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USING PARTY DATA FOR CONCURRENT 
DATA AUTHENTICATION, CORRECTION, 
COMPRESSION, AND ENCRYPTION 

CROSS REFERENCE TO RELATED 
APPLICATION 

0001. This application is a continuation and claims prior 
ity to and the benefit of U.S. patent application Ser. No. 
13/727,581, entitled USING PARITY DATA FOR CON 
CURRENT DATA AUTHENTICATION, CORRECTION, 
COMPRESSION, AND ENCRYPTION, filed on Dec. 26, 
2012, which is a continuation-in-part of U.S. patent applica 
tion Ser. No. 13/341,833, entitled ACCELERATED ERA 
SURE CODING SYSTEM AND METHOD (hereinafter 
“the Benefit Application'), now U.S. Pat. No. 8,683.296, filed 
on Dec. 30, 2011, the entire contents of all of which are 
incorporated herein by reference. 

BACKGROUND 

0002 1. Field 
0003 Aspects of embodiments of the present invention are 
directed toward a system and method of using parity data for 
erasure code data verification, correction, encryption, and 
compression, alone or in combination with each other. 
0004 2. Description of Related Art (from the Benefit 
Application) 
0005. An erasure code is a type of error-correcting code 
(ECC) useful for forward error-correction in applications like 
a redundant array of independent disks (RAID) or high-speed 
communication systems. In a typical erasure code, data (or 
original data) is organized in stripes, each of which is broken 
up into Nequal-sized blocks, or data blocks, for some positive 
integer N. The data for each stripe is thus reconstructable by 
putting the N data blocks together. However, to handle situ 
ations where one or more of the original N data blocks gets 
lost, erasure codes also encode an additional M equal-sized 
blocks (called check blocks or check data) from the original N 
data blocks, for some positive integer M. 
0006. The N data blocks and the Mcheck blocks are all the 
same size. Accordingly, there are a total of N+M equal-sized 
blocks after encoding. The N+M blocks may, for example, be 
transmitted to a receiver as N+M separate packets, or written 
to N+M corresponding disk drives. For ease of description, all 
N+M blocks after encoding will be referred to as encoded 
blocks, though some (for example, N of them) may contain 
unencoded portions of the original data. That is, the encoded 
data refers to the original data together with the check data. 
0007. The M check blocks build redundancy into the sys 
tem, in a very efficient manner, in that the original data (as 
well as any lost check data) can be reconstructed if any N of 
the N+M encoded blocks are received by the receiver, or if 
any N of the N+M disk drives are functioning correctly. Note 
that such an erasure code is also referred to as “optimal.” For 
ease of description, only optimal erasure codes will be dis 
cussed in this application. In such a code, up to M of the 
encoded blocks can be lost, (e.g., up to M of the disk drives 
can fail) so that if any N of the N+M encoded blocks are 
received successfully by the receiver, the original data (as 
well as the check data) can be reconstructed. N/(N--M) is thus 
the code rate of the erasure code encoding (i.e., how much 
space the original data takes up in the encoded data). Erasure 
codes for select values of N and M can be implemented on 
RAID systems employing N+M (disk) drives by spreading 
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the original data among N “data” drives, and using the 
remaining M drives as “check” drives. Then, when any N of 
the N+M drives are correctly functioning, the original data 
can be reconstructed, and the check data can be regenerated. 
0008 Erasure codes (or more specifically, erasure coding 
systems) are generally regarded as impractical for values of 
M larger than 1 (e.g., RAID5 systems, such as parity drive 
systems) or 2 (RAID6 systems), that is, for more than one or 
two check drives. For example, see H. Peter Anvin, “The 
mathematics of RAID-6, the entire content of which is incor 
porated herein by reference, p. 7, "Thus, in 2-disk-degraded 
mode, performance will be very slow. However, it is expected 
that that will be a rare occurrence, and that performance will 
not matter significantly in that case. See also Robert Mad 
dock et al., “Surviving Two Disk Failures.’ p. 6, “The main 
difficulty with this technique is that calculating the check 
codes, and reconstructing data after failures, is quite complex. 
It involves polynomials and thus multiplication, and requires 
special hardware, or at least a signal processor, to do it at 
sufficient speed.” In addition, see also James S. Plank, 'All 
About Erasure Codes:—Reed-Solomon Coding LDPC 
Coding, slide 15 (describing computational complexity of 
Reed–Solomon decoding), “Bottom line: When n &m grow, 
it is brutally expensive. Accordingly, there appears to be a 
general consensus among experts in the field that erasure 
coding systems are impractical for RAID systems for all but 
small values of M (that is, small numbers of check drives), 
Such as 1 or 2. 

0009 Modern disk drives, on the other hand, are much less 
reliable than those envisioned when RAID was proposed. 
This is due to their capacity growing out of proportion to their 
reliability. Accordingly, systems with only a single check disk 
have, for the most part, been discontinued in favor of systems 
with two check disks. 

0010. In terms of reliability, a higher check disk count is 
clearly more desirable than a lower check disk count. If the 
count of error events on different drives is larger than the 
check disk count, data may be lost and that cannot be recon 
structed from the correctly functioning drives. Error events 
extend well beyond the traditional measure of advertised 
mean time between failures (MTBF). A simple, real world 
example is a service event on a RAID system where the 
operator mistakenly replaces the wrong drive or, worse yet, 
replaces a good drive with a broken drive. In the absence of 
any generally accepted methodology to train, certify, and 
measure the effectiveness of service technicians, these types 
of events occur at an unknown rate, but certainly occur. The 
foolproof solution for protecting data in the face of multiple 
error events is to increase the check disk count. 

(0011. 3. Description of Related Art (New) 
0012 Parity data is used in digital error detecting and 
correcting logic, such as erasure codes. An erasure code is a 
type of error-correcting code (ECC) useful for forward error 
correction in applications like a redundant array of indepen 
dent disks (or devices, also known as RAID) or high-speed 
communication systems. In a typical erasure code, data (or 
original data) is organized in stripes, each of which is broken 
up into Nequal-sized blocks, or data blocks, for some positive 
integer N. The data for each stripe is thus reconstructable by 
putting the N data blocks together. However, to handle situ 
ations where one or more of the original N data blocks get lost 
(for example, missing, corrupted, etc.), erasure codes also 
encode an additional M equal-sized blocks (called check 
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blocks or check data; also referred to as parity blocks or parity 
data) from the original N data blocks, for some positive inte 
ger M. 
0013 The N data blocks and the Mcheck blocks are all the 
same size. Accordingly, there are a total of N+M equal-sized 
blocks after encoding. The N+M blocks may, for example, be 
transmitted to a receiver as N+M separate packets, or written 
to N--M corresponding disk drives, or physically or logically 
separated from each other by some other device or conven 
tion. For ease of description, all N+M blocks after encoding 
will be referred to as encoded blocks, though some (for 
example, N of them) may contain unencoded portions of the 
original data. That is, the encoded data refers to the original 
data together with the check data. Another way to look at this 
is that the original data can be trivially encoded into N blocks, 
one for each original data block. Still another way to look at 
this is that the original N data blocks can be encoded into 
N+M encoded blocks. 
0014. The M check blocks build redundancy into the sys 
tem, in a very efficient manner, in that the original data (as 
well as any lost check data) can be reconstructed if any N of 
the N+M encoded blocks are received by the receiver, or if 
any N of the N+M disk drives are functioning correctly (or, in 
short, if any N of the N+M encoded blocks are available). 
Note that such an erasure code is also referred to as “optimal.” 
For ease of description, only optimal erasure codes will be 
discussed in this application. In Such a code, up to M of the 
encoded blocks can be lost, (e.g., up to M of the disk drives 
can fail) so that if any N of the N+M encoded blocks are 
received successfully by the receiver, the original data (as 
well as the check data) can be reconstructed. N/(N--M) is thus 
the code rate of the erasure code encoding (i.e., how much 
space the original data takes up in the encoded data). Erasure 
codes for select values of N and M can be implemented on 
RAID systems employing N+M (disk) drives by spreading 
the original data among N “data” drives, and using the 
remaining M drives as “check” drives. Then, when any N of 
the N+M drives are correctly functioning, the original data 
can be reconstructed, and the check data can be regenerated. 
0015 Systems and methods of implementing practical 
erasure codes for arbitrary values of N and Mare described in 
the Benefit Application and included herein. The advent of 
Such practical implementations allows potentially a large 
number M of check drives in a RAID environment, some or 
most of which would not even be needed in a typical failure 
scenario. 

0016 Erasure codes are usually described with an under 
lying assumption that, at any time, each encoded block is 
known either to contain entirely correct data or to contain 
corrupted or missing data. Accordingly, it is only a matter of 
making Sure that there are N encoded blocks that are assumed 
to have correct data in order to guarantee that the original data 
can be reconstructed. Silent data corruptions (SDCs), this is, 
the introduction of errors into the encoded blocks, which can 
take place in any portion of the memory or storage hierarchy, 
are therefore assumed not to exist in this framework. 

0017. However, studies of real life data show otherwise. 
SDCs are introduced throughout the memory and storage 
hierarchy. Left undetected (and uncorrected), SDCs can 
propagate and compromise data, amplifying their negative 
effects. 
0018. In Li, M. & Shu, J., Preventing Silent Data Corrup 
tions from Propagating During Data Reconstruction, 59 
IEEE TRANSACTIONS ON COMPUTERS 1611-24 (vol. 12, Decem 
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ber 2010) the authors describe the SDC phenomenon with 
erasure codes and propose solutions for SDC detection and 
correction during data reconstruction. However, as already 
mentioned, SDCs can be introduced anywhere in the memory 
or storage hierarchy, so it would be desirable to prevent their 
occurrence anywhere, and not just during data reconstruction. 

SUMMARY 

From the Benefit Application 
0019 Aspects of embodiments of the present invention 
address these problems by providing a practical erasure cod 
ing system that, for byte-level RAID processing (where each 
byte is made up of 8 bits), performs well even for values of 
N+M as large as 256 drives (for example, N=127 data drives 
and M=129 check drives). Further aspects provide for a single 
precomputed encoding matrix (or master encoding matrix) S 
of size MXN, or (N+M)xN, or -1)xN, ele 
ments (e.g., bytes), which can be used, for example, for any 
combination of NsN data drives and Ms.M. check 
drives such that N+Ms256 (e.g., N, 127 and 
M=129, or N=63 and M-193). This is an improve 
ment over prior art solutions that rebuild such matrices from 
scratch every time N or M changes (such as adding another 
check drive). Still higher values of N and Mare possible with 
larger processing increments, such as 2 bytes, which affords 
up to N+M=65,536 drives (such as N=32,767 data drives and 
M=32,769 check drives). 
0020 Higher check disk count can offer increased reliabil 
ity and decreased cost. The higher reliability comes from 
factors such as the ability to withstand more drive failures. 
The decreased cost arises from factors such as the ability to 
create largergroups of data drives. For example, systems with 
two checks disks are typically limited to group sizes of 10 or 
fewer drives for reliability reasons. With a higher check disk 
count, larger groups are available, which can lead to fewer 
overall components for the same unit of storage and hence, 
lower cost. 
0021 Additional aspects of embodiments of the present 
invention further address these problems by providing a stan 
dard parity drive as part of the encoding matrix. For instance, 
aspects provide for a parity drive for configurations with up to 
127 data drives and up to 128 (non-parity) check drives, for a 
total of up to 256 total drives including the parity drive. 
Further aspects provide for different breakdowns, such as up 
to 63 data drives, a parity drive, and up to 192 (non-parity) 
check drives. Providing a parity drive offers performance 
comparable to RAID5 in comparable circumstances (such as 
single data drive failures) while also being able to tolerate 
significantly larger numbers of data drive failures by includ 
ing additional (non-parity) check drives. 
0022. Further aspects are directed to a system and method 
for implementing a fast Solution matrix algorithm for Reed— 
Solomon codes. While known solution matrix algorithms 
compute an NxN solution matrix (see, for example, J. S. 
Plank, 'A tutorial on Reed-Solomon coding for fault-toler 
ance in RAID-like systems. Software Practice & Experi 
ence, 27(9): 995-1012, September 1997, and J. S. Plank andY. 
Ding, “Note: Correction to the 1997 tutorial on Reed-So 
lomon coding. Technical Report CS-03-504, University of 
Tennessee, April 2003), requiring O(N) operations, regard 
less of the number of failed data drives, aspects of embodi 
ments of the present invention compute only an FXF solution 
matrix, where F is the number of failed data drives. The 



US 2015/0207522 A1 

overhead for computing this FXF solution matrix is approxi 
mately F/3 multiplication operations and the same number 
of addition operations. Not only is FsN, in almost any prac 
tical application, the number of failed data drives F is consid 
erably smaller than the number of data drives N. Accordingly, 
the fast solution matrix algorithm is considerably faster than 
any known approach for practical values of F and N. 
0023 Still further aspects are directed toward fast imple 
mentations of the check data generation and the lost (original 
and check) data reconstruction. Some of these aspects are 
directed toward fetching the Surviving (original and check) 
data a minimum number of times (that is, at most once) to 
carry out the data reconstruction. Some of these aspects are 
directed toward efficient implementations that can maximize 
or significantly leverage the available parallel processing 
power of multiple cores working concurrently on the check 
data generation and the lost data reconstruction. Existing 
implementations do not attempt to accelerate these aspects of 
the data generation and thus fail to achieve a comparable level 
of performance. 
0024. By providing practical and efficient systems and 
methods for erasure coding systems (which for byte-level 
processing can Support up to N--M=256 drives, such as 
N=127 data drives and M=129 check drives, including a 
parity drive), applications such as RAID Systems that can 
tolerate far more failing drives than was thought to be possible 
or practical can be implemented with accelerated perfor 
mance significantly better than any prior art Solution. 

SUMMARY 

New 

0025 Aspects of embodiments of the present invention are 
directed toward a system and method of using parity data for 
erasure code data verification and authentication, error detec 
tion and correction, compression, and encryption. In particu 
lar, aspects are directed toward Verifying data, including 
detecting and correcting silent data corruptions (SDCs) in the 
memory or storage hierarchy. 
0026. In an exemplary embodiment, RAID parity data is 
maintained with the contents of a RAID cache. Accordingly, 
Read operations of data from the RAID cache can have any of 
their corresponding data and check blocks verified before or 
after the Read operations are performed. It may also to be 
possible to correct the errors, especially if they are not too 
numerous. In addition, Write operations of data to the RAID 
cache can have their corresponding data and check blocks 
verified (with possible error correction) before or after the 
Write operations are performed. 
0027. In further embodiments of the present invention, the 
number of check blocks kept in the RAID cache can differ 
from the number of check drives used to store the check 
(parity) data. That is, the RAID cache stripe size can differ 
from the external (e.g., disk drive) stripe size, which allows 
for both sizes to be optimized depending on factors such as 
hardware resources available, reliability versus RAID cache 
size and processing overhead, etc. 
0028. According to an exemplary embodiment of the 
present invention, a system for Software error-correcting code 
(ECC) protection or compression of original data using ECC 
data in a first memory is provided. The system includes a 
processing core for executing computer instructions and 
accessing data from a main memory, and a non-volatile Stor 
age medium for storing the computer instructions. The pro 
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cessing core, the storage medium, and the computer instruc 
tions are configured to implement the software ECC 
protection or compression of the original data using the ECC 
data in the first memory. The software ECC protection or 
compression includes: a data matrix for holding the original 
data in the first memory; a check matrix for holding the ECC 
data in the first memory; an encoding matrix for holding first 
factors in the main memory, the first factors being for encod 
ing the original data into the ECC data; and a thread for 
executing on the processing core. The thread includes a 
Galois Field multiplier for multiplying entries of the data 
matrix by an entry of the encoding matrix, and a sequencer for 
ordering operations through the data matrix and the encoding 
matrix using the Galois Field multiplier to generate the ECC 
data. 
0029. The sequencer may be configured to generate the 
ECC data on write operations of the original data to the first 
memory. 
0030 The sequencer may be further configured to regen 
erate the ECC data on read operations of the original data 
from the first memory. 
0031. The thread may further include a comparator for 
comparing the regenerated ECC data with the generated ECC 
data. 
0032. The thread may further include an error corrector for 
correcting errors in the held original data and the held ECC 
data. 
0033. The Galois Field multiplier may be a parallel mul 
tiplier for concurrently multiplying the entries of the data 
matrix by the entry of the encoding matrix. 
0034. The processing core may include a plurality of pro 
cessing cores. The thread may include a plurality of threads. 
The software ECC protection or compression may further 
include a scheduler for generating the ECC data by dividing 
the data matrix into a plurality of data matrices, dividing the 
check matrix into a plurality of check matrices, assigning 
corresponding ones of the data matrices and the check matri 
ces to the threads, and assigning the threads to the processing 
cores to concurrently generate portions of the ECC data cor 
responding to the check matrices from respective ones of the 
data matrices. 
0035. The processing core may include a plurality of pro 
cessing cores. The thread may include a plurality of threads. 
The software ECC protection or compression may further 
include a scheduler for generating the ECC data by dividing 
the data matrix into a plurality of data matrices, dividing the 
check matrix into a plurality of check matrices, assigning 
corresponding ones of the data matrices and the check matri 
ces to the threads, and assigning the threads to the processing 
cores to concurrently generate portions of the ECC data cor 
responding to the check matrices from respective ones of the 
data matrices. 
0036. The software ECC protection or compression may 
further include a second check matrix for holding second 
ECC data in the first memory. The encoding matrix may be 
further configured to hold second factors in the main memory, 
the second factors being for encoding the original data into 
the second ECC data. The sequencer may be further config 
ured to order operations through the data matrix and the 
encoding matrix using the Galois Field multiplier to generate 
the second ECC data. 
0037. The sequencer may be further configured to regen 
erate the ECC data or the second ECC data on read operations 
of the original data from the first memory. The thread may 
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further include a comparator for comparing the regenerated 
ECC data with the generated ECC data and for comparing the 
regenerated second ECC data with the generated second ECC 
data. 

