantly impact human’s health, degrade
the quality of their lives, cause emotional distress, and even
death. In fact, severe drug reactions are one of the leading
causes of morbidity and mortality in healthcare globally, and
it is the fourth cause of death in the United States. Further,
severe side effects can cause significant economic burden
and clinical costs as they often lead to prolonged hospital-
ization and frequent emergency visits. In the United States,
the financial burden of adverse side effects was estimated to
be as high as 30.1 billion dollars annually.

[0004] Drugs can be broadly divided into monotherapy or
polytherapy, where monotherapy refers to the use of a single
drug to treat a disease/condition while polytherapy refers to
the use of multiple drugs. As compared to polytherapy,
monotherapy has several advantages including better toler-
ability and compliance, avoidance of drug-drug interactions,
and reduced treatment costs. However, the use of multiple
drugs might be inevitable for treating patients with complex
conditions, co-existing conditions, multiple diseases or mul-
timorbidity. Further, the use of polypharmacy may in some
cases improve treatment efficacy, prevent the development
of drug resistance, and reduce the duration of treatment.
While polytherapy has been widely practiced for treating
many diseases, it has been increasing the risk of severe side
effects occurring as a result of drug-drug interactions. Due to
this issue, polypharmacy’s side effects is still a major
problem in healthcare affecting approximately 15% of the
United States population and costing more than $177 billion
annually.

[0005] The traditional methods for determining the side
effects of drugs face the problems of long development time
as well as high resources and cost. For example, intensive
monitoring in hospitals is a common way to discover
adverse drug reactions by recording all adverse events of the
drug in a specific area and period. Although this method can
be accurate and reliable, it takes a lot of time (months to
years) and expense due to the need for long-term testing of
all drug users in the testing area. Further, the manual
identification of polypharmacy side effects is impracticable
as it is practically infeasible to capture all possible pairs of
drug-drug interactions. Another method involves using a
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daily medication log or diary to track medication’s dosages
and side effects. Although this method (patients’ self reports)
represents the gold standard used by doctors to monitor
patient’s side effects, it is time-consuming, inconsistent, and
inefficient. Therefore, computational methods, which we
review below, for the accurate prediction of substitute drugs
and side effects have become an ideal transform for achiev-
ing safe medication use.

[0006] Recently, there has been an increasing interest to
discover drug-drug interactions and identify drugs’ side
effects using computational methods. In this section, we
present a literature review of current computational methods
as well as a summary of our contributions.

[0007] Existing approaches to predict the presence or
severity of a specific drug or combinations of drugs may be
classified based on the underlying algorithm used: graph-
based methods and matrix-based similarity methods.
[0008] Graph Neural Networks (GNNs) are a class of deep
learning methods designed to perform inference on data
described by graphs. Generally speaking, graphs are used to
describe and analyze entities with relationships or interac-
tions. In the case polypharmacy problem, these entities
represent different drugs or proteins, and the edges represent
the interactions between different drugs, different proteins,
or drugs and proteins. Existing techniques have used GNNs
to analyze drugs’ relationships and predict the severity of
their side effects. For example, Zitnik et al. (Modeling
polypharmacy side effects with graph convolutional net-
works, Bioinformatics 34 (2018), no. 13) proposed Deca-
gon, an approach for modeling polypharmacy side effects.
The approach constructed a multimodal graph of protein-
protein interactions, drug-protein interactions, and the
polypharmacy side effects, which are represented as drug-
drug interactions. Decagon achieved excellent performance
in predicting polypharmacy side effects and outperformed
the baselines (traditional approach) by up to 69%. Similarly,
Kwak et al. (Drug-disease graph: Predicting adverse drug
reaction signals via graph neural network with clinical data,
Advances in Knowledge Discovery and Data Mining 12085
(2020), 633) presented a GNN-based method to predict
severe side effects labels from the Side Effect Resource
(SERD) database (The sider database of drugs and side
effects, Nucleic acids research 44 (2016), no. D1, D1075-
D1079).

[0009] Although GNN-based methods achieved excellent
performance in predicting drugs’ side effects and their
severity, there are multiple main drawbacks of utilizing
graph neural networks for this prediction problem. The most
important drawback is that graphs can only model pairwise
relationships. Specifically, a graph can only model side
effects between two drugs and hence these models cannot
model more than two drugs that interact when taken con-
currently. This is clearly rather restrictive because a patient
might have to take more than two drugs concurrently.

[0010] Finally, from a computational perspective, graph
neural network message passing schemes have been shown
recently to have limited expressive power capabilities. The
expressive power of a graph neural network is a theoretical
measure for its capacity to perform accurate prediction
across different tasks in practice. In general, networks with
less expressive power perform less accurately on prediction
tasks. The expressive power of a given network is usually
measured by the Weisfeiler Lehman (WL) graph isomor-
phism test and its hierarchical version, the k-WL test. These
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tests form a sequence of increasingly more discriminative
tests such that the (k+1)-WL test strictly provides a more
discriminative and powerful test than the k-WL tests for all
k=1. In other words, theoretically higher order tests are able
to distinguish between larger set graphs. In practice, this
higher expressiveness is associated with more accurate and
robust predictions. Graph neural networks message passing
schemes have been proven to be as powerful as the WL test.
Most existing graph neural networks do not pass the 1-WL
test. Recently, Xu et al. (How powerful are graph neural
networks?, arXiv preprint arXiv:1810.00826 (2018)) pro-
posed an architecture that can be as expressive as the k-WL
test for any k. However, their work suffers from very high
computational and memory complexity, making it imprac-
tical to implement in practice.

[0011] Matrix-based similarity is another type of method
that has been used for predicting the severity of drugs’ side
effects. Using matrix-based similarity methods, the pairwise
similarities between drugs are measured, where greater
similarity between two drugs generates greater value of the
measure, and vice versa. Zhang et al. (A unified frame of
predicting side effects of drugs by using linear neighborhood
similarity, BMC systems biology 11 (2017), no. 6, 23-34)
presented a method to calculate the linear neighborhood
similarity in a drug feature space by exploring the linear
neighborhood relationship followed by transferring the simi-
larity from the feature space into the side-effect space.
Finally, the drug side effects were predicted by propagating
known side-effect information through a similarity-based
graph.

