
United States
US 20150207522A1

(19)

(12) Patent Application Publication (10) Pub. No.: US 2015/0207522 A1
Anderson (43) Pub. Date: Jul. 23, 2015

(54) USING PARITY DATA FOR CONCURRENT (52) U.S. Cl.
DATA AUTHENTICATION, CORRECTION, CPC H03M 13/II (2013.01); G06F 1 1/1076
COMPRESSION, AND ENCRYPTION (2013.01)

(71) Applicant: STREAMSCALE, INC., Los Angeles,
CA (US) (57) ABSTRACT

(72) Inventor: Michael H. Anderson, Los Angeles, CA
(US) A system for software error-correcting code (ECC) protec

tion or compression of original data using ECC data in a first
(21) Appl. No.: 14/543,641 memory is provided. The system includes a processing core
(22) Filed: Nov. 17, 2014 for executing computer instructions and accessing data from

a main memory, and a non-volatile storage medium for Stor
Related U.S. Application Data ing the computer instructions. The software ECC protection

(63) Continuation of application No. 13/727,581, filed on or compression includes: a data matrix for holding the origi
Dec. 26, 2012, now Pat. No. 8.914 706 which is a nal data in the first memory; a check matrix for holding the
continuati on-in-part of application No. 13/31.833 ECC data in the first memory; an encoding matrix for holding
filedon Dec. 30, 2011, now Pat No. 8,683.296. first factors in the main memory, the first factors being for

• - ws s vs. v- w x - 4 - - - encoding the original data into the ECC data; and a thread for
Publication Classification executing on the processing core. The thread includes a

Galois Field multiplier for multiplying entries of the data
nt. C. matriX by an entry of the encoding matriX, and a Sequencer for 51) Int. C ix by ry ofth ding da seq f
H03M, 3/II (2006.01) ordering operations using the Galois Field multiplier to gen
G06F II/It (2006.01) erate the ECC data.

10

25 N
20- data 1, byte 1 data 1, byte 2 data 1, byte L

N data 2, byte 1 data 2, byte 2

data N, byte 1 data N byte 2

O O e o O e o e o O data 2, byte L

data N byte L
30 — check 1, byte 1 check 1 byte 2 check 1, byte L

check 2, byte 1 check 2, byte 2 check 2, byte L

check M, byte

US 2015/0207522 A1 Jul. 23, 2015 Sheet 1 of 21 Patent Application Publication

G9

Tºyºq'N elep|| | z e?q'N elep|| || e^q N elep

09

US 2015/0207522 A1 Jul. 23, 2015 Sheet 2 of 21 Patent Application Publication

099

·

098

US 2015/0207522 A1 Jul. 23, 2015 Sheet 3 of 21 Patent Application Publication

09 #7 09 #7 OZ7 007

US 2015/0207522 A1 Jul. 23, 2015 Sheet 4 of 21 Patent Application Publication

079 099 OZG

US 2015/0207522 A1 Jul. 23, 2015 Sheet 6 of 21 Patent Application Publication

089 019 099 099

US 2015/0207522 A1 Jul. 23, 2015 Sheet 7 of 21 Patent Application Publication

US 2015/0207522 A1 Jul. 23, 2015 Sheet 8 of 21

| T + | | | T +

[lc][O | | fºd C)

Patent Application Publication

Patent Application Publication Jul. 23, 2015 Sheet 9 of 21 US 2015/0207522 A1

S.

US 2015/0207522 A1

Á?OueJe?H Áuouuaw pue ndO

070||

Patent Application Publication

US 2015/0207522 A1 Jul. 23, 2015 Sheet 11 of 21 Patent Application Publication

090||

US 2015/0207522 A1 Jul. 23, 2015 Sheet 12 of 21 Patent Application Publication

092||

(I < W) ON

US 2015/0207522 A1 Jul. 23, 2015 Sheet 13 of 21 Patent Application Publication

?uO punO-H punoj ?uON079||

US 2015/0207522 A1 Jul. 23, 2015 Sheet 14 of 21 Patent Application Publication

3UO ue?? ?JOUu punO-H?uO punO-H
s??Áq O – W + N Jo

punoj euON

| +9=0. No. ocy,

ON

0077||

US 2015/0207522 A1

“C] pueosp

Patent Application Publication

US 2015/0207522 A1 Jul. 23, 2015 Sheet 19 of 21 Patent Application Publication

ON

***“C] pueosp

US 2015/0207522 A1 Jul. 23, 2015 Sheet 20 of 21 Patent Application Publication

0102

JOJ JE

(

090Z

OZOZ

US 2015/0207522 A1 Jul. 23, 2015 Sheet 21 of 21 Patent Application Publication

08 LZ

?JOO 6u?ss3001)
07 J. Z OZ || Z.

00 LZ

US 2015/0207522 A1

USING PARTY DATA FOR CONCURRENT
DATA AUTHENTICATION, CORRECTION,
COMPRESSION, AND ENCRYPTION

CROSS REFERENCE TO RELATED
APPLICATION

0001. This application is a continuation and claims prior
ity to and the benefit of U.S. patent application Ser. No.
13/727,581, entitled USING PARITY DATA FOR CON
CURRENT DATA AUTHENTICATION, CORRECTION,
COMPRESSION, AND ENCRYPTION, filed on Dec. 26,
2012, which is a continuation-in-part of U.S. patent applica
tion Ser. No. 13/341,833, entitled ACCELERATED ERA
SURE CODING SYSTEM AND METHOD (hereinafter
“the Benefit Application'), now U.S. Pat. No. 8,683.296, filed
on Dec. 30, 2011, the entire contents of all of which are
incorporated herein by reference.

BACKGROUND

0002 1. Field
0003 Aspects of embodiments of the present invention are
directed toward a system and method of using parity data for
erasure code data verification, correction, encryption, and
compression, alone or in combination with each other.
0004 2. Description of Related Art (from the Benefit
Application)
0005. An erasure code is a type of error-correcting code
(ECC) useful for forward error-correction in applications like
a redundant array of independent disks (RAID) or high-speed
communication systems. In a typical erasure code, data (or
original data) is organized in stripes, each of which is broken
up into Nequal-sized blocks, or data blocks, for some positive
integer N. The data for each stripe is thus reconstructable by
putting the N data blocks together. However, to handle situ
ations where one or more of the original N data blocks gets
lost, erasure codes also encode an additional M equal-sized
blocks (called check blocks or check data) from the original N
data blocks, for some positive integer M.
0006. The N data blocks and the Mcheck blocks are all the
same size. Accordingly, there are a total of N+M equal-sized
blocks after encoding. The N+M blocks may, for example, be
transmitted to a receiver as N+M separate packets, or written
to N+M corresponding disk drives. For ease of description, all
N+M blocks after encoding will be referred to as encoded
blocks, though some (for example, N of them) may contain
unencoded portions of the original data. That is, the encoded
data refers to the original data together with the check data.
0007. The M check blocks build redundancy into the sys
tem, in a very efficient manner, in that the original data (as
well as any lost check data) can be reconstructed if any N of
the N+M encoded blocks are received by the receiver, or if
any N of the N+M disk drives are functioning correctly. Note
that such an erasure code is also referred to as “optimal.” For
ease of description, only optimal erasure codes will be dis
cussed in this application. In such a code, up to M of the
encoded blocks can be lost, (e.g., up to M of the disk drives
can fail) so that if any N of the N+M encoded blocks are
received successfully by the receiver, the original data (as
well as the check data) can be reconstructed. N/(N--M) is thus
the code rate of the erasure code encoding (i.e., how much
space the original data takes up in the encoded data). Erasure
codes for select values of N and M can be implemented on
RAID systems employing N+M (disk) drives by spreading

Jul. 23, 2015

the original data among N “data” drives, and using the
remaining M drives as “check” drives. Then, when any N of
the N+M drives are correctly functioning, the original data
can be reconstructed, and the check data can be regenerated.
0008 Erasure codes (or more specifically, erasure coding
systems) are generally regarded as impractical for values of
M larger than 1 (e.g., RAID5 systems, such as parity drive
systems) or 2 (RAID6 systems), that is, for more than one or
two check drives. For example, see H. Peter Anvin, “The
mathematics of RAID-6, the entire content of which is incor
porated herein by reference, p. 7, "Thus, in 2-disk-degraded
mode, performance will be very slow. However, it is expected
that that will be a rare occurrence, and that performance will
not matter significantly in that case. See also Robert Mad
dock et al., “Surviving Two Disk Failures.’ p. 6, “The main
difficulty with this technique is that calculating the check
codes, and reconstructing data after failures, is quite complex.
It involves polynomials and thus multiplication, and requires
special hardware, or at least a signal processor, to do it at
sufficient speed.” In addition, see also James S. Plank, 'All
About Erasure Codes:—Reed-Solomon Coding LDPC
Coding, slide 15 (describing computational complexity of
Reed–Solomon decoding), “Bottom line: When n &m grow,
it is brutally expensive. Accordingly, there appears to be a
general consensus among experts in the field that erasure
coding systems are impractical for RAID systems for all but
small values of M (that is, small numbers of check drives),
Such as 1 or 2.

0009 Modern disk drives, on the other hand, are much less
reliable than those envisioned when RAID was proposed.
This is due to their capacity growing out of proportion to their
reliability. Accordingly, systems with only a single check disk
have, for the most part, been discontinued in favor of systems
with two check disks.

0010. In terms of reliability, a higher check disk count is
clearly more desirable than a lower check disk count. If the
count of error events on different drives is larger than the
check disk count, data may be lost and that cannot be recon
structed from the correctly functioning drives. Error events
extend well beyond the traditional measure of advertised
mean time between failures (MTBF). A simple, real world
example is a service event on a RAID system where the
operator mistakenly replaces the wrong drive or, worse yet,
replaces a good drive with a broken drive. In the absence of
any generally accepted methodology to train, certify, and
measure the effectiveness of service technicians, these types
of events occur at an unknown rate, but certainly occur. The
foolproof solution for protecting data in the face of multiple
error events is to increase the check disk count.

(0011. 3. Description of Related Art (New)
0012 Parity data is used in digital error detecting and
correcting logic, such as erasure codes. An erasure code is a
type of error-correcting code (ECC) useful for forward error
correction in applications like a redundant array of indepen
dent disks (or devices, also known as RAID) or high-speed
communication systems. In a typical erasure code, data (or
original data) is organized in stripes, each of which is broken
up into Nequal-sized blocks, or data blocks, for some positive
integer N. The data for each stripe is thus reconstructable by
putting the N data blocks together. However, to handle situ
ations where one or more of the original N data blocks get lost
(for example, missing, corrupted, etc.), erasure codes also
encode an additional M equal-sized blocks (called check

US 2015/0207522 A1

blocks or check data; also referred to as parity blocks or parity
data) from the original N data blocks, for some positive inte
ger M.
0013 The N data blocks and the Mcheck blocks are all the
same size. Accordingly, there are a total of N+M equal-sized
blocks after encoding. The N+M blocks may, for example, be
transmitted to a receiver as N+M separate packets, or written
to N--M corresponding disk drives, or physically or logically
separated from each other by some other device or conven
tion. For ease of description, all N+M blocks after encoding
will be referred to as encoded blocks, though some (for
example, N of them) may contain unencoded portions of the
original data. That is, the encoded data refers to the original
data together with the check data. Another way to look at this
is that the original data can be trivially encoded into N blocks,
one for each original data block. Still another way to look at
this is that the original N data blocks can be encoded into
N+M encoded blocks.
0014. The M check blocks build redundancy into the sys
tem, in a very efficient manner, in that the original data (as
well as any lost check data) can be reconstructed if any N of
the N+M encoded blocks are received by the receiver, or if
any N of the N+M disk drives are functioning correctly (or, in
short, if any N of the N+M encoded blocks are available).
Note that such an erasure code is also referred to as “optimal.”
For ease of description, only optimal erasure codes will be
discussed in this application. In Such a code, up to M of the
encoded blocks can be lost, (e.g., up to M of the disk drives
can fail) so that if any N of the N+M encoded blocks are
received successfully by the receiver, the original data (as
well as the check data) can be reconstructed. N/(N--M) is thus
the code rate of the erasure code encoding (i.e., how much
space the original data takes up in the encoded data). Erasure
codes for select values of N and M can be implemented on
RAID systems employing N+M (disk) drives by spreading
the original data among N “data” drives, and using the
remaining M drives as “check” drives. Then, when any N of
the N+M drives are correctly functioning, the original data
can be reconstructed, and the check data can be regenerated.
0015 Systems and methods of implementing practical
erasure codes for arbitrary values of N and Mare described in
the Benefit Application and included herein. The advent of
Such practical implementations allows potentially a large
number M of check drives in a RAID environment, some or
most of which would not even be needed in a typical failure
scenario.

0016 Erasure codes are usually described with an under
lying assumption that, at any time, each encoded block is
known either to contain entirely correct data or to contain
corrupted or missing data. Accordingly, it is only a matter of
making Sure that there are N encoded blocks that are assumed
to have correct data in order to guarantee that the original data
can be reconstructed. Silent data corruptions (SDCs), this is,
the introduction of errors into the encoded blocks, which can
take place in any portion of the memory or storage hierarchy,
are therefore assumed not to exist in this framework.

0017. However, studies of real life data show otherwise.
SDCs are introduced throughout the memory and storage
hierarchy. Left undetected (and uncorrected), SDCs can
propagate and compromise data, amplifying their negative
effects.
0018. In Li, M. & Shu, J., Preventing Silent Data Corrup
tions from Propagating During Data Reconstruction, 59
IEEE TRANSACTIONS ON COMPUTERS 1611-24 (vol. 12, Decem

Jul. 23, 2015

ber 2010) the authors describe the SDC phenomenon with
erasure codes and propose solutions for SDC detection and
correction during data reconstruction. However, as already
mentioned, SDCs can be introduced anywhere in the memory
or storage hierarchy, so it would be desirable to prevent their
occurrence anywhere, and not just during data reconstruction.

SUMMARY

From the Benefit Application
0019 Aspects of embodiments of the present invention
address these problems by providing a practical erasure cod
ing system that, for byte-level RAID processing (where each
byte is made up of 8 bits), performs well even for values of
N+M as large as 256 drives (for example, N=127 data drives
and M=129 check drives). Further aspects provide for a single
precomputed encoding matrix (or master encoding matrix) S
of size MXN, or (N+M)xN, or -1)xN, ele
ments (e.g., bytes), which can be used, for example, for any
combination of NsN data drives and Ms.M. check
drives such that N+Ms256 (e.g., N, 127 and
M=129, or N=63 and M-193). This is an improve
ment over prior art solutions that rebuild such matrices from
scratch every time N or M changes (such as adding another
check drive). Still higher values of N and Mare possible with
larger processing increments, such as 2 bytes, which affords
up to N+M=65,536 drives (such as N=32,767 data drives and
M=32,769 check drives).
0020 Higher check disk count can offer increased reliabil
ity and decreased cost. The higher reliability comes from
factors such as the ability to withstand more drive failures.
The decreased cost arises from factors such as the ability to
create largergroups of data drives. For example, systems with
two checks disks are typically limited to group sizes of 10 or
fewer drives for reliability reasons. With a higher check disk
count, larger groups are available, which can lead to fewer
overall components for the same unit of storage and hence,
lower cost.
0021 Additional aspects of embodiments of the present
invention further address these problems by providing a stan
dard parity drive as part of the encoding matrix. For instance,
aspects provide for a parity drive for configurations with up to
127 data drives and up to 128 (non-parity) check drives, for a
total of up to 256 total drives including the parity drive.
Further aspects provide for different breakdowns, such as up
to 63 data drives, a parity drive, and up to 192 (non-parity)
check drives. Providing a parity drive offers performance
comparable to RAID5 in comparable circumstances (such as
single data drive failures) while also being able to tolerate
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives.
0022. Further aspects are directed to a system and method
for implementing a fast Solution matrix algorithm for Reed—
Solomon codes. While known solution matrix algorithms
compute an NxN solution matrix (see, for example, J. S.
Plank, 'A tutorial on Reed-Solomon coding for fault-toler
ance in RAID-like systems. Software Practice & Experi
ence, 27(9): 995-1012, September 1997, and J. S. Plank andY.
Ding, “Note: Correction to the 1997 tutorial on Reed-So
lomon coding. Technical Report CS-03-504, University of
Tennessee, April 2003), requiring O(N) operations, regard
less of the number of failed data drives, aspects of embodi
ments of the present invention compute only an FXF solution
matrix, where F is the number of failed data drives. The

US 2015/0207522 A1

overhead for computing this FXF solution matrix is approxi
mately F/3 multiplication operations and the same number
of addition operations. Not only is FsN, in almost any prac
tical application, the number of failed data drives F is consid
erably smaller than the number of data drives N. Accordingly,
the fast solution matrix algorithm is considerably faster than
any known approach for practical values of F and N.
0023 Still further aspects are directed toward fast imple
mentations of the check data generation and the lost (original
and check) data reconstruction. Some of these aspects are
directed toward fetching the Surviving (original and check)
data a minimum number of times (that is, at most once) to
carry out the data reconstruction. Some of these aspects are
directed toward efficient implementations that can maximize
or significantly leverage the available parallel processing
power of multiple cores working concurrently on the check
data generation and the lost data reconstruction. Existing
implementations do not attempt to accelerate these aspects of
the data generation and thus fail to achieve a comparable level
of performance.
0024. By providing practical and efficient systems and
methods for erasure coding systems (which for byte-level
processing can Support up to N--M=256 drives, such as
N=127 data drives and M=129 check drives, including a
parity drive), applications such as RAID Systems that can
tolerate far more failing drives than was thought to be possible
or practical can be implemented with accelerated perfor
mance significantly better than any prior art Solution.

