US 20060104361A1

a2y Patent Application Publication (o) Pub. No.: US 2006/0104361 A1l

a9y United States

Suzuki 43) Pub. Date: May 18, 2006
(54) VARIABLE-LENGTH CODING APPARATUS Publication Classification
AND VARIABLE-LENGTH CODING
METHOD (51) Imt. CL
HO4N 11/04 (2006.01)
HO04B 1/66 (2006.01)
(76) TInventor: Koichi Suzuki, Tokyo (JP) HOIN 1102 (2006.01)
HO4IN 7712 (2006.01)
(52) US.CL v 375/240.23; 375/240.24
Correspondence Address:
COWAN LIEBOWITZ & LATMAN P.C. 7 ABSTRACT
JOHN J TORRENTE A variable-length coding apparatus which receives image
1133 AVE OF THE AMERICAS data block by block, and generates coded data from syntax
NEW YORK, NY 10036 (US) elements includes a storage unit that temporarily stores the
image data, a first syntax element calculating unit that
calculates a first syntax element from the image data, at the
(21) Appl. No.: 11/274,570 same time the image data is stored in the storage unit, a first
coding unit that generates coded data of the first syntax
element from a value of the first syntax element, a second
(22) Filed: Nov. 15, 2005 syntax element calculating unit that reads out the image data
stored in the storage unit, and calculates a value of a second
syntax element from the image data, a second coding unit
(30) Foreign Application Priority Data that generates coded data of the second syntax element on
the basis of the values of the first and second syntax
elements, and a packing unit that connects the coded data of
Nov. 15,2004 (JP) covvveveveerreccereecnee 2004-331107 the first and second syntax elements.
101
VARIABLE-LENGTH CODING APPARATUS
102 104 106 107
/ ’
SECOND SYNTAX
»| STORAGE UNIT > ELEMENT - ¢ C‘JSE%IOND
CALCULATING UNIT| ——| COPING UNIT
PACKING UNIT -
103 105
/
FIRST SYNTAX _| FiRsT coping
ELEMENT UNIT
CALCULATING UNIT

US 2006/0104361 A1

Patent Application Publication May 18, 2006 Sheet 1 of 16

4

| LINA ONILYINDTVD
- 1INN B ININI13
DNIJOD LSHIH XVAINAS LSHld
— —]
SOt €ol
LINN ONIMOVd
«— | LINN ONILYINOTVO
1INN DNIG0D _
- A INGNTTT [« 1NN 39VHOLS |-
aNOJ3S XYLNAS ANOD3S OLs
- ~ e 7
201 90} 1401 " c0l
SNLYHYddY DNIGOD HLONIT-318VIHVA
LOL

Patent Application Publication May 18, 2006 Sheet 2 of 16 US 2006/0104361 A1

1 | 2 3 4 16 | 15 [11] 10
5 6 7 | 8 14 [12 9 4
9 | 10 | 11| 12 13] 8 5 3
13 [14 | 15 | 16 7 6 2 1
RASTER SCAN ORDER REVERSE SCAN ORDER

FIG 2A FIG. 2B

Patent Application Publication May 18, 2006 Sheet 3 of 16 US 2006/0104361 A1

BLOCK1 BLOCK2 BLOCK3

))]

US 2006/0104361 A1

Patent Application Publication May 18, 2006 Sheet 4 of 16

} ¥0078 40 WY3YLS

LINN ONINOY
HLONTT-31VIEVA 40 NOLLYHINID ONDBIOvd
_ LINNONIGOD
200718 30 [6A97 ANV L 00718 40 PAST ANV HLONTT-TI8VIHYA
210}3q UNY 40 HNIAOD 21009 Ung 30 HNIAOD NOD3S
230078 40 SOIBZEOLANY | __ 1 %0078 40 SOIeZ[EI0L ANV O
seuQBulel| Jo0DIEI0L 40 DNIG0D | ‘seupbuel] 1$200/elo] 40 ONIAOD 1SH4
_ LINA ONLLYINDT
[9AG7 ONY 8100 Uny 4O SNOLLYINDTYD | 19A7 ONY elojoq unk 40 SNOLLYIND YO TV In9v0
20078 40 ¥1¥d 40 Qv3H '| YOO8 40 V1¥Q 40 Qv3H YWINAS ONOD3S
£ 0074 40 SoieZieI0 L. AN 20076 40 S0laZ[EloL NY 140078 40 SosazieloL ANY %__/__,_%_\,_mﬂ__mgaéo
‘sauoBulte1]. j200eI0L 40 SNOLLYINTvO | seuoBuller] Ya0oieioL 40 SNOLLYINOTYO|'seuoBulil Je00iloL 40 SNOLLYINOO|yuTnig. 1SHI4
£ 0078 40 VLY 40 ILIHM 29078 40'YLY 40 ILIHM I¥00I940VIVA 40 3LHM |LINN3OVHOLS
8 2 o 0

Patent Application Publication May 18, 2006 Sheet 5 of 16 US 2006/0104361 A1

FIG. 5

DATA=0?

NO

TotalCoeff=0 L —S101
Y _
INPUT NEXT DATA ~—S102
5103

YES

TotalCoeff=TotalCoeff=+1

—~—S5104

LAST DATA OF
BLOCK?

_S106

OUTPUT TotalCoeff

END

Patent Application Publication May 18, 2006 Sheet 6 of 16 US 2006/0104361 A1

A
FIG. 6

TrailingOnes=0
Onelndex[0-2}=17 L~ 5201
Lastindex2=17

INPUTNEXTDATA ~ |~—S5202

/

Onelndex2= | '
min(Onelndex(2}Index) [~ 5208

Lastindex2=min(Lastindex2,Index) ~~S205 [REARRANGE Onelndex—~—S207
!

TrailingOnes=TrailingOnes+1 |~S210

S211

Lastindex2<
Onelindex|1]?

TrailingOnes=TrailingOnes+1 [~—S212

S213
_YES -

Lastindex2<
Onelndex|0]?