[0012] Although several works show the feasibility of
using similarity-based methods for side effects prediction,
matrix-based methods have many limitations. First, matrix-
based methods require manual labor and an extensive
domain expertise for feature engineering and function engi-
neering to achieve good results. From a technical perspec-
tive, matrix-based methods do not usually generalize well
beyond intermediate-size scale datasets. Finally, similar to
GNNs, matrix-based methods only model pairwise drug-
drug interactions which (as discussed above) is often not
realistic for practical scenarios. Contrary to graph-based and
matrix-based methods, the present technology (MCXN) can
model higher order drug-drug interactions in addition to
pairwise interaction.

[0013] In addition to side effect severity, few works pro-
posed to predict the frequency of a side-effect by classitying
side effects into very frequent, frequent, very rare, and rare.
The accurate prediction of the frequencies of side effects is
important due to two main reasons. First, it is vital to patient
care in clinical practice as it helps doctors making decisions.
Second, the prediction of side-effect frequency is essential
for pharmaceutical companies as it reduces the risk of drug
withdrawal from the market as well as the costly reassess-
ment of side-effect frequencies through new clinical trials.
[0014] Galeano et al. (Predicting the frequencies of drug
side effects, Nature communications 11 (2020), no. 1, 1-14)
presented a machine learning approach, based on a matrix
decomposition algorithm, for predicting the frequencies of
drug side effects. The proposed approach achieved area
under the receiver operating characteristic values that range
from 0.914+0.003 to 0.594+0.0084, when evaluated on 759
drugs and 994 side effects from all human physiological
systems. Although the method achieved good prediction
performance, it is difficult to integrate more useful features
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such as the similarity between drugs, structural information
of drugs as well as the similarity between side effects in the
learning process. Therefore, the generalization ability of the
model is limited to a certain extent.

[0015] Another method for predicting the frequency of
drugs’ side effects is presented in Zhao et al. (A novel graph
attention model for predicting frequencies of drug-side
effects from multi-view data, Briefings in Bioinformatics
(2021)). The proposed method used a multi-view graph
convolutional model to integrate three different types of
features, including similarity, association distribution, and
word embedding. The experimental results demonstrated
high effectiveness in 10-fold cross-validation, and showed
that the proposed method outperformed the matrix decom-
position model proposed in Galeano et al.

[0016] Existing methods were developed for either side
effects severity prediction or side effects frequency predic-
tion. However, drugs’ side effects have two dimensions, and
they vary in their severity and frequency of occurrence.
Hence, understanding the status of a given drug (mono-
therapy) or drug combinations (polytherapy) on both these
dimensions is important for physicians during the prescrib-
ing process, for regulators and industry in the approval and
safety review process, and for patients in the compliance
process.

[0017] As general changes in the patient’s health status
(physical or mental) often leads health professionals to
prescribe new drugs, the addition of a new drug create a new
drug combinations and might alter the side effects (in terms
of severity or frequency) of previous drugs taken by the
patient. Further, lifestyle (e.g., diet, smoking and alcohol
habits) has an impact on drugs’ side effects. Specifically,
specific foods might impact how human’s body absorbs,
metabolizes, or responds to specific drugs. In addition,
factors such as age, presence of other diseases, can change
human body’s reactions to drugs. We can conclude that
drugs® side effects are dynamic and adaptable. Treating
drugs’ side effects prediction as a dynamic problem enables
health professionals to adjust treatment plans based on
observed changes in the side effects, and provides a new
perspective in dealing with the decision making process of
drug selection.

[0018] All existing works in the literature treat the prob-
lem of drugs’ side effects prediction as static. We are not
aware of any current work or computational tool that moni-
tors and detects changes in side effects triggered by factors
such as changes in the patient’s health status or lifestyle.

BRIEF SUMMARY OF THE INVENTION

[0019] We use a recently developed technology, called
multimodal cell complex neural networks (MCXNs), for
predicting the severity and frequency of drugs’ side effects.
Specifically, the present technology uncovers the relation-
ship among a k-combination of drugs taken concurrently and
measures the probability that these combinations would
have a certain side-effect or combination of side-effects r.
The predicted side effect (frequency and severity) is then
used to rank drugs or drug combinations from best to worst.
We want to emphasize that current technologies (e.g., graph-
based methods) can only model binary relations among data,
thus not being applicable in the presence of multi-way or
higher-order relations (higher-order drugs/protein interac-
tions).
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[0020] The present technology can also be used to mea-
sure how side effects change (in terms of frequency and
severity) during the course of treatment. Such technology
provides several benefits for patients, health professionals,
and pharmaceutical companies. For example, predicting side
effects of “candidates™ drugs during the early stage of drug
design and development can improve drug safety, speed up
the development of new therapeutics, reduce patients’ risks,
and save money for the pharmaceutical companies. Further,
personalized ranking of drugs or drug combinations (best to
worse) while recommending better drug alternatives can
significantly help health professionals developing a person-
alized treatment plan for each patient, and adjust this plan
based on changes of the patient’s health record/condition.
Also, the present technology provides an efficient and accu-
rate approach for managing patients’ drugs and monitoring
their impacts on patients.

[0021] In one aspect, the invention provides a method for
predicting side effects of a combination of drugs adminis-
tered concurrently, the method includes training a multi-
modal cell complex neural network (MCXN) on a dataset,
wherein the MCXN includes nodes representing the drugs
and proteins, pair-wise relationships between nodes repre-
senting interactions between pairs of drugs and/or proteins,
and k-wise relationships between the nodes representing
interactions between k drugs and/or proteins, where k 2,
wherein the dataset includes a list of drugs, a list of proteins,
and pharmacological information about the drugs in the list
of drugs and proteins in the list of proteins; wherein the
pharmacological information about the drugs and the pro-
teins include: i) physical binding information of the proteins,
i) interactions between the drugs and the proteins, iii)
interactions between two or more of the drugs, including
severity and frequency of side effects of the interactions. The
method also includes inputting to the MCXN a specification
of the combination of drugs to be administered concurrently,
where the combination includes at least three drugs, wherein
the at least three drugs includes a drug not included in the
training set; and predicting from the MCXN probabilities
that administering the combination of drugs concurrently
results in potential side effects, and predicting both frequen-
cies of the potential side effects and severities of the poten-
tial side effects.