0038. The thread may further include an error corrector for 
correcting errors in the held original data, the held ECC data, 
and the held second ECC data. 
0039. The Galois Field multiplier may be a parallel mul 

tiplier for concurrently multiplying the entries of the data 
matrix by the entry of the encoding matrix. 
0040. The processing core may include a plurality of pro 
cessing cores. The thread may include a plurality of threads. 
The software ECC protection or compression may further 
include a scheduler for generating the ECC data and the 
second ECC data by: dividing the data matrix into a plurality 
of data matrices; dividing the check matrix into a plurality of 
check matrices; dividing the second check matrix into a plu 
rality of second check matrices; assigning corresponding 
ones of the data matrices, the check matrices, and the second 
check matrices to the threads; and assigning the threads to the 
processing cores to concurrently generate portions of the 
ECC data corresponding to the check matrices from respec 
tive ones of the data matrices and to concurrently generate 
portions of the second ECC data corresponding to the second 
check matrices from respective ones of the data matrices. 
0041. The processing core may include a plurality of pro 
cessing cores. The thread may include a plurality of threads. 
The software ECC protection or compression may further 
include a scheduler for generating the ECC data and the 
second ECC data by: dividing the data matrix into a plurality 
of data matrices; dividing the check matrix into a plurality of 
check matrices; dividing the second check matrix into a plu 
rality of second check matrices; assigning corresponding 
ones of the data matrices, the check matrices, and the second 
check matrices to the threads; and assigning the threads to the 
processing cores to concurrently generate portions of the 
ECC data corresponding to the check matrices from respec 
tive ones of the data matrices and to concurrently generate 
portions of the second ECC data corresponding to the second 
check matrices from respective ones of the data matrices. 
0042. The original data may include first ones and second 
ones of the original data. The ECC data may include corre 
sponding first ones and second ones of the ECC data. The 
thread may further include a compressor for compressing the 
original data in the first memory by storing the firstones of the 
original data in the first memory, storing the second ones of 
the ECC data in the first memory, not storing the second ones 
of the original data in the first memory, and corresponding the 
second ones of the ECC data to the first ones of the original 
data. 

0043. The compressor may be further configured to not 
store the first ones of the ECC data in the first memory. 
0044) The thread may further include a decompressor for 
regenerating the secondones of the original data from the first 
ones of the original data and the second ones of the ECC data. 
0045. The decompressor may include an error corrector 
for regenerating one of the secondones of the original data by 
performing error correction on a corresponding one of the 
first ones of the original data using a corresponding one of the 
second ones of the ECC data. 
0046. The compressor may be configured to correspond 
each one of the secondones of the ECC data directly to one of 
the first ones of the original data, or indirectly to the one of the 
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first ones of the original data via a different one of the second 
ones of the ECC data that corresponds to the one of the first 
ones of the ECC data. 

0047. The thread may further include a comparator for 
keeping the first ones of the original data distinct from one 
another. 
0048. The compressor may be further configured to store 
the first ones of the ECC data in the first memory. The com 
parator may be further configured to compare the generated 
ECC data with the first ones of the ECC data to identify a 
duplicate of one of the first ones of the original data. 
0049. The thread may further include an error corrector. 
The compressor may be configured to, when adding new 
original data having new ECC data to the first memory, use 
the error corrector to identify a corresponding one of the first 
ones of the original data that can generate the new original 
data by performing error correction on the corresponding one 
of the first ones of the original data using the new ECC data. 
0050. The compressor may be configured to: add the new 
original data to the first memory as one of the first ones of the 
original data when there is no said corresponding one of the 
first ones of the original data; and add the new ECC data to the 
first memory as one of the second ones of the ECC data, not 
add the new original data to the first memory, and correspond 
the new ECC data to the corresponding one of the first ones of 
the original data when the error corrector identifies the cor 
responding one of the first ones of the original data. 
0051. According to another exemplary embodiment of the 
present invention, a method of error-correcting code (ECC) 
protection or compression of original data with ECC data in a 
first memory using a computing system including a process 
ing core for executing computer instructions and accessing 
data from a main memory, and a non-volatile storage medium 
for storing the computer instructions is provided. The method 
includes accessing the computer instructions from the storage 
medium, executing the computer instructions on the process 
ing core, arranging the original data as a data matrix in the first 
memory, arranging the ECC data as a check matrix in the first 
memory, arranging first factors as an encoding matrix in the 
main memory, and encoding the original data into the ECC 
data using the first factors. The encoding of the original data 
into the ECC data includes multiplying entries of the data 
matrix by an entry of the encoding matrix using Galois Field 
multiplication, ordering operations through the data matrix 
and the encoding matrix using the Galois Field multiplication 
to generate the ECC data. 
0.052 The encoding of the original data into the ECC data 
may further include encoding the ECC data when writing the 
original data to the first memory. 
0053. The method may further include re-encoding the 
original data into a copy of the ECC data when reading the 
original data from the first memory. 
0054 The method may further include comparing the 
ECC data with the copy of the ECC data. 
0055. The method may further include correcting errors in 
the original data or the ECC data by using the ECC data. 
0056. The processing core may include a plurality of pro 
cessing cores. The encoding of the original data into the ECC 
data may further include dividing the data matrix into a plu 
rality of data matrices, dividing the check matrix into a plu 
rality of check matrices, and assigning corresponding ones of 
the data matrices and the check matrices to the processing 
cores to concurrently encode portions of the original data 
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corresponding to the data matrices into respective portions of 
the ECC data corresponding to the check matrices. 
0057 The method may further include arranging second 
ECC data as a second check matrix in the first memory, 
arranging second factors in the encoding matrix, and encod 
ing the original data into the second ECC data using the 
second factors. The encoding of the original data into the 
second ECC data may include multiplying entries of the data 
matrix by an entry of the encoding matrix using further Galois 
Field multiplication, and ordering operations through the data 
matrix and the encoding matrix using the further Galois Field 
multiplication to generate the second ECC data. 
0058. The original data may include first ones and second 
ones of the original data. The ECC data may include corre 
sponding first ones and second ones of the ECC data. The 
method may further include compressing the original data in 
the first memory by storing the first ones of the original data 
in the first memory, storing the second ones of the ECC data 
in the first memory, not storing the secondones of the original 
data in the first memory, and corresponding the second ones 
of the ECC data to the first ones of the original data. 
0059. The method may further include not storing the first 
ones of the ECC data in the first memory. 
0060. The method may further include decompressing the 
original data by regenerating the second ones of the original 
data from the first ones of the original data and the second 
ones of the ECC data. 
0061 Said regenerating one of the second ones of the 
original data may include performing error correction on a 
corresponding one of the first ones of the original data using 
a corresponding one of the second ones of the ECC data. 
0062. The method may further include when adding new 
original data having new ECC data to the first memory, iden 
tifying a corresponding one of the first ones of the original 
data that can generate the new original data by performing 
error correction on the corresponding one of the first ones of 
the original data using the new ECC data. 
0063. The method may further include: adding the new 
original data to the first memory as one of the first ones of the 
original data when there is no said corresponding one of the 
first ones of the original data; and adding the new ECC data to 
the first memory as one of the second ones of the ECC data, 
not adding the new original data to the first memory, and 
corresponding the new ECC data to the corresponding one of 
the first ones of the original data after the identifying of the 
corresponding one of the first ones of the original data. 
0064. According to embodiments of the present invention, 
RAID cache data can be verified and any detected errors can 
possibly be corrected by maintaining some or all of the cor 
responding RAID parity data at all times in the RAID cache. 
This helps lessen or eliminate silent data corruptions (SDCs) 
resulting from any part of the memory or storage hierarchy 
associated with the RAID cache or storage Subsystem. 
0065. Further embodiments are directed to other applica 

tions, such as data authentication, compression, and encryp 
tion. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0066. The accompanying drawings, together with the 
specification, illustrate exemplary embodiments of the 
present invention and, together with the description, serve to 
explain aspects and principles of the present invention. FIGS. 
1-9 are from the Benefit Application, while FIGS. 10-21 are 

W. 
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0067 FIG. 1 shows an exemplary stripe of original and 
check data according to an embodiment of the present inven 
tion. 
0068 FIG. 2 shows an exemplary method for reconstruct 
ing lost data after a failure of one or more drives according to 
an embodiment of the present invention. 
0069 FIG. 3 shows an exemplary method for performing 
a parallel lookup Galois field multiplication according to an 
embodiment of the present invention. 
0070 FIG. 4 shows an exemplary method for sequencing 
the parallel lookup multiplier to perform the check data gen 
eration according to an embodiment of the present invention. 
0071 FIGS. 5-7 show an exemplary method for sequenc 
ing the parallel lookup multiplier to perform the lost data 
reconstruction according to an embodiment of the present 
invention. 
0072 FIG. 8 illustrates a multi-core architecture system 
according to an embodiment of the present invention. 
0073 FIG.9 shows an exemplary disk drive configuration 
according to an embodiment of the present invention. 
0074 FIG. 10 illustrates an exemplary memory and stor 
age hierarchy system according to an embodiment of the 
present invention. 
(0075 FIG. 11 illustrates an exemplary RAID cache 
according to an embodiment of the present invention. 
0076 FIG. 12 illustrates an exemplary method for consis 
tency checking or error detection according to an embodi 
ment of the present invention. 
(0077 FIG. 13 illustrates an exemplary method for detect 
ing and correcting errors according to an embodiment of the 
present invention. 
0078 FIG. 14 illustrates an exemplary method for correct 
ing errors according to an embodiment of the present inven 
tion. 
(0079 FIG. 15 illustrates an exemplary method for correct 
ing errors according to another embodiment of the present 
invention. 
0080 FIG. 16 illustrates an exemplary method of com 
pressing data according to an embodiment of the present 
invention. 
I0081 FIG. 17 illustrates an exemplary method of com 
pressing data according to another embodiment of the present 
invention. 
I0082 FIG. 18 illustrates an exemplary method of com 
pressing data according to yet another embodiment of the 
present invention. 
I0083 FIG. 19 illustrates an exemplary method of com 
pressing data according to still yet another embodiment of the 
present invention. 
I0084 FIG. 20 illustrates exemplary hardware or software 
logic for implementing the error detecting and correcting 
logic according to an embodiment of the present invention. 
I0085 FIG. 21 illustrates an exemplary system for imple 
menting Software error-correcting code (ECC) protection or 
compression of original data using ECC data in a cache 
according to an embodiment of the present invention. 

DETAILED DESCRIPTION 

From the Benefit Application 
I0086. Hereinafter, exemplary embodiments of the inven 
tion will be described in more detail with reference to the 
accompanying drawings. In the drawings, like reference 
numerals refer to like elements throughout. 
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0087 While optimal erasure codes have many applica 
tions, for ease of description, they will be described in this 
application with respect to RAID applications, i.e., erasure 
coding systems for the storage and retrieval of digital data 
distributed across numerous storage devices (or drives), 
though the present application is not limited thereto. For 
further ease of description, the storage devices will be 
assumed to be disk drives, though the invention is not limited 
thereto. In RAID systems, the data (or original data) is broken 
up into stripes, each of which includes N uniformly sized 
blocks (data blocks), and the N blocks are written across N 
separate drives (the data drives), one block per data drive. 
0088. In addition, for ease of description, blocks will be 
assumed to be composed of L elements, each element having 
a fixed size, say 8 bits or one byte. An element, such as a byte, 
forms the fundamental unit of operation for the RAID pro 
cessing, but the invention is just as applicable to other size 
elements, such as 16 bits (2 bytes). For simplification, unless 
otherwise indicated, elements will be assumed to be one byte 
in size throughout the description that follows, and the term 
"element(s) and “byte(s) will be used synonymously. 
0089 Conceptually, different stripes can distribute their 
data blocks across different combinations of drives, or have 
different block sizes or numbers of blocks, etc., but for sim 
plification and ease of description and implementation, the 
described embodiments in the present application assume a 
consistent block size (L bytes) and distribution of blocks 
among the data drives between stripes. Further, all variables, 
such as the number of data drives N, will be assumed to be 
positive integers unless otherwise specified. In addition, since 
the N=1 case reduces to simple data mirroring (that is, copy 
ing the same data drive multiple times), it will also be 
assumed for simplicity that Ne2 throughout. 
0090 The N data blocks from each stripe are combined 
using arithmetic operations (to be described in more detail 
below) in Mdifferent ways to produce M blocks of check data 
(check blocks), and the M check blocks written across M 
drives (the check drives) separate from the N data drives, one 
block per check drive. These combinations can take place, for 
example, when new (or changed) data is written to (or back 
to) disk. Accordingly, each of the N+M drives (data drives and 
check drives) stores a similar amount of data, namely one 
block for each Stripe. As the processing of multiple stripes is 
conceptually similar to the processing of one stripe (only 
processing multiple blocks per drive instead of one), it will be 
further assumed for simplification that the data being stored 
or retrieved is only one stripe in size unless otherwise indi 
cated. It will also be assumed that the block size L is suffi 
ciently large that the data can be consistently divided across 
each block to produce subsets of the data that include respec 
tive portions of the blocks (for efficient concurrent processing 
by different processing units). 
0091 FIG. 1 shows an exemplary stripe 10 of original and 
check data according to an embodiment of the present inven 
tion. 
0092 Referring to FIG. 1, the stripe 10 can be thought of 
not only as the original N data blocks 20 that make up the 
original data, but also the corresponding Mcheck blocks 30 
generated from the original data (that is, the Stripe 10 repre 
sents encoded data). Each of the N data blocks 20 is composed 
of L bytes 25 (labeled byte 1, byte 2, ..., byte L), and each of 
the M check blocks 30 is composed of L bytes 35 (labeled 
similarly). In addition, check drive 1, byte 1, is a linear com 
bination of data drive 1, byte 1; data drive 2, byte 1: ... ; data 
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drive N byte 1. Likewise, check drive 1, byte 2, is generated 
from the same linear combination formula as check drive 1, 
byte 1, only using data drive 1, byte 2: data drive 2, byte 2: . 
... ; data driveN, byte 2. In contrast, check drive 2, byte 1, uses 
a different linear combination formula than check drive 1, 
byte 1, but applies it to the same data, namely data drive 1, 
byte 1; data drive 2, byte 1: . . . ; data drive N byte 1. In this 
fashion, each of the other check bytes 35 is a linear combi 
nation of the respective bytes of each of the N data drives 20 
and using the corresponding linear combination formula for 
the particular check drive 30. 
(0093. The stripe 10 in FIG. 1 can also be represented as a 
matrix C of encoded data. C has two Sub-matrices, namely 
original data D on top and check data J on bottom. That is, 

f d1 d2 JIL 
J21 J22 J2E 

JM 1 JM2 ... JML 

where D-bytej from data drive i and J-byte j from check 
drive i. Thus, the rows of encoded data C represent blocks, 
while the columns represent corresponding bytes of each of 
the drives. 
0094 Further, in case of a disk drive failure of one or more 
disks, the arithmetic operations are designed in Such a fashion 
that for any stripe, the original data (and by extension, the 
check data) can be reconstructed from any combination of N 
data and check blocks from the corresponding N+M data and 
check blocks that comprise the stripe. Thus, RAID provides 
both parallel processing (reading and writing the data in 
stripes across multiple drives concurrently) and fault toler 
ance (regeneration of the original data evenifas many as Mof 
the drives fail), at the computational cost of generating the 
check data any time new data is written to disk, or changed 
data is written back to disk, as well as the computational cost 
of reconstructing any lost original data and regenerating any 
lost check data after a disk failure. 
0.095 For example, for M=1 check drive, a single parity 
drive can function as the check drive (i.e., a RAID4 system). 
Here, the arithmetic operation is bitwise exclusive OR of each 
of the N corresponding data bytes in each data block of the 
stripe. In addition, as mentioned earlier, the assignment of 
parity blocks from different stripes to the same drive (i.e., 
RAID4) or different drives (i.e., RAID5) is arbitrary, but it 
does simplify the description and implementation to use a 
consistent assignment between stripes, so that will be 
assumed throughout. Since M=1 reduces to the case of a 
single parity drive, it will further be assumed for simplicity 
that Mac2 throughout. 
0096. For such larger values of M, Galois field arithmetic 

is used to manipulate the data, as described in more detail 
later. Galois field arithmetic, for Galois fields of powers-of-2 
(such as 2.) numbers of elements, includes two fundamental 
operations: (1) addition (which is just bitwise exclusive OR, 
as with the parity drive-only operations for M=1), and (2) 
multiplication. While Galois field (GF) addition is trivial on 
standard processors, GF multiplication is not. Accordingly, a 
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significant component of RAID performance for Mac2 is 
speeding up the performance of GF multiplication, as will be 
discussed later. For purposes of description, GF addition will 
be represented by the symbol + throughout while GF multi 
plication will be represented by the symbol x throughout. 
0097 Briefly, in exemplary embodiments of the present 
invention, each of the M cheek drives holds linear combina 
tions (over GF arithmetic) of the N data drives of original 
data, one linear combination (i.e., a GF sum of N terms, where 
each term represents a byte of original data times a corre 
sponding factor (using GF multiplication) for the respective 
data drive) for each check drive, as applied to respective bytes 
in each block. One such linear combination can be a simple 
parity, i.e., entirely GF addition (all factors equal 1). Such as 
a GF sum of the first byte in each block of original data as 
described above. 

0098. The remaining M-1 linear combinations include 
more involved calculations that include the nontrivial GF 
multiplication operations (e.g., performing a GF multiplica 
tion of the first byte in each block by a corresponding factor 
for the respective data drive, and then performing a GF sum of 
all these products). These linear combinations can be repre 
sented by an (N+M)xN matrix (encoding matrix or informa 
tion dispersal matrix (IDM)) E of the different factors, one 
factor for each combination of (data or check) drive and data 
drive, with one row for each of the N+M data and check drives 
and one column for each of the N data drives. The IDME can 
also be represented as 

where I represents the NxN identity matrix (i.e., the original 
(unencoded) data) and H represents the MXN matrix of fac 
tors for the check drives (where each of the M rows corre 
sponds to one of the M check drives and each of the N 
columns corresponds to one of the N data drives). 
0099 Thus, 

1 O O 

O 1 O 

E= w O O 1 
H Hi H12 Hy 

H2 H22 H2N 

HM HM2 HMN 

where H, factor for check drive i and data drive j. Thus, the 
rows of encoded data C represent blocks, while the columns 
represent corresponding bytes of each of the drives. In addi 
tion, check factors H, original data D, and check data Jare 
related by the formula J-HxD (that is, matrix multiplication), 
O 
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J11 J12 diL 
J21 J22 J2E 

JM 1 JM2 JML 

Hi H12 HN D11 D12 DL 
H2 H22 H2N D21 D22 D21. 

