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In some aspects, a method for generating encoded plaintext
data in a plaintext vector space includes obtaining a plurality
of vectors of plaintext elements, where each plaintext ele-
ment is an element of a first finite field. The method further
includes encoding the plurality of vectors of plaintext ele-
ments to a vector of field elements, where each vector of
plaintext elements is encoded to a respective field element of
the vector of field elements, each of the field elements is an
element of a second finite field, and the second finite field is
a finite extension field of the first finite field. The method
additionally includes encoding the vector of field elements
into an element of the plaintext vector space to produce the
encoded plaintext data for homomorphic encryption and
computation.
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ENCODING DATA FOR HOMOMORPHIC
COMPUTATION AND PERFORMING
HOMOMORPHIC COMPUTATION ON
ENCODED DATA

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a 371 National Stage of Inter-
national Application No. PCT/SG2021/050131, filed on 12
Mar. 2021, the content of which being hereby incorporated
by reference in its entirety for all purposes.

TECHNICAL FIELD

[0002] The present disclosure generally relates to encod-
ing data for homomorphic computation and performing
homomorphic computation on the encoded data.

BACKGROUND

[0003] With the development of the Internet and the birth
of the cloud computing concept, homomorphic encryption
has become increasingly important as the need for ciphertext
search, ciphertext transmission, and multi-party computa-
tion keeps growing. Homomorphic encryption is an encryp-
tion method with special attributes. In general, homomor-
phic encryption is a mapping from a plaintext space to a
ciphertext space that preserves arithmetic operations. Com-
pared with other methods of encryption, homomorphic
encryption can implement multiple computation functions
between ciphertexts in addition to basic encryption opera-
tions. Homomorphic encryption allows entities to perform a
specific algebraic operation on a ciphertext to obtain a result
that is still encrypted. A result obtained by decrypting the
ciphertext is the same as a result obtained by performing a
same operation on a plaintext. In other words, when homo-
morphic encryption is used, performing computation before
decryption can be equivalent to performing computation
after decryption. Despite its special attributes, homomorphic
encryption can be computationally expensive (e.g., suffers
from high memory requirements and processing overhead)
compared to computations performed on plaintext data.
[0004] The single instruction, multiple data (SIMD) tech-
nique has been used in some conventional homomorphic
encryption schemes to reduce the computational expense of
performing operations on homomorphically encrypted data.
The SIMD technique allows a vector of plaintexts to be
encrypted in a single ciphertext, with ciphertext operations
corresponding to component-wise operations on its plaintext
vector. Other vector manipulation operations can also be
performed, including shifts and rotations of the entries in the
vector, which can be leveraged to perform arbitrary permu-
tations on the encrypted vector. With SIMD, for index m and
prime plaintext modulus p, also denoted by t in some of the
literature, the plaintext data lies in the plaintext vector space
(F pd)k where k-d=0(m) and ¢(*) is the Euler totient function.
Most work applying SIMD for homomorphic computation
focus on the subspace (IF p)k where base field elements are
placed in each slot. Furthermore, for homomorphic encryp-
tion parameters that are supported by current homomorphic
encryption standardization efforts, choosing a prime under
100 for p leads to extension fields of extremely high degree,
in the range of hundreds to thousands. Such primes can be
useful for circuit-based homomorphic encryption computa-
tion.
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[0005] Some have attempted to use the complete space (
F pd)k for SIMD homomorphic computation, but these
approaches suffer from limitations such as increased
memory requirements. Some others have attempted gener-
alize SIMD to composite moduli instead of prime moduli to
increase the amount of data that can be packed in a single
ciphertext. For example, some proposals interpret real num-
bers in some base-b encoding and treat the resulting strings
as Laurent polynomials. As another example, some propos-
als encode real numbers in their base-b representation over
a cyclotomic plaintext ring

Zp[x]

- .
P

However, these techniques suffer from some crucial limita-
tions. For example, Laurent polynomial encoding does not
enable fast circuit-based operations for comparisons such as
equality and order comparisons. Additionally, Laurent poly-
nomial encoding is only suitable for fixed point arithmetic
and not for general arithmetic circuits. Furthermore, using
composite moduli increases the noise of each operation due
to a larger plaintext modulus, and it is not possible for
messages encoded under different prime factors to interact
during homomorphic computation.

[0006] Therefore, there exists a need for encoding
schemes that are compatible with SIMD and that can:
exploit the complete plaintext vector space (IF pd)k; offer
finite extension field operations over the finite extension
field F ¢ be used with extension fields of extremely high
degree; offer efficient memory usage; and enable fast general
arithmetic circuit-based homomorphic encryption computa-
tion.

SUMMARY

[0007] According to a first aspect of the present disclo-
sure, a method for generating encoded plaintext data in a
plaintext vector space is provided. The method includes
obtaining a plurality of vectors of plaintext elements, where
each plaintext element is an element of a first finite field. The
method further includes encoding the plurality of vectors of
plaintext elements to a vector of field elements, where each
vector of plaintext elements is encoded to a respective field
element of the vector of field elements, each of the field
elements is an element of a second finite field, and the
second finite field is a finite extension field of the first finite
field. The method additionally includes encoding the vector
of field elements into an element of the plaintext vector
space to produce the encoded plaintext data for homomor-
phic encryption and computation.

[0008] According to a second aspect of the present dis-
closure, a system for generating encoded plaintext data in a
plaintext vector space is provided. The system includes a
memory, and at least one processor communicatively
coupled to the memory and configured to perform opera-
tions. The operations include obtaining a plurality of vectors
of plaintext elements, where each plaintext element is an
element of a first finite field. The operations further include
encoding the plurality of vectors of plaintext elements to a
vector of field elements, where each vector of plaintext
elements is encoded to a respective field element of the
vector of field elements, each of the field elements is an
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element of a second finite field, and the second finite field is
a finite extension field of the first finite field. The operations
additionally include encoding the vector of field elements
into an element of the plaintext vector space to produce the
encoded plaintext data for homomorphic encryption and
computation.

[0009] According to a third aspect of the present disclo-
sure a non-transitory computer-readable medium for gener-
ating encoded plaintext data in a plaintext vector space is
provided. The non-transitory computer-readable medium
includes instructions that are operable, when executed by
data processing apparatus, to perform operations. The opera-
tions include obtaining a plurality of vectors of plaintext
elements, where each plaintext element is an element of a
first finite field. The operations further include encoding the
plurality of vectors of plaintext elements to a vector of field
elements, where each vector of plaintext elements is
encoded to a respective field element of the vector of field
elements, each of the field elements is an element of a
second finite field, and the second finite field is a finite
extension field of the first finite field. The operations addi-
tionally include encoding the vector of field elements into an
element of the plaintext vector space to produce the encoded
plaintext data for homomorphic encryption and computa-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a diagram showing an example comput-
ing environment, according to an implementation of the
present disclosure.

[0011] FIG. 2 is a diagram showing an example data
owner device, according to an implementation of the present
disclosure.

[0012] FIG. 3 is a diagram showing an example data
operator device, according to an implementation of the
present disclosure.

[0013] FIG. 4A is a diagram showing an example single
instruction, multiple data (SIMD) technique where a vector
of numbers is packed into slots of a single ciphertext,
according to an implementation of the present disclosure.
[0014] FIG. 4B is a diagram showing example ciphertext
operations that correspond to component-wise operations on
their plaintext vectors, according to an implementation of
the present disclosure.

[0015] FIG. 5 shows an illustration of an example com-
posite Reverse Multiplication-Friendly Embedding (RMFE)
scheme, according to an implementation of the present
disclosure.

[0016] FIG. 6 illustrates an example three-stage recode
process for an example composite RMFE scheme, according
to an implementation of the present disclosure.

[0017] FIG. 7 is a schematic diagram showing example
operations performed in a computing environment, accord-
ing to an implementation of the present disclosure.

[0018] FIG. 8 shows a flowchart showing an example
process performed, for example, to encode a vector and to
encrypt an encoded vector, according to an implementation
of the present disclosure.

[0019] FIG. 9 shows a flowchart showing an example
process performed, for example, to decrypt a result and to
decode a decrypted result, according to an implementation
of the present disclosure.
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[0020] FIG. 10 is a flowchart showing an example process
performed, for example, by a computing device in a com-
puting environment, according to an implementation of the
present disclosure.

DETAILED DESCRIPTION

[0021] In some aspects of what is described here, data is
encoded for homomorphic computation and homomorphic
computation is performed on the encoded data.

[0022] In some instances, aspects of the systems and
techniques described here provide technical improvements
and advantages over existing approaches. For example,
aspects of the systems and techniques described here exploit
a complete plaintext vector space (IF pd)k, offer finite exten-
sion field operations over the finite extension field F ¢, can
be used with extension fields of extremely high degree (e.g.,
for a prime p under 100), offer efficient memory usage, and
enable fast general arithmetic circuit-based homomorphic
encryption computation.

[0023] FIG. 1 is a diagram showing an example comput-
ing environment 100, according to an implementation of the
present disclosure. The example computing environment
100 includes a first computing device 102, a second com-
puting device 104, and a communication network 106 that
communicatively couples the first and second computing
devices 102, 104. The computing environment 100 can be
used to implement a confidential computing environment.
For example, the first computing device 102 can homomor-
phically encrypt plaintext data (e.g., a vector of plaintexts)
to generate homomorphically encrypted data (e.g., a single
ciphertext or multiple ciphertexts). The encrypted data can
be sent from the first computing device 102 to the second
computing device 104 for processing, without the second
computing device 104 having to decrypt the encrypted data
from the first computing device 102. Since the encrypted
data from the first computing device 102 is not decrypted by
the second computing device 104 before, during, or after
processing of the encrypted data, the second computing
device 104 does not have knowledge of (or access to) the
plaintext data of the first computing device 102. Conse-
quently, the computing environment 100 enables computa-
tions to be outsourced and executed on encrypted data in a
confidential manner, while maintaining security and ano-
nymity of the plaintext data from the first computing device
102.

[0024] The first computing device 102 may be a trusted
client (or user) device, examples of which include a laptop
computer, a smartphone, a personal digital assistant, a tablet
computer, a standard personal computer, a mobile device, a
smartphone, a smart watch, a smart thermostat, a wireless-
enabled camera, or any other type of data processing device.
In some implementations, the first computing device 102
includes a plaintext database 108 that includes plaintext data
110. The plaintext data 110 can, in some examples, be a
vector of plaintexts. The first computing device 102 is
configured to encrypt the plaintext data 110 with a secret key
112 using one or more homomorphic encryption schemes. In
some implementations, the homomorphic encryption
schemes can be performed by one or more circuits included
in the first computing device 102. Example circuits that may
perform homomorphic encryption of the plaintext data 110
include one or more Boolean circuits with logic gates (e.g.,
AND, OR, NAND, or NOT gates, other logic gates or a
combination thereof), one or more arithmetic circuits (e.g.,
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with addition, multiplication, or negation functions, other
arithmetic functions or a combination thereof), or a combi-
nation of Boolean and arithmetic circuits, although other
types of circuits may be used to perform the homomorphic
encryption. Homomorphic encryption of the plaintext data
110 generates encrypted data 114 (e.g., homomorphically-
encrypted data) that may be stored in an encrypted database
116 of the first computing device 102. The encrypted data
114 can, in some examples, be a single ciphertext. The
encrypted data 114 may subsequently be sent from the first
computing device 102 to the second computing device 104,
via the communication network 106, for processing.

[0025] The communication network 106 can be the Inter-
net, an intranet, or another wired or wireless communication
network. In some implementations, the communication net-
work 106 may be configured to operate according to a
wireless network standard or another type of wireless com-
munication protocol. For example, the communication net-
work 106 may be configured to operate as Local Area
Network (LAN), a Wide Area Network (WAN), a Wireless
Local Area Network (WLAN), a Personal Area Network
(PAN), a metropolitan area network (MAN), or another type
of wireless network. Examples of WL AN include networks
configured to operate according to one or more of the 802.11
family of standards developed by IEEE (e.g., Wi-Fi net-
works), and others. Examples of PANs include networks that
operate according to short-range communication standards
(e.g., BLUETOOTH®, Near Field Communication (NFC),
ZigBee), millimeter wave communications, and others. In
some implementations, the communication network 106
may be configured to operate according to a cellular network
standard. Examples of cellular networks standards include:
networks configured according to 2G standards such as
Global System for Mobile (GSM) and Enhanced Data rates
for GSM Evolution (EDGE) or EGPRS; 3G standards such
as Code Division Multiple Access (CDMA), Wideband
Code Division Multiple Access (WCDMA), Universal
Mobile Telecommunications System (UMTS), and Time
Division Synchronous Code Division Multiple Access (TD-
SCDMA); 4G standards such as Long-Term Evolution
(LTE) and LTE-Advanced (LTE-A); 5G standards, and oth-
ers.

