
US 20220357969A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0357969 A1

SAURABH et al . (43) Pub . Date : Nov. 10 , 2022
()

(54) METHOD AND SYSTEM FOR WEB SERVICE
LOCATION ALLOCATION AND VIRTUAL
MACHINE DEPLOYMENT

(52) U.S. CI .
CPC G06F 9/45558 (2013.01) ; G06F 9/5077

(2013.01) ; GO6F 9/4881 (2013.01) ; GO6F
2009/45595 (2013.01) ; G06F 2009/4557

(2013.01) ; GO6F 2209/501 (2013.01) (71) Applicant : Tata Consultancy Services Limited ,
Mumbai (IN)

(57) ABSTRACT (72) Inventors : Saket SAURABH , Pune (IN) ; Arun
Ramamurthy , Pune (IN) ; Mangesh
Sharad Gharote , Pune (IN) ; Sachin
Premsukh Lodha , Pune (IN)

(73) Assignee : Tata Consultancy Services Limited ,
Mumbai (IN)

(21) Appl . No .: 17 / 564,475

(22) Filed : Dec. 29 , 2021

(30) Foreign Application Priority Data

Finding optimal solutions to Web Service Location Alloca
tion Problem (WSLAP) using exhaustive algorithms and
exact approaches is not practical . Computational time
required to solve WSLAP using exact approaches increases
exponentially with the problem size . The disclosure herein
generally relates to service deployment , and , more particu
larly , to a method and system for web service location
allocation and virtual machine deployment . The system
identifies a plurality of web - services that are associated with
th SLAP and then decomposes the WSLAP to a plurality
of sub - problems . For each sub - problem , the system deter
mines at least one non - dominating solution , which are then
merged to generate the solution for the WSLAP . The gen
erated solution to the WSLAP can be used for perform
Virtual Machine (VM) deployment under uncertainties ,
using a stochastic approach , wherein the uncertainties refer
to dynamic change in requirements in terms of parameters
such as but not limited to configuration , and cost .

Mar. 24 , 2021 (IN) 202121012821

Publication Classification
(51) Int . Cl .

G06F 9/455 (2006.01)
G06F 9/50 (2006.01)
GO6F 9/48 (2006.01)

202

Collecting a Web Service Location
Allocation Problem (WSLAP) as

input

204

Identifying web services that are
associated with the WSLAP

206

Decomposing the WSLAP to sub ..
problems

208

Determining at least one non
dominating solution each , for each

sub - problem

210

Generating solution to the WSLAP
by inerging non - dominating
solutions of the sub - problems

20 %)

Patent Application Publication Nov. 10 , 2022 Sheet 1 of 9 US 2022/0357969 A1

Memory

Hardware processor (s) 102

Communication interface (s) 103

System 100

Patent Application Publication Nov. 10 , 2022 Sheet 2 of 9 US 2022/0357969 A1

202

Collecting a Web Service Location
Allocation Problem (WSLAP) as

input

Identifying web services that are
associated with the WSLAP

206

Decomposing the WSLAP to sub
problems

208

Determining at least one non
dominating solution each , for each

sub - problem

Generating solution to the WSLAP
by merging non - dominating
solutions of the sub - problems

Ppppp

FIG . 2
200

Patent Application Publication Nov. 10 , 2022 Sheet 3 of 9 US 2022/0357969 A1

302

Generating sub - solutions by merging
two of the plurality of non
dominating solutions at once

I 304

Merging the sub - solutions to
generate the solution for the WSLAP

Patent Application Publication Nov. 10 , 2022 Sheet 4 of 9 US 2022/0357969 A1

Collecting a first set and a second set of non
dominated solutions (El and E2) , as input to

construct a solution table

404

Initializing a stack N

Pushing a dummy solution to the stack

Generating a first tuple as a summation of
first non - dominant solutions in El and E2 ,
and adding the first tuple to min - heap H ,

starting from top left corner of the solution
table

A

FIG . 4A

Patent Application Publication Nov. 10 , 2022 Sheet 5 of 9 US 2022/0357969 A1

A

Hd sono HY 3
410

Removing root node from the min - Heap ,
wherein the root node contains lowest value
of elements in a first objective (fi) in Heap

412

Pushing the removed root node to stack , if
value of a second objective (17) in the root
node is less than value of f , in the stack

Selecting one or more solutions from
locations that are at immediate right and

immediate bottom to the location of the value
in the root node in the solution table

Adding the selected one or more solutions to
the heap

Iteratively performing till all sub - solutions are generated
Doos popo gox popo DODO por 0000 0000 poo 000

FIG . 4B

Patent Application Publication Nov. 10 , 2022 Sheet 6 of 9 US 2022/0357969 A1

U , 0
500 U2 A

500 U2 A Cu
1500

A U , 750
U ; C2 = 150 (a) W (110 , 2000) 2

(b) W , (260 , 1250)

U
U , 600

400
640 U A U2 A ,

C2 = 120 900
U ; C22 = 100

900
(c) W. (100 , 2140) 2 Uz C2 = 100

(d) W (230 , 1300)

FIG . SA

Patent Application Publication Nov. 10 , 2022 Sheet 7 of 9 US 2022/0357969 A1

U , 0 U

600 U2 A U2 A
Cz2 = 120 1250

U ; C3 = 110
A2 1250

(e) Wz (110 , 2660) U C = 110

(1) W3 (230 , 1550)

FIG . SB

For instance 3

Patent Application Publication

BMOPSOCD D & OBMOPS000

D & C BMOPSOCD
latency

D & C NSGAI

Nov. 10 , 2022 Sheet 8 of 9

BMOPSOCD
8 .

Cost

NSGAI

US 2022/0357969 A1

FIG . 6A

Patent Application Publication Nov. 10 , 2022 Sheet 9 of 9 US 2022/0357969 A1

os

p = 0.97

* 10
p = 0.84 p = 0.75

Minimize T
3

Minimize Cost

FIG . 6B

US 2022/0357969 Al Nov. 10 , 2022
1

METHOD AND SYSTEM FOR WEB SERVICE
LOCATION ALLOCATION AND VIRTUAL

MACHINE DEPLOYMENT

PRIORITY CLAIM
[0001] This U.S. patent application claims priority under
35 U.S.C. § 119 to : India Application No. 202121012821 ,
filed on Mar. 24 , 2021. The entire contents of the aforemen
tioned application are incorporated herein by reference .

TECHNICAL FIELD

a
[0002] The disclosure herein generally relates to service
deployment , and , more particularly , to a method and system
for web service location allocation and virtual machine
deployment .

BACKGROUND
[0003] Service oriented computing using web services has
emerged as a new computing paradigm for developing
software applications . Web services are self - describing , plat
form - agnostic computational elements that support rapid
and low - cost composition of software applications . These
services offered by different enterprises can be accessed over
the internet . Thus , they provide a distributed computing
infrastructure for both intra- and cross - enterprise application
integration and collaboration . As the number of functionally
similar web services is consistently increasing , Quality of
Service (QoS) has become a key to gain competitive advan
tage over other service providers . An important attribute that
determines web service's QoS is its response time . Hence ,
choosing appropriate web service locations to serve geo
graphically distributed user centers has a significant impact
on QoS and customer satisfaction . While deploying a web
service closer to each user center improves the service
response time , however setting up a web service at multiple
locations invariably increases the deployment cost . There
could also be multiple web services to be deployed . This
problem of locating multiple web services with the aim of
simultaneously minimizing two conflicting objectives , total
deployment cost and network latency , is known as web
services location allocation problem (WSLAP) .
[0004] To find optimal solutions to WSLAP using exhaus
tive algorithms and exact approaches is not practical . The
computational time required to solve WSLAP using exact
approaches such as Integer Linear Programming (ILP) , and
branch and bound algorithm , increases exponentially with
the problem size . Further , finding multiple Pareto - optimal
solutions using exact methods is challenging .
[0005] Also , while a Virtual Machine deployment scenario
is considered , a problem being faced by the state of the art
approaches is dynamically varying user requirements . For
example , in the beginning of the VM deployment the user
may have opted for VMs with certain configuration and in
a particular price range . However , during the runtime , the
requirements may change i.e. the user may opt for VMs with
a different configuration or price range . State of the art
systems fail to address such dynamic requirements , as for
each change , an entire deployment process may have to be
changed / updated .

the above - mentioned technical problems recognized by the
inventors in conventional systems . In an aspect , a processor
implemented method of performing web services location
allocation is provided . In this method , initially a Web
Service Location Allocation Problem (WSLAP) is collected
as input , via one or more hardware processors . Further , a
plurality of web - services that are associated with the
WSLAP are identified , via the one or more hardware pro
cessors . The WSLAP is then decomposed to a plurality of
sub - problems , via the one or more hardware processors , by
treating each of the plurality of web services as a sub
problem . Further , at least one non - dominating solution is
identified to each of the plurality of sub - problems , via the
one or more hardware processors . Further , a solution to the
obtained WSLAP is generated by merging a plurality of the
non - dominating solutions of the plurality of sub - problems ,
via the one or more hardware processors , wherein the
solution determines a plurality of locations in a cloud space
where a plurality of VM resources providing the plurality of
web - services are to be deployed according to a users '
locations and invocation frequencies .
[0007] In another aspect , a method of merging the plural
ity of the non - dominating solutions to generate the solution
to the WSLAP is provided . In this method , a plurality of
sub - solutions is generated by merging two of the plurality of
the non - dominating solutions at once . Merging each of the
plurality of sub - solutions further includes the following
steps . A first set of non - dominated solutions (El) and a
second set of non - dominated solutions (E2) are collected as
input data to construct a solution table , wherein in the
solution table a plurality of solutions are listed such that
position of each solution in the solution table is represented
using a unique combination of row number and column
number , wherein the row number is an index from E2 and
column number is an index from E1 , further wherein value
of element at any position in the solution table is a vector
sum of values in El and E2 at respective locations . Further ,
a stack N is initialized , and a dummy solution is pushed to
the stack , Further , a first tuple is generated as a summation
of first non - dominating solutions in El and E2 , starting from
top left corner of the solution table , and the first tuple is then
added to a Heap H , wherein the first tuple comprises a
summation of first objective (fl) and a second objective (f2)
of the first non - dominating solutions in El and E2 . Further ,
the following steps are iteratively performed till the sub
solution is generated : a) a root node is removed from the
Heap H , wherein the root node contains lowest value of all
elements of f1 present in the Heap , b) the removed root node
is pushed to the stack , if value of f2 in the root node is less
than value of f2 in top of the stack , c) for the root node , one
or more solutions are selected from the tuples in the solution
table , wherein the one or more solutions are in a location that
is to immediate right or immediate bottom to the location of
the value in the root node , and d) the selected one or more
solutions are added to the Heap . Once the sub - solutions are
generated , they are merged to generate the solution for the
WSLAP .