X 

HM1 HM 2 HMN DN1, DN2 DNL 

where J =(HXD)+(H2XD)+ . . . +(HMXD), J – 
(H. XD12)+(H2XD22)+ . . . +(HMXD), J2-(H2XD1)+ 
(H22xD)+...+(H2xxDy), and in general, J. (HixD)+ 
(H2xD)+...+(HxxD.) for 1sisM and 1sjsL. 
0100 Such an encoding matrix E is also referred to as an 
information dispersal matrix (IDM). It should be noted that 
matrices such as check drive encoding matrix H and identity 
matrix I also represent encoding matrices, in that they rep 
resent matrices of factors to produce linear combinations over 
GF arithmetic of the original data. In practice, the identity 
matrix I is trivial and may not need to be constructed as part 
of the IDM. E. Only the encoding matrix E, however, will be 
referred to as the IDM. Methods of building an encoding 
matrix such as IDME or check drive encoding matrix H are 
discussed below. In further embodiments of the present 
invention (as discussed further in Appendix A). Such 
(N+M)xN (or MXN) matrices can be trivially constructed (or 
simply indexed) from a master encoding matrix S, which is 
composed of (N,+M)xN (or MXN) bytes or 
elements, where N,+M 256 (or some other power of 
two) and NsN and Ms.M. For example, one Such mas 
ter encoding matrix S can include a 127x127 element identity 
matrix on top (for up to N=127 data drives), a row of 1's 
(for a parity drive), and a 128x127 element encoding matrix 
on bottom (for up to M-129 check drives, including the 
parity drive), for a total of Na+M 256 drives. 
0101 The original data, in turn, can be represented by an 
NxL matrix D of bytes, each of the N rows representing the L 
bytes of a block of the corresponding one of the N data drives. 
If C represents the corresponding (N+M)xL matrix of 
encoded bytes (where each of the N+M rows corresponds to 
one of the N+M data and check drives), then C can be repre 
sented as ExD= 

where J=HxD is an MXL matrix of check data, with each of 
the M rows representing the L check bytes of the correspond 
ing one of the M check drives. It should be noted that in the 
relationships such as C=ExD or J-HxD, x represents matrix 
multiplication over the Galois field (i.e., GF multiplication 
and GF addition being used to generate each of the entries in, 
for example, C or J). 
0102. In exemplary embodiments of the present invention, 
the first row of the check drive encoding matrix H (or the 
(N+1)" row of the IDM E) can be all 1's, representing the 
parity drive. For linear combinations involving this row, the 
GF multiplication can be bypassed and replaced with a GF 
Sum of the corresponding bytes since the products are all 
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trivial products involving the identity element 1. Accordingly, 
in parity drive implementations, the check drive encoding 
matrix H can also be thought of as an (M-1)xN matrix of 
non-trivial factors (that is, factors intended to be used in GF 
multiplication and not just GF addition). 
0103 Much of the RAID processing involves generating 
the check data when new orchanged data is written to (or back 
to) disk. The other significant event for RAID processing is 
when one or more of the drives fail (data or check drives), or 
for whatever reason become unavailable. Assume that in Such 
a failure scenario, F data drives fail and G check drives fail, 
where F and G are nonnegative integers. If F=0, then only 
check drives failed and all of the original data D survived. In 
this case, the lost check data can be regenerated from the 
original data D. 
0104. Accordingly, assume at least one data drive fails, 
that is, F-1, and let K=N-F represent the number of data 
drives that Survive. K is also a nonnegative integer. In addi 
tion, let X represent the Surviving original data and Y repre 
sent the lost original data. That is, X is a KXL matrix com 
posed of the K rows of the original data matrix D 
corresponding to the K Surviving data drives, while Y is an 
FxL matrix composed of the Frows of the original data matrix 
D corresponding to the F failed data drives. 

thus represents a permuted original data matrix D'(that is, the 
original data matrix D, only with the Surviving original dataX 
on top and the lost original data Y on bottom. It should be 
noted that once the lost original data Y is reconstructed, it can 
be combined with the surviving original data X to restore the 
original data D, from which the check data for any of the 
failed check drives can be regenerated. 
0105. It should also be noted that M-G check drives sur 
Vive. In order to reconstruct the lost original data Y. enough 
(that is, at least N) total drives must survive. Given that 
K=N-F data drives survive, and that M-G check drives Sur 
vive, it follows that (N-F)+(M-G)N must be true to recon 
struct the lost original data Y. This is equivalent to F+GsM 
(i.e., no more than F+G drives fail), or FsM-G (that is, the 
number of failed data drives does not exceed the number of 
surviving check drives). It will therefore be assumed for sim 
plicity that FsM-G. 
0106. In the routines that follow, performance can be 
enhanced by prebuilding lists of the failed and surviving data 
and check drives (that is, four separate lists). This allows 
processing of the different sets of surviving and failed drives 
to be done more efficiently than existing Solutions, which use, 
for example, bit vectors that have to be examined one bit at a 
time and often include large numbers of consecutive Zeros (or 
ones) when ones (or zeros) are the bit values of interest. 
0107 FIG. 2 shows an exemplary method 300 for recon 
structing lost data after a failure of one or more drives accord 
ing to an embodiment of the present invention. 
0108. While the recovery process is described in more 
detail later, briefly it consists of two parts: (1) determining the 
Solution matrix, and (2) reconstructing the lost data from the 
Surviving data. Determining the Solution matrix can be done 
in three steps with the following algorithm (Algorithm 1), 
with reference to FIG. 2: 
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0109) 1. (Step 310 in FIG. 2) Reducing the (M+N)xN 
IDM E to an NxN reduced encoding matrix T (also 
referred to as the transformed IDM) including the K 
surviving data drive rows and any F of the M-G surviv 
ing check drive rows (for instance, the first F Surviving 
check drive rows, as these will include the parity drive if 
it survived; recall that FsM-G was assumed). In addi 
tion, the columns of the reduced encoding matrix T are 
rearranged so that the K columns corresponding to the K 
surviving data drives are on the left side of the matrix and 
the F columns corresponding to the Ffailed drives are on 
the right side of the matrix. (Step 320) These F surviving 
check drives selected to rebuild the lost original data Y 
will henceforth be referred to as “the F surviving check 
drives, and their check data W will be referred to as “the 
surviving check data.” even though M-G check drives 
survived. It should be noted that W is an FXL matrix 
composed of the F rows of the check data J correspond 
ing to the F surviving check drives. Further, the surviv 
ing encoded data can be represented as a Sub-matrix C" 
of the encoded data C. The surviving encoded data C" is 
an NXL matrix composed of the Surviving original data 
X on top and the surviving check data W on bottom, that 
1S, 

0110 2. (Step 330) Splitting the reduced encoding 
matrix T into four Sub-matrices (that are also encoding 
matrices): (i) a KXKidentity matrix I (corresponding to 
the K surviving data drives) in the upper left, (ii) a KXF 
matrix O of Zeros in the upper right, (iii) an FXK encod 
ing matrix A in the lower left corresponding to the F 
Surviving check drive rows and the K Surviving data 
drive columns, and (iv) an FXF encoding matrix B in the 
lower right corresponding to the F Surviving check drive 
rows and the F failed data drive columns. Thus, the 
reduced encoding matrix T can be represented as 

0111. 3. (Step 340) Calculating the inverse B of the 
FxF encoding matrix B. As is shown in more detail in 
Appendix A, C"-TxD', or 

which is mathematically equivalent to W=AxX+BxY. B' is 
the Solution matrix, and is itself an FXF encoding matrix. 
Calculating the solution matrix B thus allows the lost origi 
nal data Y to be reconstructed from the encoding matrices A 
and B along with the Surviving original data X and the Sur 
viving check data W. 
0112 The FXK encoding matrix A represents the original 
encoding matrix E, only limited to the K Surviving data drives 
and the F surviving check drives. That is, each of the F rows 
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of A represents a different one of the F surviving cheek drives, 
while each of the K columns of A represents a different one of 
the K Surviving data drives. Thus, A provides the encoding 
factors needed to encode the original data for the Surviving 
check drives, but only applied to the surviving data drives 
(that is, the Surviving partial check data). Since the Surviving 
original data X is available. A can be used to generate this 
Surviving partial check data. 
0113. In similar fashion, the FxF encoding matrix B rep 
resents the original encoding matrix E, only limited to the F 
surviving check drives and the Ffailed data drives. That is, the 
Frows of B correspond to the same F rows of A, while each of 
the F columns of B represents a different one of the F failed 
data drives. Thus, B provides the encoding factors needed to 
encode the original data for the Surviving check drives, but 
only applied to the failed data drives (that is, the lost partial 
check data). Since the lost original data Y is not available, B 
cannot be used to generate any of the lost partial check data. 
However, this lost partial check data can be determined from 
A and the surviving check data W. Since this lost partial check 
data represents the result of applying B to the lost original 
dataY, B' thus represents the necessary factors to reconstruct 
the lost original data Y from the lost partial check data. 
0114. It should be noted that steps 1 and 2 in Algorithm 1 
above are logical, in that encoding matrices A and B (or the 
reduced encoding matrix T. for that matter) do not have to 
actually be constructed. Appropriate indexing of the IDME 
(or the master encoding matrix S) can be used to obtain any of 
their entries. Step 3, however, is a matrix inversion over GF 
arithmetic and takes O(F) operations, as discussed in more 
detail later. Nonetheless, this is a significant improvement 
over existing solutions, which require O(N) operations, 
since the number of failed data drives F is usually signifi 
cantly less than the number of data drives N in any practical 
situation. 
0115 (Step 350 in FIG.2) Once the encoding matrix A and 
the solution matrix B are known, reconstructing the lost 
data from the Surviving data (that is, the Surviving original 
data X and the surviving check data W) can be accomplished 
in four steps using the following algorithm (Algorithm 2): 

011 6 1. Use A and the surviving original data X (using 
matrix multiplication) to generate the Surviving check 
data (i.e., AXX), only limited to the K Surviving data 
drives. Call this limited check data the surviving partial 
check data. 

0117 2. Subtract this surviving partial check data from 
the Surviving check data W (using matrix Subtraction, 
i.e., W-AXX, which is just entry-by-entry GF subtrac 
tion, which is the same as GF addition for this Galois 
field). This generates the Surviving check data, only this 
time limited to the F failed data drives. Call this limited 
check data the lost partial check data. 

I0118. 3. Use the solution matrix B and the lost partial 
check data (using matrix multiplication, i.e., B'x(W- 
AxX) to reconstruct the lost original data Y. Call this the 
recovered original data Y. 

0119) 4. Use the corresponding rows of the IDME (or 
master encoding matrix S) for each of the Gfailed check 
drives along with the original data D, as reconstructed 
from the Surviving and recovered original data X and Y. 
to regenerate the lost check data (using matrix multipli 
cation). 

0120. As will be shown in more detail later, steps 1-3 
together require O(F) operations times the amount of original 
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data D to reconstruct the lost original data Y for the F failed 
data drives (i.e., roughly 1 operation per failed data drive per 
byte of original data D), which is proportionally equivalent to 
the O(M) operations times the amount of original data D 
needed to generate the check data J for the M check drives 
(i.e., roughly 1 operation per check drive per byte of original 
data D). In addition, this same equivalence extends to step 4, 
which takes O(G) operations times the amount of original 
data D needed to regenerate the lost check data for the Gfailed 
check drives (i.e., roughly 1 operation per failed check drive 
per byte of original data D). In Summary, the number of 
operations needed to reconstruct the lost data is O(F+G) times 
the amount of original data D (i.e., roughly 1 operation per 
failed drive (data or check) per byte of original data D). Since 
F+GsM, this means that the computational complexity of 
Algorithm 2 (reconstructing the lost data from the Surviving 
data) is no more than that of generating the check data J from 
the original data D. 
I0121. As mentioned above, for exemplary purposes and 
ease of description, data is assumed to be organized in 8-bit 
bytes, each byte capable of taking on 2-256 possible values. 
Such data can be manipulated in byte-size elements using GF 
arithmetic for a Galois field of size 2-256 elements. It should 
also be noted that the same mathematical principles apply to 
any power-of-two 2 number of elements, not just 256, as 
Galois fields can be constructed for any integral power of a 
prime number. Since Galois fields are finite, and since GF 
operations never overflow, all results are the same size as the 
inputs, for example, 8 bits. 
I0122. In a Galois field of a power-of-two number of ele 
ments, addition and Subtraction are the same operation, 
namely a bitwise exclusive OR (XOR) of the two operands. 
This is a very fast operation to perform on any current pro 
cessor. It can also be performed on multiple bytes concur 
rently. Since the addition and subtraction operations take 
place, for example, on a byte-level basis, they can be done in 
parallel by using, for instance, x86 architecture Streaming 
SIMD Extensions (SSE) instructions (SIMD stands for single 
instruction, multiple data, and refers to performing the same 
instruction on different pieces of data, possibly concurrently), 
such as PXOR (Packed (bitwise) Exclusive OR). 
I0123. SSE instructions can process, for example, 16-byte 
registers (XMM registers), and are able to process such reg 
isters as though they contain 16 Separate one-byte operands 
(or 8 separate two-byte operands, or four separate four-byte 
operands, etc.) Accordingly, SSE instructions can do byte 
level processing 16 times faster than when compared to pro 
cessing a byte at a time. Further, there are 16 XMM registers, 
so dedicating four Such registers for operand storage allows 
the data to be processed in 64-byte increments, using the other 
12 registers for temporary storage. That is, individual opera 
tions can be performed as four consecutive SSE operations on 
the four respective registers (64 bytes), which can often allow 
Such instructions to be efficiently pipelined and/or concur 
rently executed by the processor. In addition, the SSE instruc 
tions allows the same processing to be performed on different 
such 64-byte increments of data in parallel using different 
cores. Thus, using four separate cores can potentially speed 
up this processing by an additional factor of 4 over using a 
single core. 
0.124 For example, a parallel adder (Parallel Adder) can 
be built using the 16-byte XMM registers and four consecu 
tive PXOR instructions. Such parallel processing (that is, 64 
bytes at a time with only a few machine-level instructions) for 



US 2015/0207522 A1 

GF arithmetic is a significant improvement over doing the 
addition one byte at a time. Since the data is organized in 
blocks of any fixed number of bytes, such as 4096 bytes (4 
kilobytes, or 4 KB) or 32,768 bytes (32 KB), a block can be 
composed of numerous such 64-byte chunks (e.g., 64 sepa 
rate 64-byte chunks in 4KB, or 512 chunks in 32 KB). 
0.125 Multiplication in a Galois field is not as straightfor 
ward. While much of it is bitwise shifts and exclusive OR's 
(i.e., “additions”) that are very fast operations, the numbers 
“wrap' in peculiar ways when they are shifted outside of their 
normal bounds (because the field has only a finite set of 
elements), which can slow down the calculations. This 
“wrapping in the GF multiplication can be addressed in 
many ways. For example, the multiplication can be imple 
mented serially (Serial Multiplier) as a loop iterating over the 
bits of one operand while performing the shifts, adds, and 
wraps on the other operand. Such processing, however, takes 
several machine instructions per bit for 8 separate bits. In 
other words, this technique requires dozens of machine 
instructions per byte being multiplied. This is inefficient com 
pared to, for example, the performance of the Parallel Adder 
described above. 

0126 For another approach (Serial Lookup Multiplier), 
multiplication tables (of all the possible products, or at least 
all the non-trivial products) can be pre-computed and built 
ahead of time. For example, a table of 256x256-65,536 bytes 
can hold all the possible products of the two different one 
byte operands). However, such tables can force serialized 
access on what are only byte-level operations, and not take 
advantage of wide (concurrent) data paths available on mod 
ern processors, such as those used to implement the Parallel 
Adder above. 

0127. In still another approach (Parallel Multiplier), the 
GF multiplication can be done on multiple bytes at a time, 
since the same factor in the encoding matrix is multiplied with 
every element in a data block. Thus, the same factor can be 
multiplied with 64 consecutive data block bytes at a time. 
This is similar to the Parallel Adder described above, only 
there are several more operations needed to perform the 
operation. While this can be implemented as a loop on each 
bit of the factor, as described above, only performing the 
shifts, adds, and wraps on 64 bytes at a time, it can be more 
efficient to process the 256 possible factors as a (C language) 
switch statement, with inline code for each of 256 different 
combinations of two primitive GF operations: Multiply-by-2 
and Add. For example, GF multiplication by the factor 3 can 
be effected by first doing a Multiply-by-2 followed by an Add. 
Likewise, GF multiplication by 4 is just a Multiply-by-2 
followed by a Multiply-by-2 while multiplication by 6 is a 
Multiply-by-2 followed by an Add and then by another Mul 
tiply-by-2. 
0128. While this Add is identical to the Parallel Adder 
described above (e.g., four consecutive PXOR instructions to 
process 64 separate bytes), Multiply-by-2 is not as straight 
forward. For example, Multiply-by-2 in GFarithmetic can be 
implemented across 64 bytes at a time in 4XMM registers via 
4 consecutive PXOR instructions, 4 consecutive PCMPGTB 
(Packed Compare for Greater Than) instructions, 4 consecu 
tive PADDB (Packed Add) instructions, 4 consecutive PAND 
(Bitwise AND) instructions, and 4 consecutive PXOR 
instructions. Though this takes 20 machine instructions, the 
instructions are very fast and results in 64 consecutive bytes 
of data at a time being multiplied by 2. 
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I0129. For 64 bytes of data, assuming a random factor 
between 0 and 255, the total overhead for the Parallel Multi 
plier is about 6 calls to multiply-by-2 and about 3.5 calls to 
add, or about 6x20+3.5x4=134 machine instructions, or a 
little over 2 machine instructions per byte of data. While this 
compares favorably with byte-level processing, it is still pos 
sible to improve on this by building a parallel multiplier with 
a table lookup (Parallel Lookup Multiplier) using the 
PSHUFB (Packed Shuffle Bytes) instruction and doing the 
GF multiplication in 4-bit nibbles (half bytes). 
I0130 FIG. 3 shows an exemplary method 400 for per 
forming a parallel lookup Galois field multiplication accord 
ing to an embodiment of the present invention. 
I0131 Referring to FIG. 3, in step 410, two lookup tables 
are built once: one lookup table for the low-order nibbles in 
each byte, and one lookup table for the high-order nibbles in 
each byte. Each lookup table contains 256 sets (one for each 
possible factor) of the 16 possible GF products of that factor 
and the 16 possible nibble values. Each lookup table is thus 
256x16-4096 bytes, which is considerably smaller than the 
65,536 bytes needed to store a complete one-byte multiplica 
tion table. In addition, PSHUFB does 16 separate table look 
ups at once, each for one nibble, so 8 PSHUFB instructions 
can be used to do all the table lookups for 64 bytes (128 
nibbles). 
(0132) Next, in step 420, the Parallel Lookup Multiplier is 
initialized for the next set of 64 bytes of operand data (such as 
original data or Surviving original data). In order to save 
loading this data from memory on succeeding calls, the Par 
allel Lookup Multiplier dedicates four registers for this data, 
which are left intact upon exit of the Parallel Lookup Multi 
plier. This allows the same data to be called with different 
factors (such as processing the same data for another check 
drive). 
0.133 Next in step 430, to process these 64 bytes of oper 
and data, the Parallel Lookup Multiplier can be implemented 
with 2 MOVDQA (Move Double Quadword Aligned) 
instructions (from memory) to do the two table lookups and 4 
MOVDQA instructions (register to register) to initialize reg 
isters (such as the output registers). These are followed in 
steps 440 and 450 by two nearly identical sets of 17 register 
to-register instructions to carry out the multiplication 32 
bytes at a time. Each such set starts (in step 440) with 5 more 
MOVDQA instructions for further initialization, followed by 
2 PSRLW (Packed Shift Right Logical Word) instructions to 
realign the high-order nibbles for PSHUFB, and 4 PAND 
instructions to clear the high-order nibbles for PSHUFB. That 
is, two registers of byte operands are converted into four 
registers of nibble operands. Then, in step 450, 4 PSHUFB 
instructions are used to do the parallel table lookups, and 2 
PXOR instructions to add the results of the multiplication on 
the two nibbles to the output registers. 
I0134) Thus, the Parallel Lookup Multiplier uses 40 
machine instructions to perform the parallel multiplication on 
64 separate bytes, which is considerably better than the aver 
age 134 instructions for the Parallel Multiplier above, and 
only 10 times as many instructions as needed for the Parallel 
Adder. While some of the Parallel Lookup Multiplier's 
instructions are more complex than those of the Parallel 
Adder, much of this complexity can be concealed through the 
pipelined and/or concurrent execution of numerous Such con 
tiguous instructions (accessing different registers) on modern 
pipelined processors. For example, in exemplary implemen 
tations, the Parallel Lookup Multiplier has been timed at 
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about 15 CPU clock cycles per 64 bytes processed per CPU 
core (about 0.36 clock cycles per instruction). In addition, the 
code footprint is practically nonexistent for the Parallel 
Lookup Multiplier (40 instructions) compared to that of the 
Parallel Multiplier (about 34.300 instructions), even when 
factoring the 8 KB needed for the two lookup tables in the 
Parallel Lookup Multiplier. 
0135) In addition, embodiments of the Parallel Lookup 
Multiplier can be passed 64 bytes of operand data (such as the 
next 64 bytes of Surviving original data X to be processed) in 
four consecutive registers, whose contents can be preserved 
upon exiting the Parallel Lookup Multiplier (and all in the 
same 40 machine instructions) such that the Parallel Lookup 
Multiplier can be invoked again on the same 64 bytes of data 
without having to access main memory to reload the data. 
Through such a protocol, memory accesses can be minimized 
(or significantly reduced) for accessing the original data D 
during check data generation or the Surviving original data X 
during lost data reconstruction. 
0.136 Further embodiments of the present invention are 
directed towards sequencing this parallel multiplication (and 
other GF) operations. While the Parallel Lookup Multiplier 
processes a GF multiplication of 64 bytes of contiguous data 
times a specified factor, the calls to the Parallel Lookup Mul 
tiplier should be appropriately sequenced to provide efficient 
processing. One Such sequencer (Sequencer 1), for example, 
can generate the check data J from the original data D, and is 
described further with respect to FIG. 4. 
0.137 The parity drive does not need GF multiplication. 
The check data for the parity drive can be obtained, for 
example, by adding corresponding 64-byte chunks for each of 
the data drives to perform the parity operation. The Parallel 
Adder can do this using 4 instructions for every 64 bytes of 
data for each of the N data drives, or N/16 instructions per 
byte. 
0.138. The M-1 non-parity check drives can invoke the 
Parallel Lookup Multiplier on each 64-byte chunk, using the 
appropriate factor for the particular combination of data drive 
and check drive. One consideration is how to handle the data 
access. Two possible ways are: 