TrailingOnes=TrailingOnes+1 |~—S214

\

TOUTPUT TrailingOnes ~ {—~—S215

Can))

Patent Application Publication May 18, 2006 Sheet 7 of 16 US 2006/0104361 A1

701
/
{ .
0 0 5 0 702
11 0 0 1
0 0 0 0
0 1 0 0

Patent Application Publication May 18, 2006 Sheet 8 of 16 US 2006/0104361 A1

FIG. 8
(stART)

Y

TotalZeros=0
lastindex=17 S301

»
Y

INPUT NEXT DATA —S302

NO

DATA=0?

S305
-~

1

TotalZeros=TotalZeros+1 ~— S304

Lastindex=min(index,Lastindex)

A

LAST DATA
OF BLOCK?

TotalZeros=TotalZeros-(Lastindex-1)}~— S307

!

OUTPUT TotalZeros ~—S308

END

Patent Application Publication May 18, 2006 Sheet 9 of 16 US 2006/0104361 A1

FIG. 9
(sTART)
Y
FirstNonZeroFlag=0
irs ogu:.;% ag | _S401

-
-

[/

INPUT NEXT DATA —~ 5402

DATA=0? YES

Y
FirstNonZeroFlag=1

5408 | 5407

HrstNonZgroFlag:O ,

Run=Run+1 .

OUTPUT Run ~ 8405

" Run=0 - S408

S409

LAST DATA
OF BLOCK?

Patent Application Publication May 18,2006 Sheet 10 of 16 US 2006/0104361 A1

FIG. 10

INPUT NEXT DATA

~ 5501

YES

OUTPUT VALUE OF DATA

—~— S503

LAST DATA
OF BLOCK?

US 2006/0104361 A1

Patent Application Publication May 18, 2006 Sheet 11 of 16

A

1IN ONILVINOTVD
- oz_awu:mmm - ANINTE e
© XVLNAS LSHH
>z 71
SOLL €oLL
LINN ONIMOVd ,
< LINA ONILYINDTYD
- H_z%zw_wm%o » INGNTTE = LINN JOVHOLS |
XVLNAS ANODIS
7 7 7 =
L0L1 9011 BOLL 2011
© SNLYHYAdY DNIGOO HLONIT-TT8VIHVA
LOLL

Patent Application Publication May 18, 2006 Sheet 12 of 16 US 2006/0104361 A1

FIG. 12

1103

(|

1201 -1 1202
/

ADDITIONAL FIRST SYNTAX
—1| INFORMATION [—™ ELEMENT >
CALCULATING UNIT GENERATION UNIT

US 2006/0104361 A1

Patent Application Publication May 18, 2006 Sheet 13 of 16

LNN -

I M08 40 Wv3d1S |
HLONTT-378VIHVA 40 NOILYHINTD ONILOINNOD
: _ LINQ ONIAOD
120079 40 19487 ANV 1 M0018 40 [0AeT ANV m_%_w%mm._msm§
81049 Uny 40 HNITOD 8105 UNY 40 HNIGOD
Z %0079 40 so137[e10L ANY 1 D018 40 SoseZ[el0L ANY LINQ DNIJOD
1~ ‘saupbBuyresy ‘yeonyeio) ~F——~"saupbuiei ‘ye0eI0] ﬂ%m_mm._ 318VIHVA
40 HNITOD 40 HNIQOD
[3A97 ONY 910499 Untf 40 SNOLLYINTTY | 8487 QNY e10jeq und 40 SNOILYINOTYD LINR ONLLY INOTYD
20018 40 ¥1¥d 40 Qv3H ' 10078 40 V10 40 aY3H AN XVINAS
. ¢ %9018 40 Soie7[elo] GNY . WW_,_ooomcm____mm ﬁww_mmw any LINN NOILYH3NID
'seuBulfel] '§e0dfelo] 40 SNOILYINOTYD i W ININTT3
40 SNOLLYINOTY 1Sy S
€ %0078 40 NOILYWHO4NI ¢ 0078 40 NOLLYWHOSNI 1 Y0078 40 NOLLYWHOLNI LINN ONILYINOTYO
TYNOLLIGAY 40 NOLLYINDTYD TYNOLLIAAY 40 NOLLVIND YD TYNOILIQQY 30 NOLLYTINOTVO %@@%@z_
£ %0078 40 Y.1¥Q 40 ILIHM 2 %0079 40 Y.LV 40 LIHM 1 0078 40 V1 40 3LIHM W__%m ols
B nhnnninnangnnignhan it
8y Ze ol 0

Patent Application Publication May 18, 2006 Sheet 14 of 16 US 2006/0104361 A1

FIG. 14

(START)

1

NonZeroCoeff=0
ZeroCoeff=17 ~-S601

Y

INPUT NEXT DATA - S602

S603

DATA=0? YES

S604 | S605
I~ -’

NonZeroCoeff=NonZeroCoeff+1 Y

ZeroGCoeff=ZeroCoeff+1

LAST DATA OF BLOCK?

OUTPUT NonZeroCoeff ~ S607
AND ZeroCoeff

Patent Application Publication May 18,2006 Sheet 15 of 16 US 2006/0104361 A1

FIG. 15
(sTART)

Y
TrailingOnes=0 ~ S701

-
Y

INPUT NEXT DATA ~S702

‘ S703

DATA= £1?7 -

NO

TrailingOnes=TrailingOnes+1 }~_ S705

S706

_ TrailingOnes=3?

S707

LAST DATA OF BLOCK?

\
OUTPUT TrailingOnes ~— S708

i
(END)

NO

A A

Patent Application Publication May 18,2006 Sheet 16 of 16 US 2006/0104361 A1

FIG. 16

TotalZeros=ZeroCoeff — S801

INPUTNEXTDATA |~ S802

DATA=0? NO

TotalZeros=TotalZeros-1 —~— S804

LAST DATA OF BLOCK?

| _S806
OUTPUT TotalZeros

-

US 2006/0104361 Al

VARIABLE-LENGTH CODING APPARATUS AND
VARIABLE-LENGTH CODING METHOD

FIELD OF THE INVENTION

[0001] The present invention relates to a variable-length
coding apparatus for compressing an image signal.

BACKGROUND OF THE INVENTION

[0002] Recently, a method called H.264 is standardized as
a motion image compression coding method. This H.264
coding method requires a larger operation amount than those
of the conventional compression coding methods such as
MPEG2 and MPEG4, but can realize a higher coding
efficiency than those of these conventional methods.