SUMMARY

New

0025 Aspects of embodiments of the present invention are
directed toward a system and method of using parity data for
erasure code data verification and authentication, error detec
tion and correction, compression, and encryption. In particu
lar, aspects are directed toward Verifying data, including
detecting and correcting silent data corruptions (SDCs) in the
memory or storage hierarchy.
0026. In an exemplary embodiment, RAID parity data is
maintained with the contents of a RAID cache. Accordingly,
Read operations of data from the RAID cache can have any of
their corresponding data and check blocks verified before or
after the Read operations are performed. It may also to be
possible to correct the errors, especially if they are not too
numerous. In addition, Write operations of data to the RAID
cache can have their corresponding data and check blocks
verified (with possible error correction) before or after the
Write operations are performed.
0027. In further embodiments of the present invention, the
number of check blocks kept in the RAID cache can differ
from the number of check drives used to store the check
(parity) data. That is, the RAID cache stripe size can differ
from the external (e.g., disk drive) stripe size, which allows
for both sizes to be optimized depending on factors such as
hardware resources available, reliability versus RAID cache
size and processing overhead, etc.
0028. According to an exemplary embodiment of the
present invention, a system for Software error-correcting code
(ECC) protection or compression of original data using ECC
data in a first memory is provided. The system includes a
processing core for executing computer instructions and
accessing data from a main memory, and a non-volatile Stor
age medium for storing the computer instructions. The pro

Jul. 23, 2015

cessing core, the storage medium, and the computer instruc
tions are configured to implement the software ECC
protection or compression of the original data using the ECC
data in the first memory. The software ECC protection or
compression includes: a data matrix for holding the original
data in the first memory; a check matrix for holding the ECC
data in the first memory; an encoding matrix for holding first
factors in the main memory, the first factors being for encod
ing the original data into the ECC data; and a thread for
executing on the processing core. The thread includes a
Galois Field multiplier for multiplying entries of the data
matrix by an entry of the encoding matrix, and a sequencer for
ordering operations through the data matrix and the encoding
matrix using the Galois Field multiplier to generate the ECC
data.
0029. The sequencer may be configured to generate the
ECC data on write operations of the original data to the first
memory.
0030 The sequencer may be further configured to regen
erate the ECC data on read operations of the original data
from the first memory.
0031. The thread may further include a comparator for
comparing the regenerated ECC data with the generated ECC
data.
0032. The thread may further include an error corrector for
correcting errors in the held original data and the held ECC
data.
0033. The Galois Field multiplier may be a parallel mul
tiplier for concurrently multiplying the entries of the data
matrix by the entry of the encoding matrix.
0034. The processing core may include a plurality of pro
cessing cores. The thread may include a plurality of threads.
The software ECC protection or compression may further
include a scheduler for generating the ECC data by dividing
the data matrix into a plurality of data matrices, dividing the
check matrix into a plurality of check matrices, assigning
corresponding ones of the data matrices and the check matri
ces to the threads, and assigning the threads to the processing
cores to concurrently generate portions of the ECC data cor
responding to the check matrices from respective ones of the
data matrices.
0035. The processing core may include a plurality of pro
cessing cores. The thread may include a plurality of threads.
The software ECC protection or compression may further
include a scheduler for generating the ECC data by dividing
the data matrix into a plurality of data matrices, dividing the
check matrix into a plurality of check matrices, assigning
corresponding ones of the data matrices and the check matri
ces to the threads, and assigning the threads to the processing
cores to concurrently generate portions of the ECC data cor
responding to the check matrices from respective ones of the
data matrices.
0036. The software ECC protection or compression may
further include a second check matrix for holding second
ECC data in the first memory. The encoding matrix may be
further configured to hold second factors in the main memory,
the second factors being for encoding the original data into
the second ECC data. The sequencer may be further config
ured to order operations through the data matrix and the
encoding matrix using the Galois Field multiplier to generate
the second ECC data.
0037. The sequencer may be further configured to regen
erate the ECC data or the second ECC data on read operations
of the original data from the first memory. The thread may

US 2015/0207522 A1

further include a comparator for comparing the regenerated
ECC data with the generated ECC data and for comparing the
regenerated second ECC data with the generated second ECC
data.

0038. The thread may further include an error corrector for
correcting errors in the held original data, the held ECC data,
and the held second ECC data.
0039. The Galois Field multiplier may be a parallel mul

tiplier for concurrently multiplying the entries of the data
matrix by the entry of the encoding matrix.
0040. The processing core may include a plurality of pro
cessing cores. The thread may include a plurality of threads.
The software ECC protection or compression may further
include a scheduler for generating the ECC data and the
second ECC data by: dividing the data matrix into a plurality
of data matrices; dividing the check matrix into a plurality of
check matrices; dividing the second check matrix into a plu
rality of second check matrices; assigning corresponding
ones of the data matrices, the check matrices, and the second
check matrices to the threads; and assigning the threads to the
processing cores to concurrently generate portions of the
ECC data corresponding to the check matrices from respec
tive ones of the data matrices and to concurrently generate
portions of the second ECC data corresponding to the second
check matrices from respective ones of the data matrices.
0041. The processing core may include a plurality of pro
cessing cores. The thread may include a plurality of threads.
The software ECC protection or compression may further
include a scheduler for generating the ECC data and the
second ECC data by: dividing the data matrix into a plurality
of data matrices; dividing the check matrix into a plurality of
check matrices; dividing the second check matrix into a plu
rality of second check matrices; assigning corresponding
ones of the data matrices, the check matrices, and the second
check matrices to the threads; and assigning the threads to the
processing cores to concurrently generate portions of the
ECC data corresponding to the check matrices from respec
tive ones of the data matrices and to concurrently generate
portions of the second ECC data corresponding to the second
check matrices from respective ones of the data matrices.
0042. The original data may include first ones and second
ones of the original data. The ECC data may include corre
sponding first ones and second ones of the ECC data. The
thread may further include a compressor for compressing the
original data in the first memory by storing the firstones of the
original data in the first memory, storing the second ones of
the ECC data in the first memory, not storing the second ones
of the original data in the first memory, and corresponding the
second ones of the ECC data to the first ones of the original
data.

0043. The compressor may be further configured to not
store the first ones of the ECC data in the first memory.
0044) The thread may further include a decompressor for
regenerating the secondones of the original data from the first
ones of the original data and the second ones of the ECC data.
0045. The decompressor may include an error corrector
for regenerating one of the secondones of the original data by
performing error correction on a corresponding one of the
first ones of the original data using a corresponding one of the
second ones of the ECC data.
0046. The compressor may be configured to correspond
each one of the secondones of the ECC data directly to one of
the first ones of the original data, or indirectly to the one of the

Jul. 23, 2015

first ones of the original data via a different one of the second
ones of the ECC data that corresponds to the one of the first
ones of the ECC data.

0047. The thread may further include a comparator for
keeping the first ones of the original data distinct from one
another.
0048. The compressor may be further configured to store
the first ones of the ECC data in the first memory. The com
parator may be further configured to compare the generated
ECC data with the first ones of the ECC data to identify a
duplicate of one of the first ones of the original data.
0049. The thread may further include an error corrector.
The compressor may be configured to, when adding new
original data having new ECC data to the first memory, use
the error corrector to identify a corresponding one of the first
ones of the original data that can generate the new original
data by performing error correction on the corresponding one
of the first ones of the original data using the new ECC data.
0050. The compressor may be configured to: add the new
original data to the first memory as one of the first ones of the
original data when there is no said corresponding one of the
first ones of the original data; and add the new ECC data to the
first memory as one of the second ones of the ECC data, not
add the new original data to the first memory, and correspond
the new ECC data to the corresponding one of the first ones of
the original data when the error corrector identifies the cor
responding one of the first ones of the original data.
0051. According to another exemplary embodiment of the
present invention, a method of error-correcting code (ECC)
protection or compression of original data with ECC data in a
first memory using a computing system including a process
ing core for executing computer instructions and accessing
data from a main memory, and a non-volatile storage medium
for storing the computer instructions is provided. The method
includes accessing the computer instructions from the storage
medium, executing the computer instructions on the process
ing core, arranging the original data as a data matrix in the first
memory, arranging the ECC data as a check matrix in the first
memory, arranging first factors as an encoding matrix in the
main memory, and encoding the original data into the ECC
data using the first factors. The encoding of the original data
into the ECC data includes multiplying entries of the data
matrix by an entry of the encoding matrix using Galois Field
multiplication, ordering operations through the data matrix
and the encoding matrix using the Galois Field multiplication
to generate the ECC data.
0.052 The encoding of the original data into the ECC data
may further include encoding the ECC data when writing the
original data to the first memory.
0053. The method may further include re-encoding the
original data into a copy of the ECC data when reading the
original data from the first memory.
0054 The method may further include comparing the
ECC data with the copy of the ECC data.
0055. The method may further include correcting errors in
the original data or the ECC data by using the ECC data.
0056. The processing core may include a plurality of pro
cessing cores. The encoding of the original data into the ECC
data may further include dividing the data matrix into a plu
rality of data matrices, dividing the check matrix into a plu
rality of check matrices, and assigning corresponding ones of
the data matrices and the check matrices to the processing
cores to concurrently encode portions of the original data

US 2015/0207522 A1

corresponding to the data matrices into respective portions of
the ECC data corresponding to the check matrices.
0057 The method may further include arranging second
ECC data as a second check matrix in the first memory,
arranging second factors in the encoding matrix, and encod
ing the original data into the second ECC data using the
second factors. The encoding of the original data into the
second ECC data may include multiplying entries of the data
matrix by an entry of the encoding matrix using further Galois
Field multiplication, and ordering operations through the data
matrix and the encoding matrix using the further Galois Field
multiplication to generate the second ECC data.
0058. The original data may include first ones and second
ones of the original data. The ECC data may include corre
sponding first ones and second ones of the ECC data. The
method may further include compressing the original data in
the first memory by storing the first ones of the original data
in the first memory, storing the second ones of the ECC data
in the first memory, not storing the secondones of the original
data in the first memory, and corresponding the second ones
of the ECC data to the first ones of the original data.
0059. The method may further include not storing the first
ones of the ECC data in the first memory.
0060. The method may further include decompressing the
original data by regenerating the second ones of the original
data from the first ones of the original data and the second
ones of the ECC data.
0061 Said regenerating one of the second ones of the
original data may include performing error correction on a
corresponding one of the first ones of the original data using
a corresponding one of the second ones of the ECC data.
0062. The method may further include when adding new
original data having new ECC data to the first memory, iden
tifying a corresponding one of the first ones of the original
data that can generate the new original data by performing
error correction on the corresponding one of the first ones of
the original data using the new ECC data.
0063. The method may further include: adding the new
original data to the first memory as one of the first ones of the
original data when there is no said corresponding one of the
first ones of the original data; and adding the new ECC data to
the first memory as one of the second ones of the ECC data,
not adding the new original data to the first memory, and
corresponding the new ECC data to the corresponding one of
the first ones of the original data after the identifying of the
corresponding one of the first ones of the original data.
0064. According to embodiments of the present invention,
RAID cache data can be verified and any detected errors can
possibly be corrected by maintaining some or all of the cor
responding RAID parity data at all times in the RAID cache.
This helps lessen or eliminate silent data corruptions (SDCs)
resulting from any part of the memory or storage hierarchy
associated with the RAID cache or storage Subsystem.
0065. Further embodiments are directed to other applica

tions, such as data authentication, compression, and encryp
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

0066. The accompanying drawings, together with the
specification, illustrate exemplary embodiments of the
present invention and, together with the description, serve to
explain aspects and principles of the present invention. FIGS.
1-9 are from the Benefit Application, while FIGS. 10-21 are

W.

Jul. 23, 2015

0067 FIG. 1 shows an exemplary stripe of original and
check data according to an embodiment of the present inven
tion.
0068 FIG. 2 shows an exemplary method for reconstruct
ing lost data after a failure of one or more drives according to
an embodiment of the present invention.
0069 FIG. 3 shows an exemplary method for performing
a parallel lookup Galois field multiplication according to an
embodiment of the present invention.
0070 FIG. 4 shows an exemplary method for sequencing
the parallel lookup multiplier to perform the check data gen
eration according to an embodiment of the present invention.
0071 FIGS. 5-7 show an exemplary method for sequenc
ing the parallel lookup multiplier to perform the lost data
reconstruction according to an embodiment of the present
invention.
0072 FIG. 8 illustrates a multi-core architecture system
according to an embodiment of the present invention.
0073 FIG.9 shows an exemplary disk drive configuration
according to an embodiment of the present invention.
0074 FIG. 10 illustrates an exemplary memory and stor
age hierarchy system according to an embodiment of the
present invention.
(0075 FIG. 11 illustrates an exemplary RAID cache
according to an embodiment of the present invention.
0076 FIG. 12 illustrates an exemplary method for consis
tency checking or error detection according to an embodi
ment of the present invention.
(0077 FIG. 13 illustrates an exemplary method for detect
ing and correcting errors according to an embodiment of the
present invention.
0078 FIG. 14 illustrates an exemplary method for correct
ing errors according to an embodiment of the present inven
tion.
(0079 FIG. 15 illustrates an exemplary method for correct
ing errors according to another embodiment of the present
invention.
0080 FIG. 16 illustrates an exemplary method of com
pressing data according to an embodiment of the present
invention.
I0081 FIG. 17 illustrates an exemplary method of com
pressing data according to another embodiment of the present
invention.
I0082 FIG. 18 illustrates an exemplary method of com
pressing data according to yet another embodiment of the
present invention.
I0083 FIG. 19 illustrates an exemplary method of com
pressing data according to still yet another embodiment of the
present invention.
I0084 FIG. 20 illustrates exemplary hardware or software
logic for implementing the error detecting and correcting
logic according to an embodiment of the present invention.
I0085 FIG. 21 illustrates an exemplary system for imple
menting Software error-correcting code (ECC) protection or
compression of original data using ECC data in a cache
according to an embodiment of the present invention.

DETAILED DESCRIPTION

From the Benefit Application
I0086. Hereinafter, exemplary embodiments of the inven
tion will be described in more detail with reference to the
accompanying drawings. In the drawings, like reference
numerals refer to like elements throughout.

US 2015/0207522 A1

0087 While optimal erasure codes have many applica
tions, for ease of description, they will be described in this
application with respect to RAID applications, i.e., erasure
coding systems for the storage and retrieval of digital data
distributed across numerous storage devices (or drives),
though the present application is not limited thereto. For
further ease of description, the storage devices will be
assumed to be disk drives, though the invention is not limited
thereto. In RAID systems, the data (or original data) is broken
up into stripes, each of which includes N uniformly sized
blocks (data blocks), and the N blocks are written across N
separate drives (the data drives), one block per data drive.
0088. In addition, for ease of description, blocks will be
assumed to be composed of L elements, each element having
a fixed size, say 8 bits or one byte. An element, such as a byte,
forms the fundamental unit of operation for the RAID pro
cessing, but the invention is just as applicable to other size
elements, such as 16 bits (2 bytes). For simplification, unless
otherwise indicated, elements will be assumed to be one byte
in size throughout the description that follows, and the term
"element(s) and “byte(s) will be used synonymously.
0089 Conceptually, different stripes can distribute their
data blocks across different combinations of drives, or have
different block sizes or numbers of blocks, etc., but for sim
plification and ease of description and implementation, the
described embodiments in the present application assume a
consistent block size (L bytes) and distribution of blocks
among the data drives between stripes. Further, all variables,
such as the number of data drives N, will be assumed to be
positive integers unless otherwise specified. In addition, since
the N=1 case reduces to simple data mirroring (that is, copy
ing the same data drive multiple times), it will also be
assumed for simplicity that Ne2 throughout.
0090 The N data blocks from each stripe are combined
using arithmetic operations (to be described in more detail
below) in Mdifferent ways to produce M blocks of check data
(check blocks), and the M check blocks written across M
drives (the check drives) separate from the N data drives, one
block per check drive. These combinations can take place, for
example, when new (or changed) data is written to (or back
to) disk. Accordingly, each of the N+M drives (data drives and
check drives) stores a similar amount of data, namely one
block for each Stripe. As the processing of multiple stripes is
conceptually similar to the processing of one stripe (only
processing multiple blocks per drive instead of one), it will be
further assumed for simplification that the data being stored
or retrieved is only one stripe in size unless otherwise indi
cated. It will also be assumed that the block size L is suffi
ciently large that the data can be consistently divided across
each block to produce subsets of the data that include respec
tive portions of the blocks (for efficient concurrent processing
by different processing units).
0091 FIG. 1 shows an exemplary stripe 10 of original and
check data according to an embodiment of the present inven
tion.
0092 Referring to FIG. 1, the stripe 10 can be thought of
not only as the original N data blocks 20 that make up the
original data, but also the corresponding Mcheck blocks 30
generated from the original data (that is, the Stripe 10 repre
sents encoded data). Each of the N data blocks 20 is composed
of L bytes 25 (labeled byte 1, byte 2, ..., byte L), and each of
the M check blocks 30 is composed of L bytes 35 (labeled
similarly). In addition, check drive 1, byte 1, is a linear com
bination of data drive 1, byte 1; data drive 2, byte 1: ... ; data

Jul. 23, 2015

drive N byte 1. Likewise, check drive 1, byte 2, is generated
from the same linear combination formula as check drive 1,
byte 1, only using data drive 1, byte 2: data drive 2, byte 2: .
... ; data driveN, byte 2. In contrast, check drive 2, byte 1, uses
a different linear combination formula than check drive 1,
byte 1, but applies it to the same data, namely data drive 1,
byte 1; data drive 2, byte 1: . . . ; data drive N byte 1. In this
fashion, each of the other check bytes 35 is a linear combi
nation of the respective bytes of each of the N data drives 20
and using the corresponding linear combination formula for
the particular check drive 30.
(0093. The stripe 10 in FIG. 1 can also be represented as a
matrix C of encoded data. C has two Sub-matrices, namely
original data D on top and check data J on bottom. That is,

f d1 d2 JIL
J21 J22 J2E

JM 1 JM2 ... JML

where D-bytej from data drive i and J-byte j from check
drive i. Thus, the rows of encoded data C represent blocks,
while the columns represent corresponding bytes of each of
the drives.
0094 Further, in case of a disk drive failure of one or more
disks, the arithmetic operations are designed in Such a fashion
that for any stripe, the original data (and by extension, the
check data) can be reconstructed from any combination of N
data and check blocks from the corresponding N+M data and
check blocks that comprise the stripe. Thus, RAID provides
both parallel processing (reading and writing the data in
stripes across multiple drives concurrently) and fault toler
ance (regeneration of the original data evenifas many as Mof
the drives fail), at the computational cost of generating the
check data any time new data is written to disk, or changed
data is written back to disk, as well as the computational cost
of reconstructing any lost original data and regenerating any
lost check data after a disk failure.
0.095 For example, for M=1 check drive, a single parity
drive can function as the check drive (i.e., a RAID4 system).
Here, the arithmetic operation is bitwise exclusive OR of each
of the N corresponding data bytes in each data block of the
stripe. In addition, as mentioned earlier, the assignment of
parity blocks from different stripes to the same drive (i.e.,
RAID4) or different drives (i.e., RAID5) is arbitrary, but it
does simplify the description and implementation to use a
consistent assignment between stripes, so that will be
assumed throughout. Since M=1 reduces to the case of a
single parity drive, it will further be assumed for simplicity
that Mac2 throughout.
0096. For such larger values of M, Galois field arithmetic

is used to manipulate the data, as described in more detail
later. Galois field arithmetic, for Galois fields of powers-of-2
(such as 2.) numbers of elements, includes two fundamental
operations: (1) addition (which is just bitwise exclusive OR,
as with the parity drive-only operations for M=1), and (2)
multiplication. While Galois field (GF) addition is trivial on
standard processors, GF multiplication is not. Accordingly, a

US 2015/0207522 A1

significant component of RAID performance for Mac2 is
speeding up the performance of GF multiplication, as will be
discussed later. For purposes of description, GF addition will
be represented by the symbol + throughout while GF multi
plication will be represented by the symbol x throughout.
0097 Briefly, in exemplary embodiments of the present
invention, each of the M cheek drives holds linear combina
tions (over GF arithmetic) of the N data drives of original
data, one linear combination (i.e., a GF sum of N terms, where
each term represents a byte of original data times a corre
sponding factor (using GF multiplication) for the respective
data drive) for each check drive, as applied to respective bytes
in each block. One such linear combination can be a simple
parity, i.e., entirely GF addition (all factors equal 1). Such as
a GF sum of the first byte in each block of original data as
described above.