[0008] In yet another aspect , the first tuple is generated as
a summation of the last non - dominating solutions in El and
E2 , starting from bottom right corner of the solution table ,
wherein if the first non - dominating solution is collected
starting from the bottom right corner of the solution table ,
for the root node the one or more solutions in a location that

SUMMARY

[0006] Embodiments of the present disclosure present
technological improvements as solutions to one or more of a

US 2022/0357969 A1 Nov. 10 , 2022
2

is to immediate left or immediate top to the location of the
value in the root node are selected and added to the Heap .
[0009] In yet another aspect , the first tuple is generated by
performing in parallel , selection of the first non - dominating
solutions starting from a) bottom right corner of the solution
table and b) top left corner of the solution table .
[0010] In yet another aspect , the merging of the non
dominating sub - solutions may be performed in different
ways . In one embodiment , the sub - solutions may be sequen
tially merged , for example , E1 - E2 , E3 - E4 , and so on . in
another embodiment , after merging the sub - solutions of E1
and E2 , resulting sub - solution is merged with sub - solution
of E3 , and then the non - dominated sub - solutions of ((E1
E2) -E3) are merged with the non - dominated solutions of E4
and so on . In yet another embodiment , the merging of the
sub - solutions may be performed in parallel . For example ,
the sub - solutions of El and E2 are merged , and at the same
time the sub - solutions of E3 and E4 are merged . The parallel
merging may be less time consuming .
[0011] In yet another aspect , the generated solution to the
WSLAP is used for performing Virtual Machine (VM)
deployment under uncertainties , using a stochastic
approach , wherein the uncertainties refer to dynamic change
in requirements in terms of parameters such as but not
limited to configuration , and cost .
[0012] In yet another aspect , a system of performing web
service location allocation is provided . The system includes
one or more hardware processors , a communication inter
face , and a memory operatively coupled to the one or more
hardware processors via the communication interface . The
memory stores a plurality of instructions , which when
executed , causes the one or more hardware processors to
perform the following steps . In this method , initially a Web
Service Location Allocation Problem (WSLAP) is collected
as input , via one or more hardware processors . Further , a
plurality of web - services that are associated with the
WSLAP are identified , via the one or more hardware pro
cessors . The WSLAP is then decomposed to a plurality of
sub - problems , via the one or more hardware processors , by
treating each of the plurality of web services as a sub
problem . Further , at least one non - dominating solution is
identified to each of the plurality of sub - problems , via the
one or more hardware processors . Further , a solution to the
obtained WSLAP is generated by merging a plurality of the
non - dominating solutions of the plurality of sub - problems ,
via the one or more hardware processors , wherein the
solution determines a plurality of locations in a cloud space
where a plurality of VM resources providing the plurality of
web - services are to be deployed according to a users '
locations and invocation frequencies .
[0013] In yet another aspect , a system for generating the
solution to the WSLAP by merging the plurality of the
non - dominating solutions is provided . The system generates
a plurality of sub - solutions by merging two of the plurality
of the non - dominating solutions at once , by executing the
following steps : A first set of non - dominated solutions (E1)
and a second set of non - dominated solutions (E2) are
collected as input data to construct a solution table , wherein
in the solution table a plurality of solutions are listed such
that position of each solution in the solution table is repre
sented using a unique combination of row number and
column number , wherein the row number is an index from
E2 and column number is an index from El further wherein
value of element at any position in the solution table is a

vector sum of values in El and E2 at respective locations .
Further , a stack N is initialized , and a dummy solution is
pushed to the stack . Further , a first tuple is generated as a
summation of first non - dominating solutions in El and E2 ,
starting from top left corner of the solution table , and the first
tuple is then added to a Heap H , wherein the first tuple
comprises a summation of first objective (fl) and a second
objective (f2) of the first non - dominating solutions in El and
E2 . Further , the following steps are iteratively performed till
the sub - solution is generated : a) a root node is removed from
the Heap H , wherein the root node contains lowest value of
all elements of f1 present in the Heap , b) the removed root
node is pushed to the stack , if value of f2 in the root node
is less than value of f2 in top of the stack , c) for the root
node , one or more solutions are selected from the tuples in
the solution table , wherein the one or more solutions are in
a location that is to immediate right or immediate bottom to
the location of the value in the root node , and d) the selected
one or more solutions are added to the Heap . Once the
sub - solutions are generated , they are merged to generate the
solution for the WSLAP .
[0014] In yet another aspect , a non - transitory computer
readable medium for performing web services location
allocation is provided . The non - transitory computer readable
medium includes a plurality of instructions , which when
executed via one or more hardware processors , causes the
web services location allocation via the following steps .
Initially a Web Service Location Allocation Problem
(WSLAP) is collected as input . Further , a plurality of
web - services that are associated with the WSLAP are iden
tified . The WSLAP is then decomposed to a plurality of
sub - problems , by treating each of the plurality of web
services as a sub - problem . Further , at least one non - domi
nating solution is identified to each of the plurality of
sub - problems , Further , a solution to the obtained WSLAP is
generated by merging a plurality of the non - dominating
solutions of the plurality of sub - problems , wherein the
solution determines a plurality of locations in a cloud space
where a plurality of VM resources providing the plurality of
web - services are to be deployed according to a users '
locations and invocation frequencies .
[0015] In yet another aspect , a non - transitory computer
readable medium for generating the solution to the WSLAP
by merging the plurality of the non - dominating solutions , is
provided . A plurality of instructions in the non - transitory
computer readable medium , when executed , causes to gen
erate the solution to the WSLAP by merging the plurality of
the non - dominating solutions , via the following steps . In this
approach , a plurality of sub - solutions are generated by
merging two of the plurality of the non - dominating solutions
at once . Generating each of the plurality of sub - solutions
further includes the following steps . A first set of non
dominated solutions (E1) and a second set of non - dominated
solutions (E2) are collected as input data to construct a
solution table , wherein in the solution table a plurality of
solutions are listed such that position of each solution in the
solution table is represented using a unique combination of
row number and column number , wherein the row number
is an index from E2 and column number is an index from E1 ,
further wherein value of element at any position in the
solution table is a vector sum of values in El and E2 at
respective locations . Further , a stack N is initialized , and a
dummy solution is pushed to the stack . Further , a first tuple
is generated as a summation of first non - dominating solu

2

a

a

US 2022/0357969 A1 Nov. 10 , 2022
3

2

tions in El and E2 , starting from top left corner of the
solution table , and the first tuple is then added to a Heap H ,
wherein the first tuple comprises a summation of first
objective (fl) and a second objective (f2) of the first non
dominating solutions in El and E2 . Further , the following
steps are iteratively performed till the sub - solution is gen
erated : a) a root node is removed from the Heap H , wherein
the root node contains lowest value of all elements of f1
present in the Heap , b) the removed root node is pushed to
the stack , if value of f2 in the root node is less than value of
f2 in top of the stack , c) for the root node , one or more
solutions are selected from the tuples in the solution table ,
wherein the one or more solutions are in a location that is to
immediate right or immediate bottom to the location of the
value in the root node , and d) the selected one or more
solutions are added to the Heap . Once the sub - solutions are
generated , they are merged to generate the solution for the
WSLAP .
[0016] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory only and are not restrictive of
the invention , as claimed .

BRIEF DESCRIPTION OF THE DRAWINGS

some

[0017] The accompanying drawings , which are incorpo
rated in and constitute a part of this disclosure , illustrate
exemplary embodiments and , together with the description ,
serve to explain the disclosed principles :
[0018] FIG . 1 illustrates an exemplary system for perform
ing web services location allocation , according to
embodiments of the present disclosure .
[0019] FIG . 2 is a flow diagram depicting steps in a
method of performing web services location allocation , by
the system of FIG . 1 , according to some embodiments of the
present disclosure .
[0020] FIG . 3 is a flow diagram depicting steps involved
in the process of generating solution to the WSLAP by
merging non - dominating solutions , by the system of FIG . 1 ,
in accordance with some embodiments of the present dis
closure .
[0021] FIGS . 4A and 4B are flow diagrams depicting steps
involved in the process of generating sub - solutions from the
non - dominating solutions , by the system of FIG . 1 , accord
ing to some embodiments of the present disclosure .
[0022] FIGS . 5A and 5B depict example diagrams of the
non - dominating solutions , generated by the system of FIG .
1 , in accordance with some embodiments of the present
disclosure .
[0023] FIGS . 6A and 6B are graphs plotting example
values to depict efficiency of the method 200 , in accordance
with some embodiments of the present disclosure .

