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(57) ABSTRACT

A method of analysing a spectrum on which information is
transmitted, comprising: determining each different type of
modulation used for transmitting the information across the
spectrum, for each determined modulation, identifying its
carrier frequency and its bandwidth, defining characteristics
of usage of the spectrum in terms of the determined modu-
lations and their corresponding carrier frequencies and band-
widths.
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SPECTRUM ANALYSIS FOR DYNAMIC
SPECTRUM ACCESS

TECHNICAL FIELD

[0001] The present disclosure is concerned with spectrum
analysis to enable improved dynamic spectrum access
(DSA) to monitor communication on, and to make effective
use of, available bandwidth.

BACKGROUND

[0002] With the introduction of new technologies and the
increased requirement for communication between users,
devices and technologies, spectral bandwidth is becoming
scarce and its use has to be optimised and improved to
ensure continuous communication demands are met. This is
particularly important in safety-critical systems such as in
the aerospace field, where the quality of communications
must be guaranteed. This includes signals from the multiple
sensors used in aircraft control and maintenance, actuator
command signals, navigation instructions from the control
tower etc. Whilst development is focusing on increasing
bandwidth through e.g. 4G, 5G technologies and the like,
there is also focus on making the best use of available
bandwidth by analysing how that bandwidth is used and
providing dynamic spectrum access (DAS) solutions where
‘spaces’ exist.

[0003] In addition, there may be the need, e.g. in military
applications, to obtain information about existing commu-
nications in unknown environments.

[0004] While DSA solutions are known e.g. from H. Song,
L. Liu, J. Ashdown and Y. Yi, ‘A Deep Reinforcement
Learning Framework for Spectrum Management in
Dynamic Spectrum Access,” IEEE Internet of Things Jour-
nal, doi: 10.1109/JI0T.2021.3052691, Y. Xu, J. Yu, W. C.
Headley and R. M. Buehrer, ‘Deep Reinforcement Learning
for Dynamic Spectrum Access in Wireless Networks,” MIL-
COM 2018-2018 IEEE Military Communications Confer-
ence, (MILCOM), Los Angeles, Calif,, USA, 2018, pp.
207-212, doi: 10.1109/MILCO and O. Naparstek and K.
Cohen, ‘Deep Multi-User Reinforcement Learning for Dis-
tributed Dynamic Spectrum Access,” IEEE Transactions on
Wireless Communications, vol. 18, no. 1, pp. 310-323,
January 2019, doi: 10.1109/TWC.2018.2879433, these rely
on predetermined communication channels and identifying
which of those channels are currently available, and allow-
ing communication on those. Conventionally, when a user
wishes to communicate on a network, the user has to request
access and obtain a response from the network, whereby the
user is allocated a fixed bandwidth channel and time slot on
which they may communicate. Such allocation is not par-
ticularly efficient and may not actually make use of available
bandwidth in view of the fluctuating nature of the spectrum.
Alternative solutions, such as described in G. Hong, J.
Martin and J. Westall, ‘Adaptive bandwidth binning for
bandwidth management,” Elsevier, 2019, use a technique
known as data binning, where metadata is obtained from the
data packet to be transmitted, and the data is placed on the
communication bus by means of a scheduler.

[0005] More recently, the evolution of embedded machine
learning has allowed the development of new techniques for
spectrum analysis and DSA. Many of these systems, how-
ever, also rely on detecting non-busy, pre-determined chan-
nels to which access is provided. Other solutions to obtain-
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ing access by analysing the spectrum, such as H. Chang, H.
Song, Y. Yi, J. Zhang, H. He and L. Liu, ‘Distributive
Dynamic Spectrum Access Through Deep Reinforcement
Learning: A Reservoir Computing-Based Approach,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 1938-1948,
April 2019, doi: 10.1 are known. Whilst such methodologies
provide an effective DSA solution, the fully automated
nature, and the use of Recurrent Neural Networks (RNN),
means that the information obtained from the analysis and
the way in which it is used to make access decisions is not
in a human-readable form and is not transparent. Some
industries, e.g. the aerospace industry, require, for safety,
that data used in such access decisions is available to be read
and understood by humans. Certification of communications
systems often relies on such information being made avail-
able during the process. RNNs also require high computa-
tional power which makes them difficult to integrate into
some devices or systems.