0098. The remaining M-1 linear combinations include
more involved calculations that include the nontrivial GF
multiplication operations (e.g., performing a GF multiplica
tion of the first byte in each block by a corresponding factor
for the respective data drive, and then performing a GF sum of
all these products). These linear combinations can be repre
sented by an (N+M)xN matrix (encoding matrix or informa
tion dispersal matrix (IDM)) E of the different factors, one
factor for each combination of (data or check) drive and data
drive, with one row for each of the N+M data and check drives
and one column for each of the N data drives. The IDME can
also be represented as

where I represents the NxN identity matrix (i.e., the original
(unencoded) data) and H represents the MXN matrix of fac
tors for the check drives (where each of the M rows corre
sponds to one of the M check drives and each of the N
columns corresponds to one of the N data drives).
0099 Thus,

1 O O

O 1 O

E= w O O 1
H Hi H12 Hy

H2 H22 H2N

HM HM2 HMN

where H, factor for check drive i and data drive j. Thus, the
rows of encoded data C represent blocks, while the columns
represent corresponding bytes of each of the drives. In addi
tion, check factors H, original data D, and check data Jare
related by the formula J-HxD (that is, matrix multiplication),
O

Jul. 23, 2015

J11 J12 diL
J21 J22 J2E

JM 1 JM2 JML

Hi H12 HN D11 D12 DL
H2 H22 H2N D21 D22 D21.

X

HM1 HM 2 HMN DN1, DN2 DNL

where J =(HXD)+(H2XD)+ . . . +(HMXD), J –
(H. XD12)+(H2XD22)+ . . . +(HMXD), J2-(H2XD1)+
(H22xD)+...+(H2xxDy), and in general, J. (HixD)+
(H2xD)+...+(HxxD.) for 1sisM and 1sjsL.
0100 Such an encoding matrix E is also referred to as an
information dispersal matrix (IDM). It should be noted that
matrices such as check drive encoding matrix H and identity
matrix I also represent encoding matrices, in that they rep
resent matrices of factors to produce linear combinations over
GF arithmetic of the original data. In practice, the identity
matrix I is trivial and may not need to be constructed as part
of the IDM. E. Only the encoding matrix E, however, will be
referred to as the IDM. Methods of building an encoding
matrix such as IDME or check drive encoding matrix H are
discussed below. In further embodiments of the present
invention (as discussed further in Appendix A). Such
(N+M)xN (or MXN) matrices can be trivially constructed (or
simply indexed) from a master encoding matrix S, which is
composed of (N,+M)xN (or MXN) bytes or
elements, where N,+M 256 (or some other power of
two) and NsN and Ms.M. For example, one Such mas
ter encoding matrix S can include a 127x127 element identity
matrix on top (for up to N=127 data drives), a row of 1's
(for a parity drive), and a 128x127 element encoding matrix
on bottom (for up to M-129 check drives, including the
parity drive), for a total of Na+M 256 drives.
0101 The original data, in turn, can be represented by an
NxL matrix D of bytes, each of the N rows representing the L
bytes of a block of the corresponding one of the N data drives.
If C represents the corresponding (N+M)xL matrix of
encoded bytes (where each of the N+M rows corresponds to
one of the N+M data and check drives), then C can be repre
sented as ExD=

where J=HxD is an MXL matrix of check data, with each of
the M rows representing the L check bytes of the correspond
ing one of the M check drives. It should be noted that in the
relationships such as C=ExD or J-HxD, x represents matrix
multiplication over the Galois field (i.e., GF multiplication
and GF addition being used to generate each of the entries in,
for example, C or J).
0102. In exemplary embodiments of the present invention,
the first row of the check drive encoding matrix H (or the
(N+1)" row of the IDM E) can be all 1's, representing the
parity drive. For linear combinations involving this row, the
GF multiplication can be bypassed and replaced with a GF
Sum of the corresponding bytes since the products are all

US 2015/0207522 A1

trivial products involving the identity element 1. Accordingly,
in parity drive implementations, the check drive encoding
matrix H can also be thought of as an (M-1)xN matrix of
non-trivial factors (that is, factors intended to be used in GF
multiplication and not just GF addition).
0103 Much of the RAID processing involves generating
the check data when new orchanged data is written to (or back
to) disk. The other significant event for RAID processing is
when one or more of the drives fail (data or check drives), or
for whatever reason become unavailable. Assume that in Such
a failure scenario, F data drives fail and G check drives fail,
where F and G are nonnegative integers. If F=0, then only
check drives failed and all of the original data D survived. In
this case, the lost check data can be regenerated from the
original data D.
0104. Accordingly, assume at least one data drive fails,
that is, F-1, and let K=N-F represent the number of data
drives that Survive. K is also a nonnegative integer. In addi
tion, let X represent the Surviving original data and Y repre
sent the lost original data. That is, X is a KXL matrix com
posed of the K rows of the original data matrix D
corresponding to the K Surviving data drives, while Y is an
FxL matrix composed of the Frows of the original data matrix
D corresponding to the F failed data drives.

thus represents a permuted original data matrix D'(that is, the
original data matrix D, only with the Surviving original dataX
on top and the lost original data Y on bottom. It should be
noted that once the lost original data Y is reconstructed, it can
be combined with the surviving original data X to restore the
original data D, from which the check data for any of the
failed check drives can be regenerated.
0105. It should also be noted that M-G check drives sur
Vive. In order to reconstruct the lost original data Y. enough
(that is, at least N) total drives must survive. Given that
K=N-F data drives survive, and that M-G check drives Sur
vive, it follows that (N-F)+(M-G)N must be true to recon
struct the lost original data Y. This is equivalent to F+GsM
(i.e., no more than F+G drives fail), or FsM-G (that is, the
number of failed data drives does not exceed the number of
surviving check drives). It will therefore be assumed for sim
plicity that FsM-G.
0106. In the routines that follow, performance can be
enhanced by prebuilding lists of the failed and surviving data
and check drives (that is, four separate lists). This allows
processing of the different sets of surviving and failed drives
to be done more efficiently than existing Solutions, which use,
for example, bit vectors that have to be examined one bit at a
time and often include large numbers of consecutive Zeros (or
ones) when ones (or zeros) are the bit values of interest.
0107 FIG. 2 shows an exemplary method 300 for recon
structing lost data after a failure of one or more drives accord
ing to an embodiment of the present invention.
0108. While the recovery process is described in more
detail later, briefly it consists of two parts: (1) determining the
Solution matrix, and (2) reconstructing the lost data from the
Surviving data. Determining the Solution matrix can be done
in three steps with the following algorithm (Algorithm 1),
with reference to FIG. 2:

Jul. 23, 2015

0109) 1. (Step 310 in FIG. 2) Reducing the (M+N)xN
IDM E to an NxN reduced encoding matrix T (also
referred to as the transformed IDM) including the K
surviving data drive rows and any F of the M-G surviv
ing check drive rows (for instance, the first F Surviving
check drive rows, as these will include the parity drive if
it survived; recall that FsM-G was assumed). In addi
tion, the columns of the reduced encoding matrix T are
rearranged so that the K columns corresponding to the K
surviving data drives are on the left side of the matrix and
the F columns corresponding to the Ffailed drives are on
the right side of the matrix. (Step 320) These F surviving
check drives selected to rebuild the lost original data Y
will henceforth be referred to as “the F surviving check
drives, and their check data W will be referred to as “the
surviving check data.” even though M-G check drives
survived. It should be noted that W is an FXL matrix
composed of the F rows of the check data J correspond
ing to the F surviving check drives. Further, the surviv
ing encoded data can be represented as a Sub-matrix C"
of the encoded data C. The surviving encoded data C" is
an NXL matrix composed of the Surviving original data
X on top and the surviving check data W on bottom, that
1S,

0110 2. (Step 330) Splitting the reduced encoding
matrix T into four Sub-matrices (that are also encoding
matrices): (i) a KXKidentity matrix I (corresponding to
the K surviving data drives) in the upper left, (ii) a KXF
matrix O of Zeros in the upper right, (iii) an FXK encod
ing matrix A in the lower left corresponding to the F
Surviving check drive rows and the K Surviving data
drive columns, and (iv) an FXF encoding matrix B in the
lower right corresponding to the F Surviving check drive
rows and the F failed data drive columns. Thus, the
reduced encoding matrix T can be represented as

0111. 3. (Step 340) Calculating the inverse B of the
FxF encoding matrix B. As is shown in more detail in
Appendix A, C"-TxD', or

which is mathematically equivalent to W=AxX+BxY. B' is
the Solution matrix, and is itself an FXF encoding matrix.
Calculating the solution matrix B thus allows the lost origi
nal data Y to be reconstructed from the encoding matrices A
and B along with the Surviving original data X and the Sur
viving check data W.
0112 The FXK encoding matrix A represents the original
encoding matrix E, only limited to the K Surviving data drives
and the F surviving check drives. That is, each of the F rows

US 2015/0207522 A1

of A represents a different one of the F surviving cheek drives,
while each of the K columns of A represents a different one of
the K Surviving data drives. Thus, A provides the encoding
factors needed to encode the original data for the Surviving
check drives, but only applied to the surviving data drives
(that is, the Surviving partial check data). Since the Surviving
original data X is available. A can be used to generate this
Surviving partial check data.
0113. In similar fashion, the FxF encoding matrix B rep
resents the original encoding matrix E, only limited to the F
surviving check drives and the Ffailed data drives. That is, the
Frows of B correspond to the same F rows of A, while each of
the F columns of B represents a different one of the F failed
data drives. Thus, B provides the encoding factors needed to
encode the original data for the Surviving check drives, but
only applied to the failed data drives (that is, the lost partial
check data). Since the lost original data Y is not available, B
cannot be used to generate any of the lost partial check data.
However, this lost partial check data can be determined from
A and the surviving check data W. Since this lost partial check
data represents the result of applying B to the lost original
dataY, B' thus represents the necessary factors to reconstruct
the lost original data Y from the lost partial check data.
0114. It should be noted that steps 1 and 2 in Algorithm 1
above are logical, in that encoding matrices A and B (or the
reduced encoding matrix T. for that matter) do not have to
actually be constructed. Appropriate indexing of the IDME
(or the master encoding matrix S) can be used to obtain any of
their entries. Step 3, however, is a matrix inversion over GF
arithmetic and takes O(F) operations, as discussed in more
detail later. Nonetheless, this is a significant improvement
over existing solutions, which require O(N) operations,
since the number of failed data drives F is usually signifi
cantly less than the number of data drives N in any practical
situation.
0115 (Step 350 in FIG.2) Once the encoding matrix A and
the solution matrix B are known, reconstructing the lost
data from the Surviving data (that is, the Surviving original
data X and the surviving check data W) can be accomplished
in four steps using the following algorithm (Algorithm 2):

011 6 1. Use A and the surviving original data X (using
matrix multiplication) to generate the Surviving check
data (i.e., AXX), only limited to the K Surviving data
drives. Call this limited check data the surviving partial
check data.

0117 2. Subtract this surviving partial check data from
the Surviving check data W (using matrix Subtraction,
i.e., W-AXX, which is just entry-by-entry GF subtrac
tion, which is the same as GF addition for this Galois
field). This generates the Surviving check data, only this
time limited to the F failed data drives. Call this limited
check data the lost partial check data.

I0118. 3. Use the solution matrix B and the lost partial
check data (using matrix multiplication, i.e., B'x(W-
AxX) to reconstruct the lost original data Y. Call this the
recovered original data Y.

0119) 4. Use the corresponding rows of the IDME (or
master encoding matrix S) for each of the Gfailed check
drives along with the original data D, as reconstructed
from the Surviving and recovered original data X and Y.
to regenerate the lost check data (using matrix multipli
cation).

0120. As will be shown in more detail later, steps 1-3
together require O(F) operations times the amount of original

Jul. 23, 2015

data D to reconstruct the lost original data Y for the F failed
data drives (i.e., roughly 1 operation per failed data drive per
byte of original data D), which is proportionally equivalent to
the O(M) operations times the amount of original data D
needed to generate the check data J for the M check drives
(i.e., roughly 1 operation per check drive per byte of original
data D). In addition, this same equivalence extends to step 4,
which takes O(G) operations times the amount of original
data D needed to regenerate the lost check data for the Gfailed
check drives (i.e., roughly 1 operation per failed check drive
per byte of original data D). In Summary, the number of
operations needed to reconstruct the lost data is O(F+G) times
the amount of original data D (i.e., roughly 1 operation per
failed drive (data or check) per byte of original data D). Since
F+GsM, this means that the computational complexity of
Algorithm 2 (reconstructing the lost data from the Surviving
data) is no more than that of generating the check data J from
the original data D.
I0121. As mentioned above, for exemplary purposes and
ease of description, data is assumed to be organized in 8-bit
bytes, each byte capable of taking on 2-256 possible values.
Such data can be manipulated in byte-size elements using GF
arithmetic for a Galois field of size 2-256 elements. It should
also be noted that the same mathematical principles apply to
any power-of-two 2 number of elements, not just 256, as
Galois fields can be constructed for any integral power of a
prime number. Since Galois fields are finite, and since GF
operations never overflow, all results are the same size as the
inputs, for example, 8 bits.
I0122. In a Galois field of a power-of-two number of ele
ments, addition and Subtraction are the same operation,
namely a bitwise exclusive OR (XOR) of the two operands.
This is a very fast operation to perform on any current pro
cessor. It can also be performed on multiple bytes concur
rently. Since the addition and subtraction operations take
place, for example, on a byte-level basis, they can be done in
parallel by using, for instance, x86 architecture Streaming
SIMD Extensions (SSE) instructions (SIMD stands for single
instruction, multiple data, and refers to performing the same
instruction on different pieces of data, possibly concurrently),
such as PXOR (Packed (bitwise) Exclusive OR).
I0123. SSE instructions can process, for example, 16-byte
registers (XMM registers), and are able to process such reg
isters as though they contain 16 Separate one-byte operands
(or 8 separate two-byte operands, or four separate four-byte
operands, etc.) Accordingly, SSE instructions can do byte
level processing 16 times faster than when compared to pro
cessing a byte at a time. Further, there are 16 XMM registers,
so dedicating four Such registers for operand storage allows
the data to be processed in 64-byte increments, using the other
12 registers for temporary storage. That is, individual opera
tions can be performed as four consecutive SSE operations on
the four respective registers (64 bytes), which can often allow
Such instructions to be efficiently pipelined and/or concur
rently executed by the processor. In addition, the SSE instruc
tions allows the same processing to be performed on different
such 64-byte increments of data in parallel using different
cores. Thus, using four separate cores can potentially speed
up this processing by an additional factor of 4 over using a
single core.
0.124 For example, a parallel adder (Parallel Adder) can
be built using the 16-byte XMM registers and four consecu
tive PXOR instructions. Such parallel processing (that is, 64
bytes at a time with only a few machine-level instructions) for

US 2015/0207522 A1

GF arithmetic is a significant improvement over doing the
addition one byte at a time. Since the data is organized in
blocks of any fixed number of bytes, such as 4096 bytes (4
kilobytes, or 4 KB) or 32,768 bytes (32 KB), a block can be
composed of numerous such 64-byte chunks (e.g., 64 sepa
rate 64-byte chunks in 4KB, or 512 chunks in 32 KB).
0.125 Multiplication in a Galois field is not as straightfor
ward. While much of it is bitwise shifts and exclusive OR's
(i.e., “additions”) that are very fast operations, the numbers
“wrap' in peculiar ways when they are shifted outside of their
normal bounds (because the field has only a finite set of
elements), which can slow down the calculations. This
“wrapping in the GF multiplication can be addressed in
many ways. For example, the multiplication can be imple
mented serially (Serial Multiplier) as a loop iterating over the
bits of one operand while performing the shifts, adds, and
wraps on the other operand. Such processing, however, takes
several machine instructions per bit for 8 separate bits. In
other words, this technique requires dozens of machine
instructions per byte being multiplied. This is inefficient com
pared to, for example, the performance of the Parallel Adder
described above.

0126 For another approach (Serial Lookup Multiplier),
multiplication tables (of all the possible products, or at least
all the non-trivial products) can be pre-computed and built
ahead of time. For example, a table of 256x256-65,536 bytes
can hold all the possible products of the two different one
byte operands). However, such tables can force serialized
access on what are only byte-level operations, and not take
advantage of wide (concurrent) data paths available on mod
ern processors, such as those used to implement the Parallel
Adder above.

0127. In still another approach (Parallel Multiplier), the
GF multiplication can be done on multiple bytes at a time,
since the same factor in the encoding matrix is multiplied with
every element in a data block. Thus, the same factor can be
multiplied with 64 consecutive data block bytes at a time.
This is similar to the Parallel Adder described above, only
there are several more operations needed to perform the
operation. While this can be implemented as a loop on each
bit of the factor, as described above, only performing the
shifts, adds, and wraps on 64 bytes at a time, it can be more
efficient to process the 256 possible factors as a (C language)
switch statement, with inline code for each of 256 different
combinations of two primitive GF operations: Multiply-by-2
and Add. For example, GF multiplication by the factor 3 can
be effected by first doing a Multiply-by-2 followed by an Add.
Likewise, GF multiplication by 4 is just a Multiply-by-2
followed by a Multiply-by-2 while multiplication by 6 is a
Multiply-by-2 followed by an Add and then by another Mul
tiply-by-2.
0128. While this Add is identical to the Parallel Adder
described above (e.g., four consecutive PXOR instructions to
process 64 separate bytes), Multiply-by-2 is not as straight
forward. For example, Multiply-by-2 in GFarithmetic can be
implemented across 64 bytes at a time in 4XMM registers via
4 consecutive PXOR instructions, 4 consecutive PCMPGTB
(Packed Compare for Greater Than) instructions, 4 consecu
tive PADDB (Packed Add) instructions, 4 consecutive PAND
(Bitwise AND) instructions, and 4 consecutive PXOR
instructions. Though this takes 20 machine instructions, the
instructions are very fast and results in 64 consecutive bytes
of data at a time being multiplied by 2.