[0003] In this H.264 coding method, a context adaptive
variable-length coding (CAVLC) method is defined as a
variable-length coding method. Syntax elements which form
a coded stream in the CAVLC method are the number of
nonzero data (to be referred to as TotalCoeff hereinafter) in
a block, the number of zero data (to be referred to as
TotalZeros hereinafter) input before the last nonzero data in
a block, the number of data (to be referred to as TrailingOnes
hereinafter) having an absolute value of 1 and input after the
last data having an absolute value of 2 or more in a block,
the value (to be referred to as Level hereinafter) of nonzero
data, and the number of zero data (to be referred to as Run
hereinafter) preceding to the nonzero data. Note that in the
standard of H.264, the maximum value of TrailingOnes is
defined as 3.

[0004] This CAVLC method largely differs from the vari-
able-length coding method used in MPEG2 and MPEG4 in
the following two points:

[0005]
order.

1. Level and Run are coded in the reverse scan

[0006] 2. A variable-length coding table necessary for
coding of Level and Run is changed in accordance with the
calculation results of TotalCoeff, TrailingOnes, and TotalZ-
eros.

[0007] An example of a variable-length coding apparatus
using the CAVL.C method is described in patent reference 1.
This variable-length coding apparatus increases the process-
ing speed by coding a plurality of data in parallel by
variable-length coding, and sequentially connecting a plu-
rality of generated variable-length coded data (e.g., Japanese
Patent Laid-Open No. 2004-056758).

[0008] In this variable-length coding apparatus described
in Japanese Patent Laid-Open No. 2004-056758, however, a
plurality of syntax elements depend on each other, so the
processing takes a long time if coding of a second syntax
element cannot be started before the calculation of a first
syntax element is completed.

[0009] For example, in the CAVLC method, after all
image data in a block are read out and TotalCoeff, Trailin-
gOnes, and TotalZeros are calculated, the Level and Run of
all the image data in the block must be coded in turn from
the beginning by variable-length coding. This makes the
variable-length coding process time-consuming.

SUMMARY OF THE INVENTION

[0010] The present invention has been made in consider-
ation of the above situation, and has as its object to increase

May 18, 2006

the processing speed even when a plurality of syntax ele-
ments depend one each other.

[0011] According to the present invention, the foregoing
object is attained by providing a variable-length coding
apparatus which receives image data block by block, and
generates coded data from syntax elements, comprising:

[0012] a storage unit that temporarily stores the image
data;
[0013] a first syntax element calculating unit that calcu-

lates a first syntax element from the image data, at the same
time the image data is stored in the storage unit;

[0014] a first coding unit that generates coded data of the
first syntax element from a value of the first syntax element;

[0015] a second syntax element calculating unit that reads
out the image data stored in the storage unit, and calculates
a value of a second syntax element from the image data;

[0016] a second coding unit that generates coded data of
the second syntax element on the basis of the values of the
first and second syntax elements; and

[0017] a packing unit that packs the coded data of the first
and second syntax elements.

[0018] According to the present invention, the foregoing
object is also attained by providing a variable-length coding
method which receives image data block by block, and
generates coded data from syntax elements, comprising:

[0019]

[0020] calculating a first syntax element from the image
data, at the same time the image data is stored in the storage
unit;

temporarily storing the image data in a storage unit;

[0021] generating coded data of the first syntax element
from a value of the first syntax element;

[0022] reading out the image data stored in the storage
unit, and calculating a value of a second syntax element
from the image data;

[0023] generating coded data of the second syntax element
on the basis of the values of the first and second syntax
elements; and

[0024] connecting the coded data of the first and second
syntax elements.

[0025] Other features and advantages of the present inven-
tion will be apparent from the following description taken in
conjunction with the accompanying drawings, in which like
reference characters designate the same or similar parts
throughout the figures thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] The accompanying drawings, which are incorpo-
rated in and constitute a part of the specification, illustrate
embodiments of the invention and, together with the
description, serve to explain the principles of the invention.

[0027] FIG. 1 is a view showing the arrangement of a
variable-length coding apparatus according to the first
embodiment;

[0028] FIGS. 2A and 2B are views showing the image
data read orders;

US 2006/0104361 Al

[0029] FIG. 3 is a view showing an example of image
data;
[0030] FIG. 4 is a timing chart showing the operation of

each circuit according to the first embodiment;

[0031] FIG. 5 is a flowchart showing a method of calcu-
lating TotalCoeff;

[0032] FIG. 6 is a flowchart showing a method of calcu-
lating TrailingOnes;

[0033] FIG. 7 is a view showing an example of an image
data block;
[0034] FIG. 8 is a flowchart showing a method of calcu-

lating TotalZeros;

[0035] FIG. 9 is a flowchart showing a method of calcu-
lating Run;

[0036] FIG. 10 is a flowchart showing a method of
calculating Level;

[0037] FIG. 11 is a view showing the arrangement of a
variable-length coding apparatus according to the second
embodiment;

[0038] FIG. 12 is a view showing the internal arrange-
ment of a first syntax element calculating unit in the vari-
able-length coding apparatus according to the second
embodiment;

[0039] FIG. 13 is a timing chart showing the operation of
each circuit according to the second embodiment of the
present invention;

[0040] FIG. 14 is a flowchart showing a method of
calculating additional information;

[0041] FIG. 15 is a flowchart showing a method of
calculating TrailingOnes; and

[0042] FIG. 16 is a flowchart showing a method of
calculating TotalZeros.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0043] Preferred embodiments of the present invention
will now be described in detail in accordance with the
accompanying drawings.

First Embodiment

[0044] FIG. 1 is a view showing the arrangement of the
first embodiment of the present invention.

[0045] Referring to FIG. 1, a variable-length coding appa-
ratus 101 according to the first embodiment includes a
storage unit 102, first syntax element calculating unit 103,
second syntax element calculating unit 104, first coding unit
105, second coding unit 106, and packing unit 107. The
packing unit 107 packs variable-length coded data.

[0046] Image data of 4x4 rectangular blocks is input in a
raster scan order shown in FIG. 2A to the variable-length
coding apparatus 101.

[0047] The storage unit 102 is a RAM which temporarily
stores the image data. Note that read or write to this RAM
requires one cycle.