[0026] The second computing device 104 may be an
untrusted device, for example, a remote server, a cloud-
based computer system, or any other type of data processing
device that is remote from the first computing device 102. In
some examples, the first computing device 102 is operated
by a first entity, and the second computing device 104 is
operated by a second, different entity (e.g., a third-party
cloud service provider). In some implementations, the sec-
ond computing device 104 includes a data processing appa-
ratus 118 that is configured to execute homomorphic com-
putation processing on the encrypted data 114. The data
processing apparatus 118 can include one or more Boolean
circuits, one or more arithmetic circuits, or a combination of
Boolean and arithmetic circuits, although other types of
circuits may be used to implement the data processing
apparatus 118.

[0027] The result of the homomorphic computation (indi-
cated in FIG. 1 as an encrypted result 120) may subsequently
be sent from the second computing device 104 to the first
computing device 102 via the communication network 106.
The first computing device 102 receives the encrypted result
120 and may store the encrypted result 120 in the encrypted
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database 116. The first computing device 102 is configured
to decrypt the encrypted result 120 with the secret key 112
using one or more homomorphic decryption schemes. In
some implementations, the homomorphic decryption
schemes can be performed by one or more Boolean circuits,
one or more arithmetic circuits, or a combination of Boolean
and arithmetic circuits, although other types of circuits may
be used to perform the homomorphic decryption. Homo-
morphic decryption of the encrypted result 120 generates a
plaintext result 122 that may be stored in the plaintext
database 108 of the first computing device 102.

[0028] The computing environment 100 can implement a
confidential computing environment for data delegation or
privacy-preserving data processing. For example, a data
owner (e.g., a user of the first computing device 102) can
homomorphically encrypt their plaintext data, and send the
homomorphically-encrypted data to a cloud-based server
(e.g., the second computing device 104) for processing. The
cloud-based server performs homomorphic computation
processing on the homomorphically-encrypted data without
having to decrypt it and without having to access the secret
key or the plaintext data of the data owner, thereby main-
taining security and anonymity of plaintext data of the data
owner.

[0029] One example scenario where the computing envi-
ronment 100 can be applied is in a medical context. As an
illustration, a doctor may obtain medical data associated
with a patient. Examples of medical data include electro-
cardiogram (EKG) information, an x-ray image, a magnetic
resonance imaging (MRI) image, a computed tomography
(CT) scan, or any other type of medical data. The doctor may
analyze the medical data and make a diagnosis as to whether
there is any abnormality in the medical data. The abnormal-
ity may indicate that there are one or more conditions
associated with the patient. In some cases, the diagnosis may
be improved by running advanced detection schemes on the
medical data, examples being convolutional neural networks
machine learning or artificial intelligence systems trained on
various medical images for the purpose of diagnosing prob-
lems with presented medical data. In such cases, the doctor
may outsource the analysis of the medical data to a third-
party that executes the advanced detection schemes. How-
ever, the medical data may include personal data associated
with the patient and may be protected by laws such as
HIPAA (Health Insurance Portability and Accountability
Act). The doctor can utilize the computing environment 100
to possibly improve the diagnosis, while keeping private the
personal data associated with the patient. For example, the
doctor may use the first computing device 102 to homomor-
phically encrypt the medical data and send the homomor-
phically encrypted medical data to the second computing
device 104 for further analysis. Since the second computing
device 104 does not decrypt the homomorphically encrypted
medical data before, during, or after the analysis, the second
computing device 104 does not have access to the personal
data associated with the patient.

[0030] Another example scenario where the computing
environment 100 can be applied is in the credit market. For
example, a retail location may have a customer who wishes
to open a credit account, and the customer may be asked to
complete a credit application that includes credit informa-
tion and personal data associated with the customer such as
a name, an address, or unique identifying information that
represents the customer such as a social security number or
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a national identification number. Although the retail location
may be able to analyze the credit application to determine
whether to open a customer credit account, it may be
possible to perform a more thorough analysis by obtaining
access to additional information and decision-making algo-
rithms. The retail location can outsource such analysis to a
third-party that executes advanced analysis schemes. The
retail location can utilize the computing environment 100 to
determine whether to open a customer credit account, while
keeping private the personal data associated with the cus-
tomer. For example, the retail location may use the first
computing device 102 to homomorphically encrypt the
credit application and send the homomorphically encrypted
credit application to the second computing device 104 for
further analysis. Since the second computing device 104
does not decrypt the homomorphically encrypted credit
application before, during, or after the analysis, the second
computing device 104 does not have access to the personal
data associated with the customer.

[0031] The example scenarios discussed above are merely
illustrative and not meant to be limiting, and the computing
environment 100 can be applied to other scenarios that
involve data delegation or privacy-preserving data process-
ing.

[0032] FIG. 2 is a diagram showing an example data
owner device 200, according to an implementation of the
present disclosure. The data owner device 200 may be an
example implementation of the first computing device 102
shown in FIG. 1. In some implementations, the data owner
device 200 includes a processor 202 (e.g., a central process-
ing unit), an auxiliary storage device 204 formed by a
non-volatile storage device such as Read Only Memory
(ROM), and a memory 206 formed by a volatile storage
device such as Random Access Memory (RAM). In some
implementations, instructions (e.g., for executing homomor-
phic encryption) are stored in the auxiliary storage device
204. For example, the instructions may include instructions
to perform one or more of the operations in the example
processes shown in FIGS. 7 to 10. The instructions can
include programs, codes, scripts, modules, or other types of
data stored in the auxiliary storage device 204. Additionally
or alternatively, the instructions can be encoded as pre-
programmed or re-programmable logic circuits, logic gates,
or other types of hardware or firmware components or
modules. The auxiliary storage device 204 may also store
plaintext data (e.g., plaintext data 110 in the example of FIG.
1) for encryption. The data owner device 200 also includes
a tamper-resistant storage device 208, which may be con-
figured to store a secret key used for encryption and decryp-
tion (e.g., the secret key 112 in the example of FIG. 1).

[0033] The processor 202 may be or include a general-
purpose microprocessor, as a specialized co-processor or
another type of data processing apparatus. In some
examples, the processor 202 may be formed using one or
more Boolean circuits, one or more arithmetic circuits, or a
combination of Boolean and arithmetic circuits, although
other types of circuits may be used to implement the
processor 202. In some cases, the processor 202 performs
high level operation of the data owner device 200. For
example, the processor 202 may be configured to execute or
interpret software, scripts, programs, functions, executables,
or other instructions stored in the auxiliary storage device
204. In some instances, the processor 202 may execute the
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instructions by, for example, reading the instructions onto
the memory 206 to perform operations and overall control of
the data owner device 200.

[0034] The data owner device 200 shown in the example
of FIG. 2 further includes a display device 210 (such as a
display configured to display processed data), one or more
Input/Output (I/0) interfaces 212 to a peripheral device
(e.g., a keyboard, a mouse, or any other peripheral device),
and a transceiver device 214 (e.g., a modem or any device
having a transmitter circuit and a receiver circuit). The
transceiver device 214 may be configured to communicate
signals formatted according to a wired or wireless commu-
nication standard or a cellular network standard such that the
data owner device 200 can access the communication net-
work 106 to transmit and receive data. The various compo-
nents of the data owner device 200 are communicatively
coupled to one another via an interconnected bus 216. The
various components of the data owner device 200 may be
housed together in a common housing or other assembly. In
some implementations, one or more of the components of
data owner device 200 can be housed separately, for
example, in a separate housing or other assembly.

[0035] During an example operation of the data owner
device 200, the processor 202 accesses the auxiliary storage
device 204 and reads the plaintext data and the instructions
for executing homomorphic encryption onto the memory
206. The processor 202 may also access the secret key stored
in the tamper-resistant storage device 208. The processor
202 may subsequently execute the instructions to homomor-
phically encrypt the plaintext data (e.g., plaintext data 110 in
FIG. 1) using the secret key (e.g., the secret key 112 in FIG.
1), thus generating encrypted data (e.g., the encrypted data
114 in FIG. 1). The encrypted data may be stored in the
auxiliary storage device 204 or the memory 206. The
transceiver device 214 may transmit the homomorphically
encrypted data to a data operator device (e.g., the second
computing device 104 in FIG. 1) via the communication
network 106.

[0036] FIG. 3 is a diagram showing an example data
operator device 300, according to an implementation of the
present disclosure. The data operator device 300 may be an
example implementation of the second computing device
104 shown in FIG. 1. In some implementations, the data
operator device 300 includes a processor 302 (e.g., a central
processing unit), an auxiliary storage device 304 formed by
a non-volatile storage device such as ROM, and a memory
306 formed by a volatile storage device such as RAM. In
some implementations, instructions (e.g., for executing
homomorphic computation processing) are stored in the
auxiliary storage device 304. For example, the instructions
may include instructions to perform one or more of the
operations in the example processes shown in FIGS. 7 to 10.
The instructions can include programs, codes, scripts, mod-
ules, or other types of data stored in the auxiliary storage
device 304. Additionally or alternatively, the instructions
can be encoded as pre-programmed or re-programmable
logic circuits, logic gates, or other types of hardware or
firmware components or modules.

[0037] The processor 302 may be or include a general-
purpose microprocessor, as a specialized co-processor or
another type of data processing apparatus. In some
examples, the processor 302 may be formed using one or
more Boolean circuits, one or more arithmetic circuits, or a
combination of Boolean and arithmetic circuits, although
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other types of circuits may be used to implement the
processor 302. In some cases, the processor 302 performs
high level operation of the data operator device 300. For
example, the processor 302 may be configured to execute or
interpret software, scripts, programs, functions, executables,
or other instructions stored in the auxiliary storage device
304. In some instances, the processor 302 may execute the
instructions by, for example, reading the instructions onto
the memory 306 to perform operations and overall control of
the data operator device 300.

[0038] The data operator device 300 shown in the example
of FIG. 3 further includes a display device 308 (such as a
display configured to display processed data), one or more
1/0O interfaces 310 to a peripheral device (e.g., a keyboard,
a mouse, or any other peripheral device), and a transceiver
device 312 (e.g., a modem or any device having a transmitter
circuit and a receiver circuit). The transceiver device 312
may be configured to communicate signals formatted
according to a wired or wireless communication standard or
a cellular network standard such that the data operator
device 300 can access the communication network 106 to
transmit and receive data The various components of the
data operator device 300 are communicatively coupled to
one another via an interconnected bus 314. The various
components of the data operator device 300 may be housed
together in a common housing or other assembly. In some
implementations, one or more of the components of data
operator device 300 can be housed separately, for example,
in a separate housing or other assembly.

[0039] During an example operation of the data operator
device 300, the transceiver device 312 receives the homo-
morphically encrypted data from the data owner device 200.
In some instances, the homomorphically encrypted data
received from the data owner device 200 is stored in the
memory 306. The processor 302 may access the auxiliary
storage device 204 and read the instructions for executing
homomorphic computation processing onto the memory
306. The processor 302 may subsequently execute the
instructions to perform homomorphic computation process-
ing on the homomorphically encrypted data, thus generating
an encrypted result (e.g., the encrypted result 120 in FIG. 1).
The encrypted result may be stored in the auxiliary storage
device 304 or the memory 306. In some examples, the
processor 302 may be formed using one or more Boolean
circuits, one or more arithmetic circuits, or a combination of
Boolean and arithmetic circuits, although other types of
circuits may be used to implement the processor 302. The
transceiver device 312 may transmit the encrypted result to
the data owner device 200 via the communication network
106. In some examples, the data owner device 200 (e.g., the
transceiver device 214 of the data owner device 200)
receives the encrypted result from the data operator device
300 and stores the encrypted result in the memory 206. The
processor 202 may access the auxiliary storage device 204
and read the instructions for executing homomorphic
decryption onto the memory 206. The processor 202 may
also access the secret key stored in the tamper-resistant
storage device 208. The processor 202 may subsequently
execute the instructions to homomorphically decrypt the
encrypted result (e.g., encrypted result 120 in FIG. 1) using
the secret key (e.g., the secret key 112 in FIG. 1), thus
generating a plaintext result (e.g., the plaintext result 122 in
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FIG. 1). In some implementations, the plaintext result may
be stored in the auxiliary storage device 204 or the memory
206.