Jul. 23, 2015

I0129. For 64 bytes of data, assuming a random factor
between 0 and 255, the total overhead for the Parallel Multi
plier is about 6 calls to multiply-by-2 and about 3.5 calls to
add, or about 6x20+3.5x4=134 machine instructions, or a
little over 2 machine instructions per byte of data. While this
compares favorably with byte-level processing, it is still pos
sible to improve on this by building a parallel multiplier with
a table lookup (Parallel Lookup Multiplier) using the
PSHUFB (Packed Shuffle Bytes) instruction and doing the
GF multiplication in 4-bit nibbles (half bytes).
I0130 FIG. 3 shows an exemplary method 400 for per
forming a parallel lookup Galois field multiplication accord
ing to an embodiment of the present invention.
I0131 Referring to FIG. 3, in step 410, two lookup tables
are built once: one lookup table for the low-order nibbles in
each byte, and one lookup table for the high-order nibbles in
each byte. Each lookup table contains 256 sets (one for each
possible factor) of the 16 possible GF products of that factor
and the 16 possible nibble values. Each lookup table is thus
256x16-4096 bytes, which is considerably smaller than the
65,536 bytes needed to store a complete one-byte multiplica
tion table. In addition, PSHUFB does 16 separate table look
ups at once, each for one nibble, so 8 PSHUFB instructions
can be used to do all the table lookups for 64 bytes (128
nibbles).
(0132) Next, in step 420, the Parallel Lookup Multiplier is
initialized for the next set of 64 bytes of operand data (such as
original data or Surviving original data). In order to save
loading this data from memory on succeeding calls, the Par
allel Lookup Multiplier dedicates four registers for this data,
which are left intact upon exit of the Parallel Lookup Multi
plier. This allows the same data to be called with different
factors (such as processing the same data for another check
drive).
0.133 Next in step 430, to process these 64 bytes of oper
and data, the Parallel Lookup Multiplier can be implemented
with 2 MOVDQA (Move Double Quadword Aligned)
instructions (from memory) to do the two table lookups and 4
MOVDQA instructions (register to register) to initialize reg
isters (such as the output registers). These are followed in
steps 440 and 450 by two nearly identical sets of 17 register
to-register instructions to carry out the multiplication 32
bytes at a time. Each such set starts (in step 440) with 5 more
MOVDQA instructions for further initialization, followed by
2 PSRLW (Packed Shift Right Logical Word) instructions to
realign the high-order nibbles for PSHUFB, and 4 PAND
instructions to clear the high-order nibbles for PSHUFB. That
is, two registers of byte operands are converted into four
registers of nibble operands. Then, in step 450, 4 PSHUFB
instructions are used to do the parallel table lookups, and 2
PXOR instructions to add the results of the multiplication on
the two nibbles to the output registers.
I0134) Thus, the Parallel Lookup Multiplier uses 40
machine instructions to perform the parallel multiplication on
64 separate bytes, which is considerably better than the aver
age 134 instructions for the Parallel Multiplier above, and
only 10 times as many instructions as needed for the Parallel
Adder. While some of the Parallel Lookup Multiplier's
instructions are more complex than those of the Parallel
Adder, much of this complexity can be concealed through the
pipelined and/or concurrent execution of numerous Such con
tiguous instructions (accessing different registers) on modern
pipelined processors. For example, in exemplary implemen
tations, the Parallel Lookup Multiplier has been timed at

US 2015/0207522 A1

about 15 CPU clock cycles per 64 bytes processed per CPU
core (about 0.36 clock cycles per instruction). In addition, the
code footprint is practically nonexistent for the Parallel
Lookup Multiplier (40 instructions) compared to that of the
Parallel Multiplier (about 34.300 instructions), even when
factoring the 8 KB needed for the two lookup tables in the
Parallel Lookup Multiplier.
0135) In addition, embodiments of the Parallel Lookup
Multiplier can be passed 64 bytes of operand data (such as the
next 64 bytes of Surviving original data X to be processed) in
four consecutive registers, whose contents can be preserved
upon exiting the Parallel Lookup Multiplier (and all in the
same 40 machine instructions) such that the Parallel Lookup
Multiplier can be invoked again on the same 64 bytes of data
without having to access main memory to reload the data.
Through such a protocol, memory accesses can be minimized
(or significantly reduced) for accessing the original data D
during check data generation or the Surviving original data X
during lost data reconstruction.
0.136 Further embodiments of the present invention are
directed towards sequencing this parallel multiplication (and
other GF) operations. While the Parallel Lookup Multiplier
processes a GF multiplication of 64 bytes of contiguous data
times a specified factor, the calls to the Parallel Lookup Mul
tiplier should be appropriately sequenced to provide efficient
processing. One Such sequencer (Sequencer 1), for example,
can generate the check data J from the original data D, and is
described further with respect to FIG. 4.
0.137 The parity drive does not need GF multiplication.
The check data for the parity drive can be obtained, for
example, by adding corresponding 64-byte chunks for each of
the data drives to perform the parity operation. The Parallel
Adder can do this using 4 instructions for every 64 bytes of
data for each of the N data drives, or N/16 instructions per
byte.
0.138. The M-1 non-parity check drives can invoke the
Parallel Lookup Multiplier on each 64-byte chunk, using the
appropriate factor for the particular combination of data drive
and check drive. One consideration is how to handle the data
access. Two possible ways are:

0.139. 1) “column-by-column, i.e., 64 bytes for one
data drive, followed by the next 64 bytes for that data
drive, etc., and adding the products to the running total in
memory (using the Parallel Adder) before moving onto
the next row (data drive); and

0140 2) "row-by-row, i.e., 64 bytes for one data drive,
followed by the corresponding 64 bytes for the next data
drive, etc., and keeping a running total using the Parallel
Adder, then moving onto the next set of 64-byte chunks.

0141 Column-by-column can be thought of as “constant
factor, varying data in that the (GF multiplication) factor
usually remains the same between iterations while the (64
byte) data changes with each iteration. Conversely, row-by
row can be thought of as "constant data, varying factor in
that the data usually remains the same between iterations
while the factor changes with each iteration.
0142. Another consideration is how to handle the check
drives. Two possible ways are:

0.143 a) one at a time, i.e., generate all the check data for
one check drive before moving onto the next check
drive; and

Jul. 23, 2015

014.4 b) all at once, i.e., for each 64-byte chunk of
original data, do all of the processing for each of the
check drives before moving onto the next chunk of origi
nal data.

While each of these techniques performs the same basic
operations (e.g., 40 instructions for every 64 bytes of data for
each of the N data drives and M-1 non-parity check drives, or
5N(M-1)/8 instructions per byte for the Parallel Lookup
Multiplier), empirical results show that combination (2)(b),
that is, row-by-row data access on all of the check drives
between data accesses performs best with the Parallel Lookup
Multiplier. One reason may be that such an approach appears
to minimize the number of memory accesses (namely, one) to
each chunk of the original data D to generate the check data J.
This embodiment of Sequencer 1 is described in more detail
with reference to FIG. 4.
(0145 FIG. 4 shows an exemplary method 500 for
sequencing the Parallel Lookup Multiplier to perform the
check data generation according to an embodiment of the
present invention.
014.6 Referring to FIG. 4, in step 510, the Sequencer 1 is
called. Sequencer 1 is called to process multiple 64-byte
chunks of data for each of the blocks across a stripe of data.
For instance, Sequencer 1 could be called to process 512
bytes from each block. If, for example, the block size L is
4096 bytes, then it would take eight such calls to Sequencer 1
to process the entire stripe. The other such seven calls to
Sequencer 1 could be to different processing cores, for
instance, to carry out the check data generation in parallel.
The number of 64-byte chunks to process at a time could
depend on factors such as cache dimensions, input/output
data structure sizes, etc.
0.147. In step 520, the outer loop processes the next
64-byte chunk of data for each of the drives. In order to
minimize the number of accesses of each data drives 64-byte
chunk of data from memory, the data is loaded only once and
preserved across calls to the Parallel Lookup Multiplier. The
first data drive is handled specially since the check data has to
be initialized for each check drive. Using the first data drive to
initialize the check data saves doing the initialization as a
separate step followed by updating it with the first data drive's
data. In addition to the first data drive, the first check drive is
also handled specially since it is a parity drive. So its check
data can be initialized to the first data drive's data directly
without needing the Parallel Lookup Multiplier.
0.148. In step 530, the first middle loop is called, in which
the remainder of the check drives (that is, the non-parity
check drives) have their check data initialized by the first data
drive's data. In this case, there is a corresponding factor (that
varies with each check drive) that needs to be multiplied with
each of the first data drive's data bytes. This is handled by
calling the Parallel Lookup Multiplier for each non-parity
check drive.
0149. In step 540, the second middle loop is called, which
processes the other data drives corresponding 64-byte
chunks of data. As with the first data drive, each of the other
data drives is processed separately, loading the respective 64
bytes of data into four registers (preserved across calls to the
Parallel Lookup Multiplier). In addition, since the first check
drive is the parity drive, its check data can be updated by
directly adding these 64 bytes to it (using the Parallel Adder)
before handling the non-parity check drives.
0150. In step 550, the inner loop is called for the next data
drive. In the inner loop (as with the first middle loop), each of

US 2015/0207522 A1

the non-parity check drives is associated with a correspond
ing factor for the particular data drive. The factor is multiplied
with each of the next data drive's data bytes using the Parallel
Lookup Multiplier, and the results added to the check drives
check data.
0151. Another such sequencer (Sequencer 2) can be used
to reconstruct the lost data from the Surviving data (using
Algorithm 2). While the same column-by-column and row
by-row data access approaches are possible, as well as the
same choices for handling the check drives, Algorithm 2 adds
another dimension of complexity because of the four separate
steps and whether to: (i) do the steps completely serially or (ii)
do some of the steps concurrently on the same data. For
example, step 1 (Surviving check data generation) and step 4
(lost check data regeneration) can be done concurrently on the
same data to reduce or minimize the number of Surviving
original data accesses from memory.
0152 Empirical results show that method (2)(b)(ii), that

is, row-by-row data access on all of the check drives and for
both Surviving check data generation and lost check data
regeneration between data accesses performs best with the
Parallel Lookup Multiplier when reconstructing lost data
using Algorithm 2. Again, this may be due to the apparent
minimization of the number of memory accesses (namely,
one) of each chunk of Surviving original data X to reconstruct
the lost data and the absence of memory accesses of recon
structed lost original data Y when regenerating the lost check
data. This embodiment of Sequencer 1 is described in more
detail with reference to FIGS. 5-7.

0153 FIGS. 5-7 show an exemplary method 600 for
sequencing the Parallel Lookup Multiplier to perform the lost
data reconstruction according to an embodiment of the
present invention.
0154) Referring to FIG. 5, in step 610, the Sequencer 2 is
called. Sequencer 2 has many similarities with the embodi
ment of Sequencer 1 illustrated in FIG. 4. For instance,
Sequencer 2 processes the data drive data in 64-byte chunks
like Sequencer 1. Sequencer 2 is more complex, however, in
that only some of the data drive data is Surviving; the rest has
to be reconstructed. In addition, lost check data needs to be
regenerated. Like Sequencer 1, Sequencer 2 does these opera
tions in Such a way as to minimize memory accesses of the
data drive data (by loading the data once and calling the
Parallel Lookup Multiplier multiple times). Assume for ease
of description that there is at least one Surviving data drive;
the case of no surviving data drives is handled a little differ
ently, but not significantly different. In addition, recall from
above that the driving formula behind data reconstruction is
Y=B'x(W-AXX), whereY is the lost original data, B' is the
Solution matrix, Wis the Surviving check data, A is the partial
check data encoding matrix (for the Surviving check drives
and the Surviving data drives), and X is the Surviving original
data.
0155. In step 620, the outer loop processes the next
64-byte chunk of data for each of the drives. Like Sequencer
1, the first Surviving data drive is again handled specially
since the partial check data Axx has to be initialized for each
Surviving check drive.
0156. In step 630, the first middle loop is called, in which
the partial check data AxX is initialized for each surviving
check drive based on the first surviving data drive's 64 bytes
of data. In this case, the Parallel Lookup Multiplier is called
for each Surviving check drive with the corresponding factor
(from A) for the first surviving data drive.

Jul. 23, 2015

0157. In step 640, the second middle loop is called, in
which the lost check data is initialized for each failed check
drive. Using the same 64 bytes of the first surviving data drive
(preserved across the calls to Parallel Lookup Multiplier in
step 630), the Parallel Lookup Multiplier is again called, this
time to initialize each of the failed check drive's check data to
the corresponding component from the first Surviving data
drive. This completes the computations involving the first
surviving data drive's 64 bytes of data, which were fetched
with one access from main memory and preserved in the same
four registers across steps 630 and 640.
0158 Continuing with FIG. 6, in step 650, the third middle
loop is called, which processes the other Surviving data
drives corresponding 64-byte chunks of data. As with the
first Surviving data drive, each of the other Surviving data
drives is processed separately, loading the respective 64 bytes
of data into four registers (preserved across calls to the Par
allel Lookup Multiplier).
0159. In step 660, the first inner loop is called, in which the
partial check data AXX is updated for each Surviving check
drive based on the next surviving data drive's 64 bytes of data.
In this case, the Parallel Lookup Multiplier is called for each
Surviving check drive with the corresponding factor (from A)
for the next surviving data drive.
0160. In step 670, the second inner loop is called, in which
the lost check data is updated for each failed check drive.
Using the same 64 bytes of the next surviving data drive
(preserved across the calls to Parallel Lookup Multiplier in
step 660), the Parallel Lookup Multiplier is again called, this
time to update each of the failed check drive's check data by
the corresponding component from the next Surviving data
drive. This completes the computations involving the next
surviving data drive's 64 bytes of data, which were fetched
with one access from main memory and preserved in the same
four registers across steps 660 and 670.
0.161 Next, in step 680, the computation of the partial
check data Axx is complete, so the surviving check data W is
added to this result (recall that W-AXX is equivalent to
W+AXX in binary Galois Field arithmetic). This is done by
the fourth middle loop, which for each surviving check drive
adds the corresponding 64-byte component of Surviving
check data W to the (Surviving) partial check data AXX (using
the Parallel Adder) to produce the (lost) partial check data
W-AXX.

(0162 Continuing with FIG. 7, in step 690, the fifth middle
loop is called, which performs the two dimensional matrix
multiplication B'x(W-AxX) to produce the lost original
data Y. The calculation is performed one row at a time, for a
total of F rows, initializing the row to the first term of the
corresponding linear combination of the solution matrix B'
and the lost partial check data W-AXX (using the Parallel
Lookup Multiplier).
(0163. In step 700, the third inner loop is called, which
completes the remaining F-1 terms of the corresponding
linear combination (using the Parallel Lookup Multiplier on
each term) from the fifth middle loop in step 690 and updates
the running calculation (using the Parallel Adder) of the next
row of B'x(W-AXX). This completes the next row (and
reconstructs the corresponding failed data drive's lost data) of
lost original dataY, which can then be stored at an appropriate
location.
0164. In step 710, the fourth inner loop is called, in which
the lost check data is updated for each failed check drive by
the newly reconstructed lost data for the next failed data drive.

US 2015/0207522 A1

Using the same 64 bytes of the next reconstructed lost data
(preserved across calls to the Parallel Lookup Multiplier), the
Parallel Lookup Multiplier is called to update each of the
failed check drives check data by the corresponding compo
nent from the next failed data drive. This completes the com
putations involving the next failed data drive's 64 bytes of
reconstructed data, which were performed as soon as the data
was reconstructed and without being stored and retrieved
from main memory.
0.165 Finally, in step 720, the sixth middle loop is called.
The lost check data has been regenerated, so in this step, the
newly regenerated check data is stored at an appropriate loca
tion (if desired).
0166 Aspects of the present invention can be also realized
in other environments, such as two-byte quantities, each Such
two-byte quantity capable of taking on 2–65,536 possible
values, by using similar constructs (scaled accordingly) to
those presented here. Such extensions would be readily
apparent to one of ordinary skill in the art, so their details will
be omitted for brevity of description.
0167 Exemplary techniques and methods for doing the
Galois field manipulation and other mathematics behind
RAID error correcting codes are described in Appendix A,
which contains a paper “Information Dispersal Matrices for
RAID Error Correcting Codes' prepared for the present
application.

Multi-Core Considerations

(0168 What follows is an exemplary embodiment for opti
mizing or improving the performance of multi-core architec
ture systems when implementing the described erasure cod
ing system routines. In multi-core architecture systems, each
processor die is divided into multiple CPU cores, each with
their own local caches, together with a memory (bus) inter
face and possible on-die cache to interface with a shared
memory with other processor dies.
0169 FIG. 8 illustrates a multi-core architecture system
100 having two processor dies 110 (namely, Die 0 and Die 1).
(0170 Referring to FIG. 8, each die 110 includes four
central processing units (CPUs or cores) 120 each having a
local level 1 (L1) cache. Each core 120 may have separate
functional units, for example, an x86 execution unit (fortra
ditional instructions) and a SSE execution unit (for software
designed for the newer SSE instruction set). An example
application of these function units is that the x86 execution
unit can be used for the RAID control logic software while the
SSE execution unit can be used for the GF operation software.
Each die 110 also has a level 2 (L2) cache/memory bus
interface 130 shared between the four cores 120. Main
memory 140, in turn, is shared between the two dies 110, and
is connected to the input/output (I/O) controllers 150 that
access external devices such as disk drives or other non
volatile storage devices via interfaces such as Peripheral
Component Interconnect (PCI).
0171 Redundant array of independent disks (RAID) con

troller processing can be described as a series of States or
functions. These states may include: (1) Command Process
ing, to validate and Schedule a host request (for example, to
load or store data from disk storage); (2) Command Transla
tion and Submission, to translate the host request into mul
tiple disk requests and to pass the requests to the physical
disks; (3) Error Correction, to generate check data and recon
struct lost data when some disks are not functioning correctly:
and (4) Request Completion, to move data from internal

Jul. 23, 2015

buffers to requestor buffers. Note that the final state, Request
Completion, may only be needed for a RAID controller that
Supports caching, and can be avoided in a cacheless design.
0172 Parallelism is achieved in the embodiment of FIG.8
by assigning different cores 120 to different tasks. For
example, some of the cores 120 can be “command cores,” that
is, assigned to the I/O operations, which includes reading and
storing the data and check bytes to and from memory 140 and
the disk drives via the I/O interface 150. Others of the cores
120 can be “data cores,” and assigned to the GF operations,
that is, generating the check data from the original data,
reconstructing the lost data from the Surviving data, etc.,
including the Parallel Lookup Multiplier and the sequencers
described above. For example, in exemplary embodiments, a
scheduler can be used to divide the original data D into
corresponding portions of each block, which can then be
processed independently by different cores 120 for applica
tions such as check data generation and lost data reconstruc
tion.