May 18, 2006

[0048] The first syntax element calculating unit 103 reads
the image data in a block, calculates TotalCoeff, Trailin-
gOnes, and TotalZeros in the block, and internally holds the
calculated syntax elements.

[0049] The second syntax element calculating unit 104
reads out the image data held in the storage unit 102 in a
reverse zigzag scan order shown in FIG. 2B, and calculates
Level and Run of each image data in the block.

[0050] The first coding unit 105 performs variable-length
coding, by using a predetermined variable-length coding
table, on TotalCoeff, TrailingOnes, and TotalZeros calcu-
lated by the first syntax element calculating unit 103.

[0051] The second coding unit 106 selects a variable-
length coding table on the basis of TotalCoeff] TrailingOnes,
and TotalZeros calculated by the first syntax element calcu-
lating unit 103, and, by using the selected variable-length
coding table, performs variable-length coding on Level and
Run of each image data calculated by the second syntax
element calculating unit 104.

[0052] The packing unit 107 shifts and packs the variable-
length codes of the output individual syntax elements from
the first and second coding units 105 and 106 in accordance
with a predetermined format, thereby generating one vari-
able-length stream data.

[0053] The flow of data when image data shown in FIG.
3 is coded by variable-length coding will be explained
below.

[0054] FIG. 4 is a timing chart showing processing per-
formed by each unit shown in FIG. 1 with respect to time.

[0055] From time 0, image data of block 1 shown in FIG.
3 are input one at each cycle to the variable-length coding
apparatus 101, and written in the storage unit 102. Since the
block is made up of 4x4 image data, write of all the image
data of block 1 requires 16 cycles.

[0056] The image data are also input to the first syntax
element calculating unit 103 at the same time they are
written in the storage unit 102. Immediately after all the
image data are input, the first syntax element calculating unit
103 calculates the values of TotalCoeff, TrailingOnes, and
TotalZeros, and outputs the calculated values.

[0057] Subsequently, from time 16 to time 32, the second
syntax element calculating unit 104 reads out the image data
of block 1 one at each cycle in a reverse zigzag scan order
from the storage unit 102, and calculates the values of Run
and Level of each image data. Immediately after nonzero
data is input, the second syntax element calculating unit 104
inputs the values of Level and Run of the data to the second
coding unit 106.

[0058] Also, TotalCoeff, TrailingOnes, and TotalZeros cal-
culated before time 16 are input to the first coding unit 105,
and coded by variable-length coding in one cycle by using
a predetermined variable-length coding table. The value of
TrailingOnes is held because it is necessary to select a
variable-length coding table of the next block. The variable-
length coded data is input to the packing unit 107, and held
until time 32.

[0059] In addition, from time 16 to time 32, the second
coding unit 106 selects a variable-length coding table nec-
essary for coding of Run and Level on the basis of the values

US 2006/0104361 Al

of TotalCoeft, TrailingOnes, and TotalZeros input from the
first syntax element calculating unit 103. The second coding
unit 106 performs variable-length coding on Run and Level
of each image data in one cycle by using the selected
variable-length coding table. Assume that coding of Run and
coding of Level are performed in parallel. The variable-
length coded data is input to the packing unit 107, and held
until time 32.

[0060] In parallel with this processing, image data of
block 2 shown in FIG. 3 are written in the storage unit 102.
In addition, the first syntax element calculating unit 103
calculates TotalCoeft, TrailingOnes, and TotalZeros of block
2 in the same manner as for block 1.

[0061] Then, from time 32 to time 48, the packing unit 107
reads out the variable-length codes input from the first and
second coding units 105 and 106, connects and packs the
readout codes, and outputs a coded stream defined by the
H.264 standard.

[0062] In parallel with this processing, the second syntax
element calculating unit 104 calculates Run and Level of
each image data of block 2 in the same manner as for block
1. Also, the first and second coding units 105 and 106
perform variable-length coding of each syntax element of
block 2 in the same manner as for block 1.

[0063] Furthermore, in parallel with this processing,
image data of block 3 shown in FIG. 3 are written in the
storage unit 102. The first syntax element calculating unit
103 calculates TotalCoeff, TrailingOnes, and TotalZeros of
block 3 in the same manner as for block 1. The same
processing is repeated for all blocks to process one data at
each cycle.

[0064] Details of the method of calculating each syntax
element will be explained below.

[0065] First, the operation of calculating TotalCoeff per-
formed by the first syntax element calculating unit 103 will
be explained below with reference to a flowchart shown in
FIG. 5.

[0066] In step S101, a variable TotalCoeff is initialized to
0. In step S102, the next image data in the block is input, and
the flow advances to step S103.

[0067] In step S103, whether the value of the image data
is zero is determined. If the value is not zero, the flow
advances to step S104 to add 1 to the value of TotalCoeff,
and further advances to step S105.

[0068] If the value is zero, the flow advances to step S105.
In step S105, whether the present image data is the last data
of the block is determined. If the image data is the last data
of the block, the flow advances to step S106 to output the
present value of TotalCoeff as a calculation result, and
terminate the processing for the present block. If the image
data is not the last data of the block, the flow returns to step
S102 to input the next image data.

[0069] The operation of calculating TrailingOnes per-
formed by the first syntax element calculating unit 103 will
be explained below with reference to a flowchart shown in
FIG. 6.

[0070] First, in step S201, a variable TrailingOnes is
initialized to 0. Also, a variable LastIndex2 and each ele-
ment of an array Onelndex including three elements are

May 18, 2006

initialized to 17. Note that in this explanation of the flow-
chart shown in FIG. 6, a number indicating the order when
each image data input in a raster scan order is read out in a
reverse zigzag scan order is defined as an index. For
example, in a block shown in FIG. 7, the index of image
data 701 is 16, and that of image data 702 is 10.

[0071] Lastlndex2 is a variable representing the minimum
value of the index of image data having an absolute value of
2 or more in the block. Also, the array Onelndex stores three
indices, in ascending order from the smallest one, of image
data having an absolute value of 1 in the block.

[0072] 1In step S202, the next image data in the block is
input, and the flow advances to step S203. In step S203,
whether the value of the image data is zero is determined. If
the value is zero, the flow advances to step S208. If the value
is not zero, the flow advances to step S204 to determine
whether the absolute value of the image data is 1.