[0006] There is, therefore a need for a technique for
analysing the spectrum to allow for effective DSA and/or for
obtaining information about the communication environ-
ment in a manner that the information used in the technique
can be interpreted by humans.

SUMMARY

[0007] According to the disclosure, there is provided a
method of analysing a spectrum on which information is
transmitted, comprising: determining each different type of
modulation used for transmitting the information across the
spectrum, for each determined modulation, identifying its
carrier frequency and its bandwidth, defining characteristics
of usage of the spectrum in terms of the determined modu-
lations and their corresponding carrier frequencies and band-
widths.

[0008] Also provided is a system for analysing a spectrum
on which information is transmitted, the system including a
first module configured to determine the number of modu-
lations used to transmit information on the spectrum, a
second module configured to determine the carrier fre-
quency of each modulation determined by the first module,
a third module configured to determine the bandwidth of
each modulation determined by the second module, and a
fourth module to provide a spectrum characterisation in
terms of the number of modulations and their carrier fre-
quencies and bandwidths

BRIEF DESCRIPTION

[0009] Examples of techniques according to the disclosure
will now be described by way of example only. The scope
of the invention is not limited by the description and
variations are possible within the scope of the invention as
defined by the claims.

[0010] FIG. 1 shows the architecture of a system accord-
ing to the disclosure.

[0011] FIG. 2 shows an example of a simple decision tree
for use in techniques according to the disclosure.

[0012] FIG. 3 shows, in more detail, features of spectrum
characterisation according to the disclosure.

[0013] FIG. 4 shows features of spectrum characterisation
adapted for the microwave frequency range.

[0014] FIG. 5 shows a training configuration used in
signal allocation according to an example of a technique
according to the disclosure.
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[0015] FIG. 6 shows details of an example signal alloca-
tion implantation for an example of the technique according
to the disclosure.

DETAILED DESCRIPTION

[0016] The spectrum analysis technique of the present
disclosure is configured to recurrently capture useful infor-
mation from the communications network spectrum and
provide this as interpretable, human-readable data from
which useful data can be extracted e.g. to identify charac-
teristics of an unknown network and/or for use in dynamic
spectrum allocation—allocating space on a spectrum to a
user wishing to communicate on the network. The provision
of intermediate data which can be read/interpreted by a
human means that the technique can be used in systems such
as avionics, the certification of which relies on being under-
standable to humans.

[0017] With reference to FIG. 1, the spectrum 10 is
subjected to a time spectrum characterisation 1. This is a
two-part analysis. The spectrum first undergoes a spectrum
characterisation 2 which identifies attributes of the fre-
quency profiles found in the spectrum 10. The spectrum
characterisation feature 2 determines the number of modu-
lations (i) appearing in the spectrum 10, the type of those
modulations (name,), the carrier frequency (Fc,) and band-
width (Bw,) of each modulation and of unintended (e.g.
noise) signals such that each frequency sample (Frx,),,
where n is a specific sample in time, is defined by a specific
set of characteristics in readable form:

(Frxy),=S{LFc,Bw;name;},

[0018] These characteristics can then be fed into a time
analysis block 3 to obtain a time analysis using a stream
reasoning engine as described further below, to detect spe-
cific patterns (P)) in time, defined as a set of rules (R)), such
as frequency jumps over time or a particular periodicity,
which can be used for the allocation of parts of the spectrum
for signals to be communicated on the network, as described
further below.

[0019] In one example, as shown, the detected patterns
(P)) are provided to a processor (here described as the SDR
Brain) 4. The Brain 4 determines, based on the time analysis,
the proper modulation to use for communication of the next
piece of information to be transmitted. In addition, the SDR
brain 4 may update the rules set (R)) used by the time
analysis block 3 based on a determination of which patterns
are relevant to be recognized, based on the spectrum char-
acteristics.