[0022] The method may also include outputting a list of
the probabilities of the potential side effects resulting from
administering the combination of drugs concurrently, out-
putting a severity category of the potential side effects
resulting from administering the combination of drugs con-
currently, outputting a frequency category of the potential
side effects resulting from administering the combination of
drugs concurrently, and/or outputting ranked sublists of the
input drugs ranked based on a combination of frequency and
the severity of side effects.

[0023] In some embodiments, the method includes input-
ting to the MCXN prior patient health information over a
time period and outputting resulting changes in frequency
and severity of side effects over the time period. The prior
patient health information over a time period may include
changes in an administered drug, changes in a drug dose,
changes in a health condition, or changes in lifestyle.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0024] FIG. 1 is a schematic diagram providing a high-
level illustration of operation of an embodiment of the
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present invention in a deployment stage, according to an
embodiment of the invention.

[0025] FIG. 2 is a schematic diagram providing an illus-
trative example of how a cell complex is used to model
higher-order drug and protein interactions, according to an
embodiment of the invention.

[0026] FIG. 3 is a schematic diagram illustrating examples
of adjacency matrices for a cell (or a simplicial) complex,
according to an embodiment of the invention.

[0027] FIG. 4 is a schematic diagram illustrating an over-
view of a processing pipeline for the training stage and
deployment stage of the present technology, according to an
embodiment of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0028] The present technology uses a new type of neural
network, called a multimodal cell complex neural network
(MCXN), to predict for a given combination of multiple
drugs the likely side effects of the combination, the severity
and frequency of the side effects, and/or alternative drugs to
consider. Further, the invention has the ability to predict
changes in the side effects (in terms of severity and fre-
quency) of a drug or drug combinations over a period of time
(during the course of a treatment) and send notification
whenever these changes occur. The MCXN has capabilities
that provide both qualitative and quantitative improvements
over the prior art techniques.

[0029] Our main contributions can be summarized as
follows:
[0030] From a technological standpoint, we leverage a

technology called multimodal cell complex networks
(MCXNs). The present technology offers several advantages
making it superior to existing methods (e.g., graph-based
and similarity-based methods).

[0031] 1. MCXNs naturally model an arbitrary number
of relations making them ideal for the k-polypharmacy
side-effect prediction problem. They take into consid-
eration the higher dimensional interactions among
drugs, among proteins, and between drugs and proteins,
which offers better representation and leads to more
accurate predictions. Existing methods (e.g., graph-
based and similarity-based), on the other hand, cannot
model an arbitrary number of relationships, beyond the
pairwise relationship, and hence cannot be utilized to
model or predict the k-polypharmacy side effects prob-
lem. The present technology (MCXN) to the
k-polypharmacy side effects problem is the only exist-
ing solution for this problem (i.e., modeling arbitrary
number of relationships instead of pairwise relation-
ship).

[0032] 2. MCXNs have been proven theoretically to be
more expressive than all existing message passing
graph neural networks making them suitable to handle
the complexity that occur in complex higher order
drugs-drugs interactions and provide more accurate
prediction.

[0033] 3. MCXNs only utilizes the local information
when performing the computations, making them more
efficient from practical and implementation stand-
points.

[0034] 4. MCXNs can efficiently model k relationships
concurrently as compared to GNNs who can only
model pairwise relationships. Namely, a graph model
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can be only model side effects between two drugs and

hence these models cannot model multiple drugs, more

than two, that interacts when taken concurrently.
[0035] From an application standpoint, MCXN provides
an efficient solution for drugs’ side effects prediction. It
concurrently predicts the severity and frequency of the side
effects. MCXN can also monitor and assess changes of side
effects during the course of treatment (over time).

[0036] 1. It is well-known that drugs’ side effects vary
in their severity and frequency of occurrence (two
dimensions). Hence, understanding the status of a given
drug (monotherapy) or drug combinations (poly-
therapy) on both these dimensions is critical. All exist-
ing solutions for side effects prediction were developed
for either severity prediction or frequency prediction.
We propose to use MCXNs for concurrently predicting
both the severity and frequency for a specific drug
(monotherapy) or drug combinations (polytherapy).

[0037] 2.Based on the predicted severity and frequency,
the present technology offers a method to rank, using
dictionary order, a specific drug or drug combinations
from best to worst as well as provide alternative
combinations of drugs. For example, if a combination
of two drugs for two different diseases causes severe
and frequent side effects (worst), the present technol-
ogy can recommend a better combination (mild and
infrequent side effects) by replacing one or both drugs
with other drugs from the same family. Automatically
ranking drug combinations (based on severity and
frequency) and recommending other alternatives can
significantly save doctors’ time and help them devel-
oping the best treatments for each patient (personalised
medicine).

[0038] 3. Several patients and health professionals
reported incidents of changes in the drugs’ side effects
during the course of treatment. Specifically, it has been
reported that a tolerance or an intolerance to a specific
drug or drug combinations can develop over time, and
new side effects can crop up well into a course of
treatment. These changes in the drugs’ side effects can
occur due to several factors including the addition of a
new drug (to treat a new health condition), changes in
lifestyle, or age. To monitor changes in side effects
patterns, doctors ask patients to record changes in a
daily diary or log. To provide an efficient solution for
this problem, we treat side effect prediction as a
dynamic problem and use the present technology
(MCXNs) to automatically monitor and detect changes
in side effects occurring as a result of several factors
(e.g., new drug, new health’s condition, etc). These
factors can be integrated as patient’s information and
used to update the model. Automatically monitoring
and detecting the changes in side effects and notifying
health professionals about them allows prompt detec-
tion of new patterns and adjustment of treatment plans
accordingly. It also allows customization of treatment
plans for each patient based on the altered side effects,
which occur due to changes in the patient’s lifestyle or
health condition. Our model solution here is the first
machine-learning based solution that handles the tem-
poral aspect of polypharmacy side effects during the
course of treatment.