(0173. One of the benefits of this data core/command core
Subdivision of processing is ensuring that different code will
be executed in different cores 120 (that is, command code in
command cores, and data code in data cores). This improves
the performance of the associated L1 cache in each core 120,
and avoids the “pollution of these caches with code that is
less frequently executed. In addition, empirical results show
that the dies 110 perform best when only one core 120 on each
die 110 does the GF operations (i.e., Sequencer 1 or
Sequencer 2, with corresponding calls to Parallel Lookup
Multiplier) and the other cores 120 do the I/O operations. This
helps localize the Parallel Lookup Multiplier code and asso
ciated data to a single core 120 and not compete with other
cores 120, while allowing the other cores 120 to keep the data
moving between memory 140 and the disk drives via the I/O
interface 150.

0.174 Embodiments of the present invention yield scal
able, high performance RAID systems capable of outper
forming other systems, and at much lower cost, due to the use
of high Volume commodity components that are leveraged to
achieve the result. This combination can be achieved by uti
lizing the mathematical techniques and code optimizations
described elsewhere in this application with careful place
ment of the resulting code on specific processing cores.
Embodiments can also be implemented on fewer resources,
Such as single-core dies and/or single-die systems, with
decreased parallelism and performance optimization.
0.175. The process of subdividing and assigning individual
cores 120 and/or dies 110 to inherently parallelizable tasks
will result in a performance benefit. For example, on a Linux
system, Software may be organized into “threads, and
threads may be assigned to specific CPUs and memory sys
tems via the kthread bind function when the thread is created.
Creating separate threads to process the GF arithmetic allows
parallel computations to take place, which multiplies the per
formance of the system.
0176 Further, creating multiple threads for command pro
cessing allows for fully overlapped execution of the com
mand processing states. One way to accomplish this is to
number each command, then use the arithmetic MOD func
tion (% in C language) to choose a separate thread for each
command. Another technique is to Subdivide the data pro
cessing portion of each command into multiple components,
and assign each component to a separate thread.

US 2015/0207522 A1

0177 FIG.9 shows an exemplary disk drive configuration
200 according to an embodiment of the present invention.
0.178 Referring to FIG. 9, eight disks are shown, though

this number can vary in other embodiments. The disks are
divided into three types: data drives 210, parity drive 220, and
check drives 230. The eight disks break down as three data
drives 210, one parity drive 220, and four check drives 230 in
the embodiment of FIG. 9.
(0179. Each of the data drives 210 is used to hold a portion
of data. The data is distributed uniformly across the data
drives 210 in stripes, such as 192 KB stripes. For example, the
data for an application can be broken up into stripes of 192
KB, and each of the stripes in turnbroken up into three 64KB
blocks, each of the three blocks being written to a different
one of the three data drives 210.
0180. The parity drive 220 is a special type of check drive
in that the encoding of its data is a simple Summation (recall
that this is exclusive OR in binary GF arithmetic) of the
corresponding bytes of each of the three data drives 210. That
is, check data generation (Sequencer 1) or regeneration (Se
quencer 2) can be performed for the parity drive 220 using the
Parallel Adder (and not the Parallel Lookup Multiplier).
Accordingly, the check data for the parity drive 220 is rela
tively straightforward to build. Likewise, when one of the
data drives 210 no longer functions correctly, the parity drive
220 can be used to reconstruct the lost data by adding (same
as Subtracting in binary GF arithmetic) the corresponding
bytes from each of the two remaining data drives 210. Thus,
a single drive failure of one of the data drives 210 is very
straightforward to handle when the parity drive 220 is avail
able (no Parallel Lookup Multiplier). Accordingly, the parity
drive 220 can replace much of the GF multiplication opera
tions with GF addition for both check data generation and lost
data reconstruction.
0181. Each of the check drives 230 contains a linear com
bination of the corresponding bytes of each of the data drives
210. The linear combination is different for each check drive
230, but in general is represented by a summation of different
multiples of each of the corresponding bytes of the data drives
210 (again, all arithmetic being GF arithmetic). For example,
for the first check drive 230, each of the bytes of the first data
drive 210 could be multiplied by 4, each of the bytes of the
second data drive 210 by 3, and each of the bytes of the third
data drive 210 by 6, then the corresponding products for each
of the corresponding bytes could be added to produce the first
check drive data. Similar linear combinations could be used to
produce the check drive data for the other check drives 230.
The specifics of which multiples for which check drive are
explained in Appendix A.
0182. With the addition of the parity drive 220 and check
drives 230, eight drives are used in the RAID system 200 of
FIG.9. Accordingly, each 192 KB of original data is stored as
512 KB (i.e., eight blocks of 64 KB) of (original plus check)
data. Such a system 200, however, is capable of recovering all
of the original data provided any three of these eight drives
survive. That is, the system 200 can withstand a concurrent
failure of up to any five drives and still preserve all of the
original data.

Exemplary Routines to Implement an Embodiment
0183 The error correcting code (ECC) portion of an
exemplary embodiment of the present invention may be writ
ten in Software as, for example, four functions, which could
be named as ECCInitialize, ECCSolve, ECCGenerate, and

Jul. 23, 2015

ECCRegenerate. The main functions that perform work are
ECCGenerate and ECCRegenerate. ECCGenerate generates
check codes for data that are used to recover data when a drive
Suffers an outage (that is, ECCGenerate generates the check
data J from the original data D using Sequencer 1). ECCRe
generate uses these check codes and the remaining data to
recover data after Such an outage (that is, ECCRegenerate
uses the Surviving check data W, the Surviving original data X.
and Sequencer 2 to reconstruct the lost original data Y while
also regenerating any of the lost check data). Prior to calling
either of these functions, ECCSolve is called to compute the
constants used for a particular configuration of data drives,
check drives, and failed drives (for example, ECCSolve
builds the solution matrix B together with the lists of sur
viving and failed data and check drives). Prior to calling
ECCSolve, ECCInitialize is called to generate constant tables
used by all of the other functions (for example, ECCInitialize
builds the IDME and the two lookup tables for the Parallel
Lookup Multiplier).
0.184 ECCInitialize
0185. The function ECCInitialize creates constant tables
that are used by all Subsequent functions. It is called once at
program initialization time. By copying or precomputing
these values up front, these constant tables can be used to
replace more time-consuming operations with simple table
look-ups (such as for the Parallel Lookup Multiplier). For
example, four tables useful for speeding up the GFarithmetic
include:

0186 1. mvct—an array of constants used to perform GF
multiplication with the PSHUFB instruction that operates on
SSE registers (that is, the Parallel Lookup Multiplier).
0187 2. mast—contains the master encoding matrix S (or
the Information Dispersal Matrix (IDM) E, as described in
Appendix A), or at least the nontrivial portion, Such as the
check drive encoding matrix H
0188 3. mul tab—contains the results of all possible GF
multiplication operations of any two operands (for example,
256x256-65,536 bytes for all of the possible products of two
different one-byte quantities)

0189 4.div tab—contains the results of all possible GF
division operations of any two operands (can be similar
in size to mul tab)

0.190 ECCSolve
(0191 The function ECCSolve creates constant tables that
are used to compute a solution for a particular configuration
of data drives, check drives, and failed drives. It is called prior
to using the functions ECCGenerate or ECCRegenerate. It
allows the user to identify a particular case of failure by
describing the logical configuration of data drives, check
drives, and failed drives. It returns the constants, tables, and
lists used to either generate check codes or regenerate data.
For example, it can return the matrix B that needs to be
inverted as well as the inverted matrix B (i.e., the solution
matrix).
(0192 ECCGenerate
0193 The function ECCGenerate is used to generate
check codes (that is, the check data matrix J) for a particular
configuration of data drives and check drives, using
Sequencer 1 and the Parallel Lookup Multiplier as described
above. Prior to calling ECCGenerate, ECCSolve is called to
compute the appropriate constants for the particular configu
ration of data drives and check drives, as well as the solution
matrix B'.

US 2015/0207522 A1

(0194 ECCRegenerate
0.195 The function ECCRegenerate is used to regenerate
data vectors and check code vectors for a particular configu
ration of data drives and check drives (that is, reconstructing
the original data matrix D from the Surviving data matrix X
and the Surviving check matrix W, as well as regenerating the
lost check data from the restored original data), this time
using Sequencer 2 and the Parallel Lookup Multiplier as
described above. Prior to calling ECCRegenerate, ECCSolve
is called to compute the appropriate constants for the particu
lar configuration of data drives, check drives, and failed
drives, as well as the solution matrix B'.

Exemplary Implementation Details
0196. As discussed in Appendix A, there are two signifi
cant sources of computational overhead in erasure code pro
cessing (such as an erasure coding system used in RAID
processing): the computation of the solution matrix B for a
given failure scenario, and the byte-level processing of
encoding the check data J and reconstructing the lost data
after a lost packet (e.g., data drive failure). By reducing the
solution matrix B to a matrix inversion of a FxF matrix,
where F is the number of lost packets (e.g., failed drives), that
portion of the computational overhead is for all intents and
purposes negligible compared to the megabytes (MB),
gigabytes (GB), and possibly terabytes (TB) of data that
needs to be encoded into check data or reconstructed from the
Surviving original and check data. Accordingly, the remain
der of this section will be devoted to the byte-level encoding
and regenerating processing.
0.197 As already mentioned, certain practical simplifica
tions can be assumed for most implementations. By using a
Galois field of 256 entries, byte-level processing can be used
for all of the GFarithmetic. Using the master encoding matrix
S described in Appendix A, any combination of up to 127 data
drives, 1 parity drive, and 128 check drives can be supported
with such a Galois field. While, in general, any combination
of data drives and check drives that adds up to 256 total drives
is possible, not all combinations provide a parity drive when
computed directly. Using the master encoding matrix S. on
the other hand, allows all such combinations (including a
parity drive) to be built (or simply indexed) from the same
Such matrix. That is, the appropriate Sub-matrix (including
the parity drive) can be used for configurations of less than the
maximum number of drives.
0198 In addition, using the master encoding matrix S
permits further data drives and/or check drives can be added
without requiring the recomputing of the IDME (unlike other
proposed solutions, which recompute E forevery change of N
or M). Rather, additional indexing of rows and/or columns of
the master encoding matrix S will Suffice. As discussed
above, the use of the parity drive can eliminate or significantly
reduce the somewhat complex GF multiplication operations
associated with the other check drives and replaces them with
simple GF addition (bitwise exclusive OR in binary Galois
fields) operations. It should be noted that master encoding
matrices with the above properties are possible for any power
of-two number of drives 2-N+M where the maximum
number of data drives N is one less than a power of two
(e.g., N, 127 or 63) and the maximum number of check
drives M, (including the parity drive) is 2'-N.
0199 As discussed earlier, in an exemplary embodiment
of the present invention, a modern x86 architecture is used
(being readily available and inexpensive). In particular, this

Jul. 23, 2015

architecture supports 16 XMM registers and the SSE instruc
tions. Each XMM register is 128 bits and is available for
special purpose processing with the SSE instructions. Each of
these XMM registers holds 16 bytes (8-bit), so four such
registers can be used to store 64 bytes of data. Thus, by using
SSE instructions (some of which work on different operand
sizes, for example, treating each of the XMM registers as
containing 16 one-byte operands), 64 bytes of data can be
operated at a time using four consecutive SSE instructions
(e.g., fetching from memory, storing into memory, Zeroing,
adding, multiplying), the remaining registers being used for
intermediate results and temporary storage. With Such an
architecture, several routines are useful for optimizing the
byte-level performance, including the Parallel Lookup Mul
tiplier, Sequencer 1, and Sequencer 2 discussed above.

GLOSSARY OF SOME VARIABLES

0200. A encoding matrix (FXK), sub-matrix of T
0201 B encoding matrix (FxF), sub-matrix of T
(0202 B' solution matrix (FXF)
0203 C encoded data matrix

D
((N + M)x L) = f

0204 C" surviving encoded data matrix

Nx L = (Nx L =
0205 D original data matrix (NxL)
0206 D'permuted original data matrix

(NX L) = y

0207 E information dispersal matrix

IDM (N + M)xN)=" (IDM)(N + M)xN) = H

0208 F number of failed data drives
0209 G number of failed check drives
0210 H check drive encoding matrix (MXN)
0211 I identity matrix (I-KxKidentity matrix, INXN
identity matrix)

0212 Jencoded check data matrix (MXL)
0213 K number of surviving data drives=N-F
0214 L data block size (elements or bytes)
0215 M number of check drives
0216 M. maximum value of M
0217 N number of data drives
0218 N. maximum value of N
0219 O zero matrix (KXF), sub-matrix of T
0220 S master encoding matrix ((M+N)xN)
0221 T transformed IDM

US 2015/0207522 A1

NXN)-" " (NXN)-
0222 W surviving check data matrix (FxL)
0223 X surviving original data matrix (KXL)
0224 Y lost original data matrix (FxL)

DETAILED DESCRIPTION

New

0225. While optimal erasure codes have many applica
tions, for ease of description, they will be described in this
application primarily with respect to RAID applications, i.e.,
erasure coding systems for the storage and retrieval of digital
data distributed across numerous storage devices (or drives),
though the present application is not limited thereto. For
further ease of description, the storage devices will be
assumed to be disk drives, though the invention is not limited
thereto. In RAID systems, the data (or original data) is broken
up into stripes, each of which includes N uniformly sized
blocks (data blocks), and the N blocks are written across N
separate drives (the data drives), one block per data drive. For
simplicity, it will be assumed that N-2 throughout. The N=1
case essentially degenerates to simple data mirroring (i.e.,
replication of data without encoding), though many of the
same general principles apply as with Na2.
0226. In addition, for ease of description, blocks will be
assumed to be composed of L elements, each element having
a fixed size, say 8 bits or one byte. An element, such as a byte,
forms the fundamental unit of operation for the RAID pro
cessing, but the invention is just as applicable to other size
elements, such as 16 bits (2 bytes). For simplification, unless
otherwise indicated, elements will be assumed to be one byte
in size throughout the description that follows, and the term
"element(s) and “byte(s) will be used synonymously. It is
understood, however, that this is only for convenience of
description, and embodiments of the invention are extendible
to any size elements (e.g., 2 bytes) as would be apparent to
one of ordinary skill in the art.
0227 Conceptually, RAID processing takes place at the
element (e.g., byte) level, though parallel processing tech
niques (e.g., multiple cores, multiple instructions per cycle,
instruction pipelining, and wide data paths) allows vast
amounts of this processing to be done concurrently. While
large block sizes L. can be chosen to take advantage of this
concurrent processing, the processing is still being done on a
byte basis across each stripe (that is, each byte at the same
byte position in each stripe). Accordingly, errors and failures
can take place on units Smaller than blocks, including bytes,
and the same principles of being able to recover any lost or
corrupted data from any N corresponding Surviving units
(including N surviving bytes at the same corresponding byte
positions) across the stripes still apply.
0228. The N data blocks from each stripe are combined
using arithmetic operations (as described in the Benefit
Application and included above) in M different ways to pro
duce M blocks of check data (check blocks), and the Mcheck
blocks written across M drives (the check drives) separate
from the N data drives, one block per check drive. It should be
noted that the assignment of data and check blocks to the
drives does not have to remain the same between Stripes,
provided each of the N+M data and check blocks goes to a

16
Jul. 23, 2015

different one of the N+M drives. For ease of description,
however, the assignment will be assumed to be the same
throughout this disclosure. It should also be noted that some
or all of the N data blocks can be replaced with an equal
number of additional check blocks. That is, provided there are
N+M total data and check blocks, the N blocks of original
data are reconstructable from any combination of N of the
N+M total data and check blocks. Further, with the original
data reconstructed, any of the check blocks can be regener
ated. Thus, given any combination of N+M total data and
check blocks, any N Such blocks can be used at any point to
reconstruct or regenerate the other M blocks.
0229. In other words, conceptually, there is little differ
ence between an original data block and a check block, except
perhaps to an application that needs to process the original
data. Since the RAID storage system would not likely have
need to process the original data, the data could be all stored
as (encoded) check blocks. That is, the data could instead be
stored as N+M total check blocks, as the system could still
reconstruct the original data from any N of them. This simple
example demonstrates the ability of check blocks to both
encode (for example, encrypt) and authenticate data.
0230. For example, without knowledge of the algorithm
and the multiplicative factors used to encode the check
blocks—that is, the check drive encoding matrix (or check
matrix) as defined in the Benefit Application and included
above the encoded data can appear to be encrypted to an
observer of the data. Using a check matrix that is as least
NxN, and storing the original data as check data rather than
original data, should suffice to encrypt the original data to an
unaware observer. In a similar fashion, with knowledge of the
algorithm and the check matrix, data can have check blocks
created for purposes of authentication. That is, receivers of
the data and check blocks can regenerate the check blocks to
verify the authenticity of the data bytes. Encryption and
authentication can be performed together by using, for
example, a check matrix of size (N+M)x(N+M) to create N
encrypted data blocks and Mcheck blocks for authentication.
For purposes of the remainder of this disclosure, however, it
will be assumed that the N blocks of original data are kept in
their original (unencoded) form at the different memory and
storage hierarchies, though the invention is not limited
thereto.