0.139. 1) “column-by-column, i.e., 64 bytes for one 
data drive, followed by the next 64 bytes for that data 
drive, etc., and adding the products to the running total in 
memory (using the Parallel Adder) before moving onto 
the next row (data drive); and 

0140 2) "row-by-row, i.e., 64 bytes for one data drive, 
followed by the corresponding 64 bytes for the next data 
drive, etc., and keeping a running total using the Parallel 
Adder, then moving onto the next set of 64-byte chunks. 

0141 Column-by-column can be thought of as “constant 
factor, varying data in that the (GF multiplication) factor 
usually remains the same between iterations while the (64 
byte) data changes with each iteration. Conversely, row-by 
row can be thought of as "constant data, varying factor in 
that the data usually remains the same between iterations 
while the factor changes with each iteration. 
0142. Another consideration is how to handle the check 
drives. Two possible ways are: 

0.143 a) one at a time, i.e., generate all the check data for 
one check drive before moving onto the next check 
drive; and 
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014.4 b) all at once, i.e., for each 64-byte chunk of 
original data, do all of the processing for each of the 
check drives before moving onto the next chunk of origi 
nal data. 

While each of these techniques performs the same basic 
operations (e.g., 40 instructions for every 64 bytes of data for 
each of the N data drives and M-1 non-parity check drives, or 
5N(M-1)/8 instructions per byte for the Parallel Lookup 
Multiplier), empirical results show that combination (2)(b), 
that is, row-by-row data access on all of the check drives 
between data accesses performs best with the Parallel Lookup 
Multiplier. One reason may be that such an approach appears 
to minimize the number of memory accesses (namely, one) to 
each chunk of the original data D to generate the check data J. 
This embodiment of Sequencer 1 is described in more detail 
with reference to FIG. 4. 
(0145 FIG. 4 shows an exemplary method 500 for 
sequencing the Parallel Lookup Multiplier to perform the 
check data generation according to an embodiment of the 
present invention. 
014.6 Referring to FIG. 4, in step 510, the Sequencer 1 is 
called. Sequencer 1 is called to process multiple 64-byte 
chunks of data for each of the blocks across a stripe of data. 
For instance, Sequencer 1 could be called to process 512 
bytes from each block. If, for example, the block size L is 
4096 bytes, then it would take eight such calls to Sequencer 1 
to process the entire stripe. The other such seven calls to 
Sequencer 1 could be to different processing cores, for 
instance, to carry out the check data generation in parallel. 
The number of 64-byte chunks to process at a time could 
depend on factors such as cache dimensions, input/output 
data structure sizes, etc. 
0.147. In step 520, the outer loop processes the next 
64-byte chunk of data for each of the drives. In order to 
minimize the number of accesses of each data drives 64-byte 
chunk of data from memory, the data is loaded only once and 
preserved across calls to the Parallel Lookup Multiplier. The 
first data drive is handled specially since the check data has to 
be initialized for each check drive. Using the first data drive to 
initialize the check data saves doing the initialization as a 
separate step followed by updating it with the first data drive's 
data. In addition to the first data drive, the first check drive is 
also handled specially since it is a parity drive. So its check 
data can be initialized to the first data drive's data directly 
without needing the Parallel Lookup Multiplier. 
0.148. In step 530, the first middle loop is called, in which 
the remainder of the check drives (that is, the non-parity 
check drives) have their check data initialized by the first data 
drive's data. In this case, there is a corresponding factor (that 
varies with each check drive) that needs to be multiplied with 
each of the first data drive's data bytes. This is handled by 
calling the Parallel Lookup Multiplier for each non-parity 
check drive. 
0149. In step 540, the second middle loop is called, which 
processes the other data drives corresponding 64-byte 
chunks of data. As with the first data drive, each of the other 
data drives is processed separately, loading the respective 64 
bytes of data into four registers (preserved across calls to the 
Parallel Lookup Multiplier). In addition, since the first check 
drive is the parity drive, its check data can be updated by 
directly adding these 64 bytes to it (using the Parallel Adder) 
before handling the non-parity check drives. 
0150. In step 550, the inner loop is called for the next data 
drive. In the inner loop (as with the first middle loop), each of 
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the non-parity check drives is associated with a correspond 
ing factor for the particular data drive. The factor is multiplied 
with each of the next data drive's data bytes using the Parallel 
Lookup Multiplier, and the results added to the check drives 
check data. 
0151. Another such sequencer (Sequencer 2) can be used 
to reconstruct the lost data from the Surviving data (using 
Algorithm 2). While the same column-by-column and row 
by-row data access approaches are possible, as well as the 
same choices for handling the check drives, Algorithm 2 adds 
another dimension of complexity because of the four separate 
steps and whether to: (i) do the steps completely serially or (ii) 
do some of the steps concurrently on the same data. For 
example, step 1 (Surviving check data generation) and step 4 
(lost check data regeneration) can be done concurrently on the 
same data to reduce or minimize the number of Surviving 
original data accesses from memory. 
0152 Empirical results show that method (2)(b)(ii), that 

is, row-by-row data access on all of the check drives and for 
both Surviving check data generation and lost check data 
regeneration between data accesses performs best with the 
Parallel Lookup Multiplier when reconstructing lost data 
using Algorithm 2. Again, this may be due to the apparent 
minimization of the number of memory accesses (namely, 
one) of each chunk of Surviving original data X to reconstruct 
the lost data and the absence of memory accesses of recon 
structed lost original data Y when regenerating the lost check 
data. This embodiment of Sequencer 1 is described in more 
detail with reference to FIGS. 5-7. 

0153 FIGS. 5-7 show an exemplary method 600 for 
sequencing the Parallel Lookup Multiplier to perform the lost 
data reconstruction according to an embodiment of the 
present invention. 
0154) Referring to FIG. 5, in step 610, the Sequencer 2 is 
called. Sequencer 2 has many similarities with the embodi 
ment of Sequencer 1 illustrated in FIG. 4. For instance, 
Sequencer 2 processes the data drive data in 64-byte chunks 
like Sequencer 1. Sequencer 2 is more complex, however, in 
that only some of the data drive data is Surviving; the rest has 
to be reconstructed. In addition, lost check data needs to be 
regenerated. Like Sequencer 1, Sequencer 2 does these opera 
tions in Such a way as to minimize memory accesses of the 
data drive data (by loading the data once and calling the 
Parallel Lookup Multiplier multiple times). Assume for ease 
of description that there is at least one Surviving data drive; 
the case of no surviving data drives is handled a little differ 
ently, but not significantly different. In addition, recall from 
above that the driving formula behind data reconstruction is 
Y=B'x(W-AXX), whereY is the lost original data, B' is the 
Solution matrix, Wis the Surviving check data, A is the partial 
check data encoding matrix (for the Surviving check drives 
and the Surviving data drives), and X is the Surviving original 
data. 
0155. In step 620, the outer loop processes the next 
64-byte chunk of data for each of the drives. Like Sequencer 
1, the first Surviving data drive is again handled specially 
since the partial check data Axx has to be initialized for each 
Surviving check drive. 
0156. In step 630, the first middle loop is called, in which 
the partial check data AxX is initialized for each surviving 
check drive based on the first surviving data drive's 64 bytes 
of data. In this case, the Parallel Lookup Multiplier is called 
for each Surviving check drive with the corresponding factor 
(from A) for the first surviving data drive. 
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0157. In step 640, the second middle loop is called, in 
which the lost check data is initialized for each failed check 
drive. Using the same 64 bytes of the first surviving data drive 
(preserved across the calls to Parallel Lookup Multiplier in 
step 630), the Parallel Lookup Multiplier is again called, this 
time to initialize each of the failed check drive's check data to 
the corresponding component from the first Surviving data 
drive. This completes the computations involving the first 
surviving data drive's 64 bytes of data, which were fetched 
with one access from main memory and preserved in the same 
four registers across steps 630 and 640. 
0158 Continuing with FIG. 6, in step 650, the third middle 
loop is called, which processes the other Surviving data 
drives corresponding 64-byte chunks of data. As with the 
first Surviving data drive, each of the other Surviving data 
drives is processed separately, loading the respective 64 bytes 
of data into four registers (preserved across calls to the Par 
allel Lookup Multiplier). 
0159. In step 660, the first inner loop is called, in which the 
partial check data AXX is updated for each Surviving check 
drive based on the next surviving data drive's 64 bytes of data. 
In this case, the Parallel Lookup Multiplier is called for each 
Surviving check drive with the corresponding factor (from A) 
for the next surviving data drive. 
0160. In step 670, the second inner loop is called, in which 
the lost check data is updated for each failed check drive. 
Using the same 64 bytes of the next surviving data drive 
(preserved across the calls to Parallel Lookup Multiplier in 
step 660), the Parallel Lookup Multiplier is again called, this 
time to update each of the failed check drive's check data by 
the corresponding component from the next Surviving data 
drive. This completes the computations involving the next 
surviving data drive's 64 bytes of data, which were fetched 
with one access from main memory and preserved in the same 
four registers across steps 660 and 670. 
0.161 Next, in step 680, the computation of the partial 
check data Axx is complete, so the surviving check data W is 
added to this result (recall that W-AXX is equivalent to 
W+AXX in binary Galois Field arithmetic). This is done by 
the fourth middle loop, which for each surviving check drive 
adds the corresponding 64-byte component of Surviving 
check data W to the (Surviving) partial check data AXX (using 
the Parallel Adder) to produce the (lost) partial check data 
W-AXX. 

(0162 Continuing with FIG. 7, in step 690, the fifth middle 
loop is called, which performs the two dimensional matrix 
multiplication B'x(W-AxX) to produce the lost original 
data Y. The calculation is performed one row at a time, for a 
total of F rows, initializing the row to the first term of the 
corresponding linear combination of the solution matrix B' 
and the lost partial check data W-AXX (using the Parallel 
Lookup Multiplier). 
(0163. In step 700, the third inner loop is called, which 
completes the remaining F-1 terms of the corresponding 
linear combination (using the Parallel Lookup Multiplier on 
each term) from the fifth middle loop in step 690 and updates 
the running calculation (using the Parallel Adder) of the next 
row of B'x(W-AXX). This completes the next row (and 
reconstructs the corresponding failed data drive's lost data) of 
lost original dataY, which can then be stored at an appropriate 
location. 
0164. In step 710, the fourth inner loop is called, in which 
the lost check data is updated for each failed check drive by 
the newly reconstructed lost data for the next failed data drive. 
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Using the same 64 bytes of the next reconstructed lost data 
(preserved across calls to the Parallel Lookup Multiplier), the 
Parallel Lookup Multiplier is called to update each of the 
failed check drives check data by the corresponding compo 
nent from the next failed data drive. This completes the com 
putations involving the next failed data drive's 64 bytes of 
reconstructed data, which were performed as soon as the data 
was reconstructed and without being stored and retrieved 
from main memory. 
0.165 Finally, in step 720, the sixth middle loop is called. 
The lost check data has been regenerated, so in this step, the 
newly regenerated check data is stored at an appropriate loca 
tion (if desired). 
0166 Aspects of the present invention can be also realized 
in other environments, such as two-byte quantities, each Such 
two-byte quantity capable of taking on 2–65,536 possible 
values, by using similar constructs (scaled accordingly) to 
those presented here. Such extensions would be readily 
apparent to one of ordinary skill in the art, so their details will 
be omitted for brevity of description. 
0167 Exemplary techniques and methods for doing the 
Galois field manipulation and other mathematics behind 
RAID error correcting codes are described in Appendix A, 
which contains a paper “Information Dispersal Matrices for 
RAID Error Correcting Codes' prepared for the present 
application. 

Multi-Core Considerations 

(0168 What follows is an exemplary embodiment for opti 
mizing or improving the performance of multi-core architec 
ture systems when implementing the described erasure cod 
ing system routines. In multi-core architecture systems, each 
processor die is divided into multiple CPU cores, each with 
their own local caches, together with a memory (bus) inter 
face and possible on-die cache to interface with a shared 
memory with other processor dies. 
0169 FIG. 8 illustrates a multi-core architecture system 
100 having two processor dies 110 (namely, Die 0 and Die 1). 
(0170 Referring to FIG. 8, each die 110 includes four 
central processing units (CPUs or cores) 120 each having a 
local level 1 (L1) cache. Each core 120 may have separate 
functional units, for example, an x86 execution unit (fortra 
ditional instructions) and a SSE execution unit (for software 
designed for the newer SSE instruction set). An example 
application of these function units is that the x86 execution 
unit can be used for the RAID control logic software while the 
SSE execution unit can be used for the GF operation software. 
Each die 110 also has a level 2 (L2) cache/memory bus 
interface 130 shared between the four cores 120. Main 
memory 140, in turn, is shared between the two dies 110, and 
is connected to the input/output (I/O) controllers 150 that 
access external devices such as disk drives or other non 
volatile storage devices via interfaces such as Peripheral 
Component Interconnect (PCI). 
0171 Redundant array of independent disks (RAID) con 

troller processing can be described as a series of States or 
functions. These states may include: (1) Command Process 
ing, to validate and Schedule a host request (for example, to 
load or store data from disk storage); (2) Command Transla 
tion and Submission, to translate the host request into mul 
tiple disk requests and to pass the requests to the physical 
disks; (3) Error Correction, to generate check data and recon 
struct lost data when some disks are not functioning correctly: 
and (4) Request Completion, to move data from internal 
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buffers to requestor buffers. Note that the final state, Request 
Completion, may only be needed for a RAID controller that 
Supports caching, and can be avoided in a cacheless design. 
0172 Parallelism is achieved in the embodiment of FIG.8 
by assigning different cores 120 to different tasks. For 
example, some of the cores 120 can be “command cores,” that 
is, assigned to the I/O operations, which includes reading and 
storing the data and check bytes to and from memory 140 and 
the disk drives via the I/O interface 150. Others of the cores 
120 can be “data cores,” and assigned to the GF operations, 
that is, generating the check data from the original data, 
reconstructing the lost data from the Surviving data, etc., 
including the Parallel Lookup Multiplier and the sequencers 
described above. For example, in exemplary embodiments, a 
scheduler can be used to divide the original data D into 
corresponding portions of each block, which can then be 
processed independently by different cores 120 for applica 
tions such as check data generation and lost data reconstruc 
tion. 

(0173. One of the benefits of this data core/command core 
Subdivision of processing is ensuring that different code will 
be executed in different cores 120 (that is, command code in 
command cores, and data code in data cores). This improves 
the performance of the associated L1 cache in each core 120, 
and avoids the “pollution of these caches with code that is 
less frequently executed. In addition, empirical results show 
that the dies 110 perform best when only one core 120 on each 
die 110 does the GF operations (i.e., Sequencer 1 or 
Sequencer 2, with corresponding calls to Parallel Lookup 
Multiplier) and the other cores 120 do the I/O operations. This 
helps localize the Parallel Lookup Multiplier code and asso 
ciated data to a single core 120 and not compete with other 
cores 120, while allowing the other cores 120 to keep the data 
moving between memory 140 and the disk drives via the I/O 
interface 150. 