[0020] The brain 4 may select the appropriate modulation
to use for the information to be transmitted in various ways.
One example is by using a decision tree such as shown in
FIG. 2. In the example shown, The set rules are that the
modulation is QPSK modulation (R,) and that the carrier
frequency is between t; and t,. The first decision, in this
example, is whether the number of QPSK modulations (P,)
is greater than 6. If so, it is determined whether the number
of modulations that are stable over time over the same
carrier frequency (P,) exceeds 3. If so, amplitude modula-
tion, AM, is selected. If not, frequency modulation, FM, is
selected. If the number of QPSK modulations (P,) is not
greater than 6, it is determined whether the number of
modulations that are stable over time over the same carrier

Mar. 9, 2023

frequency (P,) is less than 2. If so, phase shift keying, PSK,
is the selected modulation. If not, Gaussian minimum shift
keying, GMSK, is selected.

[0021] This is, of course, one example only of the meth-
odology that could be used for selecting the appropriate
modulation, even if a similar decision tree is used, the rules
and patterns are selected according to the application in
question.

[0022] In the example shown, once the spectrum has been
analysed, and the modulation type has been selected, the
signal characteristics, the patterns from the time analysis and
the selected modulation can be fed to a deep reinforcement
learning (RL) block 5 with a signal allocation algorithm 6
which can determine the carrier frequency and bandwidth of
the modulated signal. Using the determined carrier fre-
quency Fc and bandwidth Bw, the SDR brain 4 allocates a
part of the spectrum to the signal to be transmitted and
introduces the signal to the spectrum at the best carrier
frequency and bandwidth available.

[0023] With reference to FIG. 3, the spectrum characteri-
sation block 2 will now be described, for one example, in
more detail.

[0024] As described above, this block 2 identifies the
number of modulations i present in a spectrum being
observed, identifying their carrier frequency Fc,; and band-
width Bw, to determine their location in the spectrum, and
classifying them (name) into a set of predetermined classes.
FIG. 3 shows possible blocks for deriving the characteris-
tics.

[0025] One way of identifying or predicting the number of
modulations i involves providing the frequency representa-
tion 10' of the spectrum to be analysed to a machine learning
based model. A simple regression calculation can be per-
formed (block 20) preferably using any known type of
predictor that is able to identify gradients in data, e.g, a
one-dimensional convolutional neural network, CNN, a
Gaussian Process, or an XGBoost regressor, although other
simpler models e.g. polynomial regression or a Gaussian k
Nearest Neighbours algorithm could also be used.

[0026] Next (block 30), the carrier frequency (Fc,) is
determined for each modulation. This may be done using
similar predictors but multivariate regression is required
because outputs need to be predicted for the multiple num-
ber of modulations i from the first block 20.

[0027] A similar procedure is then performed at block 40
to determine the spectral bandwidth Bw for each modula-
tion.

[0028] In one example, each regressor block may be
trained separately, to avoid errors being propagated through
the system.

[0029] These processes result in the incoming signal being
fragmented into the different modulations defined by their
position and width in the spectrum, stored at block 50. While
this provides extensive information as to the information
populating the spectrum, the information can be further
augmented by specifying the type of signals the identified
modulations consist of, in a signal classification block 60.
One way of identifying the types of modulation by name is
by providing the different modulations that have been iden-
tified and located in the spectrum to a one dimensional CNN
where they can be classified according to a list of known or
expected modulations and allocated a corresponding name
(name;). Types of signal that are not recognised at this stage
can be identified by a classification for ‘unknown’ signals.
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[0030] In one embodiment, the classification according to
a list of known or expected modulations can be based on a
list that is updated by machine learning as will be discussed
below. In a simpler system, though, the list can be pre-
established and fixed.