[0073] 1If the absolute value of the image data is not 1, the
flow advances to step S205 to compare the value of Lastln-
dex2 with the index value of the presently input image data,
and substitute a smaller value into LastIndex2.

[0074] 1If the absolute value of the image data is 1 in step
S204, the flow advances to step S206 to compare the value
of an array Onelndex[2] with the index value of the pres-
ently input image data, and substitute a smaller value into
Onelndex[2]. After that, the flow advances to step S207.

[0075] Instep S207, the values of Onelndex[0], Onelndex
[1], and Onelndex[2] are compared, and the values of these
arrays are rearranged such that the minimum value is
Onelndex[0] and the maximum value is Onelndex[2].

[0076] In step S208, whether the present image data is the
last data of the block is determined. If the image data is not
the last data of the block, the flow returns to step S202 to
input the next image data. If the image data is the last data
of the block, the flow advances to step S209. In step S209,
the value of LastIndex2 is compared with Onelndex[2]. If
Onelndex[2] is smaller, the flow advances to step S210 to
add 1 to TrailingOnes. If Lastlndex2 is smaller or the two
values are equal, the flow advances to step S211.

[0077] Subsequently, in step S211, the value of LastIndex2
is compared with Onelndex[1]. If Onelndex[1] is smaller,
the flow advances to step S212 to add 1 to TrailingOnes. If
LastIndex2 is smaller or the two values are equal, the flow
advances to step S213.

[0078] In step S213, the value of LastIndex2 is compared
with Onelndex[0]. If Onelndex[0] is smaller, the flow
advances to step S214 to added 1 to TrailingOnes. If
LastIndex2 is smaller or the two values are equal, the flow
advances to step S215.

[0079] Finally, in step S215, the present value of Trailin-
gOnes is output as a calculation result, and the processing
for the present block is completed.

[0080] The operation of calculating TotalZeros performed
by the first syntax element calculating unit 103 will be
explained below with reference to a flowchart shown in
FIG. 8.

[0081] First, in step S301, a variable TotalZeros is initial-
ized to 0. Also, a variable LastIndex is initialized to 17. Note

US 2006/0104361 Al

that LastIndex is a variable representing the minimum value
of the index of image data having an absolute value of 1 or
more in the block.

[0082] Then, in step S302, the next image data in the block
is input, and the flow advances to step S303. In step S303,
whether the value of the image data is zero is determined. If
the value is zero, the flow advances to step S304 to add 1 to
TotalZeros. If the value is not zero, the flow advances to step
S305.

[0083] In step S305, the value of LastIndex is compared
with the index value of the presently input image data, and
a smaller value is substituted into LastIndex. After that, the
flow advances to step S306.

[0084] In step S306, whether the present image data is the
last data of the block is determined. If the image data is the
last data of the block, the flow advances to step S307 to
subtract the value of LastIndex-1 from TotalZeros.

[0085] Subsequently, the flow advances to step S308 to
output the present value of TotalZeros as a calculation result,
and terminate the processing for the present block. If it is
determined in step S306 that the image data is not the last
data of the block, the flow returns to step S302 to input the
next image data.

[0086] By the method described above, the first syntax
element calculating unit 103 can calculate the values of
TotalCoeff, TrailingOnes, and TotalZeros immediately after
the last image data in the block is input to the storage unit
102.

[0087] The operation of calculating Run performed by the
second syntax element calculating unit 104 will be explained
below with reference to a flowchart shown in FIG. 9.

[0088] First, in step S401, variables Run and FirstNonZe-
roFlag are initialized to 0. Note that FirstNonZeroFlag is a
flag which is 1 when at least one nonzero image data in the
block is input, and 0 if no nonzero image data has been input
yet.

[0089] Then, in step S402, the next image data in the block
is input, and the flow advances to step S403. In step S403,
whether the value of the image data is zero is determined. If
the value is not zero, the flow advances to step S404 to
determine whether the value of FirstNonZeroFlag is zero. If
the value is not zero, the flow advances to step S405 to
output the present value of Run, and further advances to step
S408. If it is determined in step S404 that the value is zero,
the flow advances to step S406. In step S406, FirstNonZe-
roFlag is set to 1, and the flow further advances to step S408.
When it is determined in step S403 that the value of the
image data is zero, the flow advances to step S407 to add 1
to Run, and then advances to step S408.

[0090] In step S408, zero is substituted into Run, and the
flow advances to step S409. Note that if the value of the
image data is zero in step S403, the flow advances to step
S407 to add 1 to Run, and then advances to step S409.

[0091] In step S409, whether the present image data is the
last data of the block is determined. If the image data is the
last data of the block, the processing for the present block is
terminated. If the present image data is not the last data of
the block, the flow returns to step S402 to input the next
image data.

May 18, 2006

[0092] The operation of calculating Level performed by
the second syntax element calculating unit 104 will be
explained below with reference to a flowchart shown in
FIG. 10.

[0093] In step S501, the next image data in the block is
input, and the flow advances to step S502. In step S502,
whether the value of the image data is zero is determined. If
the value is zero, the flow advances to step S504. If the value
is not zero, the flow advances to step S503. In step S503, the
value of the presently input data is output as Level, and the
flow advances to step S504.

[0094] In step S504, whether the present image data is the
last data of the block is determined. If the image data is the
last data of the block, the processing for the present block is
terminated. If the image data is not the last data of the block,
the flow returns to step S501 to input the next image data.

[0095] In the first embodiment of the present invention as
described above, the second syntax element calculating unit
104 can read out image data in a block from the storage unit
102 and calculate the values of Run and Level at the same
time.

[0096] On the basis of the first syntax elements calculated
by the first syntax element calculating unit 103, the second
coding unit 106 selects one of a plurality of predetermined
variable-length coding tables, and performs variable-length
coding of Run and Level. Since the values of TotalCoeff,
TrailingOnes, and TotalZeros are calculated in advance,
variable-length coding of Run and Level can be performed
immediately after each image data in the block is read out by
the second syntax element calculating unit 104.

[0097] In parallel with this processing, the first coding unit
105 performs variable-length coding on TotalCoeff, Trailin-
gOnes, and TotalZeros. As a consequence, variable-length
codes of all syntax elements can be obtained in the same
clock cycle as when read of image data in the block from the
storage unit 102 is completed.