detailed description be considered as exemplary only , with
the true scope being indicated by the following claims .
[0025] Referring now to the drawings , and more particu
larly to FIG . 1 through FIG . 6B , where similar reference
characters denote corresponding features consistently
throughout the figures , there are shown preferred embodi
ments and these embodiments are described in the context of
the following exemplary system and / or method ,
[0026] FIG . 1 illustrates an exemplary system 100 for
performing web services location allocation , according to
some embodiments of the present disclosure . The system
100 includes one or more hardware processors 102 , com
munication interface (s) or input / output (1/0) interface (s)
103 , and one or more data storage devices or memory 101
operatively coupled to the one or more hardware processors
102. The one or more hardware processors 102 can be
implemented as one or more microprocessors , microcom
puters , microcontrollers , digital signal processors , central
processing units , state machines , graphics controllers , logic
circuitries , and / or any devices that manipulate signals based
on operational instructions . Among other capabilities , the
processor (s) are configured to fetch and execute computer
readable instructions stored in the memory . In an embodi
ment , the system 100 can be implemented in a variety of
computing systems , such as laptop computers , notebooks ,
hand - held devices , workstations , mainframe computers ,
servers , a network cloud and the like .
[0027] The communication interface (s) 103 can include a
variety of software and hardware interfaces , for example , a
web interface , a graphical user interface , and the like and can
facilitate multiple communications within a wide variety of
networks N / W and protocol types , including wired net
works , for example , LAN , cable , etc. , and wireless net
works , such as WLAN , cellular , or satellite . In an embodi
ment , the communication interface (s) 103 can include one or
more ports for connecting a number of devices to one
another or to another server .
[0028] The memory 101 may include any computer - read
able medium known in the art including , for example ,
volatile memory , such as static random - access memory
(SRAM) and dynamic random access memory (DRAM) ,
and / or non - volatile memory , such as read only memory
(ROM) , erasable programmable ROM , flash memories , hard
disks , optical disks , and magnetic tapes . In an embodiment ,
one or more components (not shown) of the system 100 can
be stored in the memory 101. The memory 101 is configured
to store a plurality of operational instructions (or ‘ instruc
tions ') which when executed cause one or more of the
hardware processor (s) 102 to perform various actions asso
ciated with the process of Web Service Location Allocation
Problem (WSLAP) and VM allocation being performed by
the system 100. The system 100 can be implemented in a
variety of ways as per requirements . Various steps involved
in the process of Web Service Location Allocation Problem
(WSLAP) being performed by the system 100 of FIG . 1 are
depicted in FIG . 2 through FIG . 4B , and are explained with
reference to the hardware components depicted in FIG . 1 .
[0029] FIG . 2 is a flow diagram depicting steps in a
method 200 of performing web services location allocation ,
by the system of FIG . 1 , according to some embodiments of
the present disclosure . In an embodiment , the system 100
comprises one or more data storage devices or the memory
102 operatively coupled to the processor (s) 104 and is
configured to store instructions for execution of steps of the

DETAILED DESCRIPTION

[0024] Exemplary embodiments are described with refer
ence to the accompanying drawings . In the figures , the
left - most digit (s) of a reference number identifies the figure
in which the reference number first appears . Wherever
convenient , the same reference numbers are used throughout
the drawings to refer to the same or like parts . While
examples and features of disclosed principles are described
herein , modifications , adaptations , and other implementa
tions are possible without departing from the scope of the
disclosed embodiments . It is intended that the following

US 2022/0357969 A1 Nov. 10 , 2022
4

TABLE 1 - continued

Matrix Entry Description

Xstn X , Decision variable
indicating whether
service W ; is deployed
at location A ;

[0033] A mathematical model of the WSLAP is given as :
minimize $ 1 = 2 = 1 ° E ; = 1 " C ;; X ; j (1)

minimize f2 = 2 } = E = ' RkiFki mr .
k 1 i 1 2 (2)

Subject to

[0034]
; = 1 " X ; = 1 , VE { 1 , ... , s } (3)

method 200 by the processor (s) or one or more hardware
processors 104. The steps of the method 200 of the present
disclosure will now be explained with reference to the
components or blocks of the system 100 as depicted in FIG .
1 and the steps of flow diagram as depicted in FIG . 2 through
FIG . 4B . Although process steps , method steps , techniques
or the like may be described in a sequential order , such
processes , methods , and techniques may be configured to
work in alternate orders . In other words , any sequence or
order of steps that may be described does not necessarily
indicate a requirement that the steps to be performed in that
order . The steps of processes described herein may be
performed in any order practical . Further , some steps may be
performed simultaneously .
[0030] At step 202 of the method 200 , the system 100
collects a Web Service Location Allocation Problem
(WSLAP) as input . The WSLAP specifies requirements for
allocations of the web services , in terms of various param
eters . The WSLAP is described as below :

[0031] A set of s web services W = { W1 , W2 , W3 , ... W }
needs to be deployed at one or more of n candidate locations
A = { A1 , A2 , A3 , ... An } . The locations could be data centers
of an enterprise and / or one or more cloud providers . Cost
incurred in deploying a web service W ; at a location A , is
given as Cij . Deployment cost varies from one data centre to
another , based on parameters such as but not limited to
electricity price , real - estate price , labor cost and so on .
[0032] Consider that there are m user centers U = { U1 , U2 ,
U3 , ... Um } that require access to each of the s web services
(Note : Not all user centers require access to all web ser
vices) . A user center represents a geographic region . It also
allows us to estimate the latency between the user center and
candidate locations . The service invocation frequency (de
mand) of a web service W1 , from a user centre Uk over a unit
time interval is represented as Fk . The service frequencies
are computed as average number of invocations over a
period of time such as over a month . The network latency
between a user center Uk and a location A , is given as Lkje
Each service has to be deployed in at least one location .
Further , a service can be deployed at multiple locations to
improve its response time . The requirement of a user center
pertaining to a given web service is catered by exactly one
location . The matrices required for modelling the input in
WSLAP problem are given in Table I.

X ; E { 0 , 1 } VE { 1 , ... , s } , V ; € { 1 , ... , n } (4)

[0035] Objective of the WSLAP is to locate a set of web
services W among the set of candidate locations A such that
the deployment cost f1 and a total response time f2 are
minimized . A service location matrix X of size s * n is used
to represent entire location plan . Value of a decision variable
X ;; is kept as 1 if the web service W ; is deployed at location
otherwise is kept at 0. To minimize latency , each user center
is served from the nearest web service location among the
set of deployed locations . Rki represents a minimal response
time incurred when the web service W ; is accessed by the
user centre Uk and is calculated as :

Rxizmin { Lk ; X ;; = 1 & jE { 1 , ... , n } } (5)

i

)

[0036] As the dimensions of the service location matrix X
is s * n and each entry takes a binary value 0 or 1 the size of
the search space for the WSLAP is 25 * n .
[0037] Each solution for the WSLAP is a tuple (a , b) ,
where a represents the total deployment cost (fi) and b
represents the total latency (f2) . A solution 0 ; = (a ; , b ;) is said
to dominate the solution 0 ; = (a ;, b ;) , if 0 ; is at least as good
as in terms of values) 0 ; in one objective and is better in
another objective i.e .:

a : < a ; and b ; < b ; 0 or

aisa ; and b ; < b ;

TABLE 1
[0038] A solution 6 * considered as non - dominated solu
tions (pareto - optimal) if it is not dominated by any other
solution . For example , consider the solutions :

01 = (10 , 20) , 02 = (15 , 30) , 03 = (5 , 25) Matrix Entry Description

W s + 1 Wi
A ;
UK

1
Anti
Um + 1
Fmts

3

Fki
i

ith web service
?th location
kth user centre
Frequency invocation of
service W at user
centre UK
Cost of deploying
service W ; at location A ;
Latency between user
centre Uk at location A ;

[0039] 0 , and 83 are considered to be dominating 02 , as
values of 0 , and O2 are better than that of 02. Also , value of
first objective of O , is greater than that of Oz and value of the
second objective of , is lesser than that of 63. Hence 0 , and
03 are considered as non - dominated solutions . This is
depicted in FIGS . 5A and 5B with some examples . (a) in 5A
depicts that deploying the web service W , at location A1
results in low cost (110 , 2000) , however , deploying W
additionally at A , minimizes latency (260 , 1250) . Similar
examples are given in (b) through (f) in FIGS . 5A and 5B .
[0040] Further , to accommodate an upper limit (d ;) on
number of locations that may be considered for deploying

1

Cs + n Cij 1

i

Lm?n Lkj

US 2022/0357969 A1 Nov. 10 , 2022
5

subject to : the web services , from among the total number of locations
(n) , the WSLAP constraint in equation (3) is modified as :

138-1 " X , sd , dsn Ve { 1 , ... , } (6)
152 ; = 1 " X1jsd ; = (12)

j =
X , E { 0,1 } VE { 1 , ... , n } (14)

2

; '

[0041] At step 204 , the system 100 identifies all web
services that are associated with the WSLAP , by processing
the WSLAP collected as input . The number of web services
may be different for different WSLAPs . Further , at step 206 ,
the system 100 decomposes the WSLAP to a plurality of
sub - problems . In an embodiment , decomposing the WSLAP
to the plurality of sub - problems involves considering each of
the plurality of web services associated with the WSLAP as
individual sub - problem . The step of 206 can be further
explained as given below :
[0042] The first objective in equation (1) can be rewritten

g '

g

as :

$ 1 == 1 " (Cy : X1 + C ; Xy + ... + C / X , 1) =
(E ; = 1 " C1 ; -X1 ;) + (? ; = 1 " C2 ; -Xz ;) + ...
+ (Ej = 1 " Cs ; X ;) = Cost of W + Cost of W2 + ...
+ Cost of Ws

If deployment cost of web service W ; is denoted as fi? the
above equation can be rewritten as :

$ 1 = f . , + f1 , + ... + f1 (7)

[0043) Similarly , the second objective in equation (2) can
be rewritten as :

$ 2 = 2 } = \ " (Rk1 ° Fx1 + Rx2Fx2 + ... + Rxs Fks) =
(Ek = " Rki Fx1) + (Ex = 1 " Rx2Fx2) + ...
+ (Ex = 1 } " Rks Fks) = Latency of Wi + Latency of
W2 + .. + Latency of W.

k = 1
172

1 .
m

1 If the latency of web service W ; is denoted as f2 ; the above
equation can be rewritten as :

f2 = 2 , + ... + f25 (8)

Rzemin { LjWX ; = 1 and jE { 1 , ... , n } } (14)