[0040] As discussed above, homomorphic encryption may
be performed by the first computing device 102 and the data
owner device 200, while homomorphic computation pro-
cessing may be performed by the second computing device
104 and the data operator device 300. Homomorphic
encryption schemes allow computations on encrypted data
without revealing its inputs or its internal states, thus pre-
serving data privacy. The single instruction, multiple data
(SIMD) technique has been used in some conventional
homomorphic encryption schemes to reduce the computa-
tional expense of performing operations on homomorphic-
ally encrypted data. The SIMD technique allows a vector of
plaintexts to be encrypted in a single ciphertext, with cipher-
text operations corresponding to component-wise operations
on its plaintext vector. Other vector manipulation operations
can also be performed, including shifts and rotations of the
entries in the vector, which can be leveraged to perform
arbitrary permutations on the encrypted vector.

[0041] As discussed above, with SIMD, for index m and
prime plaintext modulus p, the plaintext data lies in the
plaintext vector space (F pd)k, where k-d=¢(m), and ¢(*) is
the Euler totient function. Conventional schemes for apply-
ing the SIMD technique focus on the subspace (F p)k, where
base field elements (e.g., elements in F ) are placed in each
plaintext slot. Consequently, conventional schemes for
applying the SIMD technique do not exploit the complete
space (IF pd)k, which offers finite extension field operations
over F o

[0042] In contrast to conventional schemes for applying
the SIMD technique, various aspects of the present disclo-
sure present an improved homomorphic encryption and
computation processing scheme that efficiently packs more
data into each plaintext slot. For example, various aspects of
the present disclosure propose an encoding method that
embeds vectors into finite field elements for improved
homomorphic computation processing. The proposed
encoding method allows the use of finite extension field
operations to perform computation on encrypted data. The
improved homomorphic encryption and computation pro-
cessing scheme is termed field instruction, multiple data
(FIMD) in this disclosure. Additionally, various aspects of
the present disclosure introduce methods for applying
reverse multiplication-friendly embedding (RMFE) to
instances where the homomorphic plaintext space has a high
extension degree (e.g., where p is a prime under 100) in
order to pack even more data into each plaintext slot. For
example, various aspects of the present disclosure use an
RMFE scheme to encode a vector of elements in some finite
field into a larger extension field that enables an unbounded
number of component-wise multiplications on the vector of
elements. For example, given the plaintext space [ 4, vari-
ous aspects of the present disclosure present examples where
a vector in (F pd')k' is packed into F ¢, where k'-d'=0(d),
thereby causing ciphertext operations to correspond to com-
ponent-wise operations on encrypted vectors. As a result,
homomorphic multiplication with RMFE-encoded vectors
of the present disclosure is almost identical to SIMD.
[0043] FIG. 4A is a diagram showing an example single
instruction, multiple data (SIMD) technique, according to an
implementation of the present disclosure. In the example of
FIG. 4A, where a vector of plaintext elements (including
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plaintext elements 402, 404, 406) is packed into a vector of
plaintext slots of a single ciphertext 408. In the example of
FIG. 4A, the first plaintext element 402 is packed into a first
plaintext slot of the single ciphertext 408, the second plain-
text element 404 is packed into a second plaintext slot of the
single ciphertext 408, and the N th plaintext element 406 is
packed into an N" plaintext slot of the single ciphertext 408.
In contrast to conventional SIMD techniques where base
field elements (e.g., elements in F ) are placed in each
plaintext slot, this disclosure proposes a method of using an
RMFE scheme to pack an element in F ¢ in each plaintext
slot of the ciphertext, where the finite field F « is a subfield
of the finite extension field F « (which is the plaintext
space).

[0044] FIG. 4B is a diagram showing example ciphertext
operations that correspond to component-wise operations on
their plaintext vectors, according to an implementation of
the present disclosure. The result is also a ciphertext with an
equal number of slots. In contrast to conventional SIMD
techniques, the ciphertexts operations discussed in this dis-
closure offer finite extension field operations over the finite
extension field IF P €8s since an element in IF » in each
plaintext slot is also an element in finite extension field F ¢
For the sake of simplicity and illustration, in the example of
FIG. 4B, four integers 1, 2, 3, 4 are packed into a first
ciphertext 410, and four other integers 4, 2, 3, 1 are packed
into a second cipher text 412. Both the first and second
ciphertexts 410, 412 are ciphertexts with four slots. SIMD
operations on the first and second ciphertexts 410, 412
correspond to component-wise operations in their plaintext
vectors. For example, addition of the first and second
ciphertexts 410, 412 corresponds to component-wise addi-
tions, as illustrated in the example of FIG. 4B. As another
example, multiplication of the first and second ciphertexts
410, 412 corresponds to component-wise multiplications.
The result is also a ciphertext with four slots.

[0045] As discussed in further detail below, RMFE is not
multiplicatively homomorphic. Therefore, various aspects
of the present disclosure propose refreshing encoded vectors
periodically, which is achieved by using a recode map,
which is a combination of RMFE encode and decode
procedures. The RMFE encode and decode procedures are
[F «-linear maps, thus allowing the recode map to be easily
obtained and the tools available with homomorphic encryp-
tion to be applied. Various aspects of the present disclosure
also propose composing any F «-linear map, T, with the
recode map to simultaneously refresh and apply liner map T
to the encoded vectors without computational overhead. To
handle parameters that result in high extension degree
plaintext spaces, various aspects of the present disclosure
propose a new use of a composite RMFE scheme. For
example, instead of evaluating the recode map of the com-
posite RMFE scheme directly, various aspects of the present
disclosure exploit the fact that a composite RMFE scheme is
a composition of two component RMFE schemes and pro-
pose the use of a multi-stage (e.g., a two-stage or a three-
stage) recode process. The multi-stage recode process
reduces the complexity of recode operations for high degree
extension fields (e.g., where p is a prime under 100) and
allows recode operations to be used efficiently. Various
aspects of the present disclosure also propose techniques for
delaying applications of the recode operations.

[0046] For a better understanding of the present disclosure
and for ease of reference, the present disclosure is separated
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into sections, and various concepts that are relevant to the
various aspects of the present disclosure are now discussed.

Relevant Concepts from Fully Homomorphic
Encryption

[0047] In a general aspect, a leveled fully homomorphic
encryption (FHE) scheme can support L -depth circuits,
where L is a parameter of the FHE scheme. In some
examples, a leveled FHE scheme includes at least the
following operations:

[0048] Key Generation: (pk, evk, sk)«KeyGen(1*, L),
where security parameter A and maximum depth L are
provided as inputs to a key generation operation, and
where public key pk, evaluation key evk and secret key
sk are generated as outputs of the key generation
operation.

[0049] Encryption: c=m<«Enc(pk, m), where public
key pk and plaintext me P for a plaintext space P are
provided as inputs to an encryption operation, and
where a ciphertext ¢, which is an encryption of plain-
text m, is generated as an output of the encryption
operation.

[0050] Decryption: m'«—Dec(sk, c), where secret key sk
and ciphertext c are provided as inputs to a decryption
operation, and where a plaintext m' is generated as an
output of the decryption operation.

[0051] Evaluation: ¢'«Eval(evk, @, m,, m,, . . . , m,),
where evaluation key evk, an n-variate polynomial ¢ of
total degree>2", and n ciphertexts m,, . . . , m, are
provided as inputs to an evaluation operation, and
where a ciphertext ¢'=@(m;,m,,...,m, ) is generated as an
output of the evaluation operation.

[0052] In relation to batching and Frobenius Map opera-
tions, some FHE schemes can support SIMD operations,
also known as batching, by using Chinese Remainder Theo-
rem on polynomial rings and by selecting a suitable param-
eter. For example, a cyclotomic polynomial modulus

CDm(X)=l_[f=1 f,(x) decomposes into ¢ irreducible factors of
degree d modulo p, for a chosen plaintext characteristic p.
Then, with the Chinese Remainder Theorem isomorphism

Zylx] e el e
D, () I_L:I fix - I_L:I[Fp‘d’

£ many F «elements can be encrypted in one ciphertext by
encoding them into the various

Z,1x
fio

The expression F .« denotes a finite field with p? elements.
The algebra of each

Zp [x]
Ji0)

is F ¢ since f,(x) is an irreducible polynomial of degree d
modulo p. As a result, the plaintext space of compatible FHE
schemes can be partitioned into a vector of plaintext slots
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(e.g., as illustrated in the example of FIG. 4A), with a single
addition or multiplication on ciphertexts resulting in com-
ponent-wise addition or multiplication on the vector of
plaintexts (e.g., as illustrated in the example of FIG. 4B).
The plaintext algebra for these slots are finite extension
fields [F ¢, and some conventional homomorphic computa-
tion processing schemes perform rotation, shifts, and Frobe-
nius map evaluations without consuming depth for the
Brakerski-Gentry-Vaikuntanathan (BGV)-FHE scheme. A
ring-large learning with errors (LWE) variant of Brakerski’s
LWE scheme (known in the field as the Brakerski-Fan-
Vercauteren (BFV)-FHE scheme) can also be adapted to
support these operations. Furthermore, a software library for
homomorphic encryption, known in the field as HElib,
implements some operations that fully utilize the plaintext
space with BGV as the base FHE scheme.

Relevant Concepts from Finite Field Theory

[0053] Theorem 1 (The Subfield Criterion): Let F  be the
finite field with q:=p“ elements. Then, every subfield of F q
has order p?, where d'ld. Conversely, for any divisor d' of d,
there is exactly one subfield of F  with p? elements. To
manipulate F -vectors embedded in F ¢, F -linear maps
can be used. The F -linear maps can be evaluated with
constant multiplications and Frobenius map evaluations
according to the method discussed in Theorem 2, which is
presented below.

[0054] Theorem 2: Let q be a prime power and T be a
F -linear map on F -vectors in F ¢ for some positive
integer d. Denote by 1(x) the Frobenius map on F _« which
sends x—x?. There is a unique set of constants {p,, P,
Pai} Pi€F ¢, such that for any F -vector u that is embed-
ded as pe I ¢, the following holds:

da-1
HOEDY

=0

[0055] Proof of Theorem 2: To prove Theorem 2, a method
of computing the constants p, that yields the linear map
evaluation is presented. For example, let o be a generator of
F i ie. IF qd:[F A, and using the set {1, &, . . ., o}
as a basis of F < over F _ and identify vectors (¢, . . . ,
oy )eF ¢ with field elements X_o* 'oo'e F ¢ Subse-
quently, Py, . .. Pyq€ [F ¢ can be found such that for all pe
F . T o® ' p,u?=T(W). In particular, for all j=0, 1, . .., d-1,
the following holds:

This equation yields a system of d equations in the d
unknowns P, - . ., Ps;- Thus, this system of equations can
be solved as follows. Consider a dxd matrix M where
Mijzoc"ql and the matrix M is a Vandermonde matrix that is
invertible. Consequently, the following holds:

(Po> - - - » Pa)=(T(D), ..., T M.

This proof works even when T is a linear map that maps
subspaces of [F qd of dimension d' to any subspace of [F qd.
In this case, T can be represented as a linearized polynomial
with degree at most q7.
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[0056] With regards to generating and evaluating F _-lin-
ear maps with FHE, using the proof of Theorem 2, any
F -linear map can be expressed as a series of Frobenius
map evaluations and constant multiplications. There are
several methods to evaluate F _-linear maps with Generation
2 HE schemes, such as the BGV- and BFV-FHE schemes;
one or more of such methods are described by Halevi and
Shoup (see S. Halevi and V. Shoup, “Bootstrapping for
HElib,” in EUROCRYPT 2015, Part I, 2015).