[0031] Using this spectrum characterisation by fragment-
ing the spectrum and identifying the location (by carrier
frequency and bandwidth) and, preferably, type of the dif-
ferent modulations present, allows for a user or system to
understand the environment and how the spectrum is used,
on a real time basis and this information can then be used for
DSA and/or to understand how unknown environments are
being used e.g. for military use. The fragmentation and
characterisation allows information to be obtained from both
known and unknown environments. Previous systems have
relied on a previous study and understanding of the envi-
ronment and isolation of modulations based on a previous
understanding of the environment. The usefulness of these
previous systems is therefore limited to static environments
and their reliability is sensitive to noise fluctuations.

[0032] In the example shown in FIGS. 1 and 3, the
spectrum is in the radio frequency, RF, range. Communica-
tions typically take place in the RF spectrum. Recent tech-
nological developments, however, have made it more pos-
sible to use the microwave spectrum. Until recently, this
spectrum has not been of interest in this field due to the lack
of sufficient computational power and the complexity of
programmability in photonics devices. Recently developed
programmable integrated photonics (PIP) processors open
the door to characterisation and classification of microwave
spectra.

[0033] In one example according to the disclosure, there-
fore, the above-described spectrum characterisation concept
can be modified to extend to the microwave spectrum. An
example of architecture for spectrum characterisation for
microwave photonics sensing is shown in FIG. 4.

[0034] The spectrum is converted to a signal that can be
processed by regression blocks such as described above, in
relation to FIG. 3, by optical circuitry 200 that provides the
spectrum to fragmentation blocks 300, 400 and 500 to,
respectively, obtain, using machine learning, the number of
modulations i, the carrier frequency Fc and the bandwidth
Bw, essentially as described above. Control electronics 600
provides a matrix of electrical signals PWM,,, to the PIP
processor 700. The PIP processor is configured to serve as
a frequency multiplexer, in place of the modulation frag-
mentation block 50 of FIG. 3 so that the information from
the microwave spectrum can be received directly in the
optical domain. The PIP processor contains a structure of
programmable ring resonators that can be configured to filter
and reroute a specific programmable frequency. The control
electronics 600 configures its output signals PWM ;, based
on the determined number of modulations, carrier frequency
and bandwidth, to program the optical filters of the PIP to
properly isolate each modulation. The outputs of the PIP are
then converted to the electronic domain 800 and can then be
classified by type (name,) in classification block 900 in a
manner similar to FIG. 3.

[0035] A first aspect of the invention of this disclosure
provides spectrum characterisation by fragmentation to pro-
vide information on the utilization of the spectrum in
readable form in terms of the number of modulations, their
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location in the spectrum and, preferably, the type of modu-
lation. This in itself provides a range of advantages over the
prior art, as discussed above.

[0036] To further improve the usefulness of the informa-
tion obtained about the spectrum, the output of the spectrum
characterisation block 2 may be further subjected to a time
analysis (block 3). The time analysis block 3 takes the signal
classification information and analyses it in the time domain
to identify temporal features of each type of modulation
according to a set of rules. Such temporal features may be
e.g. periodicity or frequency hopping. The time analysis
block 3 outputs the time domain information in an interpre-
table manner, thus improving the explainability of the sys-
tem (important for e.g. certification in avionics). Information
provided in this manner can also be embedded in SDR
devices which improves the speed of DSA.

[0037] One way of performing the time analysis uses
stream reasoning—i.e. an incremental reasoning over
streams of incrementally available information. Stream rea-
soning allows the analysis of rapidly changing information
to detect patterns or trends in the data. Stream reasoning
engines per se are known which can be used in the time
analysis block 3. Rules can be set to e.g. analyse how many
times a specific modulation has been detected, which modu-
lations are hopping their carrier frequency and at what
periodicity etc.

[0038] As described above, using the time analysed spec-
trum information and the fragmented modulation informa-
tion, a processor (SDR brain 4) is able to make a determi-
nation as to the most appropriate type of modulation to use
for the information to be transmitted.

[0039] Whilst advantageous in its own right, the spectrum
characterisation technique also has application in the context
of allocation of spectrum space to new signals to be trans-
mitted in a system such as shown, for example, in FIG. 1.
[0040] Here, the information obtained from the system
characterisation is processed to determine a selected modu-
lation for use by a signal to be transmitted based on the
spectrum characterisation—i.e. how the spectrum is cur-
rently being used.