[0047] In a solution (f1 ; $ 2) for web service W is not a non - dominating solution , then the corresponding solution
($ 1 , $ 2) to the WSLAP also is not a non - dominating solution .
Also , if an invocation frequency and the deployment cost of
a web service Ware same as that of another web service W
then the solution for W , can be obtained using solution of W ;
and vice - versa .
[0048] As each sub - problem is relatively smaller and
independent , efficiency with which they can be solved is
comparatively high . Further , as the WSLAP is being solved
at sub - problems level , whenever a new web service is added ,
the same approach of solution identification can be used ,
without having to change the process , hence is very scalable
in nature to accommodate every addition of web services .
Further , in some applications the deployment cost and
frequency distribution of some of the web services may be
the same , and hence value of deployment cost and frequency
distribution calculated for one web service may be reused
for the other web services .
[0049] Further , at step 208 the system 100 determines at
least one non - dominating solution for each of the plurality of
sub - problems . The system 100 may use any suitable tech
nique / approach for determining the non - dominating solu
tions for the plurality of sub - problems . Some examples of
the techniques that may be used by the system 100 for
generating the non - dominated solutions are , but not limited
to , Genetic Algorithm , Particle Swarm Optimization , and
Integer Programming . In an embodiment , the system 100
may solve multiple subproblems in parallel , which helps in
decreasing run time . A set of all the non - dominating solu
tions S is represented as :

S = { S1 , S2 , S3 , (15)

[0050] Further , at ep 210 , the system 100 generates
solution to the WSLAP collected as input , by merging the
plurality of the non - dominating solutions determined and
generated at step 208. The system 100 uses a merging
process to merge the plurality of the non - dominating solu
tions . The merging process at a broad level has two steps as
depicted in method 300 of
[0051] FIG . 3. At step 302 of the method 300 , the system
100 generates a plurality of sub - solutions , wherein each of
the sub - solutions is generated by merging two non - domi
nating solutions at a time . In alternate embodiments , more
than two non - dominating solutions are merged at once .
However , the merging process is explained with reference to
two non - dominating solutions at a time . Various steps in the
process of generating a sub - solution by merging two of the
non - dominating solutions are depicted in method 400 of
FIGS . 4A and 4B . The method 400 is explained hereafter .
[0052] A plurality of sets S1 , S2 , ... , S , of non - dominating
solutions are considered by the system 100 to perform the
merging process , At step 402 of the method 400 , the system
100 collects a first set (El) and a second set (E2) of the
non - dominating solutions , from among the plurality of sets
of the non - dominating solutions , as input . In an embodi
ment , the system 100 starts merging the non - dominating
solutions generated for first sub - problem , and then picks and

Sn } [0044] The constraint of WSLAP given in equation (3) can
be decomposed to s sub - constraints as :

1s? = " ? ,

152 ; = 1 " X2 ; =

a

1s? , - " ? ,

[0045] Similarly , the constraint given in equation (6) that
upper - bounds the number of deployment locations for each
web service can be decomposed as follows :

152 ; = 1 " X 1,5d1

152 ; = 1 " X2,5d2

152 ; = 1 " X , jsds (10) n

[0046] The equations in (7) , (8) , and (10) are grouped to
model the location allocation problem for a single web
service W ;

minimize f1 = 2 ; = 1 " CjXjj (10)

as :

;

minimize $ 2 ; = & k = RriFki (11)

US 2022/0357969 A1 Nov. 10 , 2022
6

as part of the merging process . The steps are elaborated with
reference to the example values in Table 3 .

TABLE 3

Itera
tion
Heap H Stack N

1
2
3
4
5
6
7

merges the non - dominating solutions of the subsequent
sub - problems . In another embodiment , the system 100 may
pick and merge the non - dominating solutions in any pre
configured order .
[0053] The system 100 uses El and E2 as input to con
struct a solution table . In the solution table , a plurality of
solutions are listed such that position of each solution in the
solution table is represented using a unique combination of
row number and column number , wherein the row number
is an index from E2 and column number is an index from E1 .
Further , value of element at any position in the solution table
is a vector sum of values in El and E2 at respective
locations . The system 100 uses a stack - Heap architecture for
performing the merging process . At step 404 , the system 100
initializes the stack , and then at step 406 , the system 100
pushes a dummy solution to the stack . A large value is used
as the dummy solution . For example , (0 , a) is the value used
as the dummy solution , where Alpha (a) is a large number
that is pre - defined and configured with the system 100 ,
wherein " large ’ is in comparison with the values in the
tuples .
[0054] Further at step 408 , the system 100 generates a first
tuple as a summation of first non - dominating solutions in El
and E2 respectively . The system 100 picks the first non
dominating solutions in El and E2 and combines them to
generate the first tuple . Likewise , each value in El is
summed with each value in E2 to generate the other tuples
in the solution table . Consider the example values in the
tables below :

8
9

10
11
12
13
14
15
16

(3 , 14) (0 , a)
(5 , 11) (7 , 13) (3 , 14)
(6 , 10) (7 , 13) (3 , 14) (5 , 11)
(7 , 13) (8,9) (3 , 14) (5 , 11) (6 , 10)
(8,9) (9 , 10) (8 , 12) (3 , 14) (5 , 11) (6 , 10)
(8 , 12) (9 , 10) (3 , 14) (5 , 11) (6 , 10) (8,9)
(9 , 10) (15 , 11) (3 , 14) (5 , 11) (6 , 10) (8,9)
(10 , 9) (15 , 11) (10 , (3 , 14) (5 , 11) (6 , 10) (8,9)
9) (3 , 14) (5 , 11) (6 , 10) (8,9)
(10 , 9) (15 , 11) (3 , 14) (5 , 11) (6 , 10) (8,9)
(11 , 8) (15 , 11) (12 , (3 , 14) (5 , 11) (6 , 10) (8 , 9) (11 , 8)
8) (3 , 14) (5 , 11) (6 , 10) (8,9) (11 , 8)
(12 , 8) (15 , 11) (3 , 14) (5 , 11) (6 , 10) (8,9) (11 , 8) (13 , 7)
(13 , 7) (15 , 11) (3 , 14) (5 , 11) (6 , 10) (8 , 9) (11 , 8) (13 , 7)
(15 , 11) (3 , 14) (5 , 11) (6 , 10) (8 , 9) (11 , 8) (13 , 7)
(17,8) (3 , 14) (5 , 11) (6 , 10) (8 , 9) (11 , 8) (13 , 7)
(18 , 7)
(20 , 6)

2

(E1) (1 , 4)
(5 , 3)
(6,2)
(13 , 1)

(E2) (2 , 10)
(4,7)
(5 , 6)
(7,5)

TABLE 2

[0057] The system 100 picks and adds the first tuple from
the solution table to the Heap . In an embodiment , the value
in top left corner of the solution table is picked as the first
tuple , and is added to the Heap i.e. as in Table 3 , the value
(3 , 14) , which is in the top left corner of the solution table
is picked first . At step 410 , the system 100 removes root
node from the Heap tree . The root node contains lowest
value of elements in a first objective (f) in the Heap . In
Table 3 , the root node contains the value (3 , 14) in the first
step (as that is the only value present in the Heap at this
stage) . At step 412 , the system 100 pushes the removed root
node to the stack , if value of the second objective (f2) in the
root node is less than value of f2 in the stack , i.e. the value
(3 , 14) is compared with the value (0 , a) . As the value 14 is
less than a , the tuple (3 , 14) is pushed to the stack .
[0058] The system 100 then selects one or more solutions
from the solution table , such that the location of each of the
one or ore solutions in the solution table is to immediate
right or immediate bottom to the location of the value in the
root node . In the first step , as the value in the root node is
(3 , 14) , the system 100 selects the solutions / tuples (7 , 13)
and (5 , 11) from the solution table . Location of the tuple (7 ,
13) is to immediate right of the location of (3 , 14) and the
location of (5 , 11) is to immediate bottom of the location of
(3 , 14) . This process may be terminated by the system 100
when all values in the solution table have been selected and
processed .
[0059] in an alternate embodiment , the value in bottom
left corner of the solution table may be selected as the first
tuple i.e. (20,6) in the solution table in Table . 2. In this case ,
the system 100 picks values of tuples in locations that LU
are to immediate left and immediate top to the location of the
value in the root node in the second iteration and so on . i.e.
in the second iteration , the tuples (13 , 7) and (18 , 7) are
selected . This process may be terminated by the system 100
when all values in the solution table have been selected and
processed .
[0060] In another alternate embodiment , the system may
simultaneously pick the tuples that are at top left corner and
bottom right corner , as the first tuples . In this approach , the

(Solution Table)

(3 , 14) (7 , 13) (8 , 12) (15 , 11)
(5 , 11) (9 , 10) (10 , 9) (17 , 8)
(6 , 10) (10 , 9) (11,8) (18 , 7)
(8,9) (12,8) (13 , 7) (20,6)

[0055] In this example , values in the solution table are
generated as combination of values in El and E2 . For
example , the value (3 , 14) is generated as summation of (1 ,
4) in El and (2 , 10) in E2 . Likewise , the value (5 , 11) is
generated as summation of (1 , 4) from El and (4 , 7) from
E2 . Values of summation of the first ion - dominating solution
from E1 with every value in E2 forms first column of the
solution table , This process is repeated till summation of all
the values in El and E2 are generated and are filled in the
solution table .
[0056] Further , the system 100 picks values from the
solution table and moves the values between Heap and stack