Second Embodiment

[0098] The second embodiment of the present invention
will be described below.

[0099] The second embodiment differs from the first
embodiment in the following respect. In the first embodi-
ment, the first syntax element calculating unit calculates the
values of the first syntax elements directly from image data
input to the storage unit. In the second embodiment, how-
ever, the value of additional information is calculated from
image data, and a first syntax element calculating unit
calculates the values of first syntax elements by using this
additional information and data read out from a storage unit.

[0100] FIG. 11 is a view showing the arrangement of the
second embodiment of the present invention. Referring to
FIG. 11, a variable-length coding apparatus 1101 according
to the present invention includes a storage unit 1102, first
syntax element calculating unit 1103, second syntax element
calculating unit 1104, first coding unit 1105, second coding
unit 1106, and packing unit 1107. The packing unit 107
connects variable-length coded data. Note that the variable-
length coding apparatus 1101, storage unit 1102, second
syntax element calculating unit 1104, first and second cod-

US 2006/0104361 Al

ing units 1105 and 1106, and packing unit 1107 are the same
as in the first embodiment, so an explanation thereof will be
omitted.

[0101] The first syntax element calculating unit 1103
calculates additional information necessary to calculate the
values of first syntax elements at the same time image data
is input to the storage unit 1102. After that, when reading out
image data from the storage unit 1102, the first syntax
element calculating unit 1103 calculates the values of the
first syntax elements by using the additional information.

[0102] FIG. 12 shows the internal arrangement of the first
syntax element calculating unit 1103. The first syntax ele-
ment calculating unit 1103 contains an additional informa-
tion calculating unit 1201 and first syntax element genera-
tion unit 1202.

[0103] The additional information calculating unit 1201
calculates the number of zero data and the number of
nonzero data as additional information from each image data
in a block which is input in a raster scan order to the
variable-length coding apparatus 1101.

[0104] The first syntax element generation unit 1202 cal-
culates the values of TotalCoeff, TrailingOnes, and TotalZ-
eros necessary to code second syntax elements, from data
read out in a reverse zigzag scan order from the storage unit
1102 and the additional information calculated by the addi-
tional information calculating unit 1201.

[0105] The flow of data when image data shown in FIG.
3 is coded by variable-length coding will be explained
below.

[0106] FIG. 13 is a timing chart showing processing
performed by each unit shown in FIG. 11 with respect to
time. From time 0, image data of block 1 shown in FIG. 3
are input one at each cycle to the variable-length coding
apparatus 1101, and written in the storage unit 1102. Since
the block is made up of 4x4 image data, write of all the
image data of block 1 requires 16 cycles.

[0107] At the same time the image data are written in the
storage unit 1102, they are also input to the additional
information calculating unit 1201 where the number of zero
data and the number of nonzero data in block 1 are calcu-
lated as additional information. Immediately after all the
image data are input, the additional information calculating
unit 1201 outputs the calculation results.

[0108] Subsequently, from time 16 to time 32, the first
syntax element generation unit 1202 reads out the image
data of block 1 one at each cycle in a reverse zigzag scan
order from the storage unit 1102. On the basis of the
additional information calculated by the additional informa-
tion calculating unit 1201 and the readout image data, the
first syntax element generation unit 1202 calculates Total-
Coefl, TrailingOnes, and TotalZeros as first syntax elements
of block 1.

[0109] When first data having an absolute value of 2 or
more is read out, or when three data having an absolute value
of 1 are read out, the first syntax element generation unit
1202 completes the synthesis of the first syntax elements of
block 1. For example, if the data as shown in FIG. 7 is input,
the first syntax elements can be calculated when -5 is input
at time 27.

May 18, 2006

[0110] Also, the second syntax element calculating unit
1104 reads out the image data of block 1 one at each cycle
in a reverse zigzag scan order from the storage unit 1102,
and calculates the values of Run and Level of each image
data. Immediately after nonzero data is input, the second
syntax element calculating unit 1104 inputs the values of
Level and Run of the data to the second coding unit 1106.

[0111] In addition, TotalCoeff, TrailingOnes, and TotalZ-
eros calculated before time 27 are input to the first coding
unit 1105, and coded by variable-length coding in one cycle
by using a predetermined variable-length coding table. The
value of TrailingOnes is held because it is necessary to select
a variable-length coding table of the next block. The vari-
able-length coded data is input to the packing unit 1107, and
held until time 32.

[0112] Furthermore, from time 27 to time 32, the second
coding unit 1106 selects a variable-length coding table
necessary for coding of Run and Level on the basis of the
values of TotalCoeff, TrailingOnes, and TotalZeros input
from the first syntax element generation unit 1202. The
second coding unit 1106 performs variable-length coding of
Run and Level of each image data by using the selected
variable-length coding table. Assume that the second coding
unit 1106 performs coding of Run and coding of Level in
parallel. The variable-length coded data is input to the
packing unit 1107, and held until time 32.

[0113] Inparallel with this processing, image data of block
2 shown in FIG. 3 are written in the storage unit 1102. The
additional information calculating unit 1201 calculates the
number of zero data and the number of nonzero data of block
2 in the same manner as for block 1.

[0114] Then, from time 32 to time 48, the packing unit
1107 reads out the variable-length codes input from the first
and second coding units 1105 and 1106, connects and packs
the readout codes, and outputs a coded stream.

[0115] In parallel with this processing, the first syntax
element generation unit 1202 calculates TotalCoeff, Trailin-
gOnes, and TotalZeros of block 2 in the same manner as for
block 1.

[0116] Furthermore, the second syntax element calculat-
ing unit 1104 calculates the values of Run and Level of each
image data of block 2 in the same manner as for block 1.
Also, the first and second coding units 1105 and 1106
perform variable-length coding of each syntax element of
block 2 in the same manner as for block 1.

[0117] Inparallel with this processing, image data of block
3 shown in FIG. 3 are written in the storage unit 1102. The
additional information calculating unit 1201 calculates the
number of zero data and the number of nonzero data of block
3 in the same manner as for block 1. The same processing
is repeated for all blocks to process one data at each cycle.