Reverse Multiplication-Friendly Embedding
Scheme

[0057] In various aspects of the present disclosure, a
reverse multiplication-friendly embedding (RMFE) scheme
is applied to instances where the homomorphic plaintext
space has a high extension degree in order to pack more data
in each plaintext slot. For example, various aspects of the
present disclosure use of an RMFE scheme to encode a
vector of elements in some finite field into a larger extension
field that preserves multiplication.

[0058] For prime power q and integers k, n>1, a (k, n) -rev
erse multiplication friendly embedding (RMFE) scheme is a
pair of F -linear maps ¢:(F q)k%IF g and y:F —(F q)k
such that, for all x, ye (FF q)k, the following holds:

xHy=Y(0(0)-0()).

The F -linear map ¢:(F q)k—>[F 4 1llustrates that a vector of
elements in some finite field can be packed into an element
that lies in a larger extension field.

[0059] There are two main families of RMFE schemes: a
first family of RMFE schemes uses polynomial interpola-
tion; and a second family of RMFE schemes uses algebraic
function fields. The first family is restrictive since it is
limited to vectors of length at most g+1, while the second
family requires deep mathematics and is mostly used for
proving theoretical results. The second family of RMFE
schemes can be thought of as a generalization of the poly-
nomial interpolation method provided by the first family of
RMFE schemes, where points in F  are replaced by more
abstract “points” in function fields. The second family of
RMFE that uses algebraic function fields is described in
further detail below.

[0060] Theorem 3: In some aspects of the present disclo-
sure, Theorem 3 is utilized to combine two RMFE schemes
to obtain a composite RMFE scheme. For example, let (¢,,

V,) be a
(ky, my)gmy — RMFE
scheme and (0,, ¥,) be a

(k1, my), — RMFE

scheme. In some implementations, the (¢,, ¥,) RMFE
scheme may be termed an inner RMFE scheme, and the (0.,
V,) RMFE scheme may be termed an outer RMFE scheme.
The (¢, W) composite RMFE scheme is a composite
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(krk, mymy), — RMFE
scheme, where the following holds:

k
(;5:[F](;1 25 [qulmz

(xl, .y xkz) e ([le )kz [ (¢1(x1), e ¢1(xk2)) e ([qul )kz [

ba(1 (1),

L1, € Fmimy , and

. kg
WiF oy —

o)

@ €Fpmm (@) € [F’;%nl b (1 @), e s (1)) € Fy

[0061] FIG. 5 shows an illustration of an example com-
posite RMFE scheme 500, according to an implementation
of the present disclosure. The example composite RMFE
scheme 500 illustrates how a vector of elements in some
finite field can be encoded into an element in a larger
extension field and how the composite RMFE scheme
discussed in Theorem 3 can be advantageous in a homo-
morphic plaintext space that has a high extension degree in
order to pack more data in each slot of a vector of plaintext
slots. The example of FIG. 5 includes a first vector 502
having entries x,, X3, X,, X5, Xg. The first vector 502 lies in
the vector space I qk‘, where k,=6 in the example of FIG. 5,
and where each of the entries x,€ [F & fori=1,2,...,6.
Similarly, the example of FIG. 5 includes a second vector
504 and a third vector 506. The second vector 504 has
entries Y, Y3, Y4 ¥s» Yo and lies in the vector space FF qk‘,
where k,=6 in the example of FIG. 5, and where each of the
entries y,€ [F & fori=1, 2, ..., 6. Similarly, the third vector
506 has entries z,, z3, Z,, Z5, Zg, and lies in the vector space
F . where k,=6 in the example of FIG. 5, and where each
of the entries x,€F , for i=1,2, ..., 6.

[0062] The (0,, w;) RMFE scheme packs the first vector
502 into an element x (identified in FIG. 5 as reference

numeral 508) that lies in the field Fg™1- . The (6,, y,) RMFE
scheme also packs the second vector 504 into an element y
(identified in FIG. 5 as reference numeral 510) that lies in the

field Fgma. . Similarly, the (,, y,) RMFEE scheme also packs
the third vector 506 into an element z (identified in FIG. 5

as reference numeral 512) that lies in the field Fgma. .
Elements x, y, z are entries of a fourth vector 514 that lies

in the field (Fqm1 )%, where k,=3 in the example of FIG. 5.
The (¢,, ¥,) RMFE scheme subsequently packs the fourth
vector 514 into an element o (identified in FIG. 5 as

reference numeral 516) that lies in the field Fgmimz. . In the
example of FIG. 5, 18 elements, each of which lies in the
finite field [F , are encoded into a single element a that lies

in the larger extension field Fgmimz.. Consequently, the
example composite RMFE scheme 500 shown in FIG. 5
illustrates how a vector of elements (e.g., first, second, and
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third vectors 502, 504, 506) having elements that lies in
some finite field (e.g., x;, ¥, z;€ F ) can be encoded into an
element (e.g., element ¢t) that lies in a larger extension field

(e.g., 0e [Fq'”lmz ).

[0063] A packing efficiency of an RMFE scheme can be
used as a measure of the efficiency of the RMFE scheme. In
some aspects of the present disclosure, the packing effi-
ciency can be used to compare different RMFE schemes
with one another to determine how well-utilized the target
field is with respect to the length of vectors that the different
RMFE schemes encode into it (i.e., the target field). For a (k,
m)-RMFE scheme, packing efficiency is given by m/k.
When the composite RMFE scheme of Theorem 3 is
applied, the packing efficiency decreases from

my mamy
-— 0 —.
k2 kaky

In the example of FIG. 5, the packing efficiency is given by

Myt
18

One way to improve the packing efficiency of the composite
RMFE scheme is via the use of algebraic function fields,
which allows for more point evaluations.

Polynomial Interpolation RMFE

[0064] Theorem 4: For all 1<k<qg+1, there exists a (k,
2k-1),-RMFE scheme using polynomial interpolation,
which can be constructed as follows. Let F _[X]_,, in denote
the set of polynomials of degree at most m with coefficients
in F . Then, denote by S a set of pair-wise distinct points
{x1s X5 -+ oL X CEF {eo,, 1}, where oo, is the symbol
such that f(eo,, ;) is the coefficient of X™ for any polynomial
feF [X]., LetaeF zisuch F a=F (o), then the fol-
lowing maps can be defined:

e F X F 5 o=, s, . . .
f (Xk))

T]ZZ]Fq[)(]zk—Z_dF 21 fo MDA,

[0065] These two maps are isomorphisms of F -vector
spaces, as shown in Theorems 11.13 and 11.96 of R. Cramer,
. Damgard and J. B. Nielsen, Secure Multiparty Computa-
tion and Secret Sharing, Cambridge University Press, 2015.
Then, the following can be defined:

1 F Xl oo s o = ),

» S

where x,:=x; if x,e F _ and x,":=00,,_; if x,=00,.
Then the following holds:

¢=n,on, " and y=n,'on,”".

Field Instruction, Multiple Data (FIMD) Technique

[0066] Various aspects of the present disclosure illustrate
that in the proposed FIMD technique, the plaintext space for
the BGV- and BFV-FHE schemes can be viewed as a vector

k£
in ([Fp) with component-wise addition, multiplication,
rotations and shifts. In the SIMD technique, the plaintext
space of the BGV- and BFV-FHE schemes is a vector of



US 2024/0171374 Al

?

finite extension field elements ([F pd) for some integers d
and £. In an analogous manner, the FIMD technique pro-
posed in various aspects of the present disclosure (e.g., in the
example of FIG. 5) allows F -vectors of some length k to
be encoded to elements in F « when d>1 such that entry-
wise addition and multiplications can approximately be
mapped to field addition and multiplication.

[0067] Encoding F ,-vectors into F « Let (¢, y) be a (k,
d')p-RMFE scheme, where d divides d'. Then, according to
Theorem 1, this RMFE scheme encodes vectors in (F p)*
(e.g., F -vectors of some length k) to an element of F
which can be embedded into the unique subfield of F .« that
is isomorphic to it.

[0068] Example 1: This example is provided to illustrate
the encoding of F -vectors into F < for the FIMD technique
proposed in various aspects of the present disclosure. For
simplicity, the encoding/decoding process is illustrated on
plaintext vectors of numbers and polynomials with a poly-
nomial interpolation-based RMFE scheme. Suppose p=5,
and the finite extension field is E=IF s, then up to 5 F
elements can be encoded into E. Suppose also that the
vector (1, 3,4, 2, e (F 5)5 is packed into E . To effect such
a packing, a polynomial of degree not more than 4 is initially
found, namely, f(x)=X,_,*fx’ such that (1, 3, 4, 2, 1)=(f(0),
f(1), f(2), f(3), f(4)). Then, the representation E ={h(t)
=¥,_,*h,t'} can be used, where t is the root of an irreducible
degree 8 polynomial g(x), and f(x) is embedded into f(t)
=X,_;*ft'’e E . Decoding any element in [E is done by treating
that element h(t) as a polynomial h(x) and evaluating it over
the points 0, 1, . . ., 4, i.e., computing (h(0), h(1), . . ., h(4)).

[0069] As shown above, the proposed FIMD technique
encodes [F -vectors of some length k to elements in F«
when d>1, thus yielding an encrypted FIMD vector. The
following paragraphs describe how to perform homomor-
phic computation processing on encrypted FIMD vectors.

[0070] Component-wise Additions for FIMD: With FIMD
encrypted vectors, ciphertext addition corresponds to entry-
wise addition of the underlying F -vectors. To add constant
[F -vectors to encrypted vectors, the constant F -vectors
are first encoded with the RMFE scheme that was used to
generate the FIMD encrypted vectors. Encoding the constant
[F -vectors produces field elements that can then be added
to FIMD encrypted vectors after being encoded again with
SIMD into the appropriate plaintext elements. Stated differ-
ently, the field elements can be encoded with SIMD into
appropriate plaintext elements, and the appropriate plaintext
elements can then be added component-wise to the FIMD
encrypted vectors.

[0071] Component-wise Multiplications for FIMD
(Simple Case): RMFE is not multiplicatively homomorphic.
Therefore, encoded vectors may need to be refreshed peri-
odically, which can be achieved by using a recode map,
which is a combination of RMFE encode and decode
procedures. For encrypted FIMD vectors, ciphertext multi-
plication does not always directly translate to component-
wise multiplication. This is because RMFE schemes cannot
be repeatedly applied without additional conditions. To
overcome this limitation of RMFE schemes, the present
disclosure proposes a recode operation for the RMFE
scheme (0, V) (e.g., the composite (k,, k,, m,, m,),-RMFE
scheme presented in Theorem 3). The recode operation can
be expressed as follows:
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recode: IF pd'—>[F s

x> o(y(x)).

The recode operation obtains a new F « element that is a
freshly encoded result of the multiplication. The recode
operation is a F -linear map since it is the composition of
the two F -linear maps ¢ and y. The series of operations for
an FIMD multiplication of two encrypted vectors can there-
fore be summarized as follows:

[0072] Operation 1 for FIMD Multiplication: Cipher-
text mmltiplication, thus obtaining a result ciphertext
c*.

[0073] Operation 2 for FIMD Multiplication: Evaluat-
ing the recode linear map on c* to obtain a reusable
ciphertext c'.

[0074] Linearized Polynomial Representation of encode,
decode and recode operations: Theorem 2 can be used to
obtain the linearized polynomial representation of the recode
map, i.e. computing the constants g, . . . , Ps1€ F < such
that recode(W)=X,_o"'p,u?. Suppose the (k, 2k-1),-RMFE
scheme is used from polynomial interpolation, then for all
i=0, 1, . . ., 2k=2, the following holds:

recode(a))=(¢oy)(cr).

Following the proof of Theorem 2, the linearized polynomial
representation of the recode map can be obtained.

[0075] Alternate Representation for recode operations: In
general, a recode operation maps a subspace of dimension d
to a subspace of dimension k, which means its kernel has
dimension d—k. This means that a polynomial K(x) can be
found whose roots belong to the kernel of the recode map,
i.e. if recode(u)=0, then K(u)=0, and K(x) is therefore a
factor of recode(x). Therefore, the linearized polynomial
representation of the recode map can be expressed as fol-
lows:

recode()=AoKHA K@ . . . KD e GO,

where G(x) is a linearized polynomial of degree<q®™*. Since
recode(x) mod K(x)=0, it follows that G(x)=(). Therefore,
recode(x)=H (K(x)), where H(X)=A,x7+A,_,;X? + ... +A,.
If either H(x) or K(x) has few non-zero terms, then it might
be computationally efficient to evaluate this form.