US 2022/0357969 A1 Nov. 10. 2022
7

selection of remaining tuples in the solution table is in the
order as specified in the aforementioned paragraphs , and the
picking of values is terminated at a common point / location
in the solution table where both the approaches intersect .
[0061] When there are multiple tuples in the Heap , always
the value of the tuple in the root node is removed from the
heap and is attempted to be inserted to the stack . Since Heap
referred to in the embodiment is a min - heap , the root node
always has the lowest value with respect to the first objective
among all the tuples in the Heap . Also , when the tuple in the
root node is found to be dominated by the tuple in top of the
stack , the root node tuple is discarded . This process is
repeated till all the values in the solution table have been
selected and processed . The steps 410-416 are iteratively
performed till the sub - solutions for merged El and E2 are
generated . A merge algorithm that is used by the system 100
to perform merging of the non - dominated solutions is given
below :

tions i.e. E3 - E4 , E5 - E6 and so on . In an embodiment , the
sub - solutions generated by the system 100 are non - domi
nating sub - solutions . After generating all the non - dominat
ing sub - solutions , at step 304 , the system 100 may merge the
generated non - dominating sub - solutions to generate the
solution to the WSLAP , The merging of the non - dominating
sub - solutions may be performed in different ways . In one
embodiment , the sub - solutions may be sequentially merged ,
for example , E1 - E2 , E3 - E4 , and so on . In another embodi
ment , after merging the sub - solutions of El and E2 , resulting
sub - solution is merged with sub - solution of E3 , and then the
non - dominated sub - solutions of ((E1 - E2) -E3) are merged
with the non - dominated solutions of E4 and so on . In yet
another embodiment , the merging of the sub - solutions may
be performed in parallel . For example , the sub - solutions of
El and E2 are merged , and at the same time the sub
solutions of E3 and E4 are merged . The parallel merging
may be less time consuming .
[0064] The solution to the WSLAP determines a plurality
of locations in a cloud space where a plurality of VM
resources providing the plurality of web - services are to be
deployed according to a users ' locations and invocation
frequencies .
[0065] The system 100 may use the solution generated to
solve the WSLAP to perform a Virtual Machine Deploy
ment . In this process , the system 100 obtains a VM deploy
ment requirement , as input , wherein in the VM deployment
requirement , resource requirements are dynamically vary
ing . The system 100 then determines a plurality of optimal
VM resources from among the plurality of resources in the
cloud space , using a stochastic approach , wherein the plu
rality of optimal VM resources satisfy criteria defined in
terms of purchasing cost , storage capacity , processing capac
ity , maximum limit on number of VMs , and execution time ,
such that the dynamically varying resource requirements are
satisfied .
[0066] The stochastic approach used by the system 100 to
perform the VM allocation is explained below :

1
a

Input : two sets S ; and S ; of non - dominating solutions for services i and
j
Output : non - dominating solutions S to the combined problem

Procedure combineTwo (Si , S ;)
S = 1
initialize Heap minH of size r
minH.add ((a , tei , b , + d ,))
I = 1
while (I < r : t)

S [I] = minH.remove ()
i = row index of min element S [I]
j = col index of min element S [I] (list number)
right = (a ; +1 + ej , bi + 1 + d ;)
if (top element (a ; +1+ Cj - 1 , bit1 + d ; -1) is removed from Heap)

// use of boolean flag
add right to Heap H

down = (a ; + Cj + 1 , b ; + d ; +1)
if (left element (ai – 1 + 0 ; +1 , bi - 1 + dj + 1) is removed from Heap)

// use of boolean flag
add down to Heap H

I ++
return front (S)

=

[0062] Another version of the merge algorithm is : Stochastic Approach for VM Allocation :
[0067] Various notations that are used for explaining the
VM allocation approach are given in Table . 4 .

TABLE 4

Notations Description for the Model Parameters
1 C

T
NM min =
N

Input : two sets S ; and S ; of non - dominating solutions for services i and
j
Output : non - dominating solutions S to the combined problem
Procedure combineTwo (S ; S ;)
S = []
initialize Heap minH of size r
minH.add ({ a + ch , b + d))
I = 1
while (I < rit)

minH.remove ()
if (min [f2] < S [I - 1] [f2])

s [I] [1] = min [fi] , S [I] [2] = min [f2]
i = row index of min element S [I]
j col index of min element S [I]
right = (a ; +1 + C ; s bi + 1 + d ;)
if (top element (a ; +1+ Cj - 1 , b ; +1+ d ; -1) is removed from Heap)

l / use boolean flag
add right to Heap H

down = (a ; + C ; +1 , b ; + dj + 1)
if (left element (a : -1 + C ; +18 bi – 1 + d ; +1) is removed from Heap)

// use boolean flag
add down to Heap H

Itt
return S

Vc

Set of VM types offered by the cloud provider
Time horizon
Maximum number of VMs offered in each
type
Set of VM instances in each type
{ 1 , 2 , Nm }
Cost of purchasing VM type c for one time
period
Storage capacity for VM type c
Memory capacity for VM type c
Processing capacity for VM type c
Last time period a VM has been allocated
(Execution time)

Sc
mc
rc
TE

=

Xcjt { o 1 , if VM c of type j is allocated at time t
otherwise

[0063] The steps in method 400 may be repeated to
generate sub - solution for remaining non - dominating solu

[0068] For explanation purpose , consider a set of con
sumer requirements which can be further categorized as
application and non - application - based requirements . The

US 2022/0357969 A1 Nov. 10. 2022
8

2 where , Tee Z " , = { E (1) , & (2) .5 (3) } and
Xcj? € { 0,1 } Vte Tice Cj EN

[0071] The given stochastic formulation is modeled as a
constrained integer linear programming problem , where the
decision variables remain unchanged (explained in Table 4) ,
The stochastic model is constructed such that it consists of
three uncertain parameters that are present in the equations
(19) through (21) and are denoted by the vector & . Contrary
to this , the objective functions (given in equations 16 and
17) are independent of the three uncertain parameters .
[0072] To ensure that the uncertainties (in terms of the
changing requirements) are taken into consideration while
performing the VM deployment , a certain probability value
of constraint satisfaction is associated with each of the
uncertain constraints .
[0073] Consider a standard optimization formulation with
uncertain parameter vector & and decision variable vector x
as shown in equation 24. On application of a Chance
Constraint Programming (CPP) framework that is used for
the VM deployment , this stochastic optimization can be
represented as in equation 25 .

a

former category consists of the following demand require
ments : (i) total processing capacity R , (ii) total memory
capacity M , and (iii) total storage capacity S. The second
category , which is non - application based , includes , the
upper limits on a) budget B and b) execution time TE ,
associated with the deployment of workflow applications in
different resources . A cost component , which is the purchas
ing cost of varying VM types , is considered along - with
overall execution time for completion of a specific applica
tion . The application is executed faster or in other words , TE
is relatively lowered if high power VMs are used . However ,
using high power VMs increases the service cost as VM cost
increases with increase in computational power . Therefore ,
there exists an evident trade - off between the two mentioned
objectives . The system 100 performs the VM allocation ,
based on the solution generated for the WSLAP , in such a
way that the purchasing cost of VMs and TE are simulta
neously minimized , where the decision variables comprise
the number of VMs of each configuration that are offered by
the provider , the time of usage of each of these VMs and
execution time (TE acts as both decision variable as well as
objective function) . Additionally , the formulated multi - ob
jective optimization problem contains some constraints
based on application and non - application - based users ’
requirements . These constraints form part of the VM allo
cation requirement .
[0069] In case of the VM deployment , various parameters
in the VM allocation requirement keep on varying dynami
cally . For instance , in order to execute a data mining task ,
which is computationally intensive , the user may purchase 3
VMs of type 1 and 2 VMs of type 2 for a period of 20 hours ,
hoping that the task would be completed within that time .
However , after completion of around 50 % of the task , the
customer might change the requirements , either increase or
decrease the VMs of each type , or even request for a new
type of VM , owing to the computational speed and the status
of the usage of resources deployed so far . This flexible
nature of users ' requirements not only enables them to
choose sufficient and appropriate VMs for faster completion
of the task , but also helps in eliminating the unnecessary cost
of resources . It is to be noted that in most of the cases , the
inputs provided by the user keep on varying and are hence
termed as uncertain variables .
[0070] The system 100 uses the below mentioned stochas
tic formulation to perform the VM deployment .

min { f (x) g (x , 8) = 0 } > (24)
X

min { f (x) | P (g (x ,) = 0) 2 p } (25)
X

as

[0074] where , f (x) and g (x) denote the objective func
tion and constraint respectively , In (25) , P represents
the measure of probability which varies between 0 to 1
and p represents the probability of constraint satisfac
tion . Higher the p value , more reliable yet more con
servative is the solution . The feasible decision space is
progressively lowered the probability value
approaches unity ,

[0075] Prior to estimation of the probability values , the
uncertain demand requirements are assumed to follow nor
mal distribution . It is to be noted that the assumption that the
demand requirements follow the normal distribution is only
an example , and in practice , the system 100 can be config
ured to work with any distribution , Also , the decision
variables and the uncertain parameters are separable in the
stochastic model . Owing to these aspects , the stochastic
optimization problem in (25) is converted into equivalent
deterministic optimization problem shown as follows ;

(16) min . ? ? " ??? VeXcit * ejt , TELEC j = 1
min { f (x) | P ((x) 5) 2 p } (26)
X

min TE (17)
Xcit , TE = min { f (x)] f (x) 2 g (27)

X

– min { f (x) | g (x) 2 + ; } (28)
X subject to ,

Ece Ej = 1NME ETV Xcje SB (18)

Ece Ej = 1NMs Xc ; 56 (1) XcjHIET , c'e Cj'EN (19)

?? = 1 NMmXcj5 & (2) X (; VIE T , C'EC , j'EN CEC4j = 1 c'i't (20)

?? ?????? ???? (3)

[0076] where , ? and or represent the mean and standard
deviation values for the uncertain parameter & and qp
denotes the pth quantile of the standard normal distri
bution with mean = 0 and standard deviation = 1 (for
instance , when p = 0.97 , 4 , corresponds to 40.97 , which
is equal to 2) . The second term in the right - hand side of
the constraint in (28) (4,0) corrects the nominal
requirement of demand and delivers robustness of the
generated optimal allocation of resources under uncer

Ece (21)

E ; = 1 ̂ MXcj?EN MVteT.ceC j 1 M (22)

TestXcit Vte T.ce CjeN (23)

US 2022/0357969 A1 Nov. 10 , 2022
9

tain situations . i.e. the CCP approach also works if the
set of decision variables and uncertain parameters are
non - separable . By this approach the VM allocation /
deployment problem is converted into deterministic
form , and further , any classical or evolutionary opti
mization algorithm can be used for solving it .

algorithms (NSGAII , BMOPSOCD , D & C NSGAII and
D & C BMOPSOCD) . HV is a measure which reflects the
volume enclosed by a solution set and a reference point . A
larger HV value indicates a better solution set . IGD is a
modified version of Generational Distance (GD) which
estimates how far the elements in the true Pareto front are
from those in the non - dominated set produced by an algo
rithm . IGD calculates the sum of the distances from each
point within the true Pareto front to the nearest point within
the non - dominated set produced by an algorithm . A lower
IGD value indicates a better quality solution set . However ,
for calculating the IGD value , a true Pareto front is required ,
and for the problem being addressed , the true Pareto front is
unknown . Therefore , an approximated Pareto front was
considered by combining all solutions produced by four
algorithms and then by applying a non - dominated sorting to
obtain the final non - dominated set .
[0081] Parameter values used for each algorithm consid
ered in the evaluation are shown in Table 6 .