0231. These combinations and arithmetic operations of
data blocks into check blocks can take place, for example,
when new (or changed) data is written to (or back to) disk.
Accordingly, each of the N+M drives (data drives and check
drives) stores a similar amount of data, namely one block for
each stripe. As the processing of multiple stripes is concep
tually similar to the processing of one stripe (only processing
multiple blocks per drive instead of one), it will be further
assumed for simplification that the data being stored or
retrieved represents one stripe of original data unless other
wise indicated. It will also be assumed that the block size L is
sufficiently large that the data can be consistently divided
across each block to produce Subsets of the data (for example,
64 byte subsets) that include respective portions of the blocks
(for efficient concurrent processing by different processing
units).
0232. The data blocks (and, in some cases, the check
blocks) for each stripe can be assumed to be buffered within
a level of the memory and storage hierarchy of the computer
implementing the erasure code. For ease of description and
simplification, it will be assumed that the caching takes place

US 2015/0207522 A1

in Stripe size units, where the stripe includes at least the data
blocks along with any check blocks being kept or maintained
with the data blocks at the corresponding level of the memory
or storage hierarchy. One such exemplary level will be
referred to as the RAID cache level. See FIG. 10 for an
exemplary memory and storage hierarchy system 1000
according to an embodiment of the present invention. In FIG.
10, the memory and storage hierarchy system 1000 includes
disk drives 1010 (for example, five disk drives, labeled disk 1
through disk 5), a storage subsystem controller 1020 for
transferring data to and from the different disk drives 1010, a
RAID cache 1030 for maintaining recently accessed data in
stripes, and a CPU and memory hierarchy 1040 for process
ing the data by a central processing unit (CPU) and a memory
hierarchy that can include various hardware memory levels
including processor cache and Volatile memory, Such as ran
dom access memory (RAM).
0233. The RAID cache 1030 might only keep the N data
blocks for each stripe resident in the RAID cache 1030.
Assuming the corresponding N data drives are functioning,
the RAID cache 1030 can build each stripe from the N data
drives, process the stripe internally within the CPU and
memory hierarchy 1040, and then write out any changes to the
N data blocks, along with generating and writing out the
corresponding changes to the M check blocks, at the appro
priate time (e.g., when the stripe “ages out of the RAID
cache). By keeping the stripe in the RAID cache 1030, details
Such as keeping the check blocks up to date on the check
drives, handling failing drives, etc., can be postponed until a
more opportune moment presents itself to the RAID cache
1030. Thus, to the RAID cache 1030, the fundamental unit of
memory or storage is the stripe, though the RAID cache 1030
may transfer data to the CPU and memory hierarchy 1040 as
well as to the storage subsystem 1020 in units of blocks.
0234. In other implementations, the RAID cache is a
“write-through' cache. That is, when a change is written to
one of the blocks in the RAID cache, the corresponding check
blocks are updated and the contents of all of the updated
blocks are written to their respective drives.
0235 According to embodiments of the present invention,
check blocks are also maintained in the RAID cache 1030 for
each stripe. The number of such check blocks can be the
same, less than, or even more than the number of check blocks
maintained in the check drives. Erasure encodings, such as
those described in the Benefit Application and included
above, can support up to 256 total (data plus check) drives for
byte-size elements (and far more drives for larger size ele
ments, such as 65.536 drives for two-byte elements). Accord
ingly, the internal stripe size (i.e., number of data and check
blocks maintained in the RAID cache 1030 for each stripe)
can be as large as 256 blocks, even if the external stripe size
(i.e., number of data and check blocks maintained in the
disks) is considerably smaller. As such, concepts such as
“stripe size' and “check blocks' may be used throughout this
disclosure to refer to either (or both of) “internal stripe size”
(i.e., RAID cache stripe size) or “external stripe size” (i.e.,
data drives plus check drives stripe size), and likewise for
“internal check blocks” or “external check blocks, depend
ing on the context. Similarly, an “internal stripe' can refer to
all the data and check blocks that contribute to the internal
stripe size, while an “external stripe' can refer to all the data
and check blocks that contribute to the external stripe size.
0236. For example, a system may have three data drives
and five check drives in a RAID configuration. Thus, the

Jul. 23, 2015

external Stripe size is eight blocks, namely three data blocks
plus five check blocks (that is, five external check blocks) per
stripe of data. According to an embodiment of the present
invention, the RAID cache may maintain the contents of two
of the five check drives (as well as all of the data drives) for
each stripe. Here, the internal stripe size is five blocks, namely
the three data blocks and two of the check blocks (that is, two
internal check blocks). In another embodiment, the internal
stripe size is eight blocks, that is, the same as the external
stripe size. In yet another embodiment, the internal Stripe size
is 11 blocks, that is, the three data blocks and eight check
blocks. Accordingly, internal stripes can be full or proper
subsets of the external stripes and vice versa, the external
stripes can be full or proper subsets of the internal stripes. It
should be noted that internal check blocks can also be used to
speed up or replace the step of generating the check blocks
when the stripe needs to be written to (or back to) disk.
However, the present invention is not limited thereto, and in
other embodiments, different check matrices may be used at
different levels of the storage hierarchy.
0237 By maintaining internal check blocks, the RAID
cache can also take advantage of the check blocks to detect
and possibly correct errors (e.g., silent data corruptions, or
SDCs) of the different memory and storage hierarchy levels.
Normally, it is assumed that all data is valid, both within the
computing system and throughout any storage hierarchy.
While RAID drives (specifically, the check blocks) can
handle situations where entire drives fail or are otherwise
inaccessible, they can also do data verification and correction
of what would otherwise be assumed to be valid data (that is,
data that may have experienced one or more SDCs).

Internal and Multi-Level ECC

0238 While the above discussion focuses on internal
check bytes that, when stored on disk, are spread across
multiple check drives, it is also possible to store Such internal
check bytes on the same drive, or a combination of the same
drive and other (check) drives, such as in a hierarchical fash
ion over multiple levels. For example, Suppose data and check
bytes are to be arranged on a 24-drive system. In a first
embodiment, the 24 drives can be divided into 21 data drives
and 3 check drives. Thus, 2 1/24=87.5% of the system is
available for data bytes, which means 12.5% of the system is
used for check bytes. It also means that three check bytes are
available for each data byte, in a single level.
0239. In a second embodiment, by contrast, the same 24
drives are partitioned into 22 data drives and 2 check drives,
providing two check bytes for each data byte in a standard
RAID configuration. Thus, 22/24=91.7% of the drives are
available for data, which means 8.3% of the drives are used
for (standard RAID) check bytes. In addition, on each data
drive, Suppose the data is organized into 512-byte sectors. 64
Such sectors (i.e., 32 KB of data bytes) can be grouped in a
manner similar to 64 separate drives for RAID processing,
and 2 check sectors (i.e., 1 KB of check bytes) created to
provide internal ECC within the drive. That is, each of the
sectors can be thought of as a data block, with two check
blocks (sectors) being created to provide ECC protection as
with the standard RAID processing, only using internal Sec
tors instead of external blocks. This provides an additional
two check bytes for each data byte, with these check bytes
being computed and used with the same hardware or Software
used to process the standard RAID processing Thus,

US 2015/0207522 A1

64/66–97.0% of the drive is available for data bytes, which
means 3.0% of the drive is used for check bytes.
0240. Overall, in the second embodiment, there are four
check bytes available for each data byte (two bytes within the
drive, shared among 64 sectors, and two bytes outside the
drive, shared among 22 data drives) in a two-level Scheme of
two bytes in each level. Further, the total data byte storage
available in the second embodiment is (22/24)x(64/66)=8/
9–88.9%, which means only 11.1% of the storage is devoted
to check bytes. This compares favorably to the 87.5% data
byte storage (12.5% check byte storage) of the first embodi
ment. In addition, the second embodiment provides four
check bytes for each data byte, compared to only three in the
first embodiment. Further, in the second embodiment, within
each data drive, situations such as an unrecoverable read error
(URE) of an individual sector can be resolved within the drive
by using the check sectors to reconstruct the URE data, thus
avoiding reading all the other 23 drives to resolve the URE as
would be needed in the first embodiment.
0241. In still other embodiments, the above multi-level
approach is extended to more than two levels. For example, in
a third embodiment, a third level can be added by grouping
four such 24-drive systems (“subsystems) as described in the
second embodiment into a 96-drive system with 4 additional
check drives, for a total of 100 drives. The total data byte
storage available in the third embodiment is then (22/24)x
(64/66)x(96/100)=64/75-85.3%, which means only 14.7%
of the storage is for check bytes, yet provides eight check
bytes for each databyte in three levels oftwo check bytes, two
check bytes, and four check bytes. Thus, in the third embodi
ment, not only are the single drive situations (e.g., UREs)
correctable within each drive, but more extensive situations
(such as a failed drive) are correctable within a 24-drive
Subsystem (using the corresponding two check drives for the
subsystem) and without having to read all the other 99 drives
in the system.

Consistency and (Consistency) Distance
0242 To appreciate the dual-purpose concept described
earlier (i.e., data regeneration when known drives fail versus
error detection/correction when unknown bytes become cor
rupted), data is normally stored or maintained in a consistent
state (or at least what is believed to be a consistent state). In a
consistent state, there are no apparent SDCs, based on the
available check bytes or blocks to verify the other bytes. That
is, with consistent data and check bytes, regenerating the
check bytes from the data bytes produces the same check
bytes as are already present. Otherwise, the data and check
bytes are inconsistent. More generally, for an N+M block
erasure code, N--M blocks are defined to be consistentifusing
any N of the blocks to regenerate the other M blocks produces
the same blocks as are already present. Otherwise, the N+M
blocks are inconsistent. It should be noted that any combina
tion of N blocks (or corresponding bytes) can be used for this
consistency check.
0243 Thus, data blocks by themselves are assumed to be
consistent, for there is nothing to indicate otherwise. Accord
ingly, without check blocks, SDCs can take place without
detection, for N data blocks by themselves are always
assumed to be in a consistent state. While erasure codes Such
as those used for RAID storage are usually described with
reference to known error locations (i.e., missing or corrupted
blocks), unknown errors (i.e., SDCs) will be defined in terms
of data consistency and inconsistency. SDCs are thus detect

Jul. 23, 2015

able (and perhaps correctable) only to the extent that they
cause the data and check bytes to be inconsistent. Since N data
blocks cannot have any inconsistencies, N data blocks are
always consistent, and thus cannot have any (detectable or
correctable) SDCs.
0244. The addition of check blocks allows for the detec
tion and possible correction of SDCs. In general, for each
check block added, one more SDC can be detected (with
certainty) at each byte position. Put another way, an N+M set
of consistent bytes could undergo as many as MSDCs and
still not reach a different set of N+M consistent bytes, hence
up to MSDCs can be detected with certainty.
0245. This can also be expressed as a consistency distance,
that is, the minimum number of element (e.g., byte) correc
tions needed to return a set of data and check bytes to a
consistent state. Another way of expressing this is that the
consistency distance of a set of data and check bytes is the
Hamming distance (in bytes) from the set of data and check
bytes to the nearest set of consistent data and check bytes.
Consistent data and check bytes are thus distance 0. N data
bytes by themselves are also distance 0 (since they are con
sistent), or distance 1 to the next nearest other consistent set
(i.e., any single byte change also produces a consistent set). In
general, N+M consistent data and check bytes are distance 0.
or distance M+1 to the next nearest other consistent set.
Inconsistent data has a nonzero consistency distance. The
larger the distance, the more changes are needed to the indi
vidual bytes to return it to a consistent state. The consistency
distance (or just distance) thus measures the degree of con
sistency.
0246. An alternate (and possibly concurrent) use of the
check bytes is to compress existing data bytes, such as in a
cache. For example, denote two sets of N data bytes D1 and
D2 and their corresponding sets of Mcheck bytes C1 and C2.
In the trivial case where D1 and D2 are the same, it suffices to
store only one of them, such as D1, in the cache (along with
each of their check bytes C1 and C2). That is, the two sets of
check bytes C1 and C2 can be stored in the cache together
with a pointer that points to the same data, Such as D1. In this
manner, the databytes D2 do not also need to be stored, which
results in data compression.
0247 Likewise, if D1 and D2 differ (in bytewise compari
son) by fewer than the number of check blocks (M), that is, the
Hamming distance between D1 and D2 is less than M, it may
be that the combination of N data bytes D1 and Mcheck bytes
C2 is an inconsistent set of N+M data and check bytes that is
nonetheless correctable (as discussed in more detail below) to
the consistent set of N+M data and check bytes D2 and C2. If
so, it suffices to store only D1, and to point C2 to D1. That is,
D2 can be compressed to a pointer to D1 only with a different
set of check bytes C2, and can be uncompressed to D2
through error correction techniques as discussed more fully
below. In other words, some or all of the error correcting
capability can be exchanged for a data compression capabil
ity. It should be noted that this data compression can still be
combined with actual error detection and correction by, for
example, requiring D1 and D2 to differ by fewer bytes,
thereby allowing these extra bytes to detect or correct actual
errors (e.g., SDCs) that occur to D1, C1, or C2 overtime while
still being able to recover D2.
0248. Further compression may also be possible by point
ing new data to existing compressed data. That is, Suppose
databytes D1 and D2, with corresponding check bytes C1 and
C2, are stored as described above, with D1 actually being

US 2015/0207522 A1

stored, C1 being stored and pointing to D1, and C2 being
stored and also pointing to D1 (the data bytes D2 being
reconstructable from doing error correction on the combina
tion of data bytes D1 and check bytes C2). Now let new data
bytes D3 with corresponding check bytes C3 be added to the
cache. D3 may be sufficiently far from D1 (for example, have
a Hamming distance from D1 that is aM) that the data bytes
D3 cannot be recovered from the combination of the data
bytes D1 and check bytes C3.
0249. However, D3 may be sufficiently close to D2 (for
example, have a Hamming distance from D2 that is sM/2)
that the data bytes D3 can be recovered from error correcting
the combination of data bytes D2 and check bytes C3. In this
case, D3 would not have to be stored in the cache. Rather, the
check bytes C3 are stored in the cache, only pointing to the
check bytes C2. In this fashion, the data bytes D3 could be
reconstructed by first reconstructing the data bytes D2 as
described above, and then performing error correction on the
recovered data bytes D2 using the check bytes C3. In this
sense, the check bytes C3 indirectly point to the databytes D1
by pointing to the check bytes C2, which directly point to the
data bytes D1.
0250. This process of data compression could thus poten

tially be extended several levels, each level of indirection
adding another error correction operation to recover the
appropriate intermediate data bytes until eventually the
desired data bytes are recovered. In some embodiments, the
amount of indirection (number of error correction operations)
could be limited (say, to no more than a fixed number of
compressed sets of intermediate data bytes) to lessen the
potential computational complexity of decompressing the
data from existing compressed sets of data bytes.
0251 Pure detection of SDCs can thus be reduced to test
ing if the data and check bytes are consistent (i.e., has a
distance greater than 0). Pure correction of SDCs can be
reduced to replacing the data and check bytes with the closest
consistent set of data and check bytes (that is, the set requiring
the fewest number of byte changes), provided there is only
one Such closest set. Pure compression of data bytes can be
accomplished by replacing similar combinations of data
bytes with only one Such set, together with corresponding sets
of check bytes corresponding to their original data. Combi
nations of detection, correction, and compression are also
possible, as described later.
0252 Random SDCs usually make the data and check
bytes more inconsistent (i.e., increases its distance), but only
to a certain extent, and no more than distance M. This is
because any inconsistent set of N+M data and check bytes is
at most M corrections away (i.e., distance M) from a consis
tent set of data and check bytes. That is, any N of the data and
check bytes are consistent (i.e., distance 0) and can be used to
generate the other M bytes, thus producing a set of N+M
consistent data and check bytes with at most M byte correc
tions (i.e., distance at most M). There are

("") ("")

such possible subsets (different sets of corrections of at most
M bytes) and thus, while M SDCs is detectable, it is (gener

Jul. 23, 2015

ally) not possible to correct them (for example, without know
ing which of the numerous sets of corrections should be
applied).
0253 For ease of description, as described hereinafter,
inconsistent data and check bytes are correctable if and only
if there is a unique solution (that is, a unique set of byte
changes) having a fewest number of corrections that returns
the inconsistent data and check bytes to a consistent state (i.e.,
only one solution satisfying its consistency distance). Any
consistent set of N+M data and check bytes is distance M+1
from any nearest other consistent set of data and check bytes.
That is, the addition of M check blocks separates the consis
tent sets of data and check bytes by at least M+1 SDCs. Thus,
any inconsistent set of data and check bytes having a combi
nation offewer than

M + 1

SDCs (i.e., less man or equal to

2

SDCs) is guaranteed to be correctable, as such an inconsistent
set of data and check bytes is more than distance

M + 1

from any nearest other set of consistent data and check bytes.
However, it may be possible to correct up to M-1 SDCs, if
there is only one set of consistent data that is distance M-1 or
less from the inconsistent data and check bytes.
0254 For example, if a set of data and check bytes is
inconsistent, but can be made consistent in as few as two
corrections (i.e., distance 2), then two SDCs are detectable.
Further, if there is only one such combination of two data and
check bytes that can be corrected to return the set to a con
sistent state, then those two data and check bytes (or rather,
their SDCs) are correctable. In general, an N+M block erasure
code has the capability of detecting up to MSDCs (i.e., its
distance is at most M) at each byte position, and the possibil
ity of correcting up to M-1 SDCs. However, the maximum
number of correctable SDCs is data dependent, and can be as
few as

(rounded down), that is,

0255 For a more practical example, suppose two of the
check blocks are maintained internally in the RAID cache
(that is, the internal stripe size is N-2 blocks). Then a simple

US 2015/0207522 A1

consistency check of the N+2 blocks can be to use the N data
blocks to regenerate the two check blocks, and then compare
these two regenerated check blocks with the two existing
check blocks. If there are any mismatches, then the internal
stripe is inconsistent, that is, one or more SDCs have been
detected. In this case, it may be possible to use the existing
check blocks in the RAID cache to detect two SDCs or to
correct one SDC, at each byte position, as will now be
explained.
0256 FIG. 11 illustrates an exemplary RAID cache 1030
according to an embodiment of the present invention. The
cache is depicted as a two dimensional structure, with rows
corresponding to Stripes and columns corresponding to disk
drives (including data drives and check drives). In this RAID
cache 1030, the internal stripe size is five blocks, namely
three data blocks and two check blocks. By incorporating two
check blocks into each internal stripe, the RAID cache 1030
has dedicated 40% of its cache space to holding check data,
which means that the RAID cache 1030 holds 40% fewer
stripes compared to a comparable RAID cache that stores no
check blocks in its internal stripes.
0257 The check blocks do provide benefits, though. In
addition to being able to write these check blocks to check
drives when the stripe needs to be written to disk (that is,
without a separate check data generation step), these check
blocks provide, for example, error detection and correction
capability (and/or encryption, authentication, and/or com
pression capability). These blocks represent an erasure code
and thus, should any two of them become corrupted, they can
be reconstructed or regenerated from the other three. How
ever, as already mentioned, for a RAID cache (i.e., internal)
level of the memory or storage hierarchy, that property also
applies to the byte level. That is, for a given stripe, in this
example, there can be up to 2xL corruptions, i.e., two per
corresponding byte position across each of the five blocks.
Accordingly, for simplification, at the RAID cache level, the
data may hereinafter be thought of as individual correspond
ing bytes across each (internal) stripe. That is, the data will be
processed at the byte level and not the block level. Consis
tency and distance will also be defined across the same
boundaries.
0258 With this in mind, FIG. 12 illustrates an exemplary
method 1200 for consistency checking a set of N+M original
bytes in an erasure code according to an exemplary embodi
ment of the present invention. In step 1210, a check is made to
see if M=0. If so, the processing proceeds to step 1220, where
the data is assumed to be consistent since there is no way to
tell otherwise. Otherwise, Mal, so processing proceeds to
step 1230, where a (proper) subset of N bytes is chosen. Any
N of the original bytes can be chosen. Since the data is part of
an erasure code, the N chosen bytes can be used in step 1240
to regenerate all N+M original bytes.
0259 Next, in step 1250, the regenerated bytes are com
pared to the original bytes. If this byte wise comparison is the
same across all N+M byte positions, then the regenerated data
matches the original data, so processing proceeds to step
1260, and the data is consistent. Otherwise, the regenerated
data is different from the original data, so there must be an
inconsistency in the original data, so processing proceeds to
step 1270, and the data is inconsistent.
0260. As a simple example, if the N+M bytes include N
data bytes and M check bytes, the consistency checking can
be accomplished by regenerating the Mcheck bytes from the
N data bytes. As such, another term for consistency checking

20
Jul. 23, 2015

is check data regeneration verification. In addition, in place of
(or in addition to) error detection, the M check bytes can be
used for data authentication, allowing a sender and receiver
that have knowledge of the check matrix to generate authen
tication bytes to Verify the authenticity of a message. Authen
tication would take place if the received N+M data and check
(authentication) bytes were consistent.