[0118] A method of calculating the additional information
performed by the additional information calculating unit
1201 will be explained below with reference to FIG. 14.

[0119] First, in step S601, variables NonZeroCoeff and
ZeroCoefl are initialized to 0. Note that NonZeroCoeff is a
variable representing the number of nonzero data in the
block, and ZeroCoeff is a variable representing the number
of zero data in the block.

US 2006/0104361 Al

[0120] Then, in step S602, the next image data in the block
is input, and the flow advances to step S603. In step S603,
whether the value of the image data is zero is determined. If
the value is not zero, the flow advances to step S604 to add
1 to the value of NonZeroCoeft, and further advances to step
S606. If the value is zero, the flow advances to step S605 to
add 1 to the value of ZeroCoeft, and further advances to step
S606.

[0121] In step S606, whether the present image data is the
last data of the block is determined. If the image data is the
last data of the block, the flow advances to step S607. In step
S607, the present values of NonZeroCoeff and ZeroCoeff are
output as calculation results, and the processing for the
present block is terminated. If the image data is not the last
data of the block, the flow returns to step S602 to input the
next image data. Note that in this embodiment, the values of
NonZeroCoeff and ZeroCoeff are calculated by counting
both zero data and nonzero data. However, it is also possible
to count only one of zero data and nonzero data and calculate
the other by subtracting the count from the number of image
data of the block.

[0122] A method of synthesizing the values of first syntax
elements performed by the first syntax element generation
unit 1202 will be explained below.

[0123] The value of TotalCoeff is the same as NonZero-
Coeff calculated by the additional information calculating
unit 1201, so the value of NonZeroCoeff is directly output.

[0124] The operation of calculating TrailingOnes will be
explained below with reference to a flowchart shown in
FIG. 15.

[0125] First, in step S701, a variable TrailingOnes is
initialized to 0.

[0126] Then, in step S702, the next image data in the block
is input, and the flow advances to step S703. In step S703,
whether the value of the image data is zero is determined. If
the value is zero, the flow advances to step S707. If the value
is not zero, the flow advances to step S704. In step S704,
whether the absolute value of the image data is 1 is deter-
mined.

[0127] 1If it is determined in step S704 that the absolute
value of the image data is not 1, the flow advances to step
S708 to output the present value of TrailingOnes and ter-
minate the processing.

[0128] If it is determined in step S704 that the absolute
value of the image data is 1, the flow advances to step S705
to add 1 to TrailingOnes, and further advances to step S706.
If the value of TrailingOnes is 3 in step S706, the flow
advances to step S708 to output the present value of Trail-
ingOnes and terminate the processing. If the value of Trail-
ingOnes is 2 or less, the flow advances to step S707.

[0129] In step S707, whether the present image data is the
last data of the block is determined. If the image data is not
the last data of the block, the flow returns to step S702 to
input the next image data. If the image data is the last data
of the block, the flow advances to step S708 to output the
present value of TrailingOnes and terminate the processing.

[0130] The operation of calculating TotalZeros will be
explained below with reference to a flowchart shown in
FIG. 16.

May 18, 2006

[0131] First, in step S801, ZeroCoeff calculated by the
additional information calculating unit 1201 is substituted
into a variable TotalZeros.

[0132] Then, in step S802, the next image data in the block
is input, and the flow advances to step S803.

[0133] In step S803, whether the value of the image data
is zero is determined. If the value is zero, the flow advances
to step S804 to subtract 1 from the value of TotalZeros, and
further advances to step S805.

[0134] If the value is not zero in step S803, the flow
advances to step S806 to output the present value of TotalZ-
eros and terminate the processing.

[0135] In step S805, whether the present image data is the
last data of the block is determined. If the image data is the
last data of the block, the processing advances to step S806
to output the present value of TotalZeros as a calculation
result, and terminate the processing for the present block. If
the image data is not the last data of the block, the flow
returns to step S802 to input the next image data.

[0136] By the method described above, the first syntax
element generation unit 1202 can calculate the values of
TotalCoeff, TrailingOnes, and TotalZeros when data having
an absolute value of 2 or more or third data having an
absolute value of 1 is read out.

[0137] The processing in the second syntax element cal-
culating unit 1104 is the same as in the first embodiment, so
an explanation thereof will be omitted. Note that the second
syntax element calculating unit 1104 can calculate Run and
Level when nonzero data is read out.

[0138] In the second embodiment of the present invention
as described above, the second coding unit 1106 selects a
variable-length coding table in advance by using the syntax
elements calculated by the first syntax element calculating
unit 1103, and performs variable-length coding of Run and
Level. Variable-length coding cannot be started unless the
values of TotalCoeff, TrailingOnes, and TotalZeros are
determined. However, if it takes a long time to read out data
having an absolute value of 2 or more or third data having
an absolute value of 1, the numbers of Run and Level are
small. Therefore, variable-length coding can be completed
in the same clock cycle as when the last data in the block is
read out as a whole.

[0139] In parallel with this processing, the first coding unit
1105 performs variable-length coding on TotalCoeft, Trail-
ingOnes, and TotalZeros. As a consequence, variable-length
codes of all syntax elements can be obtained in the same
clock cycle as when read of image data in the block from the
storage unit 1102 is completed.

[0140] Also, if the values of first syntax elements can be
calculated more easily from image data read out in the
reverse zigzag scan order, the circuit scale of the first syntax
element calculating unit 1103 can be made smaller than that
in the first embodiment.

[0141] Note that in the first and second embodiments of
the present invention, the number of image data input in
each cycle is 1. However, the present invention is also
applicable to a method in which a plurality of image data are
input in each cycle by performing coding processes in
parallel.

US 2006/0104361 Al

[0142] Note also that in the first and second embodiments
of the present invention, the CAVLC method of H.264 is
explained as an example. However, the present invention
can also be applied to coding of a plurality of syntax
elements depending one each other, in addition to the
CAVLC method.

Other Embodiments

[0143] The invention can be implemented by supplying a
software program, which implements the functions of the
foregoing embodiments, directly or indirectly to a system or
apparatus, reading the supplied program code with a com-
puter of the system or apparatus, and then executing the
program code. In this case, so long as the system or
apparatus has the functions of the program, the mode of
implementation need not rely upon a program.