[0039] 4. MCXNs allows easy integration of a new drug
or drug combinations and estimation of the side effects
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(in terms of severity and frequency) without additional
training of the model. This allows pharmaceutical com-
panies to examine potential side effects of new drugs
before they reach human clinical trials or approved for
actual use, which can accelerate the development of
new drugs, save money, and help creating safer medi-
cines.
[0040] FIG. 1 is a schematic diagram providing a high-
level illustration of the present technology, as it operates in
a deployment stage, according to an embodiment of the
invention. The input during the deployment phase is a list of
two or more drugs 100, 102, 104, which can be entered into
a processor 116 by a physician or pharmacist prescribing the
drugs to the human patient. In addition, prior information
106 of the patient (e.g. age, smoking status, patient’s medi-
cal history, patient’s allergy, etc) may be entered. More
precisely, the input for the technology is a sequence of k
drugs, k=2 that a pharmacist wants to study or a physician
wants to give to a human patient as well as the prior
information of the patient. The output of the processor can
be any combinations of the followings: a list of probabilities
108 with all potential side effects that the patient might have
while taking these drugs, the severity category 110 of these
side effects, the frequency category 112 of the side effects,
and/or suggested ranked sublists 114 of the input drugs
ranked by the probability, the frequency, or the severity of
the side effects to help deciding on an alternative set of drugs
to administer or prescribe. The processor 116 includes a
multimodal cell complex neural network (MCXN) that has
been appropriately trained, as will be described in detail
below.

Problem Modeling

[0041] We realize the problem of side effect prediction of
multiple drugs taken concurrently as a face prediction prob-
lem on a multimodal cell complex network encoding drugs,
proteins, side effects relations, protein physical bindings as
well as drug-protein interactions. (Multimodality is specified
here with respect to cell in the given cell complex as well as
the relationships. See the section on multimodal cell com-
plexes for a more precise treatment.) More precisely, let
V be a set of nodes that represents the set of proteins and
drugs of interest. Let R a set of relations among the nodes
representing pharmacological information among the drugs
and proteins. The set ‘R consists of three general categories
of relations. The first category of relations describes the
protein physical bindings. These relations are higher order
relationships and they are identified via a tuple of the form
Vs - s Vis L, where v, are protein nodes and r;

.1, 18 the phy51cal blndlng on the tuple (Viys ,V; ) The
second category of relations is a pairwise relatlonshlp of'the
form (v,, v Vs r;) and describes an interaction between a drug
and a protein. The third category of relations, which is the
most important, is not necessarily pairwise, but is of the
general form (v, ..., v,, 1, ), fork=2, where v, are drug
nodes that are concurrently used. The relatlon r in’the third
category encodes the type of the polypharmacy side effect as
well as the severity and the frequency of this particular side
effect. These are categorical classes (f, s) associated with
every r in the third category. Important to the modeling
problem, the i;-tuple (v, , . . ., v, ) can be thought of as a cell
of a cell complex built on the top of the node set V. This cell
is spanned by the nodes v, , » V- Given a set of k drugs
Vi« « + s Vi, K22, our present algorithm computes the Pr(r; |

7
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-i=r) forrin R. This effectively corresponds to comput-
ing the probability of having a side-effect of type r when the
drugsv;, ..., v, are taken concurrently by a human patient.

[0042] FIG. 2 is a schematic diagram providing an illus-
trative example of how a cell complex is used to model drug
and protein relationships. On the left is shown a cell com-
plex 200 whose nodes represent drugs and proteins and
whose faces represent different types of interactions between
these nodes. In particular, we have three types of interac-
tions: drug-drug interactions, drug-protein interactions and
protein-protein interactions. A face that bounds n drugs/
proteins represents an interaction between these entities. (In
the present description the term face is used generally to
mean a k-dimensional object connecting k nodes, for any
k>2. Thus, a face can be a common edge connecting two
nodes, a common surface connecting three nodes, or a
common volume connecting four nodes.) The faces shown
in cell complex 200 are known, i.e., represent known
interactions. On the right, we show cell complex 202 rep-
resenting a prediction of interactions among the set of drugs,
where additional faces 204 and 206 indicate predicted
interactions. As illustrated in FIG. 1, the present technology
takes as input a collection of k drugs and provides the
prediction that these drugs have a side-effect of type r when
taken concurrently. From the present model point of view, a
side-effect between k drugs can be thought of as a face that
bounds the nodes representing these drugs.

Outline of the Main Technology

[0043] FIG. 4 is a schematic diagram illustrating a pro-
cessing pipeline for the training stage 402 and deployment
stage 404 of this technology. In the model training stage 402,
initial input data 400 is input to a processor 406 which uses
the data to model drug interactions as a cell complex 408.
The initial input data 400 includes drug-drug interaction
data, protein-protein interaction data, and protein-drug inter-
action data. The model 408 organizes this data so that it
takes the form of a cell complex. This cell complex is then
used to train the MCXN 410 to allow it to predict other
possible side effects that are not present in the data 400. In
the model deployment stage 404 the trained MCXN 410
stored in a processor 414 is used to predict from a list of
drugs 412 selected for a patient interaction side effects 416
of the combination of those drugs, including probabilities of
side effects associated with various combinations of the
drugs not present or known in the initial data 400.

[0044] The input of the technology or the model in the
training phase is the tuple (), R), where V is a set of drugs
and proteins and R is a set of known relations among the
elements of V', an integer k>2 representing the maximal
number of higher order drug-drug interactions that we wan
to compute. The output of the model is a sequence of

(5)-+

tensors F /- % for 2<j<k. The tensor F /- e (R4y9x
R™is the probability that the drugs (v, ,V; ) will have
a side-effect of type r and d is the embeddlng d1mens10n of
the node set V and N, is the number of multi-polypharmacy
side effects. Below we give the outline of the algorithm
which we describe in details in the following sections.
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[0045] 1. Building the clique complex on the protein
subgraph: For all protein nodes in V and all edges
among such nodes, namely the protein-protein rela-
tions, we compute the clique complex of dimension k,
which will be denoted by A/, ()). This is described in
the section on building the clique complex on the
protein subgraph.