[0076] Example 1 (Continued): This example is an exten-
sion of Example 1 discussed above and is provided to
illustrate component-wise multiplication and decoding for
the FIMD technique proposed in various aspects of the
present disclosure. Suppose two vectors (1, 3,4, 2, 1)and (1,
1, 2, 1, 2) are respectively encoded to two polynomials f, g
and embedded in E as f(t), g(t). To obtain their component-
wise product, i.e. (1, 3, 3, 2, 2), the embedded field elements
are multiplied (e.g., f(t)xg(t)) to obtain the result g (t). Since
the degree of fg(t) is 8, fg(x) as a polynomial is the same as
f(x)g(x), the decoded output can be expressed as follows:

B, f5(), (D), 23, f2(®) = (S(Dg(®), f(D)g), ...
=(1,3,3,2,2)

» [(Hg@)

The product of 3 encoded elements results in a polynomial
of degree 12, exceeding the degree of t.

[0077] Component-wise Multiplications for FIMD (Gen-
eral Case): In the simple case of component-wise multipli-
cations for the FIMD technique proposed in this disclosure,
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a recode operation is applied after each multiplication.
However, instead of having to apply the recode operation
after each multiplication, the recode operation can be
deferred and applied after e multiplications. To illustrate
this, the general case of component-wise multiplications for
the FIMD technique is applied to the (k, 2k-1),-RMFE
scheme from Theorem 4. Suppose that the plaintext space
[F ,¢is such that, 2°(k-1)+1=d, the construction in Theorem
4 can be modified, with F ~F (c) such that the following
holds:

0 F = F 5 om0, ),
fe50)

0 F [0 o= F o oo, (010,
Then, the following can be defined:

= = Ok =), A,
S&)
[0078] where x:=x, if x&EF  and x,/:=0,e-105, y if
X;~=00,.
Accordingly,
[0079]
¢=nz'on, ™t and p'=n *on

With this RMFE scheme, length-k F -vectors are encoded
and e multiplications can be performed before a recode
operation is performed. In essence, the recode operation
evaluates the F -linear map 1'o¢' on the resulting cipher-
text. Intuitively, the key to the general case of component-
wise multiplications for the FIMD technique is that there is
sufficient “space” when the condition 2°(k-1)+1=d is
imposed such that “polynomial coefficients” encoded as
field elements do not wrap around (modulo g(t) in the
Example 1).

[0080] Linear Map Evaluation: Instead of considering
shifts and rotations on encrypted F ,-vectors, a more general
notion of evalvating an F -linear map on it is considered.
Let mt be the linear map for evaluating the encrypted vectors
on. As with (¢, 1) from an RMFE scheme, Theorem 2 is
used to generate the constants that enable evaluation with
linearized polynomials. However, some optimizations can
be performed if encoded vectors are multiplied before
evaluating . One of these optimizations is an optimized
post-multiplication linear map evaluation, discussed below.
[0081] Optimized Post-Multiplication Linear Map Evalu-
ation: Since ¢, 1, w are F -linear maps, they can be
combined into a single linear map that outputs the permuted
vector while simultaneously recoding it for further multi-
plications. Thus, the recode operation and application of the
7T map can be given by:

recode,;: F A Ide'

x> p@p ).
Thus, for optimal use of linear map evaluations, the recode,,
is generated so that the linear map evaluations can be applied
after multiplications as well as normal use (without any
multiplications).

Efficient Three-Stage Recode Process for a
Composite RMFE Scheme and High Extension
Degree Fields

[0082] For certain homomorphic encryption (HE) param-
eters, the decomposition discussed in the section entitled
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“Relevant Concepts from Fully Homomorphic Encryption”
yields high extension degree d and low number of slots £ .
For fixed prime p, RMFE schemes from polynomial inter-
polation and algebraic function fields might not be able to
fully utilize the plaintext space. However, HE presents
another challenge for parameters that yield high extension
degree. While a (k, 8),-RMFE scheme can always be found
such that 9 is as close to d as possible, the complexity of
evaluating the various linear maps of the proposed FIMD
technique, which would require at least d key-switching
operations, can be prohibitively large. Therefore, the present
disclosure also proposes an alternative approach that uses
fewer key-switching evaluations at the expense of a lower
packing efficiency.

[0083] According to Theorem 1, there is a copy of every
field F ¢, where d'ld, embedded in the plaintext space F .
By the theory of field extensions, F + can be represented as
F +[x]/g(x) for some irreducible (in F ) polynomial of
degree d/d'. Therefore, two RMFE schemes can be found—
an inner (k, d),-RMFE scheme (¢,, },) and an outer (K,
1),#-RMFE scheme (¢, ) which would compose to a (kk',
1d"),-RMFE (¢*, ¢*) by Theorem 3 with fd' being as close
to d as possible. Without further action, the recode operation
would involve linearized polynomials with at least fd' mono-
mials.

[0084] The fact that the above-described composite
RMFE scheme reduces the complexity of evaluating its
recode map can be taken advantage of. Instead of applying
the direct recode map ¢*o* , which requires at least ed'
Frobenius automorphisms to evaluate, a three-stage recode
process is adopted: an outer decode operation; an inner
recode operation; and an outer encode operation. First, a set
of decode maps, {,},_,*’ is defined. The set of decode maps
{y,},_,* decodes the outer RMFE scheme and returns only
the ith entry of the vector. Using this outer vector of K
entries, k' ciphertexts are obtained that each encrypts a single
entry of the outer vector. Each entry of the outer vector packs
k F , elements with the inner RMFE scheme and its recode
(,0¢,) map can be applied to each ciphertext to “refresh”
the inner encoding. Finally, the k' “refreshed” ciphertexts are
recombined into one element, encrypting the vector of k'
inner field elements and applying a single encode map to
enable FIMD operations again.

[0085] FIG. 6 illustrates an example three-stage recode
process for an example composite RMFE scheme, according
to an implementation of the present disclosure. In the
example of FIG. 6, the ciphertext encrypting the element &

Fymimz is denoted with reference numeral 600 and is
decoded using operation 602. In operation 602, each map 1),
of the set of decode maps {1,},_,> is applied to the ciphertext
encrypting o to respectively return a first ciphertext 604, a
second ciphertext 606, and a third ciphertext 608 respec-

tively encrypting x, y, zEFgm. . The ciphertexts 64, 606,
608 form an outer vector. Each entry of the outer vector
packs 6 F , elements with the inner RMFE scheme, and its
recode (1, o¢,) map (shown in FIG. 6 as operation 609) can
be applied to each ciphertext 604, 606, 608 to “refresh” the
inner encoding. In the example of FIG. 6, the recode
operation 609 is applied to first ciphertext 604 to produce
refreshed ciphertext 604A. Similarly, the recode operation
609 is applied to second ciphertext 606 to produce refreshed
ciphertext 606A, and to the third ciphertext 608 to produce
refreshed ciphertext 608 A. Finally, the refreshed ciphertexts
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604A, 606A, 608A are recombined using operation 610. In
operation 610, the refreshed ciphertexts 604A, 606A, 608A
are packed into a single ciphertext and then the outer RMFE
scheme is applied (e.g., a single encode map is applied) to
recombine the “refreshed” ciphertexts 604A, 606A, 608A
into a ciphertext encrypting the ‘refreshed” oe

Fgmimz (where the “refreshed” ciphertext is shown in FIG.
6 as element 612), thus enabling FIMD operations again.
[0086] The complexity of the three-stage recode process
can be determined by determining the number of key-
switching operations for each of the operations of the
three-stage process discussed above. In the first operation of
the three-step recode process (e.g., the outer decode opera-
tion), a set of k' decode-like maps is evaluated. Naively
done, this would require up to k'd/d' Frobenius automor-
phisms (and thus key-switching operations); however, since
the automorphisms are all done on the same ciphertext, we
can apply d/d' Frobenius automorphisms once and use these
automorphisms repeatedly for each of the k' decode-like
maps. Therefore, the first operation of the three-stage recode
process (e.g., the outer decode operation) requires up to d/d’
key-switching operations.

[0087] In the second operation of the three-stage recode
process (e.g., the inner recode operation), the inner recode
map is evaluated to each of the k' ciphertexts, thus using k'd’
key-switching operations. In the third operation of the
three-stage recode process (e.g., the outer encode operation),
the “refreshed” entries are combined into a single encrypted
vector with (0, . . ., 0, )= Z_* "'oY, where {1, 7, ..
., ¥"*='} forms a basis for the extension [ T . Since the
embedding maps subspaces of dimension k'-1, k' key-
switching operations are needed to evaluate it. Therefore,
the three-stage recode process uses up to

d
7 +kd +1)<d

key-switching operations since

[0088] Besides the complexity of the technique, the num-
ber of key-switching matrices required for computation can
be determined, assuming one matrix per unique automor-
phism. The first stage of the recode operation requires
evaluating x( ) for i=0, . . ., d/d; since i=0 when x” =x,
d/d'-1 key-switching matrices are used. In the second stage,
the inner recode map is applied to each of the k' ciphertexts
from the previous stage. This map requires evaluating x* for
j=0, ..., d’; as before, no automorphisms are needed for j=0,
and j=d' corresponds to x(*" )" from the first stage. Therefore,
d'-2 key-switching matrices are used in the second stage.
Finally, the last stage uses a subset of the automorphisms
used for the first stage; thus the total number of key-
switching matrices needed is

— +d -3,
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compared to d if direct recode is used. This can be combined
with other techniques such as the Baby-Step-Giant-Step
automorphism scheme (e.g., described in S. Halevi and V.
Shoup, “Faster Homomorphic Linear Transformations in
HElib,” in Advances in Cryptology—CRYPTO 2018—381h
Annual International Cryptology Conference, Proceedings
Part I, Santa Barbara, 2018) to reduce the number of
key-switching matrices further.

[0089] As such, with the three-stage recode process for a
composite RMFE scheme and high extension degree fields,
arbitrary linear maps on inner vectors can be applied using
the techniques of discussed above with regards to homo-
morphic computation processing on encrypted FIMD vec-
tors. Furthermore, arbitrary linear maps can be performed on
outer vectors by adjusting how the “refreshed” inner field
elements are recombined into one ciphertext.

[0090] General-Case Multiplication with the Efficient
Three-Stage Recode Process: For a composite RMFE
scheme (e.g. illustrated in FIG. 4), the general case compo-
nent-wise multiplications for FIMD discussed above is less
effective for several reasons. First, both inner and outer
RMFE schemes need enough overhead so that the result of
several multiplications does not overflow and cause decod-
ing to fail. This means that the following conditions are
needed:

29(k—1)+1<d and 2°(k—1}+1<f,

which implies that 4°(k—1)k'—1+2*" (k+k'-2)+1<d to support
e multiplications in the general case. However, with the
proposed three-stage recode process, things can be done
differently. With the inner recode operation (e.g., operation
recodel in FIG. 6) and outer recode operation (e.g., the
combination of operations 602 and 610 in FIG. 6)
decoupled, the outer recode operation can be performed as
many times as needed without affecting the inner RMFE
encoding. For example, let o and B<o be the number of
multiplications desired before performing the inner recode
operation and the outer recode operation, respectively. Then,
k, k' is chosen under the following restriction: 2*(k—1)+1<d'
and 2P(k'—1)+1<f such that 2%P(k—1)(k'—1 +(2%k+2Pk'—2°—
2P)+1<d. With this setup, multiplications can be performed
as follows:

[0091] For every B multiplications, the outer recode,
map ¢,0V, is applied (or recode, and T map, 0,0ToY,,
for any linear map ® on the vector of outer field
elements); and

[0092] For every o multiplications, the three-stage
recode process described above (e.g., illustrated in FIG.
6) is applied (with the option to apply various linear
maps on the vector of numbers encoded as inner field
elements by applying the recode; and T map,
(@ 0moy,).