TABLE 6
NSGAII with Method
200 (referred as D & C

NSGAII) Parameter NSGAII

Experimental Results
[0077] a . Results to prove efficacy of the method 200 to

generate solution for WSLAP :
[0078] During the experiments conducted , efficacy of the
WSLAP solution generation approach used by the system
100 was compared with traditional multi - objective evolu
tionary algorithms (MOEAs) on test instances of different
sizes . Specifically , the four algorithms “ NSGAII , BMOP
SOCD , D & C NSGAII and D & C BMOPSOCD ” were con
sidered . NSGAII and BMOPSOCD are traditional algo
rithms that solve WSLAP as a single problem without
dividing it into subproblems . D & C NSGAII and D & C
BMOPSOCD solve the WSLAP by decomposing it into
multiple subproblems and by merging the non - dominated
solutions of each problem using the proposed merge algo
rithm . All algorithms were implemented in Python version
3.7 and the experiments were conducted on a Windows 10
machine with i7-8650U 2.11 GHz processor and 16GB of
RAM .
[0079] The experiment was conducted with 14 different
WSLAP instances . The number of services s , locations n and
user centers m considered in each test instance is shown in
Table 5. The search space of an instance is computed using
the number of services and candidate locations (29.9) . Since
the computation complexity of an instance also depends on
the number of user centers , for each search space , the
number of user centers is varied . The test instances employ
a real - world WSDream dataset for obtaining latency num
bers . This dataset contains only latencies between candidate
locations and user centers and lacks deployment costs for
candidate locations and invocation frequencies for web
services . The deployment costs for candidate locations were
randomly generated according to a normal distribution with
the mean of 100 and standard deviation of 20. The invoca
tion frequencies also were randomly generated for user
centers from a uniform distribution between 1 and 120 .

250 20
n

Population size
Chromosome size
Tournament size
Crossover probability
Mutation probability
Maximum generations

S.n

3
0.8
0.2

250

3
0.8
0.2

40

BMOPSOCD with
method 200 (referred
as D & C BMOPSOCD) Parameter BMOPSOCD

Population size
Archive size
Inertia
Personal best cl
Swarm best c2
Mutation probability
Maximum generations

250
250

0.4
1
1
0.5

250

20
20
0.4
1
1
0.5

40

a

TABLE 6

Service Locations User centres Search space
Instance S m n 28.9

2
3

Am tin ONO
5

10
15
15
25
25
15

2100
2200
2750
2750
21250
21250

5
6
7
8
9

10
11
12
13
14

21500

20
20
50
50
50
50
100
100
100
100
200
200
200
200

[0082] The parameter values for NSGAII algorithm were
selected empirically , that is , several values for parameters
were tried , and it was observed whether the solutions have
converged (have similar fitness values between two con
secutive generations) . Same values of crossover probability
(0.8) and mutation probability (0.2) were used for D & C
NSGAII . The size of a chromosome used for NSGAII is sin ,
where s is the number of web services and n is the number
of candidate locations . Since the NSGAII using the method
200 (referred as D & C NSGAII) solves the location alloca
tion for each web service independently , the size of a
chromosome in this case is just n . Generally , the population
size is related to the search space , A larger population size
denotes a stronger search ability because more space can be
explored . As the search space of NSGAII is larger 23. " , a
population size of 250 was used . As the search space of
NSGAII using the method 200 is smaller 2n , a smaller
population of size 20 was used . Further , the maximum
number of iterations for NSGAII was set to 250 whereas for
NSGAII using the method 200 , it was set to 40. The
experiment was conducted focusing on the effectiveness of
the approach in method 200 instead of selecting the best
parameterset .

10
10
20
40
20
40
20
40
20
40
40
80
40
80

25
25
25
25
40
40

– ? ? ? ? ? ?

21500
22500
22500
25000
25000
28000
28000

[0080] HyperVolume (HV) and Inverted Generational
Distance (IGD) were used as performance metrics to evalu
ate the diversity and quality of solutions produced by four

US 2022/0357969 A1 Nov. 10 , 2022
10

TABLE 7 - continued

NSGA with
method 200

BMOPSOCD
with method

BMOPSOCD 200 NSGA II

Instance Mean Std Mean Std Mean Std Mean Std

9.5E
04

TABLE 8

BMOPSOCD
NSGA with with method
method 200 BMOPSOCD 200 NSGA II

Instance Mean Std Mean Std Mean Std Mean Std

[0083] For BMOPSOCD algorithm , selected parameter
values were used . The value of static inertia weight w was
set to 0.4 and the mutation probability was set to 0.5 . The
parameters cl and c2 were both set to 1. Hence , particle's
personal best and swarm's global best had an equal influence
on the swarm . The archive size and population size were
both set to 250. The parameters used for BMOPSOCD for
the method 200 (referred as D & C BMOPSOCD) were same
except for the population size , archive size and the number
of generations . As the search space of the approach in
method 200 is smaller , the population size and archive size
were set to 20 , and the number of generations to 40 .
[0084] The two objective functions (latency and cost)
were normalized between 0 and 1. The point (1 , 1) is the
extreme point of objective values . (1 , 1) was used as the
reference point in calculating HV . For each experiment , the
method 200 was run ten times independently . The best
results of all the runs were compared . To obtain the best
result of ten runs , the results of all ten runs were combined
and sorted by the non - dominated values .
[0085] The values were plotted in a graph format (an
example for instance 3 is depicted in FIG . 6A) , and it
indicated that the techniques NSGAII and BMOPSOCD ,
when adopted the method 200 , are able to find better and
diverse solutions than standard NSGAII and BMOPSOCD .
Table 7 shows HV values and Table 6 shows IGD values
calculated using non - dominated solutions obtained by each
algorithm for all fourteen instances . A larger HV value
indicates a better and diverse solution set . A lower IGD
value indicates a better quality solution set . From the values
in the tables (Tables 7 and 8) , it is dear that solutions
obtained using the method 200 were comparatively better
than the state of - the - art NSGAll and BMOPSOCD algo
rithms in terms of both quality and diversity ,

Instance 1
Instance 2
Instance 3
Instance 4
Instance 5
Instance 6
Instance 7
Instance 8
Instance 9
Instance
10
Instance
11
Instance
12
Instance
13
Instance

0.19
0.17
0.34
0.25
0.32
0.30
0.39
0.26
0.28
0.30
0.27
0.26
0.30
0.28

0.018
0.039
0.066
0.050
0.070
0.067
0.070
0.050
0.060
0.062
0.008
0.007
0.007
0.006

0.14
0.07
0.05
0.04
0.03
0.03
0.08
0.04
0.03
0.04
0.04
0.04
0.04

0.000 0.15
0.002 0.07
0.005 0.09
0.007 0.05
0.005 0.04
0,004 0.04
0.011 0.13
0.008 0.07
0.003 0.04
0.009 0.05
0.007 0.05
0.004 0.05
0.007 0.04
0,005 0.03 0.04

0.009 5.1 E- 1.7E
0.004 04 05
0.005 6.6E- 1.3E
0.007 04 04
0.005 1.7E- 1.7E
0.005 04 05
0.013 1.4E- 1.0E
0.008 04 05
0.004 2.1E- 2.0E
0.009 04 05
0.007 1.9E- 1.9E
0.004 04 05
0.006 8.9E- 1.3E
0.005 05 05

7.2E- 5.1E
05 06
2.1E- 1.6E
04 05
9.6E- 5.8E
05 06
1.3E- 9.3E
04 06
1.2E- 6.8E
04 06
3.0E- 2.8E
04 05
2.9E- 2.9E
04 05

a

14

TABLE 7

NSGA with
method 200

BMOPSOCD
with method

BMOPSOCD 200 NSGA II

Instance Mean Std Mean Std Mean Std Mean Std

Instance 1
Instance 2
Instance 3
Instance 4
Instance 5
Instance 6
Instance 7
Instance 8
Instance 9
Instance
10
Instance
11
Instance
12
Instance
13
Instance
14

0.72
0.68
0.55
0.56
0.54
0.55
0.54
0.55
0.54
0.54
0.51
0.51
0.51
0.51

0.030 0.82
0.068 0.92
0.092 0.95
0.089 0.95
0.100 0.97
0.098 0.97
0.094 0.95
0.090 0.95
0.098 0.97
0.099 0.96
0.003 0.96
0.004 0.96
0.002 0.95
0.002 0.94

0.006 0.78
2.1E - 03 0.89
2.8E - 04 0.89
2.4E - 04 0.90
7.7E - 04 0.93
5.5E - 04 0.93
2.4E - 04 0.86
1.7E - 04 0.87
4.4E - 04 0.90
5.0E - 04 0.91
5.5E - 04 0.88
7.5E - 04 0.89
1.4E - 03 0.92
1.5E - 03 0.92

0.013 0.96
0.007 0.90
0.006 0.97
0,008 0.97
0.005 0.98
0.004 0.98
0.010 0.98
0.009 0.97
0.007 0.97
0.005 0.98
0.007 0.98
0.006 0.98
0.004 0.98
0.004 0.98

3.1E
03
1.0E
03
8.8E
04
4.9E
03
1.4E
03
1.3E
03

[0086] b . Results to prove efficacy of the VM allocation
done by the system 100
[0087] An application or problem instance called nug22
sbb , which is computationally intensive , was considered to
perform the experiment . The following resource require
ments were considered from the user for this specific appli
cation : M = 77 GB , S = 51 GB , R = 5067533 GFLOPS (per
time period t) , T = 12 hrs , B = 343 $. A suitable cloud provider
was selected , where a diverse range of resources were
offered for proper execution of the application . In this
experiment , five types of VMs were chosen as the probable
set of resources that possess the specification as shown in
Table 9. The maximum number of VMs is considered to be
the same (NM30) for all types or configurations .