0.174 Embodiments of the present invention yield scal 
able, high performance RAID systems capable of outper 
forming other systems, and at much lower cost, due to the use 
of high Volume commodity components that are leveraged to 
achieve the result. This combination can be achieved by uti 
lizing the mathematical techniques and code optimizations 
described elsewhere in this application with careful place 
ment of the resulting code on specific processing cores. 
Embodiments can also be implemented on fewer resources, 
Such as single-core dies and/or single-die systems, with 
decreased parallelism and performance optimization. 
0.175. The process of subdividing and assigning individual 
cores 120 and/or dies 110 to inherently parallelizable tasks 
will result in a performance benefit. For example, on a Linux 
system, Software may be organized into “threads, and 
threads may be assigned to specific CPUs and memory sys 
tems via the kthread bind function when the thread is created. 
Creating separate threads to process the GF arithmetic allows 
parallel computations to take place, which multiplies the per 
formance of the system. 
0176 Further, creating multiple threads for command pro 
cessing allows for fully overlapped execution of the com 
mand processing states. One way to accomplish this is to 
number each command, then use the arithmetic MOD func 
tion (% in C language) to choose a separate thread for each 
command. Another technique is to Subdivide the data pro 
cessing portion of each command into multiple components, 
and assign each component to a separate thread. 
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0177 FIG.9 shows an exemplary disk drive configuration 
200 according to an embodiment of the present invention. 
0.178 Referring to FIG. 9, eight disks are shown, though 

this number can vary in other embodiments. The disks are 
divided into three types: data drives 210, parity drive 220, and 
check drives 230. The eight disks break down as three data 
drives 210, one parity drive 220, and four check drives 230 in 
the embodiment of FIG. 9. 
(0179. Each of the data drives 210 is used to hold a portion 
of data. The data is distributed uniformly across the data 
drives 210 in stripes, such as 192 KB stripes. For example, the 
data for an application can be broken up into stripes of 192 
KB, and each of the stripes in turnbroken up into three 64KB 
blocks, each of the three blocks being written to a different 
one of the three data drives 210. 
0180. The parity drive 220 is a special type of check drive 
in that the encoding of its data is a simple Summation (recall 
that this is exclusive OR in binary GF arithmetic) of the 
corresponding bytes of each of the three data drives 210. That 
is, check data generation (Sequencer 1) or regeneration (Se 
quencer 2) can be performed for the parity drive 220 using the 
Parallel Adder (and not the Parallel Lookup Multiplier). 
Accordingly, the check data for the parity drive 220 is rela 
tively straightforward to build. Likewise, when one of the 
data drives 210 no longer functions correctly, the parity drive 
220 can be used to reconstruct the lost data by adding (same 
as Subtracting in binary GF arithmetic) the corresponding 
bytes from each of the two remaining data drives 210. Thus, 
a single drive failure of one of the data drives 210 is very 
straightforward to handle when the parity drive 220 is avail 
able (no Parallel Lookup Multiplier). Accordingly, the parity 
drive 220 can replace much of the GF multiplication opera 
tions with GF addition for both check data generation and lost 
data reconstruction. 
0181. Each of the check drives 230 contains a linear com 
bination of the corresponding bytes of each of the data drives 
210. The linear combination is different for each check drive 
230, but in general is represented by a summation of different 
multiples of each of the corresponding bytes of the data drives 
210 (again, all arithmetic being GF arithmetic). For example, 
for the first check drive 230, each of the bytes of the first data 
drive 210 could be multiplied by 4, each of the bytes of the 
second data drive 210 by 3, and each of the bytes of the third 
data drive 210 by 6, then the corresponding products for each 
of the corresponding bytes could be added to produce the first 
check drive data. Similar linear combinations could be used to 
produce the check drive data for the other check drives 230. 
The specifics of which multiples for which check drive are 
explained in Appendix A. 
0182. With the addition of the parity drive 220 and check 
drives 230, eight drives are used in the RAID system 200 of 
FIG.9. Accordingly, each 192 KB of original data is stored as 
512 KB (i.e., eight blocks of 64 KB) of (original plus check) 
data. Such a system 200, however, is capable of recovering all 
of the original data provided any three of these eight drives 
survive. That is, the system 200 can withstand a concurrent 
failure of up to any five drives and still preserve all of the 
original data. 

Exemplary Routines to Implement an Embodiment 
0183 The error correcting code (ECC) portion of an 
exemplary embodiment of the present invention may be writ 
ten in Software as, for example, four functions, which could 
be named as ECCInitialize, ECCSolve, ECCGenerate, and 
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ECCRegenerate. The main functions that perform work are 
ECCGenerate and ECCRegenerate. ECCGenerate generates 
check codes for data that are used to recover data when a drive 
Suffers an outage (that is, ECCGenerate generates the check 
data J from the original data D using Sequencer 1). ECCRe 
generate uses these check codes and the remaining data to 
recover data after Such an outage (that is, ECCRegenerate 
uses the Surviving check data W, the Surviving original data X. 
and Sequencer 2 to reconstruct the lost original data Y while 
also regenerating any of the lost check data). Prior to calling 
either of these functions, ECCSolve is called to compute the 
constants used for a particular configuration of data drives, 
check drives, and failed drives (for example, ECCSolve 
builds the solution matrix B together with the lists of sur 
viving and failed data and check drives). Prior to calling 
ECCSolve, ECCInitialize is called to generate constant tables 
used by all of the other functions (for example, ECCInitialize 
builds the IDME and the two lookup tables for the Parallel 
Lookup Multiplier). 
0.184 ECCInitialize 
0185. The function ECCInitialize creates constant tables 
that are used by all Subsequent functions. It is called once at 
program initialization time. By copying or precomputing 
these values up front, these constant tables can be used to 
replace more time-consuming operations with simple table 
look-ups (such as for the Parallel Lookup Multiplier). For 
example, four tables useful for speeding up the GFarithmetic 
include: 

0186 1. mvct—an array of constants used to perform GF 
multiplication with the PSHUFB instruction that operates on 
SSE registers (that is, the Parallel Lookup Multiplier). 
0187 2. mast—contains the master encoding matrix S (or 
the Information Dispersal Matrix (IDM) E, as described in 
Appendix A), or at least the nontrivial portion, Such as the 
check drive encoding matrix H 
0188 3. mul tab—contains the results of all possible GF 
multiplication operations of any two operands (for example, 
256x256-65,536 bytes for all of the possible products of two 
different one-byte quantities) 

0189 4.div tab—contains the results of all possible GF 
division operations of any two operands (can be similar 
in size to mul tab) 

0.190 ECCSolve 
(0191 The function ECCSolve creates constant tables that 
are used to compute a solution for a particular configuration 
of data drives, check drives, and failed drives. It is called prior 
to using the functions ECCGenerate or ECCRegenerate. It 
allows the user to identify a particular case of failure by 
describing the logical configuration of data drives, check 
drives, and failed drives. It returns the constants, tables, and 
lists used to either generate check codes or regenerate data. 
For example, it can return the matrix B that needs to be 
inverted as well as the inverted matrix B (i.e., the solution 
matrix). 
(0192 ECCGenerate 
0193 The function ECCGenerate is used to generate 
check codes (that is, the check data matrix J) for a particular 
configuration of data drives and check drives, using 
Sequencer 1 and the Parallel Lookup Multiplier as described 
above. Prior to calling ECCGenerate, ECCSolve is called to 
compute the appropriate constants for the particular configu 
ration of data drives and check drives, as well as the solution 
matrix B'. 
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(0194 ECCRegenerate 
0.195 The function ECCRegenerate is used to regenerate 
data vectors and check code vectors for a particular configu 
ration of data drives and check drives (that is, reconstructing 
the original data matrix D from the Surviving data matrix X 
and the Surviving check matrix W, as well as regenerating the 
lost check data from the restored original data), this time 
using Sequencer 2 and the Parallel Lookup Multiplier as 
described above. Prior to calling ECCRegenerate, ECCSolve 
is called to compute the appropriate constants for the particu 
lar configuration of data drives, check drives, and failed 
drives, as well as the solution matrix B'. 

Exemplary Implementation Details 
0196. As discussed in Appendix A, there are two signifi 
cant sources of computational overhead in erasure code pro 
cessing (such as an erasure coding system used in RAID 
processing): the computation of the solution matrix B for a 
given failure scenario, and the byte-level processing of 
encoding the check data J and reconstructing the lost data 
after a lost packet (e.g., data drive failure). By reducing the 
solution matrix B to a matrix inversion of a FxF matrix, 
where F is the number of lost packets (e.g., failed drives), that 
portion of the computational overhead is for all intents and 
purposes negligible compared to the megabytes (MB), 
gigabytes (GB), and possibly terabytes (TB) of data that 
needs to be encoded into check data or reconstructed from the 
Surviving original and check data. Accordingly, the remain 
der of this section will be devoted to the byte-level encoding 
and regenerating processing. 
0.197 As already mentioned, certain practical simplifica 
tions can be assumed for most implementations. By using a 
Galois field of 256 entries, byte-level processing can be used 
for all of the GFarithmetic. Using the master encoding matrix 
S described in Appendix A, any combination of up to 127 data 
drives, 1 parity drive, and 128 check drives can be supported 
with such a Galois field. While, in general, any combination 
of data drives and check drives that adds up to 256 total drives 
is possible, not all combinations provide a parity drive when 
computed directly. Using the master encoding matrix S. on 
the other hand, allows all such combinations (including a 
parity drive) to be built (or simply indexed) from the same 
Such matrix. That is, the appropriate Sub-matrix (including 
the parity drive) can be used for configurations of less than the 
maximum number of drives. 
0198 In addition, using the master encoding matrix S 
permits further data drives and/or check drives can be added 
without requiring the recomputing of the IDME (unlike other 
proposed solutions, which recompute E forevery change of N 
or M). Rather, additional indexing of rows and/or columns of 
the master encoding matrix S will Suffice. As discussed 
above, the use of the parity drive can eliminate or significantly 
reduce the somewhat complex GF multiplication operations 
associated with the other check drives and replaces them with 
simple GF addition (bitwise exclusive OR in binary Galois 
fields) operations. It should be noted that master encoding 
matrices with the above properties are possible for any power 
of-two number of drives 2-N+M where the maximum 
number of data drives N is one less than a power of two 
(e.g., N, 127 or 63) and the maximum number of check 
drives M, (including the parity drive) is 2'-N. 
0199 As discussed earlier, in an exemplary embodiment 
of the present invention, a modern x86 architecture is used 
(being readily available and inexpensive). In particular, this 
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architecture supports 16 XMM registers and the SSE instruc 
tions. Each XMM register is 128 bits and is available for 
special purpose processing with the SSE instructions. Each of 
these XMM registers holds 16 bytes (8-bit), so four such 
registers can be used to store 64 bytes of data. Thus, by using 
SSE instructions (some of which work on different operand 
sizes, for example, treating each of the XMM registers as 
containing 16 one-byte operands), 64 bytes of data can be 
operated at a time using four consecutive SSE instructions 
(e.g., fetching from memory, storing into memory, Zeroing, 
adding, multiplying), the remaining registers being used for 
intermediate results and temporary storage. With Such an 
architecture, several routines are useful for optimizing the 
byte-level performance, including the Parallel Lookup Mul 
tiplier, Sequencer 1, and Sequencer 2 discussed above. 

GLOSSARY OF SOME VARIABLES 

0200. A encoding matrix (FXK), sub-matrix of T 
0201 B encoding matrix (FxF), sub-matrix of T 
(0202 B' solution matrix (FXF) 
0203 C encoded data matrix 

D 
((N + M)x L) = f 

0204 C" surviving encoded data matrix 

Nx L = (Nx L = 
0205 D original data matrix (NxL) 
0206 D'permuted original data matrix 

(NX L) = y 

0207 E information dispersal matrix 

IDM (N + M)xN)=" (IDM)(N + M)xN) = H 

0208 F number of failed data drives 
0209 G number of failed check drives 
0210 H check drive encoding matrix (MXN) 
0211 I identity matrix (I-KxKidentity matrix, INXN 
identity matrix) 

0212 Jencoded check data matrix (MXL) 
0213 K number of surviving data drives=N-F 
0214 L data block size (elements or bytes) 
0215 M number of check drives 
0216 M. maximum value of M 
0217 N number of data drives 
0218 N. maximum value of N 
0219 O zero matrix (KXF), sub-matrix of T 
0220 S master encoding matrix ((M+N)xN) 
0221 T transformed IDM 
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NXN)-" " (NXN)- 
0222 W surviving check data matrix (FxL) 
0223 X surviving original data matrix (KXL) 
0224 Y lost original data matrix (FxL) 

DETAILED DESCRIPTION 

New 

0225. While optimal erasure codes have many applica 
tions, for ease of description, they will be described in this 
application primarily with respect to RAID applications, i.e., 
erasure coding systems for the storage and retrieval of digital 
data distributed across numerous storage devices (or drives), 
though the present application is not limited thereto. For 
further ease of description, the storage devices will be 
assumed to be disk drives, though the invention is not limited 
thereto. In RAID systems, the data (or original data) is broken 
up into stripes, each of which includes N uniformly sized 
blocks (data blocks), and the N blocks are written across N 
separate drives (the data drives), one block per data drive. For 
simplicity, it will be assumed that N-2 throughout. The N=1 
case essentially degenerates to simple data mirroring (i.e., 
replication of data without encoding), though many of the 
same general principles apply as with Na2. 
0226. In addition, for ease of description, blocks will be 
assumed to be composed of L elements, each element having 
a fixed size, say 8 bits or one byte. An element, such as a byte, 
forms the fundamental unit of operation for the RAID pro 
cessing, but the invention is just as applicable to other size 
elements, such as 16 bits (2 bytes). For simplification, unless 
otherwise indicated, elements will be assumed to be one byte 
in size throughout the description that follows, and the term 
"element(s) and “byte(s) will be used synonymously. It is 
understood, however, that this is only for convenience of 
description, and embodiments of the invention are extendible 
to any size elements (e.g., 2 bytes) as would be apparent to 
one of ordinary skill in the art. 
0227 Conceptually, RAID processing takes place at the 
element (e.g., byte) level, though parallel processing tech 
niques (e.g., multiple cores, multiple instructions per cycle, 
instruction pipelining, and wide data paths) allows vast 
amounts of this processing to be done concurrently. While 
large block sizes L. can be chosen to take advantage of this 
concurrent processing, the processing is still being done on a 
byte basis across each stripe (that is, each byte at the same 
byte position in each stripe). Accordingly, errors and failures 
can take place on units Smaller than blocks, including bytes, 
and the same principles of being able to recover any lost or 
corrupted data from any N corresponding Surviving units 
(including N surviving bytes at the same corresponding byte 
positions) across the stripes still apply. 
0228. The N data blocks from each stripe are combined 
using arithmetic operations (as described in the Benefit 
Application and included above) in M different ways to pro 
duce M blocks of check data (check blocks), and the Mcheck 
blocks written across M drives (the check drives) separate 
from the N data drives, one block per check drive. It should be 
noted that the assignment of data and check blocks to the 
drives does not have to remain the same between Stripes, 
provided each of the N+M data and check blocks goes to a 
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different one of the N+M drives. For ease of description, 
however, the assignment will be assumed to be the same 
throughout this disclosure. It should also be noted that some 
or all of the N data blocks can be replaced with an equal 
number of additional check blocks. That is, provided there are 
N+M total data and check blocks, the N blocks of original 
data are reconstructable from any combination of N of the 
N+M total data and check blocks. Further, with the original 
data reconstructed, any of the check blocks can be regener 
ated. Thus, given any combination of N+M total data and 
check blocks, any N Such blocks can be used at any point to 
reconstruct or regenerate the other M blocks. 
0229. In other words, conceptually, there is little differ 
ence between an original data block and a check block, except 
perhaps to an application that needs to process the original 
data. Since the RAID storage system would not likely have 
need to process the original data, the data could be all stored 
as (encoded) check blocks. That is, the data could instead be 
stored as N+M total check blocks, as the system could still 
reconstruct the original data from any N of them. This simple 
example demonstrates the ability of check blocks to both 
encode (for example, encrypt) and authenticate data. 
0230. For example, without knowledge of the algorithm 
and the multiplicative factors used to encode the check 
blocks—that is, the check drive encoding matrix (or check 
matrix) as defined in the Benefit Application and included 
above the encoded data can appear to be encrypted to an 
observer of the data. Using a check matrix that is as least 
NxN, and storing the original data as check data rather than 
original data, should suffice to encrypt the original data to an 
unaware observer. In a similar fashion, with knowledge of the 
algorithm and the check matrix, data can have check blocks 
created for purposes of authentication. That is, receivers of 
the data and check blocks can regenerate the check blocks to 
verify the authenticity of the data bytes. Encryption and 
authentication can be performed together by using, for 
example, a check matrix of size (N+M)x(N+M) to create N 
encrypted data blocks and Mcheck blocks for authentication. 
For purposes of the remainder of this disclosure, however, it 
will be assumed that the N blocks of original data are kept in 
their original (unencoded) form at the different memory and 
storage hierarchies, though the invention is not limited 
thereto. 

0231. These combinations and arithmetic operations of 
data blocks into check blocks can take place, for example, 
when new (or changed) data is written to (or back to) disk. 
Accordingly, each of the N+M drives (data drives and check 
drives) stores a similar amount of data, namely one block for 
each stripe. As the processing of multiple stripes is concep 
tually similar to the processing of one stripe (only processing 
multiple blocks per drive instead of one), it will be further 
assumed for simplification that the data being stored or 
retrieved represents one stripe of original data unless other 
wise indicated. It will also be assumed that the block size L is 
sufficiently large that the data can be consistently divided 
across each block to produce Subsets of the data (for example, 
64 byte subsets) that include respective portions of the blocks 
(for efficient concurrent processing by different processing 
units). 
0232. The data blocks (and, in some cases, the check 
blocks) for each stripe can be assumed to be buffered within 
a level of the memory and storage hierarchy of the computer 
implementing the erasure code. For ease of description and 
simplification, it will be assumed that the caching takes place 
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in Stripe size units, where the stripe includes at least the data 
blocks along with any check blocks being kept or maintained 
with the data blocks at the corresponding level of the memory 
or storage hierarchy. One such exemplary level will be 
referred to as the RAID cache level. See FIG. 10 for an 
exemplary memory and storage hierarchy system 1000 
according to an embodiment of the present invention. In FIG. 
10, the memory and storage hierarchy system 1000 includes 
disk drives 1010 (for example, five disk drives, labeled disk 1 
through disk 5), a storage subsystem controller 1020 for 
transferring data to and from the different disk drives 1010, a 
RAID cache 1030 for maintaining recently accessed data in 
stripes, and a CPU and memory hierarchy 1040 for process 
ing the data by a central processing unit (CPU) and a memory 
hierarchy that can include various hardware memory levels 
including processor cache and Volatile memory, Such as ran 
dom access memory (RAM). 
0233. The RAID cache 1030 might only keep the N data 
blocks for each stripe resident in the RAID cache 1030. 
Assuming the corresponding N data drives are functioning, 
the RAID cache 1030 can build each stripe from the N data 
drives, process the stripe internally within the CPU and 
memory hierarchy 1040, and then write out any changes to the 
N data blocks, along with generating and writing out the 
corresponding changes to the M check blocks, at the appro 
priate time (e.g., when the stripe “ages out of the RAID 
cache). By keeping the stripe in the RAID cache 1030, details 
Such as keeping the check blocks up to date on the check 
drives, handling failing drives, etc., can be postponed until a 
more opportune moment presents itself to the RAID cache 
1030. Thus, to the RAID cache 1030, the fundamental unit of 
memory or storage is the stripe, though the RAID cache 1030 
may transfer data to the CPU and memory hierarchy 1040 as 
well as to the storage subsystem 1020 in units of blocks. 
0234. In other implementations, the RAID cache is a 
“write-through' cache. That is, when a change is written to 
one of the blocks in the RAID cache, the corresponding check 
blocks are updated and the contents of all of the updated 
blocks are written to their respective drives. 
0235 According to embodiments of the present invention, 
check blocks are also maintained in the RAID cache 1030 for 
each stripe. The number of such check blocks can be the 
same, less than, or even more than the number of check blocks 
maintained in the check drives. Erasure encodings, such as 
those described in the Benefit Application and included 
above, can support up to 256 total (data plus check) drives for 
byte-size elements (and far more drives for larger size ele 
ments, such as 65.536 drives for two-byte elements). Accord 
ingly, the internal stripe size (i.e., number of data and check 
blocks maintained in the RAID cache 1030 for each stripe) 
can be as large as 256 blocks, even if the external stripe size 
(i.e., number of data and check blocks maintained in the 
disks) is considerably smaller. As such, concepts such as 
“stripe size' and “check blocks' may be used throughout this 
disclosure to refer to either (or both of) “internal stripe size” 
(i.e., RAID cache stripe size) or “external stripe size” (i.e., 
data drives plus check drives stripe size), and likewise for 
“internal check blocks” or “external check blocks, depend 
ing on the context. Similarly, an “internal stripe' can refer to 
all the data and check blocks that contribute to the internal 
stripe size, while an “external stripe' can refer to all the data 
and check blocks that contribute to the external stripe size. 
0236. For example, a system may have three data drives 
and five check drives in a RAID configuration. Thus, the 

Jul. 23, 2015 

external Stripe size is eight blocks, namely three data blocks 
plus five check blocks (that is, five external check blocks) per 
stripe of data. According to an embodiment of the present 
invention, the RAID cache may maintain the contents of two 
of the five check drives (as well as all of the data drives) for 
each stripe. Here, the internal stripe size is five blocks, namely 
the three data blocks and two of the check blocks (that is, two 
internal check blocks). In another embodiment, the internal 
stripe size is eight blocks, that is, the same as the external 
stripe size. In yet another embodiment, the internal Stripe size 
is 11 blocks, that is, the three data blocks and eight check 
blocks. Accordingly, internal stripes can be full or proper 
subsets of the external stripes and vice versa, the external 
stripes can be full or proper subsets of the internal stripes. It 
should be noted that internal check blocks can also be used to 
speed up or replace the step of generating the check blocks 
when the stripe needs to be written to (or back to) disk. 
However, the present invention is not limited thereto, and in 
other embodiments, different check matrices may be used at 
different levels of the storage hierarchy. 
0237 By maintaining internal check blocks, the RAID 
cache can also take advantage of the check blocks to detect 
and possibly correct errors (e.g., silent data corruptions, or 
SDCs) of the different memory and storage hierarchy levels. 
Normally, it is assumed that all data is valid, both within the 
computing system and throughout any storage hierarchy. 
While RAID drives (specifically, the check blocks) can 
handle situations where entire drives fail or are otherwise 
inaccessible, they can also do data verification and correction 
of what would otherwise be assumed to be valid data (that is, 
data that may have experienced one or more SDCs). 