Error Detection and Correction

0261 Returning to the example arrangement of FIG. 11, if
an SDC occurs at a byte position in one block (say, the first
data block), the data at the corresponding same byte positions
in the other four blocks (that is, the second and third data
blocks, and the first and second check blocks) can be used to
detect the error and possibly correct it. Detection would take
place when it is discovered that any combination of four or
five blocks including the first data block is inconsistent at that
byte position. Likewise, correction could take place when it is
realized that the data at that byte position is consistent across
the one combination of four blocks including the second and
third data blocks, and the first and second check blocks. Using
any three of the four bytes in the consistent combination of
blocks to reconstruct the corrupted byte in the first data block
will then yield consistent data across all five blocks.
0262 Instead of detecting and correcting one error in a
byte position across the five blocks, the two check blocks can
instead be used to detect (up to) any two errors in the same
byte position. Generally, for every check block added, each
byte position can detect up to one more error, while for every
two check blocks added, each byte position can detect up to
two more errors or, instead, each byte position can correct up
to one more error. Thus, error correction sometimes involves
a tradeoff in general, for every byte of error correction capa
bility added (or at least error correction with certainty), one
byte of error detection capability is removed. It should be
noted that some error correction might still be possible using
fewer than two check blocks per byte, as will be described
later.

0263. The choice of how to apportion the detection and
correction capability should be made ahead of time, as it
makes assumptions on the maximum number of SDCs that
may be present. When the number of SDCs exceeds the
assumed maximum, the results can be unpredictable (i.e., the
SDCs may still be detectable, possibly even correctable, but
this cannot be guaranteed; instead, the SDCs may go unde
tected, or the wrong bytes may be corrected). Thus, with two
check blocks, the choice can be made up front whether to be
able to either (1) detect up to two errors, or (2) correct up to
one error. Likewise, with three check blocks, the choice can
be made up front to be able to either (1) detect up to three
errors, or (2) correct up to one error or detect two errors. It
should be noted that with choice (2), the outcome, namely
correct up to one error or detect two errors, depends on
whether there is at most one error or whether there are two
errors, respectively, in the data. It should also be noted that
with choice (2), it still may also be possible to correct two
errors, but this cannot be guaranteed.
0264. Likewise, with four check blocks, the choice can be
made up front to be able to (1) detect up to four errors, (2)
correct up to one error or detect two to three errors, or (3)
correct up to two errors. It should be noted that correction of
an error implicitly requires the detection of that error, so the
term “correct will be used synonymously with “detect and

US 2015/0207522 A1

correct throughout this disclosure. In general, for any M, the
choice can be made up front to be able to do one of

+ 1
possible capabilities: (1) detect up to Merrors, (2) correct up
to one error or detect two to M-1 errors, (3) correct up to two
errors or detect three to M-2 errors, ..., or

(+1)
correct up to

errors or detect

errors (that is,

2

rounded up), as will be described further below with refer
ence to FIG. 13. As before, it still may be possible to correct
up to M-1 errors, but this cannot be guaranteed, as will be
described further below with reference to FIGS. 14-15.
0265 FIG. 13 illustrates an exemplary method 1300 for
detecting and correcting errors according to an embodiment
of the present invention.
0266 Referring to FIG. 13, method 1300 assumes that
there are N--M bytes distributed at the same byte position
across all N+M blocks of a stripe. In step 1310, a check is
made to see if the N+M bytes are consistent (using, for
example, the consistency checking method 1200 of FIG. 12).
If so, then processing proceeds to step 1320, and no errors
have been detected. If not, then one or more SDCs have been
detected, so processing proceeds to step 1330, where upper
bounds on the maximum number of correctable errors C and
detectable errors M-C are determined, where CsM-C

(i.e., C-1)
as discussed above. For example, these numbers may have
been decided up front (i.e., predetermined), or they may be
determined dynamically on a case-by-base basis. Method
1300 assumes that there are no more than M-C SDCs, for
otherwise the results are unpredictable. Processing then pro
ceeds to step 1340, where an attempt is made to correct up to
C SDCS.

Jul. 23, 2015

0267 In further detail, in step 1340, every subset of size
N+M-C bytes is tested for consistency (using, for example,
method 1200) until a consistent subset is found. It should be
noted that there are

(N - M
N - M - C ("")

Such Subsets, though it may be possible to not test every one
of them, as described later. It is guaranteed that if there are no
more than C SDCs, there will be at least one such consistent
subset. This is because at some point, a subset of size N+M-C
bytes that excludes all of the (no more than C) SDCs will be
picked. Since such a subset lacks any SDCs, it is consistent by
construction. Furthermore, since there are no more than M-C
SDCs in all N+M bytes (as assumed above), any subset of size
N+M-C bytes can have no more than M-CSDCs in it. Since
any such subset of size N+M-C bytes is also an erasure code
of N+M-C bytes, it is consistent if and only if it has no SDCs.
0268 If no such consistent subset of size N+M-C bytes is
found, then processing proceeds to step 1350, where it is
determined that more than C SDCs have been detected (had
there been C or fewer SDCs, there would have been a consis
tent subset of size N+M-C bytes as discussed above). How
ever, there can be no more than M-CSDCs (by assumption).
Thus, between C+1 and M-C SDCs have been detected.
0269. Otherwise, one such consistent subset has been
found. Processing then proceeds to step 1360, where that
Subset is used to regenerate or reconstruct the missing C
bytes, at least one of which will be different from the corre
sponding bytes in the original N+M bytes (otherwise the
original N+M bytes would have been consistent), at which
point up to C SDCs have been corrected.
0270. As can be seen, it is possible to detect more SDCs
than can be corrected. This follows from the consistency
distance. Error detection can be thought of as starting from a
consistent set of data and check bytes and injecting errors up
to, but not including, the next closest consistent set of data and
check bytes (i.e., up to distance M, as the next closest consis
tent set of data and check bytes is distance M+1). Error
correction, on the other hand, can be thought of as starting
from an inconsistent set of data and check bytes and correct
ing the fewest number of data and check bytes possible to
reach the closest set of consistent data and check bytes. As
there can be only one possible set of consistent data and check
bytes within distance

(otherwise there would be two different sets of consistent data
and check bytes that were distance M or less apart, which
cannot happen), any combination of up to

US 2015/0207522 A1

SDCs is guarantees to be correctable (assuming that

|
SDCs is an acceptable upper bound on the maximum number
of SDCs that may be present).
(0271 Method 1200 of FIG. 12 provides a technique of
consistency checking or pure error detection. Method 1300 of
FIG. 13 expands upon this to incorporate a certain amount of
error correction (at the expense of giving up a certain amount
of error detection). Both methods are guaranteed to work
given certain underlying assumptions (especially the maxi
mum number of SDCs that may be present). Given a sufficient
value for M. method 1200 will generally detect any number of
random SDCs. As discussed earlier, random SDCs initially
convert consistent data and check bytes into inconsistent data
and check bytes, thus increasing their consistency distance.
This consistency distance continues to grow and approaches
or equals M as more random SDCs are introduced. Briefly, a
random SDC is only going to be consistent with a given set of
N bytes 1/256 of the time, for byte-size entries, and only
1/65,536 of the time for two-byte entries. That is, random
SDCs likely make consistent data (or nearly consistent data)
less consistent. This effect compounds with each random
SDC, but is tempered somewhat by larger values of N and M
(since this introduces more possible subsets to check for
consistency, thus increasing the chance that one such consis
tent subset will be found).
0272 Accordingly, the principle of detecting virtually any
number of random SDCs can be extended somewhat into the
notion of correcting more SDCs than

While the distance limits discussed above (especially in
method 1300) provide guaranteed results, check bytes can be
used to extend error correction conceivably as far as M-1
errors, as will now be explained with reference to FIG. 14.
(0273 FIG. 14 illustrates an exemplary method 1400 for
correcting errors according to an embodiment of the present
invention.
0274 Method 1400 increases or maximizes the chances of
correcting data and check bytes with random SDCs when
compared to, for example, method 1300 above. This correc
tion capability comes at the expense of reducing or minimiz
ing detection of SDCs, in that detection only takes place at the
consistency distance, and then only when more than one
solution presents itself. Method 1400 also determines the
consistency distance of a set of data and check bytes.
(0275 Referring to FIG. 14, at step 1410, the number of
errors (or consistency distance) C is initialized to 0, and a
consistency check is made of the N+M bytes (using, for
example, the consistency checking method 1200 of FIG. 12).
If the data and check bytes are consistent, then processing
proceeds to step 1420, and no SDCs are detected (i.e., the
consistency distance C is 0). Otherwise, at least one SDC is
detected, so processing proceeds to step 1430, where an
attempt is made to correct the SDCs. In step 1430, the number
of errors C is incremented by 1. Next, in step 1440, every
subset of size N+M-C data and check bytes is tested for

22
Jul. 23, 2015

consistency. If none is found, the processing proceeds to step
1450, where it is determined that more than C SDCs have
been detected. Accordingly, steps 1430 and 1440 are repeated
(this time on Smaller Subsets of data and check bytes, i.e.,
larger values of the consistency distance C).
0276. Otherwise, if in step 1440, a single consistent subset

is found, then processing proceeds to step 1460, and that
consistent subset is used to correct the C SDCs. Finally, if in
step 1440, more than one consistent Subset is found, then
processing proceeds to step 1470, where it is determined that
C SDCs have been detected, but correction is not possible
(numerous solutions). At the conclusion of method 1400, C
will be set to the consistency distance. Method 1400 is thus
also a technique of determining the consistency distance.
(0277. Several shortcuts are possible in method 1400. For
example, in step 1410, C can be initialized to a larger value to
cut down the searching of larger subsets in step 1440. It
should be noted though that C may no longer represent the
consistency distance in Such a case. It should also be noted
that if C is initialized to a value larger than

results may be unpredictable (for instance, multiple errors
may be detected in place of identifying a unique set of cor
rections at the consistency distance). See, however, method
1500 in FIG. 15 below. In addition, in step 1440, the check for
multiple consistent Subsets can be bypassed if

(that is, processing can proceed directly to step 1460 once any
consistent subset is found). If

in step 1440, then processing can go to step 1470 as soon as a
second consistent subset is found. Further, in step 1430, once
C-M, processing can proceed directly to step 1470, as the
largest consistency distance M has already been determined,
to which there are numerous possible sets of corrections.
0278 Depending on the data, method 1400 can correct as
many as M-1 SDCs. As a simple case, consider N=2 and
M-3. If two random SDCs are injected into a set of 5-2+3
data and check bytes, they can be detected by method 1200 or
method 1300. However, there is no guarantee that they can be
corrected, since

US 2015/0207522 A1

Since there are only

possible subsets of three bytes to check for consistency, and
one is guaranteed to be consistent (namely, the Subset that
does not include either of the two SDCs), that leaves 9 pos
sible Subsets that may also be consistent. Roughly speaking,
there is a 1 in 256 chance that any one of these subsets is
consistent, given random SDCs. Thus, about 96.5% of the
time, i.e.,

(255 -(E),
these 9 subsets will all be inconsistent, and method 1400 will
be able to correct the two errors.

(0279 FIG. 15 illustrates an exemplary method 1500 for
correcting errors according to another embodiment of the
present invention.
0280 Method 1500 is similar to method 1400 above.
However, instead of starting the search for a consistent set of
data and check bytes from the initial set of data and check
bytes and fanning outward (as in method 1400), method 1500
starts searching from the maximum detectable consistency
distance (i.e., M) and collapsing inward. As in method 1400,
this correction capability comes at the expense of reducing or
minimizing detection of SDCs, in that detection only takes
place at the consistency distance, and then only when more
than one solution presents itself. Like method 1400, method
1500 also determines the consistency distance of a set of data
and check bytes.
(0281 Referring to FIG. 15, at step 1510, the number of
errors (or consistency distance) C is initialized to M, repre
senting the maximum number of detectable SDCs. While the
main loop of method 1500 (i.e., steps 1530-1550) could be
entered at this point, when the N+M data and check bytes are
already consistent, this would lead to the unnecessary consis
tency checking of many Subsets of more than N data and
check bytes. Accordingly, as with method 1400, an initial
consistency check is made of the N+M bytes (using, for
example, the consistency checking method 1200 of FIG. 12).
If all N+M data and check bytes are consistent, then process
ing proceeds to step 1520, and no SDCs are detected (i.e., the
consistency distance is 0, so C should be set to 0 if C is
returning the consistency distance). This check thus bypasses
the processing of the main loop (steps 1530-1550) for the
straightforward case of all N+M bytes being consistent.
0282. On the other hand, if in step 1510, not all N+M data
and check bytes are consistent, then at least one SDC is
detected, so processing proceeds to step 1530, where an
attempt is made to correct the SDCs. In step 1530, the number
of (correctable) errors C is decremented by 1. Thus, on the
first iteration of the main loop (steps 1530-1550), C=M-1,
representing the maximum number of correctable SDCs.
Next, in step 1540, every subset of size N+M-C data and
check bytes is tested for consistency. If more than one are
found, the processing proceeds to step 1550, where it is deter
mined that at most C SDCs have been detected. Accordingly,

Jul. 23, 2015

steps 1530 and 1540 are repeated (this time on larger subsets
of data and check bytes, i.e., Smaller values of the consistency
distance C).
0283. Otherwise, if in step 1540, a single consistent subset

is found, then processing proceeds to step 1560, and that
consistent subset is used to correct the C SDCs. Finally, if in
step 1540, no consistent Subset is found, then processing
proceeds to step 1570, where it is determined that C+1 SDCs
have been detected, but correction is not possible (numerous
Solutions). If C is returning the consistency distance, then C
should be set to C+1 in this case.
0284. In practice, in step 1540, it may not be necessary to
test every subset of size N+M-C data and check bytes for
consistency. Once two Such Subsets have been found, pro
cessing can go directly to step 1550. This speeds up the
processing for step 1540 when there are few SDCs in the data
and check bytes, as there will be numerous consistent Subsets
in Such a case, which hastens the time it takes to find any two
Such Subsets.
0285 While larger values of M and N may decrease the
likelihood of correcting M-1 SDCs (since they introduce
more subsets to check), this can be offset in one (or more) of
several ways. For example, using two-byte (or larger) entries
greatly reduces the likelihood of random SDCs producing
consistent subsets. With two-byte entries, when correcting
M-1 random SDCs, there is only a 1 in 65,536 chance that a
subset with SDCs will be consistent. Increasing the element
size also improves the encryption capability, as it increases
the number of possible check rows in the check matrix, and it
grows the size of each factor in the check matrix (making it
that much harder to decrypt). As another example, correcting
fewer SDCs (than M-1), such as M-2 or M-3, yet still more
than

|
significantly increases the chance of Success because it
becomes increasingly less likely that such subsets will be
consistent. This is because, while with M-1 SDCs, the subset
has to randomly match one byte to be consistent (a 1 in 256
chance), it has to match two bytes (1 in 65,536) or three bytes
(1 in 16,777,216) to be consistent when correcting M-2 errors
or M-3 errors, respectively. As with RAID storage, then,
increasing the number of check bytes (i.e., increasing M) may
be a Sure way of securing more data integrity in the face of
random SDCs.

0286 The decisions of how many (internal) check blocks
to use, of how large to make the elements, and of how many
errors to be able to detect versus how many to be able to
correctare design tradeoffs and may depend on system design
features (such as available system resources and reliability, or
whether there is another way to recover the corrupted data,
etc.)

Data Compression and Decompression

0287. As discussed briefly earlier, the same techniques
(such as methods 1300, 1400, and 1500) used for error cor
rection can also be used to compress the data bytes in a cache.
The basic idea is to identify sets of data bytes that are either
the same or very similar, and store Such sets of data bytes only
once, relying on the corresponding check bytes (which are

US 2015/0207522 A1

stored regardless) to recover the correct data bytes from a
similar set of data bytes through error correction as discussed
above.