4.4E
04
6.2E
04
9.1E
04
1.1E
03
5.2E
04
5.7E
04
7.6E
04

TABLE 9

Type ($ / hr)
S

(GB)
mc

(GB) (MFLOPS))
c3.large
c3.xlarge

0.105
0.210

32
80

3.75
7.5

8800
17600

US 2022/0357969 A1 Nov. 10 , 2022
11

TABLE 9 - continued

mc
Type ($ / hr) (GB) (GB)

rc
(MFLOPS)

c3.2xlarge
c3.3xlarge
c3.4xlarge

0.420
0.840
1.680

160
320
640

15
30
60

35200
70400
140800

ties in the demand requirements from the user . The deter
ministic values that were used previously were allowed to
deviate by 20 % for obtaining the bounds on the uncertain
parameters . In a practical scenario , these bounds are usually
provided by the user or cloud broker . Now , it is assumed that
the four uncertain parameters follow normal distribution and
the probability of constraint satisfaction (p) is set to 0.75 .
Subsequently , CCP was applied for solving the stochastic
optimization problem of VM allocation , which is again
multi - objective . On converting this stochastic formulation
into equivalent deterministic optimization problem and solv
ing it using NSGA - II , the two dimensional Pareto optimal
front was obtained . On comparison with the deterministic
solution , it was observed that the solution quality is
improved with respect to both the objective function values .
[0092] Considering one of the PO solutions , the attained
decision variables were generated , which correspond to each
type of VM over entire time horizon (represented for a three
hour window) . In this case , a total of 30 VMs or resources
were required for execution , which is less in number as
compared to deterministic case . Further , c3.2xlarge VMs
were not allocated in the entire time horizon and c3.4xlarge
VMs were allocated as opposed to deterministic solutions ,
which implies that consideration of uncertainty plays an
important role in the selection of optimal VMs . Sample
results obtained for the stochastic VM allocation using CCP
and NSGA H are given in Table . 11 .

a

Deterministic VM Allocation Using NSGA - II
[0088] For the described application with specified user
requirements , the objective of the experiment was to identify
the optimal configuration of VMs at each time period , from
a set of VMs . To accomplish this , the constrained two
objective optimization problem was solved using a well
known evolutionary optimization algorithm called NSGA
II . since NSGA - II has the capability of providing near
global - optimal solutions . Being a population based
evolutionary optimizer , NSGA - II generates all the optimal
solutions in a single simulation run , which are also called as
Pareto - Optimal (PO) solutions .
[0089] Consequently , the deterministic VM allocation was
solved using binary coded NSGA - Il with number of popu
lations = 500 , number of generations = 500 , crossover prob
ability = 0.9 and mutation probability = 0.01 .
[0090] From the obtained two dimensional Pareto front , it
was observed that even though the maximum allowable
execution time is 12 hours , the application was able to
complete it by 10 hours (maximum value of TE) , with the
purchasing cost remaining low and well within the budget
limit . From the obtained PO solutions , a cloud broker may
choose any one solution based on a higher order information
such as , select the resource that is situated closer to the
users ' location (might help in reducing communication
cost) . For illustration purpose , one of the PO solutions has
been selected and its corresponding decision variables are
presented in Table 8 for each specific type of VM provided
by Amazon . The number of VMs are reported for a period
of three hours each . It was observed that a total of 43 VMs
were required for executing the considered scientific work
flow . Moreover , the number of VMs chosen at each time
instance (represented for a three hour window in Table 10)
do not follow any specific pattern and one of the configu
rations of VMs , that is , c3.4x large VMs , were not allocated
in the entire time horizon . This shows that optimal VM
allocation is a non - trivial exercise and plays a major role in
the enterprises ' growth of the cloud provider .

TABLE 11

Time
periods

1-3 4-6 7-9 10-12

Number of VMs

0 7
1

c3 . large
c3.xlarge
c3.2xlarge
c3.3xlarge
c3.4xlarge

3
8
0
0

? ? ??? ?? FONO 0
> O OOO

0
3
3

2
0

a

TABLE 10

Time periods

1-3 4-6 7-9 10-12

[0093] Additionally , in order to study the effect of prob
ability of constraint satisfaction (p) , the value of p is varied
from 0.75 to 1 and the corresponding solutions were plotted
in a graph format (FIG . 6B) . It was observed that as the p
value increases , the solution quality varies , sometimes dete
riorates as well but then the reliability of the solution is
more . However , choosing a too high value of p might lead
to conservative solutions and on the other hand , a smaller p
value is also not suggestable . Therefore , the cloud broker
must decide on the probability value to be considered .
[0094] The written description describes the subject mat
ter herein to enable any person skilled in the art to make and
use the embodiments . The scope of the subject matter
embodiments is defined by the claims and may include other
modifications that occur to those skilled in the art . Such
other modifications are intended to be within the scope of the
claims if they have similar elements that do not differ from
the literal language of the claims or if they include equiva
lent dements with insubstantial differences from the literal
language of the claims .
[0095] The embodiments of present disclosure herein
address unresolved problem of determining a solution for a
web services location allocation problem (WSLAP) and VM

Number of VMs

c3.large
c3.xlarge
c3.2 xlarge
c3.3xlarge
c3.4xlarge

2
5 PUN

9
8
7
3
0

in OOO
5
2
0

0
0
0
0

0

Stochastic VM Allocation Using CCP and NSGA - II
[0091] The same application or problem instance has been
analyzed in this section , but with the inclusion of uncertain

US 2022/0357969 A1 Nov. 10 , 2022
12

allocation . The embodiment , thus provides a mechanism for
generating the solution for the WSLAP , by merging a
plurality of sub - solutions using a merging process , The
embodiment , thus provides a mechanism for performing
Virtual Machine (VM) allocation and deployment , by using
a stochastic approach .
[0096] It is to be understood that the scope of the protec
tion is extended to such a program and in addition to a
computer - readable means having a message therein ; such
computer - readable storage means contain program - code
means for implementation of one or more steps of the
method , when the program runs on a server or mobile device
or any suitable programmable device . The hardware device
can be any kind of device which can be programmed
including e.g. any kind of computer like a server or a
personal computer , or the like , or any combination thereof .
The device may also include means which could be e.g ,
hardware means like e.g , an application - specific integrated
circuit (ASIC) , a field - programmable gate array (FPGA) , or
a combination of hardware and software means , e.g. an
ASIC and an FPGA , or at least one microprocessor and at
least one memory with software processing components
located therein . Thus , the means can include both hardware
means and software means . The method embodiments
described herein could be implemented in hardware and
software . The device may also include software means .
Alternatively , the embodiments may be implemented on
different hardware devices , e.g. using a plurality of CPUs .
[0097] The embodiments herein can comprise hardware
and software elements . The embodiments that are imple
mented in software include but are not limited to , firmware ,
resident software , microcode , etc. The functions performed
by various components described herein may be imple
mented in other components or combinations of other com
ponents . For the purposes of this description , a computer
usable or computer readable medium can be any apparatus
that can comprise , store , communicate , propagate , or trans
port the program for use by or in connection with the
instruction execution system , apparatus , or device .
[0098] The illustrated steps are set out to explain the
exemplary embodiments shown , and it should be anticipated
that ongoing technological development will change the
manner in which particular functions are performed . These
examples are presented herein for purposes of illustration ,
and not limitation . Further , the boundaries of the functional
building blocks have been arbitrarily defined herein for the
convenience of the description . Alternative boundaries can
be defined so long as the specified functions and relation
ships thereof are appropriately performed . Alternatives (in
cluding equivalents , extensions , variations , deviations , etc. ,
of those described herein) will be apparent to persons skilled
in the relevant art (s) based on the teachings contained
herein . Such alternatives fall within the scope of the dis
closed embodiments . Also , the words " comprising , " " hav
ing , ” “ containing , ” and “ including , ” and other similar forms
are intended to be equivalent in meaning and be open ended
in that an item or items following any one of these words is
not meant to be an exhaustive listing of such item or items ,
or meant to be limited to only the listed item or items . It must
also be noted that as used herein and in the appended claims ,
the singular forms “ a , ” “ an , ” and “ the ” include plural
references unless the context clearly dictates otherwise .
[0099] Furthermore , one or more computer - readable stor
age media may be utilized in implementing embodiments

consistent with the present disclosure . A computer - readable
storage medium refers to any type of physical memory on
which information or data readable by a processor may be
stored . Thus , a computer - readable storage medium may
store instructions for execution by one or more processors ,
including instructions for causing the processor (s) to per
form steps or stages consistent with the embodiments
described herein . The term “ computer - readable medium ”
should be understood to include tangible items and exclude
carrier waves and transient signals , i.e. , be non - transitory .
Examples include random access memory (RAM) , read
only memory (ROM) , volatile memory , nonvolatile
memory , hard drives , CD ROMs , DVDs , flash drives , disks ,
and any other known physical storage media .
[0100] It is intended that the disclosure and examples be
considered as exemplary only , with a true scope of disclosed
embodiments being indicated by the following claims .
What is claimed is :
1. A processor implemented method of performing web

services location allocation , comprising :
collecting a Web Service Location Allocation Problem

(WSLAP) as input , via one or more hardware proces
sors ;

identifying a plurality of web - services that are associated
with the WSLAP , via the one or more hardware pro
cessors ;

decomposing the WSLAP to a plurality of sub - problems ,
via the one or more hardware processors , by treating
each of the plurality of web services as a sub - problem ;

determining at least one non - dominating solution to each
of the plurality of sub - problems , to obtain a plurality of
non - dominating solutions to the plurality of sub - prob
lems , via the one or more hardware processors ; and

generating a solution to the obtained WSLAP by merging
the plurality of the non - dominating solutions , via the
one or more hardware processors , wherein the solution
determines a plurality of locations in a cloud space
where a plurality of VM resources providing the plu
rality of web - services are to be deployed according to
a users ' locations and invocation frequencies .