Internal and Multi-Level ECC 

0238 While the above discussion focuses on internal 
check bytes that, when stored on disk, are spread across 
multiple check drives, it is also possible to store Such internal 
check bytes on the same drive, or a combination of the same 
drive and other (check) drives, such as in a hierarchical fash 
ion over multiple levels. For example, Suppose data and check 
bytes are to be arranged on a 24-drive system. In a first 
embodiment, the 24 drives can be divided into 21 data drives 
and 3 check drives. Thus, 2 1/24=87.5% of the system is 
available for data bytes, which means 12.5% of the system is 
used for check bytes. It also means that three check bytes are 
available for each data byte, in a single level. 
0239. In a second embodiment, by contrast, the same 24 
drives are partitioned into 22 data drives and 2 check drives, 
providing two check bytes for each data byte in a standard 
RAID configuration. Thus, 22/24=91.7% of the drives are 
available for data, which means 8.3% of the drives are used 
for (standard RAID) check bytes. In addition, on each data 
drive, Suppose the data is organized into 512-byte sectors. 64 
Such sectors (i.e., 32 KB of data bytes) can be grouped in a 
manner similar to 64 separate drives for RAID processing, 
and 2 check sectors (i.e., 1 KB of check bytes) created to 
provide internal ECC within the drive. That is, each of the 
sectors can be thought of as a data block, with two check 
blocks (sectors) being created to provide ECC protection as 
with the standard RAID processing, only using internal Sec 
tors instead of external blocks. This provides an additional 
two check bytes for each data byte, with these check bytes 
being computed and used with the same hardware or Software 
used to process the standard RAID processing Thus, 
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64/66–97.0% of the drive is available for data bytes, which 
means 3.0% of the drive is used for check bytes. 
0240. Overall, in the second embodiment, there are four 
check bytes available for each data byte (two bytes within the 
drive, shared among 64 sectors, and two bytes outside the 
drive, shared among 22 data drives) in a two-level Scheme of 
two bytes in each level. Further, the total data byte storage 
available in the second embodiment is (22/24)x(64/66)=8/ 
9–88.9%, which means only 11.1% of the storage is devoted 
to check bytes. This compares favorably to the 87.5% data 
byte storage (12.5% check byte storage) of the first embodi 
ment. In addition, the second embodiment provides four 
check bytes for each data byte, compared to only three in the 
first embodiment. Further, in the second embodiment, within 
each data drive, situations such as an unrecoverable read error 
(URE) of an individual sector can be resolved within the drive 
by using the check sectors to reconstruct the URE data, thus 
avoiding reading all the other 23 drives to resolve the URE as 
would be needed in the first embodiment. 
0241. In still other embodiments, the above multi-level 
approach is extended to more than two levels. For example, in 
a third embodiment, a third level can be added by grouping 
four such 24-drive systems (“subsystems) as described in the 
second embodiment into a 96-drive system with 4 additional 
check drives, for a total of 100 drives. The total data byte 
storage available in the third embodiment is then (22/24)x 
(64/66)x(96/100)=64/75-85.3%, which means only 14.7% 
of the storage is for check bytes, yet provides eight check 
bytes for each databyte in three levels oftwo check bytes, two 
check bytes, and four check bytes. Thus, in the third embodi 
ment, not only are the single drive situations (e.g., UREs) 
correctable within each drive, but more extensive situations 
(such as a failed drive) are correctable within a 24-drive 
Subsystem (using the corresponding two check drives for the 
subsystem) and without having to read all the other 99 drives 
in the system. 

Consistency and (Consistency) Distance 
0242 To appreciate the dual-purpose concept described 
earlier (i.e., data regeneration when known drives fail versus 
error detection/correction when unknown bytes become cor 
rupted), data is normally stored or maintained in a consistent 
state (or at least what is believed to be a consistent state). In a 
consistent state, there are no apparent SDCs, based on the 
available check bytes or blocks to verify the other bytes. That 
is, with consistent data and check bytes, regenerating the 
check bytes from the data bytes produces the same check 
bytes as are already present. Otherwise, the data and check 
bytes are inconsistent. More generally, for an N+M block 
erasure code, N--M blocks are defined to be consistentifusing 
any N of the blocks to regenerate the other M blocks produces 
the same blocks as are already present. Otherwise, the N+M 
blocks are inconsistent. It should be noted that any combina 
tion of N blocks (or corresponding bytes) can be used for this 
consistency check. 
0243 Thus, data blocks by themselves are assumed to be 
consistent, for there is nothing to indicate otherwise. Accord 
ingly, without check blocks, SDCs can take place without 
detection, for N data blocks by themselves are always 
assumed to be in a consistent state. While erasure codes Such 
as those used for RAID storage are usually described with 
reference to known error locations (i.e., missing or corrupted 
blocks), unknown errors (i.e., SDCs) will be defined in terms 
of data consistency and inconsistency. SDCs are thus detect 
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able (and perhaps correctable) only to the extent that they 
cause the data and check bytes to be inconsistent. Since N data 
blocks cannot have any inconsistencies, N data blocks are 
always consistent, and thus cannot have any (detectable or 
correctable) SDCs. 
0244. The addition of check blocks allows for the detec 
tion and possible correction of SDCs. In general, for each 
check block added, one more SDC can be detected (with 
certainty) at each byte position. Put another way, an N+M set 
of consistent bytes could undergo as many as MSDCs and 
still not reach a different set of N+M consistent bytes, hence 
up to MSDCs can be detected with certainty. 
0245. This can also be expressed as a consistency distance, 
that is, the minimum number of element (e.g., byte) correc 
tions needed to return a set of data and check bytes to a 
consistent state. Another way of expressing this is that the 
consistency distance of a set of data and check bytes is the 
Hamming distance (in bytes) from the set of data and check 
bytes to the nearest set of consistent data and check bytes. 
Consistent data and check bytes are thus distance 0. N data 
bytes by themselves are also distance 0 (since they are con 
sistent), or distance 1 to the next nearest other consistent set 
(i.e., any single byte change also produces a consistent set). In 
general, N+M consistent data and check bytes are distance 0. 
or distance M+1 to the next nearest other consistent set. 
Inconsistent data has a nonzero consistency distance. The 
larger the distance, the more changes are needed to the indi 
vidual bytes to return it to a consistent state. The consistency 
distance (or just distance) thus measures the degree of con 
sistency. 
0246. An alternate (and possibly concurrent) use of the 
check bytes is to compress existing data bytes, such as in a 
cache. For example, denote two sets of N data bytes D1 and 
D2 and their corresponding sets of Mcheck bytes C1 and C2. 
In the trivial case where D1 and D2 are the same, it suffices to 
store only one of them, such as D1, in the cache (along with 
each of their check bytes C1 and C2). That is, the two sets of 
check bytes C1 and C2 can be stored in the cache together 
with a pointer that points to the same data, Such as D1. In this 
manner, the databytes D2 do not also need to be stored, which 
results in data compression. 
0247 Likewise, if D1 and D2 differ (in bytewise compari 
son) by fewer than the number of check blocks (M), that is, the 
Hamming distance between D1 and D2 is less than M, it may 
be that the combination of N data bytes D1 and Mcheck bytes 
C2 is an inconsistent set of N+M data and check bytes that is 
nonetheless correctable (as discussed in more detail below) to 
the consistent set of N+M data and check bytes D2 and C2. If 
so, it suffices to store only D1, and to point C2 to D1. That is, 
D2 can be compressed to a pointer to D1 only with a different 
set of check bytes C2, and can be uncompressed to D2 
through error correction techniques as discussed more fully 
below. In other words, some or all of the error correcting 
capability can be exchanged for a data compression capabil 
ity. It should be noted that this data compression can still be 
combined with actual error detection and correction by, for 
example, requiring D1 and D2 to differ by fewer bytes, 
thereby allowing these extra bytes to detect or correct actual 
errors (e.g., SDCs) that occur to D1, C1, or C2 overtime while 
still being able to recover D2. 
0248. Further compression may also be possible by point 
ing new data to existing compressed data. That is, Suppose 
databytes D1 and D2, with corresponding check bytes C1 and 
C2, are stored as described above, with D1 actually being 
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stored, C1 being stored and pointing to D1, and C2 being 
stored and also pointing to D1 (the data bytes D2 being 
reconstructable from doing error correction on the combina 
tion of data bytes D1 and check bytes C2). Now let new data 
bytes D3 with corresponding check bytes C3 be added to the 
cache. D3 may be sufficiently far from D1 (for example, have 
a Hamming distance from D1 that is aM) that the data bytes 
D3 cannot be recovered from the combination of the data 
bytes D1 and check bytes C3. 
0249. However, D3 may be sufficiently close to D2 (for 
example, have a Hamming distance from D2 that is sM/2) 
that the data bytes D3 can be recovered from error correcting 
the combination of data bytes D2 and check bytes C3. In this 
case, D3 would not have to be stored in the cache. Rather, the 
check bytes C3 are stored in the cache, only pointing to the 
check bytes C2. In this fashion, the data bytes D3 could be 
reconstructed by first reconstructing the data bytes D2 as 
described above, and then performing error correction on the 
recovered data bytes D2 using the check bytes C3. In this 
sense, the check bytes C3 indirectly point to the databytes D1 
by pointing to the check bytes C2, which directly point to the 
data bytes D1. 
0250. This process of data compression could thus poten 

tially be extended several levels, each level of indirection 
adding another error correction operation to recover the 
appropriate intermediate data bytes until eventually the 
desired data bytes are recovered. In some embodiments, the 
amount of indirection (number of error correction operations) 
could be limited (say, to no more than a fixed number of 
compressed sets of intermediate data bytes) to lessen the 
potential computational complexity of decompressing the 
data from existing compressed sets of data bytes. 
0251 Pure detection of SDCs can thus be reduced to test 
ing if the data and check bytes are consistent (i.e., has a 
distance greater than 0). Pure correction of SDCs can be 
reduced to replacing the data and check bytes with the closest 
consistent set of data and check bytes (that is, the set requiring 
the fewest number of byte changes), provided there is only 
one Such closest set. Pure compression of data bytes can be 
accomplished by replacing similar combinations of data 
bytes with only one Such set, together with corresponding sets 
of check bytes corresponding to their original data. Combi 
nations of detection, correction, and compression are also 
possible, as described later. 
0252 Random SDCs usually make the data and check 
bytes more inconsistent (i.e., increases its distance), but only 
to a certain extent, and no more than distance M. This is 
because any inconsistent set of N+M data and check bytes is 
at most M corrections away (i.e., distance M) from a consis 
tent set of data and check bytes. That is, any N of the data and 
check bytes are consistent (i.e., distance 0) and can be used to 
generate the other M bytes, thus producing a set of N+M 
consistent data and check bytes with at most M byte correc 
tions (i.e., distance at most M). There are 

("") ("") 

such possible subsets (different sets of corrections of at most 
M bytes) and thus, while M SDCs is detectable, it is (gener 

Jul. 23, 2015 

ally) not possible to correct them (for example, without know 
ing which of the numerous sets of corrections should be 
applied). 
0253 For ease of description, as described hereinafter, 
inconsistent data and check bytes are correctable if and only 
if there is a unique solution (that is, a unique set of byte 
changes) having a fewest number of corrections that returns 
the inconsistent data and check bytes to a consistent state (i.e., 
only one solution satisfying its consistency distance). Any 
consistent set of N+M data and check bytes is distance M+1 
from any nearest other consistent set of data and check bytes. 
That is, the addition of M check blocks separates the consis 
tent sets of data and check bytes by at least M+1 SDCs. Thus, 
any inconsistent set of data and check bytes having a combi 
nation offewer than 

M + 1 

SDCs (i.e., less man or equal to 

2 

SDCs) is guaranteed to be correctable, as such an inconsistent 
set of data and check bytes is more than distance 

M + 1 

from any nearest other set of consistent data and check bytes. 
However, it may be possible to correct up to M-1 SDCs, if 
there is only one set of consistent data that is distance M-1 or 
less from the inconsistent data and check bytes. 
0254 For example, if a set of data and check bytes is 
inconsistent, but can be made consistent in as few as two 
corrections (i.e., distance 2), then two SDCs are detectable. 
Further, if there is only one such combination of two data and 
check bytes that can be corrected to return the set to a con 
sistent state, then those two data and check bytes (or rather, 
their SDCs) are correctable. In general, an N+M block erasure 
code has the capability of detecting up to MSDCs (i.e., its 
distance is at most M) at each byte position, and the possibil 
ity of correcting up to M-1 SDCs. However, the maximum 
number of correctable SDCs is data dependent, and can be as 
few as 

(rounded down), that is, 

0255 For a more practical example, suppose two of the 
check blocks are maintained internally in the RAID cache 
(that is, the internal stripe size is N-2 blocks). Then a simple 
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consistency check of the N+2 blocks can be to use the N data 
blocks to regenerate the two check blocks, and then compare 
these two regenerated check blocks with the two existing 
check blocks. If there are any mismatches, then the internal 
stripe is inconsistent, that is, one or more SDCs have been 
detected. In this case, it may be possible to use the existing 
check blocks in the RAID cache to detect two SDCs or to 
correct one SDC, at each byte position, as will now be 
explained. 
0256 FIG. 11 illustrates an exemplary RAID cache 1030 
according to an embodiment of the present invention. The 
cache is depicted as a two dimensional structure, with rows 
corresponding to Stripes and columns corresponding to disk 
drives (including data drives and check drives). In this RAID 
cache 1030, the internal stripe size is five blocks, namely 
three data blocks and two check blocks. By incorporating two 
check blocks into each internal stripe, the RAID cache 1030 
has dedicated 40% of its cache space to holding check data, 
which means that the RAID cache 1030 holds 40% fewer 
stripes compared to a comparable RAID cache that stores no 
check blocks in its internal stripes. 
0257 The check blocks do provide benefits, though. In 
addition to being able to write these check blocks to check 
drives when the stripe needs to be written to disk (that is, 
without a separate check data generation step), these check 
blocks provide, for example, error detection and correction 
capability (and/or encryption, authentication, and/or com 
pression capability). These blocks represent an erasure code 
and thus, should any two of them become corrupted, they can 
be reconstructed or regenerated from the other three. How 
ever, as already mentioned, for a RAID cache (i.e., internal) 
level of the memory or storage hierarchy, that property also 
applies to the byte level. That is, for a given stripe, in this 
example, there can be up to 2xL corruptions, i.e., two per 
corresponding byte position across each of the five blocks. 
Accordingly, for simplification, at the RAID cache level, the 
data may hereinafter be thought of as individual correspond 
ing bytes across each (internal) stripe. That is, the data will be 
processed at the byte level and not the block level. Consis 
tency and distance will also be defined across the same 
boundaries. 
0258 With this in mind, FIG. 12 illustrates an exemplary 
method 1200 for consistency checking a set of N+M original 
bytes in an erasure code according to an exemplary embodi 
ment of the present invention. In step 1210, a check is made to 
see if M=0. If so, the processing proceeds to step 1220, where 
the data is assumed to be consistent since there is no way to 
tell otherwise. Otherwise, Mal, so processing proceeds to 
step 1230, where a (proper) subset of N bytes is chosen. Any 
N of the original bytes can be chosen. Since the data is part of 
an erasure code, the N chosen bytes can be used in step 1240 
to regenerate all N+M original bytes. 
0259 Next, in step 1250, the regenerated bytes are com 
pared to the original bytes. If this byte wise comparison is the 
same across all N+M byte positions, then the regenerated data 
matches the original data, so processing proceeds to step 
1260, and the data is consistent. Otherwise, the regenerated 
data is different from the original data, so there must be an 
inconsistency in the original data, so processing proceeds to 
step 1270, and the data is inconsistent. 
0260. As a simple example, if the N+M bytes include N 
data bytes and M check bytes, the consistency checking can 
be accomplished by regenerating the Mcheck bytes from the 
N data bytes. As such, another term for consistency checking 
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is check data regeneration verification. In addition, in place of 
(or in addition to) error detection, the M check bytes can be 
used for data authentication, allowing a sender and receiver 
that have knowledge of the check matrix to generate authen 
tication bytes to Verify the authenticity of a message. Authen 
tication would take place if the received N+M data and check 
(authentication) bytes were consistent. 