[0046] 2. Building the cell complex on the drug sub-
graph: For every higher order multi-drug relation of the
form (Vi], ..., V;, NER, we build a cell complex
X[(v;po - r)] descnblng the side effects among the
nodes Vi, s Vi After doing this procedure for all
relatlons in R we obtain a cell complex built on the
top of the drug node subset of ¥ encoding higher order
interactions among the drug nodes in V.

[0047] We denote the final complex obtained from
step (1) and (2) by & . See the section on building
the cell complex on the drug subgraph for more
details. The final output of these two steps is the set
% and the modified relation set R'. We call the
tuple (&}, R ') multimodal cell complex.

[0048] 3. Computing node embeddings via MCXNs:
We apply the multimodal cell complex network
(MCXN) on (X, R') to obtain node embeddings
MCXN(v)e R for every drug node ve V. See the
section on multimodal cell complex neural network
implementation.

[0049] 4. Computing side-effect probabilities and sever-
ity via a MCXN-decoder: For 2<j<k we compute the
probability tensors F 7>~ -+ % using a novel multimodal
cell complex decoder. See the section describing the
multimodal cell complex autoencoder for more details.

[0050] The above four steps are the main steps in our
present technology. Specifically steps (1) and (2) can be
considered as prepossessing while steps (3) and (4) apply the
present model to the processed data to obtain the multi-drug
interaction predictions.

Pre-Processing the Data to a Multimodal Cell Complex

[0051] In this section we describe the algorithmic steps of
preprocessing the data (V, R ) to a multimodal cell com-
plex.

Building the Clique Complex on the Protein Subgraph

[0052] In the first step of the algorithm, we build the clique
complex of dimension k denoted by A/, ()) obtained from
all protein nodes V..., and all protein relation of the form
(v, - ;» D€ R where v, , v, are proteins nodes and
risa proteln interaction ass0c1ated w1th the tuple (v, ...,
v;). For each such as tuple we consider the clique complex
X][(Vi], e Vi r)] spanned by the nodes (v;, . . ., v;). For
each such as tuple we consider the clique complex X[(v;,, .
, 1] spanned by the nodes (v, ,V; ) If a subcell
in X[(v , )] corresponds oa relatlon rin R then
we tag this subcell by that relation.
[0053] Some subsets S< {vips . V; } might not have a
protein interaction recorded in 7j For those subsets we
associated a special auxiliary relation r' which indicates that
there is no known protein interaction associated by a con-
current usage of the drugs in the set S. For all the other
subcells in X[(v;, . . ., Vip r)] we tag them with the
corresponding relation originally stored in 2.
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[0054] Clique complexes can be computed using standard
packages such as GUDHI (The gudhi library: Simplicial
complexes and persistent homology, International congress
on mathematical software, 2014, pp. 167-174).

Building the Cell Complex on the Drug Subgraph

[0055] In this step we consider all higher order multi-drug
relations of the form (v, , e R where v; 5V
are drug nodes and r is a side- effect associated with the tuple
(Vi -5 V)

[0056] The procedure of building a complex from these
relations is similar to the procedure we provided above in the
section on building the clique complex on the protein
subgraph. However, for concreteness we repeat these steps
here.

[0057] For each relation (Vi ;- ) where v, is a drug
we consider the clique complex X[(V > Vis r)] spanned
by the nodes (Vi ,V; ) If a subcell in X[(V , v, D)
corresponds to a relatlon rin R then we tag this subceﬁ by
that relation.

[0058] Some subsets (or subcells) S< {vip ,V; } might
not have a side-effect recorded in R . For those subsets we
associated a special auxiliary relation r" which indicates that
there is no known side-effect associated by a concurrent
usage of the drugs in the set S. For all the other subcells in
X[(vipp - - o5 Vi, D] We tag them with the corresponding
relation orrglnallly stored in R.

[0059] We denote the final complex obtained from the
section describing building the clique complex on the pro-
tein subgraph and the section describing building the cell
complex on the drug subgraph by .v,. The final output of
these two steps is the set X) and the modified relation set
R'. As we mentioned earlier, the tuple (X, /%" is called
the multimodal cell complex. This tuple will be the input to
multimodal cell complex network, whose implementation
we describe next.

Multimodal Cell Complex Neural Network Implementation

[0060] In this section we introduce the detailed implemen-
tation and mathematical background for a multimodal cell
complex network (MCXN). The implementation of MCXN
is explained in the section on multimodal cell complex
networks.

Cell Complexes

[0061] A cell complex is a construct that is built from
primitive objects called cells. The 0-cells in a cell complex
represent the most primitive entities. For our purpose these
entities are the drugs and the proteins. Among the O-cells we
define higher dimensional relations, or k-cells.

[0062] For our purpose, these k-cells represent higher
order relationship between the O-cells. In other words, they
represent a side effect if these O-cells correspond to drugs
and protein interaction if they are proteins. In particular,
1-cells represent pairwise interactions: drugs-drugs proteins-
proteins and proteins-drugs which as we described earlier
are inadequate to higher order complex interactions that
naturally occur. In our application higher order interactions
can be multi-proteins interactions, multi-proteins and multi-
drugs interactions and multi-drugs interactions. Mathemati-
cally, cell complexes are represented via adjacency sparse
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matrices. An example is given in FIG. 3. Computationally,
these matrices are sparse which allows for a fast and
practical implementation.

[0063] FIG. 3is a schematic diagram illustrating examples
of adjacency matrices for a cell (or a simplicial) complex
300. The matrix 302 is the adjacency matrix A, of the
simplicial complex X 300. The matrix 304 is the adjacency
degree matrix D, of the simplicial complex X 300. The
non-zero upper left and lower right submatrices in A,
represent A, ° 4 and Aad] of a cell complex X, respectively.
[0064] To explain the algorithm we need some notations.
For a cell ¢™ of dimension m in a cell complex X', we will

denote its adjacent cells of dimension m by A (¢™). We will
denote to the cells in X that are larger than a certain
dimension k by X >*. We define X' ~* similarly.

[0065] Two cells in & are said to be adjacent if they are
both a boundary of higher dimensional cell in X. Further-
more, we will denote by A, (c™) to the cells adjacent to m
via higher dimensional cell that carries the relation r.