[0144] Accordingly, since the functions of the present
invention are implemented by computer, the program code
installed in the computer also implements the present inven-
tion. In other words, the claims of the present invention also
cover a computer program for the purpose of implementing
the functions of the present invention.

[0145] In this case, so long as the system or apparatus has
the functions of the program, the program may be executed
in any form, such as an object code, a program executed by
an interpreter, or scrip data supplied to an operating system.

[0146] Example of storage media that can be used for
supplying the program are a floppy disk, a hard disk, an
optical disk, a magneto-optical disk, a CD-ROM, a CD-R, a
CD-RW, a magnetic tape, a non-volatile type memory card,
a ROM, and a DVD (DVD-ROM and a DVD-R).

[0147] As for the method of supplying the program, a
client computer can be connected to a website on the Internet
using a browser of the client computer, and the computer
program of the present invention or an automatically-install-
able compressed file of the program can be downloaded to
a recording medium such as a hard disk. Further, the
program of the present invention can be supplied by dividing
the program code constituting the program into a plurality of
files and downloading the files from different websites. In
other words, a WWW (World Wide Web) server that down-
loads, to multiple users, the program files that implement the
functions of the present invention by computer is also
covered by the claims of the present invention.

[0148] It is also possible to encrypt and store the program
of the present invention on a storage medium such as a
CD-ROM, distribute the storage medium to users, allow
users who meet certain requirements to download decryp-
tion key information from a website via the Internet, and
allow these users to decrypt the encrypted program by using
the key information, whereby the program is installed in the
user computer.

[0149] Besides the cases where the aforementioned func-
tions according to the embodiments are implemented by
executing the read program by computer, an operating
system or the like running on the computer may perform all
or a part of the actual processing so that the functions of the
foregoing embodiments can be implemented by this pro-
cessing.

[0150] Furthermore, after the program read from the stor-
age medium is written to a function expansion board

May 18, 2006

inserted into the computer or to a memory provided in a
function expansion unit connected to the computer, a CPU
or the like mounted on the function expansion board or
function expansion unit performs all or a part of the actual
processing so that the functions of the foregoing embodi-
ments can be implemented by this processing.

[0151] As many apparently widely different embodiments
of'the present invention can be made without departing from
the spirit and scope thereof, it is to be understood that the
invention is not limited to the specific embodiments thereof
except as defined in the appended claims.

CLAIM OF PRIORITY

[0152] This application claims priority from Japanese
Patent Application No. 2004-331107 filed on Nov. 15, 2004,
which is hereby incorporated herein by reference herein.

What is claimed is:

1. A variable-length coding apparatus which receives
image data block by block, and generates coded data from
syntax elements, comprising:

a storage unit that temporarily stores the image data;

a first syntax element calculating unit that calculates a first
syntax element from the image data, at the same time
the image data is stored in said storage unit;

a first coding unit that generates coded data of the first
syntax element from a value of the first syntax element;

a second syntax element calculating unit that reads out the
image data stored in said storage unit, and calculates a
value of a second syntax element from the image data;

a second coding unit that generates coded data of the
second syntax element on the basis of the values of the
first and second syntax elements; and

a packing unit that packs the coded data of the first and

second syntax elements.

2. The apparatus according to claim 1, wherein said
second syntax element calculating unit reads out the image
data stored in said storage unit in a reverse zigzag scan order,
and calculates the second syntax element.

3. The apparatus according to claim 1, wherein the first
syntax element includes at least one of the number of
nonzero data in a block, the number of zero data in the block,
the number of zero data input before last nonzero data in the
block, and the number of data having an absolute value of
1 and input after last data having an absolute value of not
less than 2 in the block.

4. The apparatus according to claim 1, wherein the second
syntax element includes at least one of a zero run length of
the image data and a level value of the image data.

5. The apparatus according to claim 1, wherein said
packing unit packs the coded data, and outputs a coded
stream defined by the H.264 standard.

6. The apparatus according to claim 1, wherein said first
syntax element calculating unit comprises:

an additional information calculating unit that calculates
additional information indicating at least one of the
number of zero data and the number of nonzero data
from the input image data; and

a first syntax element generation unit that calculates the
first syntax element on the basis of the image data

US 2006/0104361 Al

temporarily stored in said storage unit and the addi-
tional information calculated by said additional infor-
mation calculating unit.

7. The apparatus according to claim 6, wherein the image
data from said storage unit is read out in a reverse zigzag
scan order, and supplied to said first syntax element gen-
eration unit.

8. A variable-length coding method which receives image
data block by block, and generates coded data from syntax
elements, comprising:

temporarily storing the image data in a storage unit;

calculating a first syntax element from the image data, at
the same time the image data is stored in the storage
unit;

generating coded data of the first syntax element from a
value of the first syntax element;

reading out the image data stored in the storage unit, and
calculating a value of a second syntax element from the
image data;

generating coded data of the second syntax element on the
basis of the values of the first and second syntax
elements; and

connecting the coded data of the first and second syntax

elements.

9. The method according to claim 8, wherein said second
syntax element calculation, the image data stored in the
storage unit is read out in a reverse zigzag scan order, and
the second syntax element is calculated.

May 18, 2006

10. The method according to claim 8, wherein the first
syntax element includes at least one of the number of
nonzero data in a block, the number of zero data in the block,
the number of zero data input before last nonzero data in the
block, and the number of data having an absolute value of
1 and input after last data having an absolute value of not
less than 2 in the block.

11. The method according to claim 8, wherein the second
syntax element includes at least one of a zero run length of
the image data and a level value of the image data.

12. The method according to claim 8, wherein in said
connecting the coded data, the coded data is connected, and
a coded stream defined by the H.264 standard is output.

13. The method according to claim 8, wherein in said first
syntax element calculation,

additional information indicating at least one of the num-
ber of zero data and the number of nonzero data from
the input image data are calculated; and

the first syntax element is calculated on the basis of the
image data temporarily stored in the storage unit and
the additional information calculated in said additional
information calculation.

14. The method according to claim 13, wherein the image
data from the storage unit is read out in a reverse zigzag scan
order, and used in said first syntax element synthesizing.

15. A computer-readable storage medium characterized
by storing a computer program characterized by executing a
variable-length coding method cited in claim 8.

#* #* #* #* #*