Error Detection and Correction 

0261 Returning to the example arrangement of FIG. 11, if 
an SDC occurs at a byte position in one block (say, the first 
data block), the data at the corresponding same byte positions 
in the other four blocks (that is, the second and third data 
blocks, and the first and second check blocks) can be used to 
detect the error and possibly correct it. Detection would take 
place when it is discovered that any combination of four or 
five blocks including the first data block is inconsistent at that 
byte position. Likewise, correction could take place when it is 
realized that the data at that byte position is consistent across 
the one combination of four blocks including the second and 
third data blocks, and the first and second check blocks. Using 
any three of the four bytes in the consistent combination of 
blocks to reconstruct the corrupted byte in the first data block 
will then yield consistent data across all five blocks. 
0262 Instead of detecting and correcting one error in a 
byte position across the five blocks, the two check blocks can 
instead be used to detect (up to) any two errors in the same 
byte position. Generally, for every check block added, each 
byte position can detect up to one more error, while for every 
two check blocks added, each byte position can detect up to 
two more errors or, instead, each byte position can correct up 
to one more error. Thus, error correction sometimes involves 
a tradeoff in general, for every byte of error correction capa 
bility added (or at least error correction with certainty), one 
byte of error detection capability is removed. It should be 
noted that some error correction might still be possible using 
fewer than two check blocks per byte, as will be described 
later. 

0263. The choice of how to apportion the detection and 
correction capability should be made ahead of time, as it 
makes assumptions on the maximum number of SDCs that 
may be present. When the number of SDCs exceeds the 
assumed maximum, the results can be unpredictable (i.e., the 
SDCs may still be detectable, possibly even correctable, but 
this cannot be guaranteed; instead, the SDCs may go unde 
tected, or the wrong bytes may be corrected). Thus, with two 
check blocks, the choice can be made up front whether to be 
able to either (1) detect up to two errors, or (2) correct up to 
one error. Likewise, with three check blocks, the choice can 
be made up front to be able to either (1) detect up to three 
errors, or (2) correct up to one error or detect two errors. It 
should be noted that with choice (2), the outcome, namely 
correct up to one error or detect two errors, depends on 
whether there is at most one error or whether there are two 
errors, respectively, in the data. It should also be noted that 
with choice (2), it still may also be possible to correct two 
errors, but this cannot be guaranteed. 
0264. Likewise, with four check blocks, the choice can be 
made up front to be able to (1) detect up to four errors, (2) 
correct up to one error or detect two to three errors, or (3) 
correct up to two errors. It should be noted that correction of 
an error implicitly requires the detection of that error, so the 
term “correct will be used synonymously with “detect and 
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correct throughout this disclosure. In general, for any M, the 
choice can be made up front to be able to do one of 

+ 1 
possible capabilities: (1) detect up to Merrors, (2) correct up 
to one error or detect two to M-1 errors, (3) correct up to two 
errors or detect three to M-2 errors, ..., or 

(+1) 
correct up to 

errors or detect 

errors (that is, 

2 

rounded up), as will be described further below with refer 
ence to FIG. 13. As before, it still may be possible to correct 
up to M-1 errors, but this cannot be guaranteed, as will be 
described further below with reference to FIGS. 14-15. 
0265 FIG. 13 illustrates an exemplary method 1300 for 
detecting and correcting errors according to an embodiment 
of the present invention. 
0266 Referring to FIG. 13, method 1300 assumes that 
there are N--M bytes distributed at the same byte position 
across all N+M blocks of a stripe. In step 1310, a check is 
made to see if the N+M bytes are consistent (using, for 
example, the consistency checking method 1200 of FIG. 12). 
If so, then processing proceeds to step 1320, and no errors 
have been detected. If not, then one or more SDCs have been 
detected, so processing proceeds to step 1330, where upper 
bounds on the maximum number of correctable errors C and 
detectable errors M-C are determined, where CsM-C 

(i.e., C-1) 
as discussed above. For example, these numbers may have 
been decided up front (i.e., predetermined), or they may be 
determined dynamically on a case-by-base basis. Method 
1300 assumes that there are no more than M-C SDCs, for 
otherwise the results are unpredictable. Processing then pro 
ceeds to step 1340, where an attempt is made to correct up to 
C SDCS. 
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0267 In further detail, in step 1340, every subset of size 
N+M-C bytes is tested for consistency (using, for example, 
method 1200) until a consistent subset is found. It should be 
noted that there are 

( N - M 
N - M - C ("") 

Such Subsets, though it may be possible to not test every one 
of them, as described later. It is guaranteed that if there are no 
more than C SDCs, there will be at least one such consistent 
subset. This is because at some point, a subset of size N+M-C 
bytes that excludes all of the (no more than C) SDCs will be 
picked. Since such a subset lacks any SDCs, it is consistent by 
construction. Furthermore, since there are no more than M-C 
SDCs in all N+M bytes (as assumed above), any subset of size 
N+M-C bytes can have no more than M-CSDCs in it. Since 
any such subset of size N+M-C bytes is also an erasure code 
of N+M-C bytes, it is consistent if and only if it has no SDCs. 
0268 If no such consistent subset of size N+M-C bytes is 
found, then processing proceeds to step 1350, where it is 
determined that more than C SDCs have been detected (had 
there been C or fewer SDCs, there would have been a consis 
tent subset of size N+M-C bytes as discussed above). How 
ever, there can be no more than M-CSDCs (by assumption). 
Thus, between C+1 and M-C SDCs have been detected. 
0269. Otherwise, one such consistent subset has been 
found. Processing then proceeds to step 1360, where that 
Subset is used to regenerate or reconstruct the missing C 
bytes, at least one of which will be different from the corre 
sponding bytes in the original N+M bytes (otherwise the 
original N+M bytes would have been consistent), at which 
point up to C SDCs have been corrected. 
0270. As can be seen, it is possible to detect more SDCs 
than can be corrected. This follows from the consistency 
distance. Error detection can be thought of as starting from a 
consistent set of data and check bytes and injecting errors up 
to, but not including, the next closest consistent set of data and 
check bytes (i.e., up to distance M, as the next closest consis 
tent set of data and check bytes is distance M+1). Error 
correction, on the other hand, can be thought of as starting 
from an inconsistent set of data and check bytes and correct 
ing the fewest number of data and check bytes possible to 
reach the closest set of consistent data and check bytes. As 
there can be only one possible set of consistent data and check 
bytes within distance 

(otherwise there would be two different sets of consistent data 
and check bytes that were distance M or less apart, which 
cannot happen), any combination of up to 
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SDCs is guarantees to be correctable (assuming that 

| 
SDCs is an acceptable upper bound on the maximum number 
of SDCs that may be present). 
(0271 Method 1200 of FIG. 12 provides a technique of 
consistency checking or pure error detection. Method 1300 of 
FIG. 13 expands upon this to incorporate a certain amount of 
error correction (at the expense of giving up a certain amount 
of error detection). Both methods are guaranteed to work 
given certain underlying assumptions (especially the maxi 
mum number of SDCs that may be present). Given a sufficient 
value for M. method 1200 will generally detect any number of 
random SDCs. As discussed earlier, random SDCs initially 
convert consistent data and check bytes into inconsistent data 
and check bytes, thus increasing their consistency distance. 
This consistency distance continues to grow and approaches 
or equals M as more random SDCs are introduced. Briefly, a 
random SDC is only going to be consistent with a given set of 
N bytes 1/256 of the time, for byte-size entries, and only 
1/65,536 of the time for two-byte entries. That is, random 
SDCs likely make consistent data (or nearly consistent data) 
less consistent. This effect compounds with each random 
SDC, but is tempered somewhat by larger values of N and M 
(since this introduces more possible subsets to check for 
consistency, thus increasing the chance that one such consis 
tent subset will be found). 
0272 Accordingly, the principle of detecting virtually any 
number of random SDCs can be extended somewhat into the 
notion of correcting more SDCs than 

While the distance limits discussed above (especially in 
method 1300) provide guaranteed results, check bytes can be 
used to extend error correction conceivably as far as M-1 
errors, as will now be explained with reference to FIG. 14. 
(0273 FIG. 14 illustrates an exemplary method 1400 for 
correcting errors according to an embodiment of the present 
invention. 
0274 Method 1400 increases or maximizes the chances of 
correcting data and check bytes with random SDCs when 
compared to, for example, method 1300 above. This correc 
tion capability comes at the expense of reducing or minimiz 
ing detection of SDCs, in that detection only takes place at the 
consistency distance, and then only when more than one 
solution presents itself. Method 1400 also determines the 
consistency distance of a set of data and check bytes. 
(0275 Referring to FIG. 14, at step 1410, the number of 
errors (or consistency distance) C is initialized to 0, and a 
consistency check is made of the N+M bytes (using, for 
example, the consistency checking method 1200 of FIG. 12). 
If the data and check bytes are consistent, then processing 
proceeds to step 1420, and no SDCs are detected (i.e., the 
consistency distance C is 0). Otherwise, at least one SDC is 
detected, so processing proceeds to step 1430, where an 
attempt is made to correct the SDCs. In step 1430, the number 
of errors C is incremented by 1. Next, in step 1440, every 
subset of size N+M-C data and check bytes is tested for 
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consistency. If none is found, the processing proceeds to step 
1450, where it is determined that more than C SDCs have 
been detected. Accordingly, steps 1430 and 1440 are repeated 
(this time on Smaller Subsets of data and check bytes, i.e., 
larger values of the consistency distance C). 
0276. Otherwise, if in step 1440, a single consistent subset 

is found, then processing proceeds to step 1460, and that 
consistent subset is used to correct the C SDCs. Finally, if in 
step 1440, more than one consistent Subset is found, then 
processing proceeds to step 1470, where it is determined that 
C SDCs have been detected, but correction is not possible 
(numerous solutions). At the conclusion of method 1400, C 
will be set to the consistency distance. Method 1400 is thus 
also a technique of determining the consistency distance. 
(0277. Several shortcuts are possible in method 1400. For 
example, in step 1410, C can be initialized to a larger value to 
cut down the searching of larger subsets in step 1440. It 
should be noted though that C may no longer represent the 
consistency distance in Such a case. It should also be noted 
that if C is initialized to a value larger than 

results may be unpredictable (for instance, multiple errors 
may be detected in place of identifying a unique set of cor 
rections at the consistency distance). See, however, method 
1500 in FIG. 15 below. In addition, in step 1440, the check for 
multiple consistent Subsets can be bypassed if 

(that is, processing can proceed directly to step 1460 once any 
consistent subset is found). If 

in step 1440, then processing can go to step 1470 as soon as a 
second consistent subset is found. Further, in step 1430, once 
C-M, processing can proceed directly to step 1470, as the 
largest consistency distance M has already been determined, 
to which there are numerous possible sets of corrections. 
0278 Depending on the data, method 1400 can correct as 
many as M-1 SDCs. As a simple case, consider N=2 and 
M-3. If two random SDCs are injected into a set of 5-2+3 
data and check bytes, they can be detected by method 1200 or 
method 1300. However, there is no guarantee that they can be 
corrected, since 
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Since there are only 

possible subsets of three bytes to check for consistency, and 
one is guaranteed to be consistent (namely, the Subset that 
does not include either of the two SDCs), that leaves 9 pos 
sible Subsets that may also be consistent. Roughly speaking, 
there is a 1 in 256 chance that any one of these subsets is 
consistent, given random SDCs. Thus, about 96.5% of the 
time, i.e., 

(255 -(E), 
these 9 subsets will all be inconsistent, and method 1400 will 
be able to correct the two errors. 

(0279 FIG. 15 illustrates an exemplary method 1500 for 
correcting errors according to another embodiment of the 
present invention. 
0280 Method 1500 is similar to method 1400 above. 
However, instead of starting the search for a consistent set of 
data and check bytes from the initial set of data and check 
bytes and fanning outward (as in method 1400), method 1500 
starts searching from the maximum detectable consistency 
distance (i.e., M) and collapsing inward. As in method 1400, 
this correction capability comes at the expense of reducing or 
minimizing detection of SDCs, in that detection only takes 
place at the consistency distance, and then only when more 
than one solution presents itself. Like method 1400, method 
1500 also determines the consistency distance of a set of data 
and check bytes. 
(0281 Referring to FIG. 15, at step 1510, the number of 
errors (or consistency distance) C is initialized to M, repre 
senting the maximum number of detectable SDCs. While the 
main loop of method 1500 (i.e., steps 1530-1550) could be 
entered at this point, when the N+M data and check bytes are 
already consistent, this would lead to the unnecessary consis 
tency checking of many Subsets of more than N data and 
check bytes. Accordingly, as with method 1400, an initial 
consistency check is made of the N+M bytes (using, for 
example, the consistency checking method 1200 of FIG. 12). 
If all N+M data and check bytes are consistent, then process 
ing proceeds to step 1520, and no SDCs are detected (i.e., the 
consistency distance is 0, so C should be set to 0 if C is 
returning the consistency distance). This check thus bypasses 
the processing of the main loop (steps 1530-1550) for the 
straightforward case of all N+M bytes being consistent. 
0282. On the other hand, if in step 1510, not all N+M data 
and check bytes are consistent, then at least one SDC is 
detected, so processing proceeds to step 1530, where an 
attempt is made to correct the SDCs. In step 1530, the number 
of (correctable) errors C is decremented by 1. Thus, on the 
first iteration of the main loop (steps 1530-1550), C=M-1, 
representing the maximum number of correctable SDCs. 
Next, in step 1540, every subset of size N+M-C data and 
check bytes is tested for consistency. If more than one are 
found, the processing proceeds to step 1550, where it is deter 
mined that at most C SDCs have been detected. Accordingly, 
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steps 1530 and 1540 are repeated (this time on larger subsets 
of data and check bytes, i.e., Smaller values of the consistency 
distance C). 
0283. Otherwise, if in step 1540, a single consistent subset 

is found, then processing proceeds to step 1560, and that 
consistent subset is used to correct the C SDCs. Finally, if in 
step 1540, no consistent Subset is found, then processing 
proceeds to step 1570, where it is determined that C+1 SDCs 
have been detected, but correction is not possible (numerous 
Solutions). If C is returning the consistency distance, then C 
should be set to C+1 in this case. 
0284. In practice, in step 1540, it may not be necessary to 
test every subset of size N+M-C data and check bytes for 
consistency. Once two Such Subsets have been found, pro 
cessing can go directly to step 1550. This speeds up the 
processing for step 1540 when there are few SDCs in the data 
and check bytes, as there will be numerous consistent Subsets 
in Such a case, which hastens the time it takes to find any two 
Such Subsets. 
0285 While larger values of M and N may decrease the 
likelihood of correcting M-1 SDCs (since they introduce 
more subsets to check), this can be offset in one (or more) of 
several ways. For example, using two-byte (or larger) entries 
greatly reduces the likelihood of random SDCs producing 
consistent subsets. With two-byte entries, when correcting 
M-1 random SDCs, there is only a 1 in 65,536 chance that a 
subset with SDCs will be consistent. Increasing the element 
size also improves the encryption capability, as it increases 
the number of possible check rows in the check matrix, and it 
grows the size of each factor in the check matrix (making it 
that much harder to decrypt). As another example, correcting 
fewer SDCs (than M-1), such as M-2 or M-3, yet still more 
than 

| 
significantly increases the chance of Success because it 
becomes increasingly less likely that such subsets will be 
consistent. This is because, while with M-1 SDCs, the subset 
has to randomly match one byte to be consistent (a 1 in 256 
chance), it has to match two bytes (1 in 65,536) or three bytes 
(1 in 16,777,216) to be consistent when correcting M-2 errors 
or M-3 errors, respectively. As with RAID storage, then, 
increasing the number of check bytes (i.e., increasing M) may 
be a Sure way of securing more data integrity in the face of 
random SDCs. 

0286 The decisions of how many (internal) check blocks 
to use, of how large to make the elements, and of how many 
errors to be able to detect versus how many to be able to 
correctare design tradeoffs and may depend on system design 
features (such as available system resources and reliability, or 
whether there is another way to recover the corrupted data, 
etc.) 

Data Compression and Decompression 

0287. As discussed briefly earlier, the same techniques 
(such as methods 1300, 1400, and 1500) used for error cor 
rection can also be used to compress the data bytes in a cache. 
The basic idea is to identify sets of data bytes that are either 
the same or very similar, and store Such sets of data bytes only 
once, relying on the corresponding check bytes (which are 
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stored regardless) to recover the correct data bytes from a 
similar set of data bytes through error correction as discussed 
above. 

0288 FIG. 16 illustrates an exemplary method 1600 of 
compressing data according to an embodiment of the present 
invention. It is assumed that a cache includes sets of data and 
check bytes as defined above, with the data bytes being com 
pressed. 
0289 Referring to FIG. 16, method 1600 begins at step 
1610, where m sets of data and check bytes are stored in the 
cache. These can be thought of as m sets of data bytes D, D, 
..., D, and a corresponding m sets of check bytes C. C. . . 
... C. All m sets of check bytes C, C2, ..., C are stored in 
the cache. However, only in sets of data bytes E. E. . . . , E, 
are stored in the cache, where nsm and E. E. . . . . E} 
c{D, D, ..., D,}. Each set of check bytes C1, C2, ... , C, 
points (i.e., directly points) to one of the sets of data bytes E. 
E. . . . , E, but it is not necessarily a one-to-one correspon 
dence. In fact, the more sharing that takes place (i.e., multiple 
sets of check bytes pointing to the same set of data bytes), the 
better the compression. 
(0290 Each set of check bytes C, is paired with a set of data 
bytes E, in the cache, but the combination is not necessarily a 
consistent set of data and check bytes (i.e., an uncompressed 
pairing, where the corresponding databytes D, are the same as 
the data bytes E.). Rather, it can be an inconsistent set of data 
and check bytes, but one that can be corrected to a consistent 
set using, for example, the above methods 1300, 1400, or 
1500 for error correction (i.e., a compressed pairing, where 
the corresponding data bytes D, are different from the data 
bytes E, and an error correction operation is needed to restore 
the desired data bytes D, from the stored data bytes E). While 
the type of pairing (uncompressed or compressed) can be 
detected by determining if the databytes E, and check bytes C, 
are consistent, to save computation, the type of pairing (un 
compressed or compressed) can also be stored with the check 
bytes C, and the pointer to the data bytes E. 
0291. In step 1620, a new set of data bytes D, is to be 
stored in the cache, i.e., become the (m+1)th set of data and 
check bytes in the cache. The corresponding check bytes 
C are computed and stored in the cache. 
0292. In step 1630, D, is compared against each of E, 
E,..., E., and the E, having the Smallest Hamming distance 
to D (i.e., the set of data bytes that is closest to D.) is 
chosen. If there are multiple such closest sets of data bytes, 
then E, can represent any one of them. In other embodiments, 
different criteria can be used to choose such a representative 
E 

0293. In step 1640, it is determined whether it will suffice 
to use E, to store D. That is, is E, close enough to D that 
E, can be used to store D, relying on the check bytes C 
to correct any differing bytes between E, and D2 In other 
words, is the combination of data bytes E, and check bytes 
C, even though it may represent an inconsistent set of data 
and check bytes, nonetheless correctable to restore D2 
One way of making this determination is to see if the Ham 
ming distance between E, and D, is ssome threshold dis 
tance S. For example, if 