Multimodal Cell Complexes

[0066] A multimodal cell complexes is a cell complex
N, with a mapping R:X “°—=C that associates to every
cellxe X a“color” R (x)in C . The set C is a finite set and
we think of it as the set of all “colors” that colors the cells
in X' >°, The data above is hence specified by the tuple (X,
R). In our case multimodality is not only defined with
respect to higher dimensional cells but also with respect to
the zero cells. However, we treat multimodality of the zero
cells differently since they corresponds to proteins and drugs
whereas the multimodality on the faces of X corresponds to
relations among the proteins and drugs.

Multimodal Cell Complex Networks

[0067] We now describe the multimodal cell complex
network. This model takes the multimodal cell complex (. ,
R') we obtained from steps described in the section on
building the clique complex on the protein subgraph and the
section on building the cell complex on the drug subgraph,
and produces an embedding z, for every node v, V repre-
senting a drug.

[0068] Computationally, the forward propagation of a
multimodal cell complex neural net requires the following
data as inputs: (1) A cell complex X of dimension n and (2)
For each m-cell ¢™ in &', we have an initial vector h e
R . These initial vectors h ‘e R  can be chosen to be
unique one-hot vectors for every cell in the complex & .
[0069] Precisely, given the desired depth L>0 of the net
one wants to define on the complex X , the forward propa-
gation algorithm on A consists of Lxn multimodal inter-
cellular message passing schemes defined for 0<k<L:
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£ .
where h »®, h =R " are the hidden states of cells a™, c™
respectively in the k-th layer of the cell complex network.
Moreover, W_»“"" is a relation-specific and dimension-
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specific trainable weight matrix. Finally the function ¢ is a
non-linear function. This can be chosen to be a standard
non-linear function such as RELU. In our application we
suggest the depth of the model L to be 3. Furthermore, in the
output layer we only care about the output of the O-cells,
h, &, which represent the embeddings of the protein and the
drug cells.

[0070] Note that implementation of the equations that
describe multimodal cell complex network above can be
done using standard graph neural networks such as Geo-
metric Pytorch (Fey et al., Fast graph representation learning
with pytorch geometric, arXiv preprint arXiv:1903.02428
(2019)). The only input that is really required is the adja-
cency matrices of the cell complex x. , which we computed
in the section on building the clique complex on the protein
subgraph and the section on building the cell complex on the
drug subgraph, as well as the relations ® which are given
with the input dataset.

Multimodal Cell Complex Autoencoder and Computing the
Probability Tensors of Multi-Drugs Side Effects

[0071] The output that we obtain in the last step in the
section on cell complexes is the node embeddings z;
obtained by evaluating the multimodal cell complex network
on every drug node in V.

[0072] In this final step of our present algorithm we want
to compute the final probability tensors of higher order
drug-drug interactions. To this end, assume we are given j
embeddings z, representlng jdrugs v, , v, and
we want to compute the probability of a s1de—effect r when
these drugs are taken concurrently. We define the multi-
modal cell complex decoder associated with the side-effect
I

dec, (R ¥R 3)
where
[C-NN Zij)_>Mr[L T ’Zj(zi])z] s (Zij)[j (C))

where M, e (R d)xi is a trainable diagonal tensor associated
with the side-effect r. Finally the probably tensor » -~ - -~
/ is given by

P e izo(dee (- g) ®)

where G is the usual sigmoid function

1

o) = 1 +exp(=x)

Integrating Prior Information about the Patient

[0073] The priori of the patient is a vector ve R * describ-
ing different factors that might lead to a change in the side
effects. This feature vector is described by concatenation of
factors that might lead to a change in the side effects.
Examples of these factors include the addition of a new
drug, adjustments of old drugs (e.g., increase or decrease
doses), changes in the patient’s health condition (e.g., new
allergy), or changes in the lifestyle (e.g., smoking habits),
among other factors. All categorical features of the patient
are converted to numerical are converted to numerical
features using known classification techniques.

[0074] Our model can be modified to take the priori of the
patient into consideration while computing the side effects
probabilities as follows. We assume as before that we are
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given j embeddings z,, z; representing j drugs v,

, v; and we want to compute the probability of a side- effect
r when these drugs are taken concwrrently by a human
patient with a vector v. We combine the vector v with the
vectors z, as follows:

2, =RELU(W[z,, v]+b) 6

where W an b are trainable weight parameters and [a, b]
denotes the concatenation of the vectors a and b. Finally the
vectors z',, . . ., z', are used with the multimodal cell
complex decoder n Elq 4 and finally injected into Eq. 5 to
obtain the final probabilities.

Training the Final Model

[0075] To train the model we generalize known methods
(Mikolov et al., Distributed representations of words and
phrases and their compositionality, Advances in neural infor-
mation processing systems, 2013, pp. 3111-3119; and also
see Zitnik et al.) to cell complexes as follows. We want our
model to associate higher probabilities to observed cells (v,

v;, r) over random non-cells which are not associated
with a particular side-effects. To this end we define the loss:

R (TR i )_—log(¢ e ij)_]E (o Py,
log(1-7 172" ) @

For each j-drug tuple (v,, . . .. v;, 1) (positive example) we
sample a random tuple, a cell, (v;, . . ., Vi r) (negative
example) by randomly selecting j—1 nodes (n,, . . . , n)
sampled from the distribution P (i,, . . . , i;). Putting all cells
together we obtain the loss

D G ) ®

Prediction: Side-Effect Frequency and Severity Over Time

[0076] In this section we explain how our algorithm can be
utilized for frequency and severity predictions of a drug side
effect. To build these models we assume that we are given
the same data as before (V' , R ). However, we also assume
that every relation re R is equipped with two categories
classes: side effect frequency and side effect severity. We
give precise definition of these terms below. The categories
of the frequency and the severity associated with the rela-
tions will help us casting the prediction of these quantities as
a classification problem. We provide details next.

Side-Effect Frequency Prediction

[0077] Predicting the frequency of a drug side-effect is
also a desirable feature and our model can be utilized for this
purpose.

[0078] From a technical stand-point we realize the fre-
quency problem as a classification problem where we define
6 categories for the side-effect frequency: zero, very rare,
rare, infrequent, frequent, and very frequent.