[0041] The spectrum characterisation can be used by a
learning block 5 to determine where in the spectrum avail-
able space exists or is likely to exist, so that signals to be
transmitted can be allocated to such spaces and transmitted
using a selected type of modulation.

[0042] The learning block 5 obtains frequency informa-
tion—i.e. the selected modulation—of the signal to be
transmitted and also obtains information, in the frequency
domain, about the current use of the spectrum and makes a
decision, using Reinforcement Learning (RL) techniques, to
introduce the signal to be transmitted into the spectrum at the
best carrier frequency and bandwidth available.

[0043] The RL learning block 5 trains on an artificial and
controlled environment which uses information from signal
characterisation, identifying the carrier frequencies and
bandwidths being used in the spectrum, and, once trained, is
able to identity the optimal carrier frequency and bandwidth
for a new signal to be transmitted, that minimises inter-
signal interference while maximising the bit rate transmis-
sion of the new signal. In one example, the RL block 5 uses
the outputs from each of the blocks 20, 30, 40 of FIG. 3, or
300, 400, 500 of FIG. 4 independently to update its learning
algorithm for determining the best available part of the
spectrum for transmission of the new signal.
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[0044] The training of the block is illustrated in FIG. 5
using a classic Markov Decision Process. An iterative train-
ing process takes place between the training agent 110
(which is the machine learning model chosen for the task)
and the environment 120. The way the learning process
works is that the agent 110 receives a state from the
environment 120 in the form of an array that describes the
current situation inside the environment. The array (s)
includes data from the analysed spectrum and also from the
new information to be transmitted. This may be from a
simulation of the expected environment or may be based on
input from the spectrum characterisation block 2 as
described above. In response, the agent takes an action
within the range of its available action space based on the
current state from the environment and the model’s prior
knowledge acquired during previous iterations. The ‘action’
(a) is the suggested carrier frequency and bandwidth for the
new signal. In this way, the model’s ‘knowledge’ on which
each action is based is constantly being updated to reflect
changes in the environment.

[0045] The environment reacts to the received action
which results in a new state to be use for the next iteration
and also provides a ‘reward metric’ for the current iteration.
The reward (r;) is a metric of the interference produced
between the original spectrum and the new modulation in
the frequency suggested by the action.

[0046] The agent receives the ‘reward’ and interprets this
as an indication of how successful the suggested action was.
Based on this, the agent is also able to train itself and update
its current knowledge.

[0047] One way of providing the reward function uses the
‘Hadamard’ product as discussed in R. A. Horn, ‘The
hadamard product,” Proc. Symp. Appl. Math, 1990. The
interference (AW) is calculated using the Hadamard product
between the original spectrum and the newly allocated
modulation in the selected carrier frequency. The latter
assumes a Gaussian noise wavelength in the rest of the
spectrum. To compute the reward based on the observed
interference, the signal is swept through the whole spectrum,
checking interference in every possible position, to obtain
the maximum (AW, ) and minimum (AW, ) possible
interferences. The observed interference (AW ) is
used to obtain the reward function:

observed.

AW max — AW observed

R =
@ AW max — AW min

[0048] Using this technique allows for a faster response
time from the environment when measuring the interference
resulting in a shorter training time than in conventional
approaches.

[0049] In this example, each learning iteration is consid-
ered to be independent from each other, usually referred to
in the literature as “episodic tasks”. Because this entails only
considering immediate rewards, the value function that
results from following a policy = is given by the following
simplification of the Bellman equation, which associates the
policy & to the probability of reaching the reward r following
the action a. Note that in this version, it only considers the
immediate reward, discarding previous states, which allow
us the number of training cycles to be reduced compared
with the g-learning approach used in the SoTA.