S s|| 
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then it is guaranteed that the inconsistent set of data and check 
bytes E, and C can be corrected to the consistent set of data 
and check bytes D, and C S may also be chosen to be 
Smaller than 

na-l 

| 
for example, it some amount of error detection and/or correc 
tion is desired with the compression. 
0294. In step 1650, if the Hamming distance between E, 
and D, is sS, then the data bytes D, do not need to be 
stored in the cache. Instead, the check bytes C are pointed 
to E, (and error correction logic can be used to recreate D, 
from E, and C). This improves the compression of the 
cache. If E, and D, are the same (i.e., Hamming distance 0), 
the pairing is uncompressed (that is, no decompression 
needed). Otherwise, the pairing is compressed, and an error 
correction operation (that is, one level of error correction) is 
needed to restore (decompress) D. from E. 
0295. On the other hand, in step 1660, if the Hamming 
distance between E, and D, is >S, then the data bytes D, 
are stored in the cache. That is, a new data entry E, is 
created, D, is stored in E, and the check bytes C are 
pointed to E. In this case, the pairing is uncompressed (no 
decompression needed). 
0296. In method 1600, 

S is a threshold values 

Accordingly, the error correction can follow method 1300 
above. For even better compression, however, an error cor 
rection technique closer to that of method 1400 or 1500 can be 
employed, as described below with reference to FIG. 17. In 
such a case, a fixed threshold Swould not be provided. Rather, 
the check bytes would be pointed to any set of data bytes from 
which the resulting combination of (inconsistent) data bytes 
and check bytes could be error corrected back to the desired 
data bytes. 
0297 As a possible enhancement to step 1630, a special 
check for duplicates (i.e., a new set of data bytes D, that 
matches an existing set of data bytes in the cache) can be made 
by comparing the new set of check bytes C against the 
existing sets of check bytes C. C. . . . . C. A mismatch 
guarantees that the data bytes are different, while a match 
indicates a high likelihood of a duplicate set of data bytes (by 
taking advantage of the hashing properties of the erasure code 
encoding). Accordingly, matches can then be specifically 
tested for duplicates with the corresponding existing set of 
data bytes in the cache (by comparing the existing set of data 
bytes with the new set of data bytes), with appropriate point 
ers and indicators (uncompressed or compressed) assigned to 
the check bytes C, ifa duplicate is found. Since the number 
of check bytes is likely to be smaller (or significantly smaller) 
than the number of data bytes, this technique of duplicate 
checking (i.e., comparing check bytes) can be considerably 
faster than comparing all the data bytes when there is a high 
likelihood of duplicates in the sets of data bytes. 
0298. In one exemplary embodiment, the check byte test 
ing for duplicates includes only testing a Subset of the check 
bytes, such as those corresponding to one check block (or 
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check disk). Further, the checking of a particular existing set 
of data bytes (including its corresponding check bytes) can be 
stopped as soon as a mismatch is found, as in Such a case, the 
existing set of data bytes cannot be the same as the new set of 
data bytes. 
0299 FIG. 17 illustrates an exemplary method 1700 of 
compressing data according to another embodiment of the 
present invention. 
0300 Referring to FIG. 17, in method 1700, steps 1710 
and 1720 are similar to steps 1610 and 1620, respectively, of 
method 1600 above. Accordingly, a detailed description of 
them will not be repeated. In step 1730, however, E. E. . . . 
, E, are searched for any set of data bytes E, that are within a 
Hamming distance M-1 of D, and that can be combined 
with check bytes C to produce a possibly inconsistent set 
of data and check bytes but that can be "error corrected 
(using an approach similar to method 1400 or 1500) to the 
consistent set of data bytes D, and check bytes C. If 
there are multiple Such sets of databytes, then E, can represent 
any one of them (e.g., the first one found). 
0301 In step 1740, if there is such a set of data bytes E. 
then the data bytes D, do not need to be stored in the cache. 
Instead, the check bytes C are pointed to E, (and error 
correction logic can be used to recreate D, from E, and 
C). This further improves the compression of the cache 
compared to method 1600. 
0302). Otherwise, in step 1750, if no such set of data bytes 
E, is found, then the data bytes D, are stored in the cache. 
That is, a new data entry E, is created, D, is stored in 
E., and the check bytes C are pointed to E. 
0303 Method 1700 thus increases the compression in the 
cache compared to method 1600. It should be noted that when 
in step 1730, when searching for E, and using method 1400 or 
1500 to check out E, it suffices to search only the subsets of 
data bytes (and not the Subsets of data and check bytes), as the 
check bytes C. can be assumed to be correct in this com 
pression embodiment. That is, the check bytes C are being 
used for compression, not actual error correction in the data. 
This significantly cuts down on the search time and increases 
the likelihood of finding a unique solution with method 1400 
or 1500 above. In other embodiments, for example, where 
error detection and correction as well as compression are 
desired, this shortcut may not apply. In still other embodi 
ments, it may be desirable to select the E, (or one such E.) 
having the least Hamming distance to D. 
0304. As discussed briefly above, the compression tech 
nique can be even further extended by considering already 
compressed data in the cache. FIG. 18 illustrates an exem 
plary method 1800 of compressing data according to yet 
another embodiment of the present invention. 
0305 Referring to FIG. 18, method 1800 differs from 
methods 1600 and 1700 above in that each of the sets of check 
bytes C. C. . . . , C, can also point to one of the other sets of 
check bytes C, C2, ..., C instead of one of the data bytes 
E, E,..., E. In this sense, such a set of check bytes will be 
said to indirectly point to one of the sets of data bytes E. E. 
..., E. (via one or more intermediate sets of check bytes C. 
C, ..., C). Steps 1810, 1820, 1830, and 1840 are other 
wise similar to steps 1710, 1720, 1730, and 1740 of method 
1700 above. 

(0306. In method 1800, when a set of check bytes, say C. 
points to another set of check bytes, say C, it means that the 
set of databytes D, is close enough to the databytes D, that any 
differing bytes can be corrected (through error correction) by 
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using the check bytes C. That is, the set of possibly incon 
sistent data bytes and check bytes D, and C, is correctable to 
the consistent set of data and check bytes D, and C. This is 
similar to the approach used in steps 1830 and 1840 for data 
bytes E, only some additional indirection may be introduced 
by having to produce (i.e., decompress) the data bytes D. In 
other words, the data bytes D, may have to be decompressed 
from one of the sets of data bytes E. E. . . . , E, or from 
another one of the sets of data bytes D. D. . . . , D (i.e., 
through another level of error correction), depending on 
whether C, points to one of E. E. . . . , E, or to another one 
of C1, C2, . . . . C 
0307 Though the number of levels of error correction in 
method 1800 can be determined by following the data bytes 
pointers and decompressing intermediate sets of databytes, to 
save such calculations, the number of levels of error correc 
tion can be stored with the data bytes pointer (in place of the 
simple indicator, uncompressed or compressed, used in meth 
ods 1600 and 1700). In this case, an uncompressed pairing 
can be represented by the number 0, a compressed pairing as 
defined in methods 1600 and 1700 can be represented by the 
number 1 (i.e., one level of error correction), and, in general, 
a number 1 can represent the number of levels of error correc 
tion needed to restore the desired data bytes D, from those 
pointed to by the check bytes C. 1 thus represents the level of 
indirection, or number of levels of error correction needed to 
decompress the desired data bytes from the stored data bytes. 
(0308. In further detail, in step 1850, if there is no such E, 
that can be combined with C to produce a possibly incon 
sistent set of data and check bytes E, and C that can be 
corrected through error correction to the consistent set of data 
and check bytes D, and C, then at least two levels of 
error correction are needed to pair the new data bytes D. 
with the stored data bytes. A search is made through the sets 
of data bytes D, D, ..., D (possibly requiring decompres 
sion of already compressed data bytes) for Such a set of data 
bytes D, that can be combined with check bytes C to 
produce a possibly inconsistent set of data and check bytes D, 
and C that can be error corrected to the consistent set of 
data and check bytes D, and C. This search can be 
performed several ways, for example, finding the first such set 
of data bytes D, or starting the searching with the sets of data 
bytes that require the fewest levels of error correction to 
decompress, or only examining sets of data bytes whose 
number of levels of error correction is below a maximum 
number (e.g., a predefined maximum number) of error cor 
rection levels. 

0309. In step 1860, if there is such a set of data bytes D. 
then the data bytes D, do not need to be stored in the cache. 
Instead, the check bytes C are pointed to D, (and error 
correction logic can be used to recreate D, from D, and 
C). This further improves the compression of the cache 
compared to methods 1600 and 1700. If D, and D, are the 
same, then C can point to the same set of data bytes that C, 
points to (and has the same number of levels of error correc 
tion). Otherwise, an additional error correction operation 
(that is, one more level of error correction) is added to restore 
(decompress) D. from D, 
0310. On the other hand, in step 1870, if no such set of data 
bytes D, is found, then the data bytes D, are stored in the 
cache. That is, a new data entry E, is created, D, is stored 
in E, and the check bytes C are pointed to E. In this 
case, the pairing is uncompressed (no levels of error correc 
tion needed). 

r 
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0311. In one exemplary embodiment, the number of levels 
1 of error correction is maintained along with the pointer to 
the set of data bytes. 1 can be used to used, for example, to 
make it more efficient to find an existing set of data bytes in 
the cache that is similar to a new set of data bytes to be added 
to the cache. For example, searching for a candidate set of 
data bytes can begin with those sets of data bytes having 1-0 
(i.e., stored uncompressed in the cache without any error 
correction needed), then moving to 1-1 if no such set is found 
that is close enough to the new set of data bytes, etc. For 
another example, 1 can be limited to a maximum value (Such 
as 2 or 3), to limit the number of levels of error correction 
(decompression) needed to recreate the actual data. 
0312. In each of the compression methods 1600, 1700, and 
1800 above, all of the check bytes are stored in the cache. 
However, if the check bytes are being used for compression 
and not error correction or detection, then it is not necessary 
to store the check bytes of the data whose original data bytes 
are being stored in the cache. An embodiment of this is 
described with reference to FIG. 19. 

0313 FIG. 19 illustrates an exemplary method 1900 of 
compressing data according to still yet another embodiment 
of the present invention. 
0314 Method 1900 is fashioned after method 1800 above, 
with steps 1910-1970 being similar to steps 1810-1870, 
respectively. Accordingly, only differences between the two 
methods will be highlighted. In step 1910, only some of the 
sets of check bytes C. C. . . . , C, are stored in the cache, 
namely F, F, ..., F, that is, the m-n sets of check bytes 
that need decompression (i.e., le1) with one of the sets of data 
bytes E. E. ..., E. (and intermediate data sets when le2) to 
recover their corresponding original data bytes. The corre 
sponding n sets of check bytes that do not need decompres 
sion with their sets of data bytes E. E. . . . , E, are recon 
structable from their corresponding data bytes. Accordingly, 
these sets of check bytes are not stored in the cache. Thus, 
each of the in sets of data bytes D. D. . . . , D, and corre 
sponding check bytes C, C2, ... , C, is stored either as one 
of the sets of data bytes E. E. . . . , E, (i.e., without com 
pression) or as one of the sets of check bytes F, F, ..., F. 
that needs decompression with one of the sets of data bytes 
(and possible intermediate data sets). 
0315. If in step 1930, it is determined that there is a set of 
data bytes E, among the sets of data bytes E. E.,..., E, that 
is within Hamming distance M-1 of the new set of data bytes 
D. Such that the set of data bytes E, and the new set of check 
bytes C. can be error corrected to restore the data bytes 
D, then in step 1940, the next set of check bytes F is 
set to the check bytes C, F, is pointed to E, and the 
databytes D, are discarded. Otherwise, in step 1950, if it is 
determined that there is a set of check bytes F, among the sets 
of check bytes F, F, ..., F, and that corresponds to the set 
of data bytes D, among the sets of data bytes D. D.,..., D. 
such that D, is within Hamming distance M-1 of the new set 
of data bytes D, and the set of data bytes D, and the new set 
of check bytes C. can be error corrected to restore the data 
bytes D, then in step 1960, the next set of check bytes 
F, is set to the check bytes C, F, is pointed to F. 
and the data bytes D, are discarded. Otherwise, in step 
1970, the next set of data bytes E, is set to the data bytes 
D, and the check bytes C are discarded. 
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Exemplary Hardware or Software Logic 
0316 FIG. 20 illustrates exemplary hardware or software 
logic for implementing the error detecting and correcting 
logic according to an embodiment of the present invention. 
0317 FIG. 20 shows a process used to simultaneously 
correct and validate a data stream including N data bytes 
(“Data”) and M check bytes (“Check”), where Cerrors are 
attempting to be corrected. FIG. 20 corresponds to the con 
sistency checking done in method 1200, and in particular to 
the consistency checking done in steps 1340, 1440, and 1540 
of methods 1300, 1400, and 1500 respectively. In these steps, 
a subset of size N+M-C (data and check) bytes is selected to 
see if it is consistent. The other C bytes are assumed to be 
SDCs and ignored in the testing of this subset. FIG. 20 shows 
an example embodiment of the steps needed to perform this 
consistency checking on a single Subset of size N+M-C 
bytes. Accordingly, it may be necessary to perform the routine 
in FIG. 20 as many as 

("") 
times for each value of C being tested (i.e., once for each 
subset of size N+M-C bytes). 
0318. Let R represent the number of data bytes present in 
the subset of size N+M-C data and check bytes. Further, let 
Data(r) denote these R data bytes, and Data(c) denote the 
other N-R data bytes (that are not part of the subset). This 
leaves N+M-C-R check bytes in the subset. Split these 
N+M-C-R check bytes into two groups, Check(r) and Check 
(c), where Check(r) includes any N-R of these check bytes 
(the precise ones are unimportant) and Check(c) includes the 
remaining M-C of these check bytes. Check(r) is used with 
Data(r) to regenerate Data(c), while Check(c) is used to verify 
that this regeneration is correct. 
0319. In further detail, and referring to FIG. 20, Data 2010 
provides Data(r) and Check 2020 provides Check(r) to Cor 
rectionLogic 2030. Data(r) and Check(r) make up N bits of an 
erasure code, so can be used to regenerate Data(c) in Correc 
tion Logic 2030 (using erasure code correction of known byte 
locations). The regenerated Data(c) is then combined with 
Data(r) to form Regenerated Data 2040, which represents the 
corrected data stream if this particular Subset contains con 
sistent data. To verify the consistency, Regenerated Data 2040 
is input to Check Generator 2050 (which generates the check 
data for this erasure code from the original data) to generate a 
copy of Check(c). This copy of Check(c) is input to Com 
parator 2060 together with the stored copy of Check(c). Error 
Indicator 2070 then indicates if the generated Check(c) is the 
same as the stored Check(c), that is, Error Indicator indicates 
if this subset of N+M-C data and check bytes is consistent. If 
so, then Regenerated Data 2040 represents the corrected data 
bytes (from which any incorrect check bytes can be generated 
using Check Generator 2050). 
0320 Thus, separating check bytes into two types, namely 
Check(r) for regenerating missing or presumed incorrect data 
bytes Data(c), and Check(c) for checking the correctness of 
the resulting data byte regeneration provides useful features. 
For example, on a system without SDCs, both the original 
data and the reconstructed data can be validated as correct. 
Further, on a system with multiple SDCs, the SDCs can be 
detected and different combinations of data and check bytes 
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can be tested until a correct (i.e., consistent) combination is 
found, resulting in the ability to correct up to M-1 SDCs in 
the process. 
0321 FIG. 21 illustrates an exemplary system 2100 for 
implementing software error-correcting code (ECC) protec 
tion or compression (such as in methods 1200-1900) of origi 
nal data using ECC data in a cache 2140 (for example, a level 
in the memory or storage hierarchy, such as a RAID cache) 
according to an embodiment of the present invention. 
0322 The system 2100 (for example, a computer or com 
puting system) includes a computer processing core 2110 
(which can include a multi-core processor) for executing 
computer instructions and accessing data from a main 
memory 2120 (Such as a random access memory), and a 
non-volatile storage medium 2130 (such as a disk drive) for 
storing the computer instructions. The processing core 2110, 
the storage medium 2130, and the computer instructions are 
configured to implement the software ECC protection or 
compression of the original data using the ECC data in the 
cache 2140 as described, for example, in the above methods 
1200-1900. 
0323. The software ECC protection or compression 
includes a data matrix 2150 for holding the original data in the 
cache 2140, a check matrix 2160 for holding the ECC data in 
the first memory, and an encoding matrix 2170 for holding 
Galois Field multiplication factors in the main memory 2120. 
The multiplication factors are for encoding the original data 
into the ECC data (an example embodiment of which is 
described in detail in the Benefit Application and included 
above). The software ECC protection or compression also 
includes a thread 2180 for executing on the processing core 
2110. The thread 2180 includes a Galois Field multiplier for 
multiplying entries of the data matrix 2150 by an entry of the 
encoding matrix 2170, and a sequencer for ordering opera 
tions through the data matrix 2150 and the encoding matrix 
2170 using the Galois Field multiplier to generate the ECC 
data (further details of which are provided in the Benefit 
Application and included above). 
0324. The Galois Field multiplier may be a parallel mul 

tiplier for concurrently multiplying the entries of the data 
matrix 2150 by the entry of the encoding matrix 2170 (as 
described further in the Benefit Application and included 
above). The thread 2180 may also include a plurality of 
threads for executing on a multi-core processing unit. To this 
end, the software ECC protection or compression may further 
include a scheduler for generating the ECC data by dividing 
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the data matrix 2150 into a plurality of data matrices, dividing 
the check matrix 2160 into a plurality of check matrices, 
assigning corresponding ones of the data matrices and the 
check matrices to the threads, and assigning the threads to the 
processing cores to concurrently generate portions of the 
ECC data corresponding to the check matrices from respec 
tive ones of the data matrices. Further details of the scheduler 
can be found in the Benefit Application that has been included 
above. 
0325 While the above description contains many specific 
embodiments of the invention, these should not be construed 
as limitations on the scope of the invention, but rather as 
examples of specific embodiments thereof. Accordingly, the 
scope of the invention should be determined not by the 
embodiments illustrated, but by the appended claims and 
their equivalents. 
What is claimed is: 
1. A system for software error-correcting code (ECC) pro 

tection or compression of original data using ECC data in a 
first memory, comprising: 

a processing core for executing computer instructions and 
accessing data from a main memory; and 

a non-volatile storage medium for storing the computer 
instructions, 

wherein the processing core, the non-volatile storage 
medium, and the computer instructions are configured to 
implement the software ECC protection or compression 
of the original data using the ECC data in the first 
memory, the software ECC protection or compression 
comprising: 
a data matrix for holding the original data in the first 
memory; 

a check matrix for holding the ECC data in the first 
memory; 

an encoding matrix for holding first factors in the main 
memory, the first factors being for encoding the origi 
nal data into the ECC data; and 

a thread for executing on the processing core and com 
prising: 
a Galois Field multiplier for multiplying entries of the 

data matrix by an entry of the encoding matrix; and 
a sequencer for ordering operations through the data 

matrix and the encoding matrix using the Galois 
Field multiplier to generate the ECC data. 
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