0288 FIG. 16 illustrates an exemplary method 1600 of
compressing data according to an embodiment of the present
invention. It is assumed that a cache includes sets of data and
check bytes as defined above, with the data bytes being com
pressed.
0289 Referring to FIG. 16, method 1600 begins at step
1610, where m sets of data and check bytes are stored in the
cache. These can be thought of as m sets of data bytes D, D,
..., D, and a corresponding m sets of check bytes C. C. . .
... C. All m sets of check bytes C, C2, ..., C are stored in
the cache. However, only in sets of data bytes E. E. . . . , E,
are stored in the cache, where nsm and E. E. E}
c{D, D, ..., D,}. Each set of check bytes C1, C2, ... , C,
points (i.e., directly points) to one of the sets of data bytes E.
E. . . . , E, but it is not necessarily a one-to-one correspon
dence. In fact, the more sharing that takes place (i.e., multiple
sets of check bytes pointing to the same set of data bytes), the
better the compression.
(0290 Each set of check bytes C, is paired with a set of data
bytes E, in the cache, but the combination is not necessarily a
consistent set of data and check bytes (i.e., an uncompressed
pairing, where the corresponding databytes D, are the same as
the data bytes E.). Rather, it can be an inconsistent set of data
and check bytes, but one that can be corrected to a consistent
set using, for example, the above methods 1300, 1400, or
1500 for error correction (i.e., a compressed pairing, where
the corresponding data bytes D, are different from the data
bytes E, and an error correction operation is needed to restore
the desired data bytes D, from the stored data bytes E). While
the type of pairing (uncompressed or compressed) can be
detected by determining if the databytes E, and check bytes C,
are consistent, to save computation, the type of pairing (un
compressed or compressed) can also be stored with the check
bytes C, and the pointer to the data bytes E.
0291. In step 1620, a new set of data bytes D, is to be
stored in the cache, i.e., become the (m+1)th set of data and
check bytes in the cache. The corresponding check bytes
C are computed and stored in the cache.
0292. In step 1630, D, is compared against each of E,
E,..., E., and the E, having the Smallest Hamming distance
to D (i.e., the set of data bytes that is closest to D.) is
chosen. If there are multiple such closest sets of data bytes,
then E, can represent any one of them. In other embodiments,
different criteria can be used to choose such a representative
E

0293. In step 1640, it is determined whether it will suffice
to use E, to store D. That is, is E, close enough to D that
E, can be used to store D, relying on the check bytes C
to correct any differing bytes between E, and D2 In other
words, is the combination of data bytes E, and check bytes
C, even though it may represent an inconsistent set of data
and check bytes, nonetheless correctable to restore D2
One way of making this determination is to see if the Ham
ming distance between E, and D, is ssome threshold dis
tance S. For example, if

S s||

24
Jul. 23, 2015

then it is guaranteed that the inconsistent set of data and check
bytes E, and C can be corrected to the consistent set of data
and check bytes D, and C S may also be chosen to be
Smaller than

na-l

|
for example, it some amount of error detection and/or correc
tion is desired with the compression.
0294. In step 1650, if the Hamming distance between E,
and D, is sS, then the data bytes D, do not need to be
stored in the cache. Instead, the check bytes C are pointed
to E, (and error correction logic can be used to recreate D,
from E, and C). This improves the compression of the
cache. If E, and D, are the same (i.e., Hamming distance 0),
the pairing is uncompressed (that is, no decompression
needed). Otherwise, the pairing is compressed, and an error
correction operation (that is, one level of error correction) is
needed to restore (decompress) D. from E.
0295. On the other hand, in step 1660, if the Hamming
distance between E, and D, is >S, then the data bytes D,
are stored in the cache. That is, a new data entry E, is
created, D, is stored in E, and the check bytes C are
pointed to E. In this case, the pairing is uncompressed (no
decompression needed).
0296. In method 1600,

S is a threshold values

Accordingly, the error correction can follow method 1300
above. For even better compression, however, an error cor
rection technique closer to that of method 1400 or 1500 can be
employed, as described below with reference to FIG. 17. In
such a case, a fixed threshold Swould not be provided. Rather,
the check bytes would be pointed to any set of data bytes from
which the resulting combination of (inconsistent) data bytes
and check bytes could be error corrected back to the desired
data bytes.
0297 As a possible enhancement to step 1630, a special
check for duplicates (i.e., a new set of data bytes D, that
matches an existing set of data bytes in the cache) can be made
by comparing the new set of check bytes C against the
existing sets of check bytes C. C. C. A mismatch
guarantees that the data bytes are different, while a match
indicates a high likelihood of a duplicate set of data bytes (by
taking advantage of the hashing properties of the erasure code
encoding). Accordingly, matches can then be specifically
tested for duplicates with the corresponding existing set of
data bytes in the cache (by comparing the existing set of data
bytes with the new set of data bytes), with appropriate point
ers and indicators (uncompressed or compressed) assigned to
the check bytes C, ifa duplicate is found. Since the number
of check bytes is likely to be smaller (or significantly smaller)
than the number of data bytes, this technique of duplicate
checking (i.e., comparing check bytes) can be considerably
faster than comparing all the data bytes when there is a high
likelihood of duplicates in the sets of data bytes.
0298. In one exemplary embodiment, the check byte test
ing for duplicates includes only testing a Subset of the check
bytes, such as those corresponding to one check block (or

US 2015/0207522 A1

check disk). Further, the checking of a particular existing set
of data bytes (including its corresponding check bytes) can be
stopped as soon as a mismatch is found, as in Such a case, the
existing set of data bytes cannot be the same as the new set of
data bytes.
0299 FIG. 17 illustrates an exemplary method 1700 of
compressing data according to another embodiment of the
present invention.
0300 Referring to FIG. 17, in method 1700, steps 1710
and 1720 are similar to steps 1610 and 1620, respectively, of
method 1600 above. Accordingly, a detailed description of
them will not be repeated. In step 1730, however, E. E. . . .
, E, are searched for any set of data bytes E, that are within a
Hamming distance M-1 of D, and that can be combined
with check bytes C to produce a possibly inconsistent set
of data and check bytes but that can be "error corrected
(using an approach similar to method 1400 or 1500) to the
consistent set of data bytes D, and check bytes C. If
there are multiple Such sets of databytes, then E, can represent
any one of them (e.g., the first one found).
0301 In step 1740, if there is such a set of data bytes E.
then the data bytes D, do not need to be stored in the cache.
Instead, the check bytes C are pointed to E, (and error
correction logic can be used to recreate D, from E, and
C). This further improves the compression of the cache
compared to method 1600.
0302). Otherwise, in step 1750, if no such set of data bytes
E, is found, then the data bytes D, are stored in the cache.
That is, a new data entry E, is created, D, is stored in
E., and the check bytes C are pointed to E.
0303 Method 1700 thus increases the compression in the
cache compared to method 1600. It should be noted that when
in step 1730, when searching for E, and using method 1400 or
1500 to check out E, it suffices to search only the subsets of
data bytes (and not the Subsets of data and check bytes), as the
check bytes C. can be assumed to be correct in this com
pression embodiment. That is, the check bytes C are being
used for compression, not actual error correction in the data.
This significantly cuts down on the search time and increases
the likelihood of finding a unique solution with method 1400
or 1500 above. In other embodiments, for example, where
error detection and correction as well as compression are
desired, this shortcut may not apply. In still other embodi
ments, it may be desirable to select the E, (or one such E.)
having the least Hamming distance to D.
0304. As discussed briefly above, the compression tech
nique can be even further extended by considering already
compressed data in the cache. FIG. 18 illustrates an exem
plary method 1800 of compressing data according to yet
another embodiment of the present invention.
0305 Referring to FIG. 18, method 1800 differs from
methods 1600 and 1700 above in that each of the sets of check
bytes C. C. . . . , C, can also point to one of the other sets of
check bytes C, C2, ..., C instead of one of the data bytes
E, E,..., E. In this sense, such a set of check bytes will be
said to indirectly point to one of the sets of data bytes E. E.
..., E. (via one or more intermediate sets of check bytes C.
C, ..., C). Steps 1810, 1820, 1830, and 1840 are other
wise similar to steps 1710, 1720, 1730, and 1740 of method
1700 above.

(0306. In method 1800, when a set of check bytes, say C.
points to another set of check bytes, say C, it means that the
set of databytes D, is close enough to the databytes D, that any
differing bytes can be corrected (through error correction) by

Jul. 23, 2015

using the check bytes C. That is, the set of possibly incon
sistent data bytes and check bytes D, and C, is correctable to
the consistent set of data and check bytes D, and C. This is
similar to the approach used in steps 1830 and 1840 for data
bytes E, only some additional indirection may be introduced
by having to produce (i.e., decompress) the data bytes D. In
other words, the data bytes D, may have to be decompressed
from one of the sets of data bytes E. E. . . . , E, or from
another one of the sets of data bytes D. D. . . . , D (i.e.,
through another level of error correction), depending on
whether C, points to one of E. E. . . . , E, or to another one
of C1, C2, C
0307 Though the number of levels of error correction in
method 1800 can be determined by following the data bytes
pointers and decompressing intermediate sets of databytes, to
save such calculations, the number of levels of error correc
tion can be stored with the data bytes pointer (in place of the
simple indicator, uncompressed or compressed, used in meth
ods 1600 and 1700). In this case, an uncompressed pairing
can be represented by the number 0, a compressed pairing as
defined in methods 1600 and 1700 can be represented by the
number 1 (i.e., one level of error correction), and, in general,
a number 1 can represent the number of levels of error correc
tion needed to restore the desired data bytes D, from those
pointed to by the check bytes C. 1 thus represents the level of
indirection, or number of levels of error correction needed to
decompress the desired data bytes from the stored data bytes.
(0308. In further detail, in step 1850, if there is no such E,
that can be combined with C to produce a possibly incon
sistent set of data and check bytes E, and C that can be
corrected through error correction to the consistent set of data
and check bytes D, and C, then at least two levels of
error correction are needed to pair the new data bytes D.
with the stored data bytes. A search is made through the sets
of data bytes D, D, ..., D (possibly requiring decompres
sion of already compressed data bytes) for Such a set of data
bytes D, that can be combined with check bytes C to
produce a possibly inconsistent set of data and check bytes D,
and C that can be error corrected to the consistent set of
data and check bytes D, and C. This search can be
performed several ways, for example, finding the first such set
of data bytes D, or starting the searching with the sets of data
bytes that require the fewest levels of error correction to
decompress, or only examining sets of data bytes whose
number of levels of error correction is below a maximum
number (e.g., a predefined maximum number) of error cor
rection levels.

0309. In step 1860, if there is such a set of data bytes D.
then the data bytes D, do not need to be stored in the cache.
Instead, the check bytes C are pointed to D, (and error
correction logic can be used to recreate D, from D, and
C). This further improves the compression of the cache
compared to methods 1600 and 1700. If D, and D, are the
same, then C can point to the same set of data bytes that C,
points to (and has the same number of levels of error correc
tion). Otherwise, an additional error correction operation
(that is, one more level of error correction) is added to restore
(decompress) D. from D,
0310. On the other hand, in step 1870, if no such set of data
bytes D, is found, then the data bytes D, are stored in the
cache. That is, a new data entry E, is created, D, is stored
in E, and the check bytes C are pointed to E. In this
case, the pairing is uncompressed (no levels of error correc
tion needed).

r

US 2015/0207522 A1

0311. In one exemplary embodiment, the number of levels
1 of error correction is maintained along with the pointer to
the set of data bytes. 1 can be used to used, for example, to
make it more efficient to find an existing set of data bytes in
the cache that is similar to a new set of data bytes to be added
to the cache. For example, searching for a candidate set of
data bytes can begin with those sets of data bytes having 1-0
(i.e., stored uncompressed in the cache without any error
correction needed), then moving to 1-1 if no such set is found
that is close enough to the new set of data bytes, etc. For
another example, 1 can be limited to a maximum value (Such
as 2 or 3), to limit the number of levels of error correction
(decompression) needed to recreate the actual data.
0312. In each of the compression methods 1600, 1700, and
1800 above, all of the check bytes are stored in the cache.
However, if the check bytes are being used for compression
and not error correction or detection, then it is not necessary
to store the check bytes of the data whose original data bytes
are being stored in the cache. An embodiment of this is
described with reference to FIG. 19.

0313 FIG. 19 illustrates an exemplary method 1900 of
compressing data according to still yet another embodiment
of the present invention.
0314 Method 1900 is fashioned after method 1800 above,
with steps 1910-1970 being similar to steps 1810-1870,
respectively. Accordingly, only differences between the two
methods will be highlighted. In step 1910, only some of the
sets of check bytes C. C. . . . , C, are stored in the cache,
namely F, F, ..., F, that is, the m-n sets of check bytes
that need decompression (i.e., le1) with one of the sets of data
bytes E. E. ..., E. (and intermediate data sets when le2) to
recover their corresponding original data bytes. The corre
sponding n sets of check bytes that do not need decompres
sion with their sets of data bytes E. E. . . . , E, are recon
structable from their corresponding data bytes. Accordingly,
these sets of check bytes are not stored in the cache. Thus,
each of the in sets of data bytes D. D. . . . , D, and corre
sponding check bytes C, C2, ... , C, is stored either as one
of the sets of data bytes E. E. . . . , E, (i.e., without com
pression) or as one of the sets of check bytes F, F, ..., F.
that needs decompression with one of the sets of data bytes
(and possible intermediate data sets).
0315. If in step 1930, it is determined that there is a set of
data bytes E, among the sets of data bytes E. E.,..., E, that
is within Hamming distance M-1 of the new set of data bytes
D. Such that the set of data bytes E, and the new set of check
bytes C. can be error corrected to restore the data bytes
D, then in step 1940, the next set of check bytes F is
set to the check bytes C, F, is pointed to E, and the
databytes D, are discarded. Otherwise, in step 1950, if it is
determined that there is a set of check bytes F, among the sets
of check bytes F, F, ..., F, and that corresponds to the set
of data bytes D, among the sets of data bytes D. D.,..., D.
such that D, is within Hamming distance M-1 of the new set
of data bytes D, and the set of data bytes D, and the new set
of check bytes C. can be error corrected to restore the data
bytes D, then in step 1960, the next set of check bytes
F, is set to the check bytes C, F, is pointed to F.
and the data bytes D, are discarded. Otherwise, in step
1970, the next set of data bytes E, is set to the data bytes
D, and the check bytes C are discarded.

26
Jul. 23, 2015

Exemplary Hardware or Software Logic
0316 FIG. 20 illustrates exemplary hardware or software
logic for implementing the error detecting and correcting
logic according to an embodiment of the present invention.
0317 FIG. 20 shows a process used to simultaneously
correct and validate a data stream including N data bytes
(“Data”) and M check bytes (“Check”), where Cerrors are
attempting to be corrected. FIG. 20 corresponds to the con
sistency checking done in method 1200, and in particular to
the consistency checking done in steps 1340, 1440, and 1540
of methods 1300, 1400, and 1500 respectively. In these steps,
a subset of size N+M-C (data and check) bytes is selected to
see if it is consistent. The other C bytes are assumed to be
SDCs and ignored in the testing of this subset. FIG. 20 shows
an example embodiment of the steps needed to perform this
consistency checking on a single Subset of size N+M-C
bytes. Accordingly, it may be necessary to perform the routine
in FIG. 20 as many as

("")
times for each value of C being tested (i.e., once for each
subset of size N+M-C bytes).
0318. Let R represent the number of data bytes present in
the subset of size N+M-C data and check bytes. Further, let
Data(r) denote these R data bytes, and Data(c) denote the
other N-R data bytes (that are not part of the subset). This
leaves N+M-C-R check bytes in the subset. Split these
N+M-C-R check bytes into two groups, Check(r) and Check
(c), where Check(r) includes any N-R of these check bytes
(the precise ones are unimportant) and Check(c) includes the
remaining M-C of these check bytes. Check(r) is used with
Data(r) to regenerate Data(c), while Check(c) is used to verify
that this regeneration is correct.
0319. In further detail, and referring to FIG. 20, Data 2010
provides Data(r) and Check 2020 provides Check(r) to Cor
rectionLogic 2030. Data(r) and Check(r) make up N bits of an
erasure code, so can be used to regenerate Data(c) in Correc
tion Logic 2030 (using erasure code correction of known byte
locations). The regenerated Data(c) is then combined with
Data(r) to form Regenerated Data 2040, which represents the
corrected data stream if this particular Subset contains con
sistent data. To verify the consistency, Regenerated Data 2040
is input to Check Generator 2050 (which generates the check
data for this erasure code from the original data) to generate a
copy of Check(c). This copy of Check(c) is input to Com
parator 2060 together with the stored copy of Check(c). Error
Indicator 2070 then indicates if the generated Check(c) is the
same as the stored Check(c), that is, Error Indicator indicates
if this subset of N+M-C data and check bytes is consistent. If
so, then Regenerated Data 2040 represents the corrected data
bytes (from which any incorrect check bytes can be generated
using Check Generator 2050).
0320 Thus, separating check bytes into two types, namely
Check(r) for regenerating missing or presumed incorrect data
bytes Data(c), and Check(c) for checking the correctness of
the resulting data byte regeneration provides useful features.
For example, on a system without SDCs, both the original
data and the reconstructed data can be validated as correct.
Further, on a system with multiple SDCs, the SDCs can be
detected and different combinations of data and check bytes

US 2015/0207522 A1

can be tested until a correct (i.e., consistent) combination is
found, resulting in the ability to correct up to M-1 SDCs in
the process.
0321 FIG. 21 illustrates an exemplary system 2100 for
implementing software error-correcting code (ECC) protec
tion or compression (such as in methods 1200-1900) of origi
nal data using ECC data in a cache 2140 (for example, a level
in the memory or storage hierarchy, such as a RAID cache)
according to an embodiment of the present invention.
0322 The system 2100 (for example, a computer or com
puting system) includes a computer processing core 2110
(which can include a multi-core processor) for executing
computer instructions and accessing data from a main
memory 2120 (Such as a random access memory), and a
non-volatile storage medium 2130 (such as a disk drive) for
storing the computer instructions. The processing core 2110,
the storage medium 2130, and the computer instructions are
configured to implement the software ECC protection or
compression of the original data using the ECC data in the
cache 2140 as described, for example, in the above methods
1200-1900.
0323. The software ECC protection or compression
includes a data matrix 2150 for holding the original data in the
cache 2140, a check matrix 2160 for holding the ECC data in
the first memory, and an encoding matrix 2170 for holding
Galois Field multiplication factors in the main memory 2120.
The multiplication factors are for encoding the original data
into the ECC data (an example embodiment of which is
described in detail in the Benefit Application and included
above). The software ECC protection or compression also
includes a thread 2180 for executing on the processing core
2110. The thread 2180 includes a Galois Field multiplier for
multiplying entries of the data matrix 2150 by an entry of the
encoding matrix 2170, and a sequencer for ordering opera
tions through the data matrix 2150 and the encoding matrix
2170 using the Galois Field multiplier to generate the ECC
data (further details of which are provided in the Benefit
Application and included above).
0324. The Galois Field multiplier may be a parallel mul

tiplier for concurrently multiplying the entries of the data
matrix 2150 by the entry of the encoding matrix 2170 (as
described further in the Benefit Application and included
above). The thread 2180 may also include a plurality of
threads for executing on a multi-core processing unit. To this
end, the software ECC protection or compression may further
include a scheduler for generating the ECC data by dividing

27
Jul. 23, 2015

the data matrix 2150 into a plurality of data matrices, dividing
the check matrix 2160 into a plurality of check matrices,
assigning corresponding ones of the data matrices and the
check matrices to the threads, and assigning the threads to the
processing cores to concurrently generate portions of the
ECC data corresponding to the check matrices from respec
tive ones of the data matrices. Further details of the scheduler
can be found in the Benefit Application that has been included
above.
0325 While the above description contains many specific
embodiments of the invention, these should not be construed
as limitations on the scope of the invention, but rather as
examples of specific embodiments thereof. Accordingly, the
scope of the invention should be determined not by the
embodiments illustrated, but by the appended claims and
their equivalents.
What is claimed is:
1. A system for software error-correcting code (ECC) pro

tection or compression of original data using ECC data in a
first memory, comprising:

a processing core for executing computer instructions and
accessing data from a main memory; and

a non-volatile storage medium for storing the computer
instructions,

wherein the processing core, the non-volatile storage
medium, and the computer instructions are configured to
implement the software ECC protection or compression
of the original data using the ECC data in the first
memory, the software ECC protection or compression
comprising:
a data matrix for holding the original data in the first
memory;

a check matrix for holding the ECC data in the first
memory;

an encoding matrix for holding first factors in the main
memory, the first factors being for encoding the origi
nal data into the ECC data; and

a thread for executing on the processing core and com
prising:
a Galois Field multiplier for multiplying entries of the

data matrix by an entry of the encoding matrix; and
a sequencer for ordering operations through the data

matrix and the encoding matrix using the Galois
Field multiplier to generate the ECC data.

k k k k k