2. The method as claimed in claim 1 , wherein merging the
plurality of the non - dominating solutions to generate the
solution to the WSLAP comprises :

generating a plurality of sub - solutions by merging two of
the plurality of the non - dominating solutions at once ,
wherein generating each of the plurality of sub - solu
tions comprising :
collecting a first set of non - dominated solutions (E1)

and a second set of non - dominated solutions (E2) , as
input data to construct a solution table , wherein in
the solution table a plurality of solutions are listed
such that position of each solution in the solution
table is represented using a unique combination of a
row number and a column number , wherein the row
number is an index from E2 and column number is
an index from E1 , further wherein value of element
at any position in the solution table is a vector sum
of values in E1 and E2 at respective locations ;

initializing a stack N ;
pushing a dummy solution to the stack ;
generating a first tuple as a summation of first non

dominating solutions in El and E2 , and adding the
first tuple to a Heap H , starting from top left corner
of the solution table , wherein the first tuple com

>

US 2022/0357969 A1 Nov. 10 , 2022
13

a

prises a summation of first objective (fl) and a
second objective (f2) of the first non - dominating
solutions in El and E2 ;

iteratively performing till the sub - solution is generated :
removing a root node from the Heap H , wherein the

root node contains lowest value of all elements of
f? present in the Heap ;

pushing the removed root node to the stack , if value
of f , in the root node is less than value of f , in top
of the stack ;

for the root node :
selecting one or more solutions from the tuples in

the solution table , wherein the one or more
solutions are in a location that is to immediate
right or immediate bottom to the location of the
value in the root node ; and adding the selected
one or more solutions to the Heap ; and

merging the plurality of sub - solutions to generate the
solution for the WSLAP .

3. The method as claimed in claim 2 , wherein the first
tuple is generated as a summation of the last non - dominating
solutions in El and E2 , starting from bottom right corner of
the solution table , wherein for the root node the one or more
solutions in a location that is to immediate left or immediate
top to the location of the value in the root node are selected
and added to the Heap .

4. The method as claimed in claim 3 , wherein the first
tuple is generated by performing in parallel , selection of the
non - dominating solutions starting from a) bottom right
corner of the solution table and b) top left corner of the
solution table .

5. The method as claimed in claim 1 , wherein a VM
allocation is performed based on the generated solution to
the WSLAP problem , comprising :

obtaining a VM deployment requirement , wherein in the
VM deployment requirement , resource requirements
are dynamically varying ; and

determining a plurality of optimal VM resources from
among the plurality of resources in the cloud space ,
using a stochastic approach , wherein the plurality of
optimal VM resources satisfy criteria defined in terms
of purchasing cost , storage capacity ,

processing capacity , maximum limit on number of VMs ,
and execution time , such that the dynamically varying
resource requirements are satisfied .

6. A system of performing web service location allocation ,
comprising :

one or more hardware processors ;
a communication interface ; and
a memory operatively coupled to the one or more hard

ware processors via the communication interface ,
wherein the memory storing a plurality of instructions ,
which when executed , causes the one or more hardware
processors to :
collect a Web Service Location Allocation Problem

(WSLAP) as input ;
identify a plurality of web - services that are associated

with the WSLAP ;
decompose the WSLAP to a plurality of sub - problems ,
by treating each of the plurality of web services as a
sub - problem ;

determine at least one non - dominating solution to each
of the plurality of sub - problems , to obtain a plurality
of non - dominating solutions to the plurality of sub
problems ; and

generate a solution to the obtained WSLAP by merging
the plurality of the non - dominating solutions ,
wherein the solution determines a plurality of loca
tions in a cloud space where a plurality of VM
resources providing the plurality of web - services are
to be deployed according to a users locations and
invocation frequencies .

7. The system as claimed in claim 6 , wherein the system
merges the plurality of the non - dominating solutions to
generate the solution to the WSLAP by :

generating a plurality of sub - solutions by merging two of
the plurality of the non - dominating solutions at once ,
wherein generating each of the plurality of sub - solu
tions comprising :
collecting a first set of non - dominated solutions (E1)

and a second set of non - dominated solutions (E2) , as
input data to construct a solution table , wherein in
the solution table a plurality of solutions are listed
such that position of each solution in the solution
table is represented using a unique combination of a
row number and a column number , wherein the row
number is an index from E2 and column number is
an index from E1 , further wherein value of element
at any position in the solution table is a vector sum
of values in El and E2 at respective locations ;

initializing a stack N ;
pushing a dummy solution to the stack ;
generating a first tuple as a summation of last non

dominating solutions in El and E2 , and adding the
first tuple to a Heap H , starting from top left corner
of the solution table , wherein the first tuple com
prises a summation of first objective (fl) and a
second objective (f2) of the first non - dominating
solutions in El and E2 ;

iteratively performing till the sub - solution is generated :
removing a root node from the Heap H , wherein the

root node contains lowest value of all elements of
f , present in the Heap ;

pushing the removed root node to the stack , if value
of f , in the root node is less than value of f , in top
of the stack ; for the root node :
selecting one or more solutions from the tuples in

the solution table , wherein the one or more
solutions are in a location that is to immediate
right or immediate bottom to the location of the
value in the root node ; and adding the selected
one or more solutions to the Heap ; and

merging the plurality of sub - solutions to generate the
solution for the WSLAP .

8. The system as claimed in claim 7 , wherein the system
generates the first tuple as a summation of the last non
dominating solutions in El and E2 , starting from bottom
right corner of the solution table , wherein for the root node
the one or more solutions in a location that is to immediate
left or immediate top to the location of the value in the root
node are selected and added to the Heap .

9. The system as claimed in claim 8 , wherein the system
generates the first tuple by performing in parallel , selection

2

a

US 2022/0357969 A1 Nov. 10 , 2022
14

a

of the non - dominating solutions , starting from a) bottom
right corner of the solution table and b) top left corner of the
solution table .

10. The system as claimed in claim 6 , wherein the system
performs a VM allocation based on the generated solution to
the WSLAP problem , by :

obtaining a VM deployment requirement , wherein in the
VM deployment requirement , resource requirements
are dynamically varying ; and

determining a plurality of optimal VM resources from
among the plurality of resources in the cloud space ,
using a stochastic approach , wherein the plurality of
optimal VM resources satisfy criteria defined in terms
of purchasing cost , storage capacity , processing capac
ity , maximum limit on number of VMs , and execution
time , such that the dynamically varying resource
requirements are satisfied ,

11. A non - transitory computer readable medium for per
forming web services location allocation , comprising :

collecting a Web Service Location Allocation Problem
(WSLAP) as input , via one or more hardware proces
sors ;

identifying a plurality of web - services that are associated
with the WSLAP , via the one or more hardware pro
cessors ;

decomposing the WSLAP to a plurality of sub - problems ,
via the one or more hardware processors , by treating
each of the plurality of web services as a sub - problem ;

determining at least one non - dominating solution to each
of the plurality of sub - problems , to obtain a plurality of
non - dominating solutions to the plurality of sub - prob
lems , via the one or more hardware processors ; and

generating a solution to the obtained WSLAP by merging
the plurality of the non - dominating solutions , via the
one or more hardware processors , wherein the solution
determines a plurality of locations in a cloud space
where a plurality of VM resources providing the plu
rality of web - services are to be deployed according to
a users ' locations and invocation frequencies .

12. The non - transitory computer readable medium as
claimed in claim 11 , wherein merging the plurality of the
non - dominating solutions to generate the solution to the
WSLAP comprises :

generating a plurality of sub - solutions by merging two of
the plurality of the non - dominating solutions at once ,
wherein generating each of the plurality of sub - solu
tions comprising :
collecting a first set of non - dominated solutions (E1)

and a second set of non - dominated solutions (E2) , as
input data to construct a solution table , wherein in
the solution table a plurality of solutions are listed
such that position of each solution in the solution
table is represented using a unique combination of a
row number and a column number , wherein

the row number is an index from E2 and column
number is an index from E1 , further wherein value of

element at any position in the solution table is a
vector sum of values in El and E2 at respective
locations ; initializing a stack N ;

pushing a dummy solution to the stack ;
generating a first tuple as a summation of first non

dominating solutions in El and E2 , and adding the
first tuple to a Heap H , starting from top left corner
of the solution table , wherein the first tuple com
prises a summation of first objective (fl) and a
second objective (f2) of the first non - dominating
solutions in El and E2 ;

iteratively performing till the sub - solution is generated :
removing a root node from the Heap H , wherein the

root node contains lowest value of all elements of
fi present in the Heap ;

pushing the removed root node to the stack , if value
of f , in the root node is less than value of f , in top
of the stack ;

for the root node :
selecting one or more solutions from the tuples in

the solution table , wherein the one or more
solutions are in a location that is to immediate
right or immediate bottom to the location of the
value in the root node ; and

adding the selected one or more solutions to the
Heap ; and

merging the plurality of sub - solutions to generate the
solution for the WSLAP .

13. The non - transitory computer readable medium as
claimed in claim 12 , wherein the first tuple is generated as
a summation of the last non - dominating solutions in E1 and
E2 , starting from bottom right corner of the solution table ,
wherein for the root node the one or more solutions in a
location that is to immediate left or immediate top to the
location of the value in the root node are selected and added
to the Heap .

14. The non - transitory computer readable medium as
claimed in claim 13 , wherein the first tuple is generated by
performing in parallel , selection of the non - dominating
solutions starting from a) bottom right corner of the solution
table and b) top left corner of the solution table .

15. The non - transitory computer readable medium as
claimed in claim 11 , wherein a VM allocation is performed
based on the generated solution to the WSLAP problem ,
comprising :

obtaining a VM deployment requirement , wherein in the
VM deployment requirement , resource requirements
are dynamically varying ; and

determining a plurality of optimal VM resources from
among the plurality of resources in the cloud space ,
using a stochastic approach , wherein the plurality of
optimal VM resources satisfy criteria defined in terms
of purchasing cost , storage capacity , processing capac
ity , maximum limit on number of VMs , and execution
time , such that the dynamically varying resource
requirements are satisfied .