[0093] If there is a need to apply outer (or inner, respec-
tively) linear maps before B (or o, respectively) multiplica-
tions are reached, the outer recode and ® map are applied (or
three-stage recode process with an inner linear map, respec-
tively).

Efficient Two-Stage Recode Process for a
Composite RMFE Scheme and High Extension
Degree Fields

[0094] Two methods for performing the recode process in
two stages are introduced. In each of these methods, two
recode maps are applied consecutively. In a first one of these
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methods, an inner recoding map is applied before an outer
recoding map; in a second one of these methods, an outer
recoding map is applied before in inner recoding map. The
two component RMFE schemes in the composite RMFE
scheme can be denoted as inner (k, d),-RMFE scheme (¢,
y,) and outer (k' f),«-RMFE scheme (0,, ¥,), and the
composite RMFE scheme can be denoted as (kk', fd),-
RMFE scheme (¢*, y*). The composite recode,.,,,, maps xe
I 1o x*=recode,,,,,,(x)=0,(¢,(¥,(Y,(x))eF ¢ Its image
has dimension kk' and is isomorphic to F ,** and for any x*
in it, we have recode(x*)=x*.

[0095] Inner Recoding followed by Outer Recoding: As
mentioned above, a first one of the methods for performing
the recode process in two stages involves applying an inner
recoding map before an outer recoding map. Instead of the
standard inner recode,=¢,oV,, a different inner recoding
map can be given by the following:

*.
recode;, .F pd—>IF P
xPxtta,

where a € Ker(recode,) for recode,=0,0y,. With these two
maps, the following recode process is provided:

recode,

comp’

=recode,orecode,,*

The proof of the recode process shown above is a simple
verification. For example, for any xe F

recodecq,,(x) = recode; (recode;, (x))
= recodea(x* + ay)
=x" +recode,(a,)

"
=X

[0096] Coefficients for recode,,* when Inner Recoding is
followed by Outer Recoding: To derive the coefficients for

recode,*, let P(x)=ajx+a,x’+ . . . +a,,. X  for some a,,
., akd,_leIde. For each i=0, 1, . . ., kd-1, write
a=x,_o""'b, sy, where

{)’0, Y4 1}
ra

isabasisof F «over F ¢ By the definition of recode,, it has
nullity d/d'—k, meaning Ker(recode,) has dimension d/d—k
over F «. Let{B,...... By} be abasis of Ker(recode,),
then write recode,,,*(X)=x*+¢, B+ . . . +CogrBaai fOr
SOME Cy , . .. Cyyi € F o Withabasis of F «over F , say
{®,, ..., m,}, the set {w/y;} forms a basis of F «over F .
Thus, for i=1, . .., d" and j=1, . . ., d/d', the expression
P(x, p=x, *+c, B+ . . . +¢;, By, is desired, where
X, O Altogeflher, this yields d equations in the variables
a, and c; oy Expanding each equation in terms of the vari-
ables b, ; and comparing the coefficients with respect to s,
it can be verified that a system of d*/d' equations in as many
unknowns over F « is obtained. With high probability, the
system can be solved and the values for b, ; give the desired
coefficients for the linearized polynomial P(x) that is used.
If the equation system does not admit any solutions, another
set of kd' powers of p in the range from O to d—1 can be
chosen instead of the smallest kd' integers as presented at the
beginning.
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[0097] Complexity of Inner Recoding followed by Outer
Recoding: To determine the complexity of this method, note
that there are kd' p-linearized monomials in P(x) and so it
requires kd+d/d' key-switching keys and a similar number
of operations to compute.

[0098] Outer Recoding followed by Inner Recoding: As
mentioned above, a second one of the methods for perform-
ing the recode process in two stages involves applying an
outer recoding map before an inner recoding map. To this
end, the following inner and outer recode maps are defined:

£
recode,,, *:IF pd—>[F »

out

X 0o (),

recode,,*:Im(recode, *)—>]F A

out

x> x*

where u.€Im(0,0y,)nKer(y,), and recode,,* is a F -
linear map over F ¢ with a k-dimensional F ¢-subspace of
F ,«as its image, Im(recode,,,*). As a F -linear map over (
F pd')k, has a kernel of dimension (d/d'—k')k and following a
similar analysis as set forth above for the inner recoding
followed by outer recoding, recode,,,* can be evaluated
with a p?-linearized polynomial containing did L k(d—k'y/
d p?-linearized monomials. Therefore, an IF p-linear map
can be defined over Im(recode,,,*), recode,,* that recodes
the inner RMFE-encoded data. Furthermore, Im(recode,,,,*)
is a kd'-dimensional [F -subspace of F ¢, and recode;,* can
be represented as a p-linearized polynomial with kd' p-lin-
earized monomials. As a result,
recode,,,,,,=recode,, *orecode,,, *, since for any xe F 4, the

conp’ our ?

following holds:

recode}, -recode ), (x) = recode}, (¢2 (Y2 (%)) + 1)

= (22 ()" = x°

Generalizing RMFE via Algebraic Function Fields

[0099] As discussed above, there are two main families of
RMFE schemes: a first family of RMFE schemes uses
polynomial interpolation; and a second family of RMFE
schemes uses algebraic function fields. The second family of
RMEFE schemes can be thought of as a generalization of the
polynomial interpolation method provided by the first fam-
ily of RMFE schemes, where points in [ jare replaced by
more abstract “points” in function fields.

[0100] In polynomial interpolation, suppose the existence
of abase field F | for some q=p°, where p is some prime and
extension e>1. The evaluation points used in polynomial
interpolation can be expressed as points {X,, . . ., X}, where
x;€ F .. In RMFE schemes based on polynomial interpola-
tion, the polynomial in the target field F ™ can be expressed
as {Ogto,t+ . . . +o,  t" mod g), a,e F } for some
irreducible polynomial g(t)=X,_,"gt’, where m=>2k—1.
Based on these parameters, the encode and decode opera-
tions in RMFE schemes based on polynomial interpolation
can be expressed as follows:
Encode: (ay, . . ., aP =2, ffe F 4 with
a;=f(x;)

Decode: A(H=E,_ " 'hte F Elad(/{C7) RU h(x,)
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[0101] In algebraic function fields, evaluation points are
generalized to places and divisors. As an example, evalua-
tion places (e.g., of degree 1) can be polynomials evaluated
to points in F , and the target place (e.g., of degree m) can
be polynomials evaluated to points in F ». Additionally, a
divisor G can be expressed as 2,_,’c,P,, where P, are places,
and c; are integers for some finite 1. Additionally, in algebraic
function fields, general polynomials are polynomials situ-
ated in a space. An example space can be a Riemann-Roch
space (e.g., function space), which can be expressed as
£L(G=2,_,’c,P,)=0 and the set of polynomials that “evaluate
to 0” at P, with ¢,<0 and poles (e.g., that evaluate to infinity)
at P, with ¢,>0. The degree(G)=2,_,’c,-degree(P,). Addition-
ally, f, g££(G), and £2g€L(2G).

[0102] Based on the above, polynomial interpolation can
be interpreted in terms of algebraic function fields. Specifi-
cally, polynomial interpolation can be approximated to
RMEFE on rational function fields where genus g=0. In this
example, evaluation points are places {P,, ..., P,} (e.g., of
degree 1), the target field are a place R (e.g., of degree m),
and divisor G is such that G does not contain evaluation
places and dim £(G)-dim £(G-X,_,'P)=k, and
m>2-degree(G). When degree(G)=k-1, then m=2k-1. Based
on these parameters, the encode and decode operations in
RMFE schemes based on polynomial interpolation can be
approximated as follows:
Encode: (a;, ..., ak)EIF qk'—)fEWHf(R)EIF JER
where IF qk:Wis a subspace of £ (G)

Decode: ZRIEF el 26 (@), . . .,
fepel

[0103] Additionally, RMFE on rational function fields can
be generalized where genus g=0. In this example, evaluation
points are places {P,, . . ., P,} (e.g., of degree 1), the target
field are a place R (e.g., of degree m), and divisor G is such
that G does not contain evaluation places. If m=2k+4g-1,
then a (k, m)-RMFE scheme exists, and divisor G is selected
such that degree(G)=k+2g-1. Based on these parameters,
the encode and decode operations in generalized RMFE
schemes based on function fields can be approximated as
follows:
Encode: (a;, ..., ak)EIF qk'—)fEWHf(R)E[F JER
where I qk:Wis a subspace of L (G)

Decode: RRIEF .« el 26)P (&(P)), . . .,
fepel F

Experiments

[0104] An experiment was conducted to compare the
performance of encrypted integer order comparisons using
FIMD and SIMD techniques to compare their relative per-
formance in real situations. The other main methods for
vector encodings were also included in the experiment to
determine the FIMD technique’s effectiveness against them.
Results of this experiment are presented below in Table 1.
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TABLE 1

Performance of encrypted integer order comparisons for various
primes and techniques, one HE parameter per prime

Rela-
Amor-  tive
tized Per-
En- Num Capa- Time  for-

coding Packed «city logq logpgq (sec.) mance

p=k=5 FIMD 1400 240 243.769 350995 0.0115 1
11-bit
integers ~ SIMD 280 200 22391 323566 0.0151 1.313
p=k=7 FIMD 1512 290 298.898 409.285 0.0267 1
19-bit
integers ~ SIMD 216 240 24378 351.135 0.0395 1.479
p=k= FIMD 838 350 358908 505.043 0.0646 1
11
38-bit SIMD 76 300 313984 460.12 0.1169 1.810
integers
p=13, FIMD 782 400 411.372 560.227 0.0972 1
k=12
44-bit SIMD 65 300 313.218 459.333 0.1634 1.681
integers

[0105] As the results in Table 1 show, the FIMD technique
exceeds the performance of SIMD techniques when the
same HE parameters are used. The main difference is that the
FIMD technique requires slightly more capacity than the
SIMD technique for correctness. For the HE parameters
chosen, the SIMD technique can accommodate larger values
for k at the same HE parameters, but with larger capacities
needed for evaluation correctness. Alternatively, the SIMD
technique can evaluate comparison for the same values of k
at better performance (although the improvement for the
SIMD technique does not lead to it outperforming the FIMD
technique) given optimal parameters. In cases where the HE
parameters cannot be flexibly chosen, the FIMD technique
offers a good solution to pack more into a single ciphertext
with efficient amortized performance.

[0106] An experiment was also conducted to compare the
performance of encrypted integer equality comparisons
using FIMD and SIMD techniques to compare their relative
performance in real situations. The other main methods for
vector encodings were also included in the experiment to
determine the FIMD technique’s effectiveness against them.
Results of this experiment are presented below in Table 2.

TABLE 2

Performance of encrypted integer equality comparisons for various
primes and techniques, one HE parameter per prime

Rela-
Amor-  tive
tized Per-
En- Num Capa- Time  for-

coding Packed «city logq logpgq (sec.) mance

p=k=5 FIMD 1400 240 24377 351.00 0.0014 1
11-bit

integers ~ SIMD 280 200 22391 32357 0.0098 7

p=k=7 FIMD 1512 290 29890 409.29 0.0022 1
19-bit

integers ~ SIMD 216 240 24378 351.14 0.0273 12.409
p=k= FIMD 838 350 35891 505.04 0.0036 1

11

38-bit SIMD 76 300 31398 460.12 0.0844 23.444
integers

p=13, FIMD 782 400 411.37 560.23 0.0051 1
k=12
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TABLE 2-continued

Performance of encrypted integer equality comparisons for various
primes and techniques, one HE parameter per prime

Rela-
Amor-  tive
tized Per-
En- Num Capa- Time  for-

coding Packed «city logq logpq (sec.) mance

44-bit  SIMD 65 300 31322 45933 0.1167 22.882
integers
[0107] As the results in Table 2 show, the improvements

obtained from the FIMD technique are much greater com-
pared to the results from Table 1. This is because the FIMD
technique can operate with schemes using finite extension
fields, and such schemes use almost the same number of
multiplications and automorphism computations in both
cases; however, the FIMD technique packs much more data
than the SIMD technique. In this case, the FIMD technique
does not require the stated capacity for correct computation.
However, the capacity for the FIMD technique was not
reduced because systems could require both equality and
order comparisons in the same system, and it is better to
observe the performance gap in scenarios closer to practice.