Va(s)=Er(als)-Praa(r(s,a))
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[0050] The action space for the proposed RL model is
technically continuous since frequency is a continuous
parameter from an analog point of view. Following this
assumption, actor-critic methods might be the most success-
ful model for the task, given their advantage over continuous
action spaces. However, since the observed state is already
not represented as a continuous shape (it includes informa-
tion from the new modulation as well as the original
spectrum), we can simply discretize the available RF range,
making it more compatible with most RL models, but
maintaining the continuous nature of the spectrum. Under
these conditions, a contextual bandit model would be a more
suitable model for the task, since it not only benefits from the
discrete action space but also the episodic nature of the task.
[0051] This allow the best carrier frequency and band-
width to be selected without defining previous discrete
channels as is known in the art.

[0052] FIG. 6 is a UML diagram showing how the above
described components for the RL technique can be con-
structed and how they can interact with each other in an
object oriented software implementation using Contextual
Bandits, as an example. Those skilled in the art will be aware
of other suitable constructions.

[0053] Using the concepts of this disclosure, communica-
tion in busy spectrums can be improved in terms of reli-
ability and speed, and interference can be minimised
between devices sharing the same bandwidth. The system
can adapt dynamically to changing environments and newly
introduced modulations allowing for increased safety and
reliability. In providing explainable or readable outputs
throughout the system, the system is suitable for certified use
in many applications e.g. avionics and other safety-critical
applications. The concept allows for an optimal use of
available spectrums thus enabling communication of
increased amounts of data.

[0054] Variations of the examples described above are
possible within the scope of the invention as defined by the
claims.

1. A method of analyzing a spectrum on which informa-
tion is transmitted, the method comprising:

determining each different type of modulation used for

transmitting the information across the spectrum;
identifying, for each determined modulation, a carrier
frequency and a bandwidth; and

defining characteristics of usage of the spectrum in terms

of the determined modulations and their corresponding
carrier frequencies and bandwidths.

2. The method of claim 1, further comprising:

identifying, for each determined modulation, a name of

the type of modulation, wherein the characteristics of
usage of the spectrum are defined in terms of the
determined modulations, the corresponding carrier fre-
quencies and bandwidths, and the determined name.

3. The method of claim 1, further comprising,

performing a time analysis on the determined types of

modulation to determine time-related factors of the
occurrence of each type of modulation.

4. The method of claim 4, wherein the time analysis is
performed using a stream reasoning engine.

5. The method of claim 1, wherein the step of determining
each different type of modulation used on the spectrum
includes providing a frequency representation of the spec-
trum to a machine learning based model.
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6. The method of claim 5, wherein the machine learning
based model applies a regression calculation to the fre-
quency representation of the spectrum to identify the dif-
ferent modulations.

7. The method of claim 5, wherein the machine learning
based model applies a multivariate regression calculation to
the frequency representation of the spectrum to identify the
respective carrier frequencies.

8. The method of claim 5, wherein the machine learning
based model applies a multivariate regression calculation to
the frequency representation of the spectrum to identify the
respective bandwidths.

9. The method of claim 2, wherein the step of identifying
a name or the type of modulation comprises applying a
one-dimensional convolutional neural network.

10. The method of claim 1, wherein the spectrum is in the
radio frequency range.

11. The method of claim 1, wherein the spectrum is in the
microwave range, wherein the analysis is performed using a
programmable integrated photonics processor.

12. A system for analyzing a spectrum on which infor-
mation is transmitted, the system comprising:
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a first module configured to determine the number of
modulations used to transmit information on the spec-
trum;

a second module configured to determine the carrier
frequency of each modulation determined by the first
module;

a third module configured to determine the bandwidth of
each modulation determined by the second module; and

a fourth module configured to provide a spectrum char-
acterization in terms of the number of modulations and
their carrier frequencies and bandwidths.

13. The system of claim 12, further comprising:

a signal classification module configured to associate each
determined modulation with a modulation type name.

14. The system of claim 12, further comprising:

a time analysis module configured to perform a time
analysis on the modulations identified by the first
module.

15. The system of any of claim 12, wherein the spectrum
is in the microwave range, the system comprising a pro-
grammable integrated photonics processor configured for
frequency multiplexing of the spectrum.
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