[0079] To this end, we start by assuming that we are given
J embeddings z; representlng J drugs v, , v; and
our goal is to predlct the frequency class. More prec1se1y, we
want to predict the class
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in R®. Here 6 is the number of the side-effect frequencies
categories that we specified above. We learn a weighted sum
of the embeddings z;, .2, by learning the function

®

[0080] where w ml[Vips ,V; ] W )e R is a weight of the
embedding z,, that depends on Z and is parametrized

by W.,e R ©“, a trainable welght matrlx that depends on the
side-effect r and given explicitly via:

J 10
Wm([v,vl, . v,v].]; W,) = o—[(zm)T.RELU(W,Z:‘zin]],
where
_ 1
o) = 1 +exp(=x)

[0081] The final network is trained with the conventional
multi-class cross entropy loss using ground truth labels on
set R representing the frequency of the drug effect.

Side-Effect Severity Prediction

[0082] The severity of a certain effect can also be realized
as a classification problem. One possible categorization is:
very rare, rare, frequent, and very frequent. From technical
standpoint the severity prediction with our model is not
different from that of frequency described above. The only
difference is that the classes of severity are utilized during
the training of the networks instead of the frequency.

Ranking of Drug Combinations

[0083] Based on the generated severity and frequency, the
probabilities and severity scores, we can rank drugs from
best combination to worst combination. Given a j drugs (v, ,

, V;), the system provides the probabilities of potentlal
s1de eff}ects a patient may have by taking the drugs (v,

,V; ) concurrently, the severity of these side effects and thelr
frequency It also provides the same measurements for all
possible combinations of (v, , ,V; ) For every side-effect
r and for every combination 1 of (V ,V; ) we essentially
have three scores {(s;, p;, £)}i—; where s, is the severity, p,
is the probability and f, is the frequency Here L is the total
number of all possible combinations of the drug list (v;, . .

, v;) having probabilities larger than a certain threshold.
The list {(s;, p» £)}.=," can be ordered by dictionary order:
in this case a combination with smaller severity are ranked
first, when two combinations have the same severity then
their probabilities are considered and finally the frequency.
This order can be changed based on the judgment of the
physician.
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Monitoring Changes in Drugs’ Side Effects

[0084] MCXN can be utilized for monitoring changes in
drugs’ side effects. Namely, whenever the patient starts to
take a new drug, we re-calculate the probabilities, severity
and frequency using our models. In other words, if there is
a change to the input to the model, we recompute the
outputs: probabilities, severity and frequency.

Prediction of Side Effects of a New Drug

[0085] It also sometimes desirable to know the potential
side effects of a new drug when used concurrently with
existing more well-studied drugs.
[0086] Technically, the model is trained on the dataset (V ,
R ) where Vv is the set of drugs and proteins. Now, suppose
that we have new drug v that does not belong to V and we
want to check the side effects of v when taken concurrently
with drugs v, s Vi This can be done using our model
by the f0110w1ng steps
[0087] 1. For the drug v we predict all its protein
interactions. This can be done in multiple methods such
as graph based methods (Yang et al., Graph-based
prediction of protein-protein interactions with attrib-
uted signed graph embedding, BMC bioinformatics 21
(2020), no. 1, 1-16).
[0088] 2. Now that the we have the protein-drug inter-
action we can run the algorithm described in section
describing the multimodal cell complex autoencoder on

(v, v s I) (O predlct the probablhty of havrng
a s1de effect r when using the drugs (v, v, . . Vj)
concurrently.

Observe that the above two steps require no new training for
the neural network. In other words, the trained neural
network described in the section describing the multimodal
cell complex autoencoder is sufficient to make the side-
effect probabilities on the cell (v, v;, . . ., Vij).

Implementation, Training, and Deployment

Specialized Python Libraries Built
Technology

to Support the

[0089] To develop the technology present herein, we have
completely and comprehensively built two python libraries
that are tailored towards building and developing our appli-
cation quickly and efficiently. Specifically, the first library is
developed to build higher order networks such as cell
complexes, simplicial complex, hypergraph, and cell com-
plexes while the second library is developed to train models
supported on these higher order networks.

[0090] Our two libraries support the following features

[0091] 1. Building a cell complex with arbitrary dimen-
sion. In particular, our cell complex library supports the
modeling of the cell complex nodes as drugs and the
modeling of the side effects as higher order cells in that
cell complex.

[0092] 2. After building the drug/side effect complex,
our libraries support building sparse and massive adja-
cency as well as the incidence matrices required to train
the model as specified in Eq. 1 and Eq. 2.

[0093] 3. Beyond modeling drugs and side effects in
terms of the elements of the cell complex, our libraries
support attaching any type of data to various parts of
the cell complex representing the drugs and their side
effects. This data can be vector data obtained during
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various stages of training/testing/deployment, or any
other drag-related data one may wish to attach to the
drug or the side effect during any stage of training/
testing/deployment. Our libraries also support the
manipulation of this data, whenever applicable, with
other popular python libraries such as Numpy, Scipy,
Tensor-Flow and Pytorch. This facilitates fast and
practical implementation and deployment of the pres-
ent technology.

[0094] 4. After building the drug/side effect complex,
attaching various data elements to various elements of
this complex, our library supports building and training
any higher order model; in particular, it supports build-
ing a model as specified in Eq. 1, Eq. 2, Eq. 9, Eq. 10,
and Eq. 7.

To facilitate fast computation over massive relational data,
we exploit the sparse matrices capabilities available in
PyTorch Geometric (Fey et al., Fast graph representation
learning with PyTorch Geometric, Iclr workshop on repre-
sentation learning on graphs and manifolds, 2019). Note that
we only exploit this feature from PyTorch Geometric, but
the rest of the library is novel and contains new functions
that allow computing the probability tensors of multi-drugs
side effects.