[0108] An experiment was also conducted to consider the
performance of the FIMD scheme compared to the SIMD
scheme when computing base-p full adder circuits. The
other main methods for vector encodings were also included
in the experiment to determine the FIMD technique’s effec-
tiveness against them. Results of this experiment are pre-
sented below in Table 3.

TABLE 3

Performance of encrypted integer full adder (modulo pk ) for various
primes and techniques, one HE parameter per prime

Rela-
Amor-  tive
tized Per-
En- Num Capa- Time  for-
coding Packed «city logq logpq (sec) mance
p=k=5 FIMD 1400 250  268.61 351.14 0.0231 1
11-bit
integers SIMD 280 200 22391 323,57 0.0273 1.182
p=k=7 FIMD 1512 330 34142 50042 0.0535 1
19-bit
integers SIMD 216 240 24378 351.14 0.0744 1.391
p=k= FIMD 838 420 429.89 584.74 0.1529 1
11
38-bit SIMD 76 300 31398 460.12 0.2191 1.433
integers
p=13, FIMD 782 440 447.29 61039 0.2038 1
k=12
44-bit SIMD 65 300  313.22 45933  0.2982 1.463
integers
[0109] As the results in Table 3 show, the general trend is

similar to the integer comparison experiment, with the
FIMD technique outperforming the SIMD technique by
around 20-40%, but the improvement is not as large as the
previous experiments. With the FIMD technique, slightly
more capacity was also required compared to integer com-
parison, while the SIMD technique’s parameters were
unchanged. Overall, the FIMD technique improves the
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amortized performance of the SIMD technique by encoding
more data in a single ciphertext.

[0110] FIG. 7 is a schematic diagram showing example
operations 700 performed in a computing environment,
according to an implementation of the present disclosure.
The example operations 700 can be grouped into a first
group of operations 700A and a second group of operations
700B that are separated by a privacy barrier 702. The first
group of operations 700A includes operation 704 of encod-
ing a vector (e.g., to generate an encoded vector), and
operation 706 of encrypting the encoded vector. The second
group of operations 700B may be performed following
operation 706. In some implementations, the second group
of operations 700B are homomorphic computation process-
ing 708 performed on the encrypted result of operation 706.
In some examples, the homomorphic computation process-
ing 708 are finite extension field operations over the finite
extension field IF ¢, and includes addition (e.g., component-
wise additions for FIMD, as discussed above), multiplica-
tion (e.g., component-wise additions for FIMD with one or
more recode operations, as discussed above), shift/rotate/
permute/linear maps evaluations, or a combination thereof.
The homomorphic computation processing 708 may yield a
result, and following the homomorphic computation pro-
cessing 708, operation 712 of decrypting the result is per-
formed (e.g., to generate a decrypted vector), followed by
operation 714 of decoding the decrypted vector.

[0111] FIG. 8 shows a flowchart showing an example
process 800 performed, for example, to encode a vector and
to encrypt an encoded vector, according to an implementa-
tion of the present disclosure. The example process 800 may,
as an example, be used to perform operations 704 and 706
shown in FIG. 7. The example process 800 may include
additional or different operations, and the operations may be
performed in the order shown or in another order. In some
cases, one or more of the operations shown in FIG. 8 can be
implemented as processes that include multiple operations,
sub-processes or other types of routines. In some cases,
operations can be combined, performed in another order,
performed in parallel, iterated, or otherwise repeated or
performed in another manner.

[0112] The example process 800 includes generating
required linear maps for RMFEs operations (at 802). For
example, the linear maps and the encode, decode, recode
map coeflicients described above may be generated at 802.
In some implementations, other desired linear transforma-
tions may also be generated at 802. The example process 800
includes encoding each vector of numbers (or elements) to
a respective field element with the RMFE scheme (at 804).
In some implementations, the direct RMFE scheme or the
composite RMFE scheme discussed above may be used at
804. At 804, each F , vector of some length (e.g., k) is
encoded to a respective field element of F «, which is a
subspace of F «. The example process 800 includes encod-
ing a vector of field elements to plaintext with SIMD (at
806). In some implementations, at 806, the respective field
elements, each being an element of [ ¢, is arranged into a
plaintext vector. The example process 800 includes encrypt-
ing the plaintext vector (e.g., using a homomorphic encryp-
tion scheme, examples being the BGV- and BFV-FHE
schemes or any FHE encryption scheme), thus generating a
ciphertext (at 808).

[0113] FIG. 9 shows a flowchart showing an example
process 900 performed, for example, to decrypt a result and
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to decode a decrypted result, according to an implementa-
tion of the present disclosure. The example process 900 may,
as an example, be used to perform operations 710 and 712
shown in FIG. 7. The example process 900 may include
additional or different operations, and the operations may be
performed in the order shown or in another order. In some
cases, one or more of the operations shown in FIG. 9 can be
implemented as processes that include multiple operations,
sub-processes or other types of routines. In some cases,
operations can be combined, performed in another order,
performed in parallel, iterated, or otherwise repeated or
performed in another manner.

[0114] The example process 900 includes decrypting an
encrypted result to plaintext (at 902). In some implementa-
tions, at 902, a plaintext vector is generated having field
elements, each being an element of F . The example
process 900 includes decoding the plaintext to a vector of
field elements with SIMD (at 904). The example process 900
also includes decoding each field element (e.g., of F ,#) to
a respective vector of numbers (or elements) with an RFME
scheme. Bach vector may be an F , vector of some length
(e.g., k).

[0115] FIG. 10 is a flowchart showing an example process
1000 performed, for example, by a computing device in a
computing environment, according to an implementation of
the present disclosure. The process 1000 may be suitable for
generating encoded plaintext data in a plaintext vector space
(e.g., F 9. The example process 1000 may include addi-
tional or different operations, and the operations may be
performed in the order shown or in another order. In some
cases, one or more of the operations shown in FIG. 100 can
be implemented as processes that include multiple opera-
tions, sub-processes or other types of routines. In some
cases, operations can be combined, performed in another
order, performed in parallel, iterated, or otherwise repeated
or performed in another manner.

[0116] At 1002, a plurality of vectors of plaintext elements
are obtained. In some examples, each plaintext element is an
element of a first finite field (e.g., F ). As an example of
1002, the plurality of vectors 502, 504, 506 shown in FIG.
5 may be obtained. Bach plaintext element x,, y,, ZEF ,
where the finite field F ,of FIG. 5 can be the first finite field.
[0117] At 1004, the plurality of vectors of plaintext ele-
ments are encoded to a vector of field elements. In some
examples, each vector of plaintext elements is encoded to a
respective field element of the vector of field elements. Each
of the field elements may be an element of a second finite
field (e.g., F ,#), and the second finite field may be a finite
extension field of the first finite field (e.g., F ). As an
example of 1004, the vectors 502, 504, 506 are respectively
encoded to elements 508, 510, 512 of the vector 514. Each

element 508, 510, 512 lies in the field Fgm1. | which can be
the second finite field and a finite extension field of &

[0118] At 1006, the vector of field elements is encoded
into an element of the plaintext vector space to produce the
encoded plaintext data for homomorphic encryption and
computation. As an example of 1006, the vector 514 is

encoded to element 516, which lies in the field Fgmm: (e.g,,
the plaintext vector space). In some instances, homomorphic
encryption and computation can include encrypting the
encoded plaintext data to produce a ciphertext, and perform-
ing homomorphic computation on the ciphertext. Perform-
ing homomorphic computation on the ciphertext can
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include: generating a plurality of linear maps based on the
encoded plaintext data; performing, on the ciphertext, a
decoding operation of an outer recode operation based on a
first linear map of the plurality of linear maps, the decoding
operation generating an outer vector of ciphertexts; perform-
ing, on each entry of the outer vector of ciphertexts, an inner
recode operation based on a second linear map of the
plurality of linear maps, the inner recoding operation gen-
erating a respective refreshed ciphertext, the respective
refreshed ciphertexts forming a refreshed outer vector of
ciphertexts; and performing, on the refreshed outer vector of
ciphertexts, an encoding operation of the outer recode opera-
tion based on the first linear map, the encoding operation
generating a refreshed ciphertext encrypting the plaintext
data.

[0119] Some of the subject matter and operations
described in this specification can be implemented in digital
electronic circuitry, or in computer software, firmware, or
hardware, including the structures disclosed in this specifi-
cation and their structural equivalents, or in combinations of
one or more of them. Some of the subject matter described
in this specification can be implemented as one or more
computer programs, i.e., one or more modules of computer
program instructions, encoded on a computer storage
medium for execution by, or to control the operation of,
data-processing apparatus. A computer storage medium can
be, or can be included in, a computer-readable storage
device, a computer-readable storage substrate, a random or
serial access memory array or device, or a combination of
one or more of them. Moreover, while a computer storage
medium is not a propagated signal, a computer storage
medium can be a source or destination of computer program
instructions encoded in an artificially generated propagated
signal. The computer storage medium can also be, or be
included in, one or more separate physical components or
media (e.g., multiple CDs, disks, or other storage devices).
[0120] Some of the operations described in this specifica-
tion can be implemented as operations performed by a data
processing apparatus on data stored on one or more com-
puter-readable storage devices or received from other
sources.

[0121] The term “data processing apparatus” encompasses
all kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing. The apparatus can include
special purpose logic circuitry, e.g., an FPGA (field pro-
grammable gate array) or an ASIC (application specific
integrated circuit). The apparatus can also include, in addi-
tion to hardware, code that creates an execution environment
for the computer program in question, e.g., code that con-
stitutes processor firmware, a protocol stack, a database
management system, an operating system, a cross-platform
runtime environment, a virtual machine, or a combination of
one or more of them.

[0122] A computer program (also known as a program,
software, software application, script, or code) can be writ-
ten in any form of programming language, including com-
piled or interpreted languages, declarative or procedural
languages, and it can be deployed in any form, including as
a stand-alone program or as a module, component, subrou-
tine, object, or other unit suitable for use in a computing
environment. A computer program may, but need not, cor-
respond to a file in a file system. A program can be stored in
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a portion of a file that holds other programs or data (e.g., one
or more scripts stored in a markup language document), in
a single file dedicated to the program, or in multiple coor-
dinated files (e.g., files that store one or more modules, sub
programs, or portions of code). A computer program can be
deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work.

[0123] Some of the processes and logic flows described in
this specification can be performed by one or more pro-
grammable processors executing one or more computer
programs to perform actions by operating on input data and
generating output. The processes and logic flows can also be
performed by, and apparatus can also be implemented as,
special purpose logic circuitry, e.g., an FPGA (field pro-
grammable gate array) or an ASIC (application specific
integrated circuit).

[0124] To provide for interaction with a user, operations
can be implemented on a computer having a display device
(e.g., a monitor, or another type of display device) for
displaying information to the user and a keyboard and a
pointing device (e.g., a mouse, a trackball, a tablet, a touch
sensitive screen, or another type of pointing device) by
which the user can provide input to the computer. Other
kinds of devices can be used to provide for interaction with
a user as well; for example, feedback provided to the user
can be any form of sensory feedback, e.g., visual feedback,
auditory feedback, or tactile feedback; and input from the
user can be received in any form, including acoustic, speech,
or tactile input. In addition, a computer can interact with a
user by sending documents to and receiving documents from
a device that is used by the user; for example, by sending
web pages to a web browser on a user’s client device in
response to requests received from the web browser.
[0125] In a general aspect, data is encoded for homomor-
phic computation and homomorphic computation is per-
formed on the encoded data.