Required Datasets

[0095] To train the present technology (MCXN), any
dataset (v, R ) with the following features can be used: (1)
prior information about the patients, (2) a list of drugs, (3)
a list of proteins, (4) a list of relations ® among the proteins
and drugs representing pharmacological information among
the drugs and proteins. The lists (2) and (3) are called the
node sets in our document and they are denoted by ¥ which
is simply a list of the form {v,, . . ., v5}, where each v,
represents a protein or a drug. The set R consists of three
general categories of relations given as three lists. We
describe these relations next.
[0096] 1. The first category of relations describes the
protein physical bindings. These relations can be a
string form (v, , ..., v, 1, ;) where v, are protein

-----

nodesandr, =~ | 418 the physical binding on the tuple
Vi o - s Vl.j).
[0097] 2. The second category of relations is a pairwise

relationship of the form (v,, v, r;) to describe the

interaction between a drug and a protein.
[0098] 3. The third category of relations has the follow-

ing form (v;, . . ., V;, I 4)» for k=2, where A
represent drugs that are concurrently used. Any relation
r in the third category encodes the type of the
k-polypharmacy side effect as well as the severity and
the frequency of this particular side effect. The severity
and the frequency of a side effect is represented by a
pair of the form (f, s), where f and s are categorical
classes associated with every r of the third category.

-----

MCXN Training

[0099] To train our model with out library, we first need to
specify the adjacency/incidence matrices obtained from the
multimodal cell complex (&, R) as well as the initial
vectors h”, which are chosen to be one hot encoder
vectors. We refer to the section on building the clique
complex on the protein subgraph and the section on building
the cell complex on the drug subgraph for explanations of
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the prepossessing of % as well as the prepossessing of the
relations R which are given with the input dataset. The
adjacency/incidence matrices can be computed using the
two libraries that we have built and described their content
in the section on specialized python libraries.

[0100] After specifying the input, MCXN is then trained
using standard stochastic gradient descent similar to a regu-
lar graph neural network (Chen et al., Stochastic training of
graph convolutional networks with variance reduction,
arXiv preprint arXiv:1710.10568 (2017)). Our two libraries
natively support training these models once the drug com-
plex is built and the data is correctly attached to various
elements in this complex. Finally, the hyperparameters of
the training procedure are specified using Bayesian optimi-
zation during training (Springenberg et al., Bayesian opti-
mization with robust bayesian neural networks, Advances in
neural information processing systems 29 (2016), 4134-
4142).

[0101] As for the hardware specification, it is recom-
mended to utilize the new Al accelerators such as Google’s
Tensor Processing Units (TPU) or Intel’s Nervana Neural
Network Processor. Such solutions allow for massive com-
puting capacity and are well-suited for sparse matrix com-
putation, which are needed for our training. We refer to
Balog et al. (Fast training of sparse graph neural networks on
dense hardware, arXiv preprint arXiv:1906.11786 (2019))
for a recent hardware specification of training graph neural
networks on the modern Al accelerators.

MCXN Deployment in Practice.

[0102] When working with neural networks in general, we
have two phases: a training phase and a deployment phase.
In our case, once the MCXN is trained on the datasets (V ,
R ) it can be utilized to infer results on new drugs and infer
the side effects between a set of drugs as explained above.
To infer the results on a set of k drugs, the user input these
drugs to the program and then these drugs are mapped to
their one hot encoder representation which are then fed into
the network to compute the probabilities, frequency and
severity of the side effects.

[0103] It is worth emphasizing that although cell complex
nets rely on higher order interactions to provide the predic-
tion, they only require sparse matrices to store the data of the
complexes; sparse matrices are fast and reliable in practical
applications. All our computations supported in our libraries
support these computations and we have built our technol-
ogy with this scalable performance in mind.

Preliminary Results

[0104] We provide here an initial evaluation of our tech-
nology on drug side effects prediction. Note that the dataset
in Zitnik et al. contains triplet side effects (k=3). Moreover,
the technique described in Young et al. (Young et al.,
Hypergraph reconstruction from network data, Communi-
cations Physics 4 (2021), no. 1, 1-11) allows the conversion
of'any graph side-effect data to multi-way relational data as
we use to train our model. The architecture that is used for
prediction is demonstrated above in the description of mul-
timodal cell complex networks. We built this architecture
using our first library, and trained this architecture (as
described above) using our second library. The present
technology achieved predictive accuracy of approx. 91%. It
is worth mentioning that as far as we know our method is the
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only method that can handle multi-drug side effect predic-
tion; all current methods, including graph-based methods,
can only handle binary side effect prediction. It is also worth
mentioning that our method requires a significantly lower
number of epochs to train (40 epochs) making it easy to
deploy and update in practice.

1. A method for predicting side effects of a combination

of drugs administered concurrently, the method comprising:

(a) training a multi-modal cell complex neural network
(MCXN) on a dataset, wherein the MCXN includes
nodes representing the drugs and proteins, pair-wise
relationships between nodes representing interactions
between pairs of drugs and/or proteins, and k-wise
relationships between the nodes representing interac-
tions between k drugs and/or proteins, where k;2;
wherein the dataset includes a list of drugs, a list of
proteins, and pharmacological information about the
drugs in the list of drugs and proteins in the list of
proteins; wherein the pharmacological information
about the drugs and the proteins include: i) physical
binding information of the proteins, ii) interactions
between the drugs and the proteins, iii) interactions
between two or more of the drugs, including severity
and frequency of side effects of the interactions;

(b) inputting to the MCXN a specification of the combi-
nation of drugs to be administered concurrently, where
the combination includes at least three drugs, wherein
the at least three drugs includes a drug not included in
the training set;
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(c) predicting from the MCXN probabilities that admin-
istering the combination of drugs concurrently results
in potential side effects, and predicting both frequen-
cies of the potential side effects and severities of the
potential side effects.

2. The method of claim 1 further comprising outputting a
list of the probabilities of the potential side effects resulting
from administering the combination of drugs concurrently.

3. The method of claim 1 further comprising outputting a
severity category of the potential side effects resulting from
administering the combination of drugs concurrently.

4. The method of claim 1 further comprising outputting a
frequency category of the potential side effects resulting
from administering the combination of drugs concurrently.

5. The method of claim 1 further comprising outputting
ranked sublists of the input drugs ranked based on a com-
bination of frequency and the severity of side effects.

6. The method of claim 1 further comprising inputting to
the MCXN prior patient health information over a time
period and outputting resulting changes in frequency and
severity of side effects over the time period.

7. The method of claim 6 wherein prior patient health
information over a time period includes changes in an
administered drug, changes in a drug dose, changes in a
health condition, or changes in lifestyle.

#* #* #* #* #*