[0126] Ina first example, a method for generating encoded
plaintext data in a plaintext vector space includes obtaining
a plurality of vectors of plaintext elements, where each
plaintext element is an element of a first finite field. The
method further includes encoding the plurality of vectors of
plaintext elements to a vector of field elements, where each
vector of plaintext elements is encoded to a respective field
element of the vector of field elements, each of the field
elements is an element of a second finite field, and the
second finite field is a finite extension field of the first finite
field. The method additionally includes encoding the vector
of field elements into an element of the plaintext vector
space to produce the encoded plaintext data. The method
further includes encrypting the encoded plaintext data to
produce a ciphertext (e.g., the ciphertext 600 encrypting the

element a€Fg ™2 ) and performing homomorphic compu-
tation on the encoded plaintext data. In some instances,
performing homomorphic computation includes: generating
a plurality of linear maps based on the encoded plaintext
data; performing, on the ciphertext, a decoding operation
(e.g. operation 602) of an outer recode operation based on a
first linear map of the plurality of linear maps, where the
decoding operation generates an outer vector of ciphertexts
(e.g., vector of ciphertext entries 604, 606 608); performing,
on each entry of the outer vector of ciphertexts, an inner
recode operation (e.g., operation 609) based on a second
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linear map of the plurality of linear maps, the inner recoding
operation generating a respective refreshed ciphertext (e.g.,
respective refreshed ciphertexts 604A, 606A, 608A), the
respective refreshed ciphertexts forming a refreshed outer
vector of ciphertexts (e.g., the vector having refreshed
ciphertexts 604A, 606A, 608A as entries); and performing,
on the refreshed outer vector of ciphertexts, an encoding
operation (e.g., operation 610) of the outer recode operation
based on the first linear map, the encoding operation gen-
erating a refreshed ciphertext (e.g., refreshed ciphertext 612)
encrypting the plaintext data.

[0127] Implementations of the first example may include
one or more of the following features. Encoding the plurality
of vectors of plaintext elements to the vector of field
elements may be based on a first reverse multiplication
friendly embedding (RMFE) scheme (e.g., an (¢,, y,)-
RMFE scheme), and encoding the vector of field elements
into the element of the plaintext vector space is based on a
second RMFE scheme (e.g., a (¢,, y,)-RMFE scheme). In
some instances, each of the first RMFE scheme and the
second RMFE scheme may include generating a respective
polynomial that lies in the plaintext vector space. In some
instances, the first RMFE scheme includes generating a
respective encoded element based on a respective algebraic
function field, and the second RMFE scheme includes
generating a respective polynomial. Performing the inner
recode operation based on the second linear map in the first
example may include performing a first transformation on
the second linear map to generate the respective refreshed
ciphertext, where the first transformation includes an opti-
mized post-multiplication linear map evaluation (e.g.,
[0128] described above in paragraph [0073]). Performing
the encoding operation of the outer recode operation based
on the first linear map in the first example may include a
performing a second transformation on the first linear map
to generate the refreshed ciphertext encrypting the plaintext
data., where the second transformation includes a linear map
evaluation with linearized polynomials (e.g., described
above in paragraph [0072]). The outer recode operation may
be performed prior to the inner recode operation. The inner
recode operation may be performed prior to the outer recode
operation.

[0129] In a second example, a system for generating
encoded plaintext data in a plaintext vector space includes a
memory, and at least one processor communicatively
coupled to the memory and configured to perform operations
of the first example. In a third example, a non-transitory
computer-readable medium for generating encoded plaintext
data in a plaintext vector space stores instructions that are
operable when executed by data processing apparatus to
perform one or more operations of the first example.
[0130] While this specification contains many details,
these should not be understood as limitations on the scope of
what may be claimed, but rather as descriptions of features
specific to particular examples. Certain features that are
described in this specification or shown in the drawings in
the context of separate implementations can also be com-
bined. Conversely, various features that are described or
shown in the context of a single implementation can also be
implemented in multiple embodiments separately or in any
suitable subcombination.

[0131] Similarly, while operations are depicted in the
drawings in a particular order, this should not be understood
as requiring that such operations be performed in the par-
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ticular order shown or in sequential order, or that all illus-
trated operations be performed, to achieve desirable results.
In certain circumstances, multitasking and parallel process-
ing may be advantageous. Moreover, the separation of
various system components in the implementations
described above should not be understood as requiring such
separation in all implementations, and it should be under-
stood that the described program components and systems
can generally be integrated together in a single product or
packaged into multiple products.

[0132] A number of embodiments have been described.
Nevertheless, it will be understood that various modifica-
tions can be made. Accordingly, other embodiments are
within the scope of the following claims.

1. A method for generating encoded plaintext data in a
plaintext vector space, comprising:

obtaining a plurality of vectors of plaintext elements,

wherein each plaintext element is an element of a first
finite field;

encoding the plurality of vectors of plaintext elements to

a vector of field elements, wherein each vector of
plaintext elements is encoded to a respective field
element of the vector of field elements, each of the field
elements is an element of a second finite field, and the
second finite field is a finite extension field of the first
finite field;

encoding the vector of field elements into an element of

the plaintext vector space to produce the encoded
plaintext data;

encrypting the encoded plaintext data to produce a cipher-

text; and

performing homomorphic computation on the ciphertext,

wherein performing homomorphic computation com-

prises:

generating a plurality of linear maps based on the
encoded plaintext data;

performing, on the ciphertext, a decoding operation of
an outer recode operation based on a first linear map
of the plurality of linear maps, the decoding opera-
tion generating an outer vector of ciphertexts;

performing, on each entry of the outer vector of cipher-
texts, an inner recode operation based on a second
linear map of the plurality of linear maps, the inner
recoding operation generating a respective refreshed
ciphertext, the respective refreshed ciphertexts form-
ing a refreshed outer vector of ciphertexts; and

performing, on the refreshed outer vector of cipher-
texts, an encoding operation of the outer recode
operation based on the first linear map, the encoding
operation generating a refreshed ciphertext encrypt-
ing the plaintext data.

2. The method of claim 1, wherein encoding the plurality
of vectors of plaintext elements to the vector of field
elements is based on a first reverse multiplication friendly
embedding (RMFE) scheme, and encoding the vector of
field elements into the element of the plaintext vector space
is based on a second RMFE scheme.

3. The method of claim 2, wherein each of the first RMFE
scheme and the second RMFE scheme comprises generating
a respective polynomial that lies in the plaintext vector
space.

4. The method of claim 2, wherein the first RMFE scheme
comprises generating a respective encoded element based on
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a respective algebraic function field, and the second RMFE
scheme comprises generating a respective polynomial.
5. The method of claim 1, wherein:
performing the inner recode operation based on the sec-
ond linear map of the plurality of linear maps com-
prises:
performing a first transformation on the second linear
map to generate the respective refreshed ciphertext,
the first transformation comprising an optimized
post-multiplication linear map evaluation; and
performing the encoding operation of the outer recode
operation based on the first linear map comprises:
performing a second transformation on the first linear
map to generate the refreshed ciphertext encrypting
the plaintext data, the second transformation com-
prising a linear map evaluation with linearized poly-
nomials.
6. The method of claim 1, wherein the outer recode
operation is performed prior to the inner recode operation.
7. The method of claim 1, wherein the inner recode
operation is performed prior to the outer recode operation.
8. A system for generating encoded plaintext data in a
plaintext vector space, comprising:
a memory; and
at least one processor communicatively coupled to the
memory and configured to perform operations com-
prising:
obtaining a plurality of vectors of plaintext elements,
wherein each plaintext element is an element of a
first finite field;
encoding the plurality of vectors of plaintext elements
to a vector of field elements, wherein each vector of
plaintext elements is encoded to a respective field
element of the vector of field elements, each of the
field elements is an element of a second finite field,
and the second finite field is a finite extension field
of the first finite field;
encoding the vector of field elements into an element of
the plaintext vector space to produce the encoded
plaintext data;
encrypting the encoded plaintext data to produce a
ciphertext; and
performing homomorphic computation on the cipher-
text, wherein performing homomorphic computation
comprises:
generating a plurality of linear maps based on the
encoded plaintext data;
performing, on the ciphertext, a decoding operation
of an outer recode operation based on a first linear
map of the plurality of linear maps, the decoding
operation generating an outer vector of cipher-
texts;
performing, on each entry of the outer vector of
ciphertexts, an inner recode operation based on a
second linear map of the plurality of linear maps,
the inner recoding operation generating a respec-
tive refreshed ciphertext, the respective refreshed
ciphertexts forming a refreshed outer vector of
ciphertexts; and
performing, on the refreshed outer vector of cipher-
texts, an encoding operation of the outer recode
operation based on the first linear map, the encod-
ing operation generating a refreshed ciphertext
encrypting the plaintext data.
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9. The system of claim 8, wherein encoding the plurality
of vectors of plaintext elements to the vector of field
elements is based on a first reverse multiplication friendly
embedding (RMFE) scheme, and encoding the vector of
field elements into the element of the plaintext vector space
is based on a second RMFE scheme.

10. The system of claim 9, wherein each of the first RMFE
scheme and the second RMFE scheme comprises generating
a respective polynomial that lies in the plaintext vector
space.

11. The system of claim 9, wherein the first RMFE
scheme comprises generating a respective encoded element
based on a respective algebraic function field, and the
second RMFE scheme comprises generating a respective
polynomial.

12. The system of claim 8, wherein:

performing the inner recode operation based on the sec-

ond linear map of the plurality of linear maps com-

prises:

performing a first transformation on the second linear
map to generate the respective refreshed ciphertext,
the first transformation comprising an optimized
post-multiplication linear map evaluation; and

performing the encoding operation of the outer recode

operation based on the first linear map comprises:

performing a second transformation on the first linear
map to generate the refreshed ciphertext encrypting
the plaintext data, the second transformation com-
prising a linear map evaluation with linearized poly-
nomials.

13. The system of claim 8, wherein the outer recode
operation is performed prior to the inner recode operation.

14. The system of claim 8, wherein the inner recode
operation is performed prior to the outer recode operation.

15. A non-transitory computer-readable medium for gen-
erating encoded plaintext data in a plaintext vector space, the
non-transitory computer-readable medium comprising
instructions that are operable, when executed by data pro-
cessing apparatus, to perform operations comprising:

obtaining a plurality of vectors of plaintext elements,

wherein each plaintext element is an element of a first
finite field;

encoding the plurality of vectors of plaintext elements to

a vector of field elements, wherein each vector of
plaintext elements is encoded to a respective field
element of the vector of field elements, each of the field
elements is an element of a second finite field, and the
second finite field is a finite extension field of the first
finite field;

encoding the vector of field elements into an element of

the plaintext vector space to produce the encoded
plaintext data;

encrypting the encoded plaintext data to produce a cipher-

text; and
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performing homomorphic computation on the ciphertext,

wherein performing homomorphic computation com-

prises:

generating a plurality of linear maps based on the
encoded plaintext data;

performing, on the ciphertext, a decoding operation of
an outer recode operation based on a first linear map
of the plurality of linear maps, the decoding opera-
tion generating an outer vector of ciphertexts;

performing, on each entry of the outer vector of cipher-
texts, an inner recode operation based on a second
linear map of the plurality of linear maps, the inner
recoding operation generating a respective refreshed
ciphertext, the respective refreshed ciphertexts form-
ing a refreshed outer vector of ciphertexts; and

performing, on the refreshed outer vector of cipher-
texts, an encoding operation of the outer recode
operation based on the first linear map, the encoding
operation generating a refreshed ciphertext encrypt-
ing the plaintext data.

16. The non-transitory computer-readable medium of
claim 15, wherein encoding the plurality of vectors of
plaintext elements to the vector of field elements is based on
a first reverse multiplication friendly embedding (RMFE)
scheme, and encoding the vector of field elements into the
element of the plaintext vector space is based on a second
RMFe scheme.

17. The non-transitory computer-readable medium of
claim 16, wherein the first RMFE scheme and the second
RMFE scheme comprises generating a respective polyno-
mial that lies in the plaintext vector space.

18. The non-transitory computer-readable medium of
claim 16, wherein the first RMFE scheme comprises gen-
erating a respective encoded element based on a respective
algebraic function field, and the second RMFE scheme
comprises generating a respective polynomial.

19. The non-transitory computer-readable medium of
claim 15, wherein:

performing the inner recode operation based on the sec-

ond linear map of the plurality of linear maps com-

prises:

performing a first transformation on the second linear
map to generate the respective refreshed ciphertext,
the first transformation comprising an optimized
post-multiplication linear map evaluation; and

performing the encoding operation of the outer recode

operation based on the first linear map comprises:

performing a second transformation on the first linear
map to generate the refreshed ciphertext encrypting
the plaintext data, the second transformation com-
prising a linear map evaluation with linearized poly-
nomials.

20. The non-transitory computer-readable medium of
claim 15, wherein the outer recode operation is performed
prior to the inner recode operation.
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