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header parameter set that includes one or more syntax elements specitied individu -
ally by each of one or more slice headers, the header parameter set being associ -
ated with a header parameter set identifier (HPS ID), and determining one or more
slice headers that reference the header parameter set to inherit at least one of the
syntax elements included in the header parameter set, where the slice headers are
each associated with a slice of the encoded video data, and where the slice headers
each reference the header parameter set using the HPS ID.
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HEADER PARAMETER SETS FOR VIDEO CODING

[0001] This application claims the benefit of:
U.S. Provisional Application Number 61/664,488, filed June 26, 2012;
U.S. Provisional Application Number 61/665,713, filed June 28, 2012; and
U.S. Provisional Application Number 61/751,180, filed January 10, 2013, the

entire contents of each of which are incorporated herein by reference.

TECHNICAL FIELD

[0002] This disclosure relates to video coding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency
Video Coding (HEVC) standard presently under development, and extensions of such
standards. The video devices may transmit, receive, encode, decode, and/or store digital
video information more efficiently by implementing such video compression
techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded ()
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring

blocks in the same picture or temporal prediction with respect to reference samples in
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other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY

[0006] In general, this disclosure describes techniques for coding slice headers of a
picture, using header parameter sets (HPSs). In specific examples, a video coding
device may use the HPSs described herein to efficiently code and/or signal one or both
slice-level parameters included in one or more slice headers. For instance, the video
coding device may determine that a single HPS includes data that is common to
multiple slice headers, and code the slice headers by inheriting pertinent data from one
or more HPSs referenced in each such slice header or by inheriting pertinent data for a
slice from one or more HPSs.

[0007] In one example, a method of decoding video data includes determining a header
parameter set that includes one or more syntax elements specified individually by each
of one or more slice headers, the header parameter set being associated with a header
parameter set identifier (HPS ID), and determining one or more slice headers that
reference the header parameter set to inherit at least one of the syntax elements included
in the header parameter set, where the slice headers are each associated with a slice of
the encoded video data, and where the slice headers each reference the header parameter

set using the HPS 1D.
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[0008] In another example, a method of encoding video data includes generating a
header parameter set that includes one or more syntax elements specified individually
by ecach of one or more slice headers, the header parameter set being associated with a
header parameter set identifier (HPS ID), and generating one or more slice headers to
reference the header parameter set to inherit at least one of the syntax elements included
in the header parameter set, where the slice headers are each associated with a slice of
the encoded video data, and where the slice headers each reference the header
parameter set using the HPS ID.

[0009] In another example, a device for coding video data includes a video coder
configured to determine a header parameter set that includes one or more syntax
elements specified individually by each of one or more slice headers, the header
parameter set being associated with a header parameter set identifier (HPS ID), and
determine one or more slice headers that reference the header parameter set to inherit at
least one of the syntax elements included in the header parameter set, where the slice
headers are each associated with a slice of encoded video data, and where the slice
headers each reference the header parameter set using the HPS ID.

[0010] In another example, a device for coding video data includes means for
determining a header parameter set that includes one or more syntax elements specified
individually by each of one or more slice headers, the header parameter set being
associated with a header parameter set identifier (HPS ID), and means for determining
one or more slice headers that reference the header parameter set to inherit at least one
of the syntax elements included in the header parameter set, where the slice headers are
each associated with a slice of the encoded video data, and where the slice headers each
reference the header parameter set using the HPS ID.

[0011] In another example, a computer-readable storage medium has stored thereon
instructions that, when executed, cause a programmable processor of a computing
device to determine a header parameter set that includes one or more syntax elements
specified individually by each of one or more slice headers, the header parameter set
being associated with a header parameter set identifier (HPS ID), and determine one or
more slice headers that reference the header parameter set to inherit at least one of the
syntax elements included in the header parameter set, where the slice headers are each
associated with a slice of encoded video data, and where the slice headers each

reference the header parameter set using the HPS ID.
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[0012] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize the techniques described in this disclosure.

[0014] FIG. 2 is a block diagram illustrating an example video encoder that may
implement the techniques described in this disclosure.

[0015] FIG. 3 is a block diagram illustrating an example video decoder that may
implement the techniques described in this disclosure.

[0016] FIG. 4 is a conceptual diagram illustrating an example header parameter set
(HPS) model incorporating inter-layer dependency, in accordance with one or more
aspects of this disclosure.

[0017] FIG. 5 is a flowchart illustrating an example process that a video decoder and/or
components thereof may perform to decode encoded video data, in accordance with one
or more aspects of this disclosure.

[0018] FIG. 6 is a flowchart illustrating an example process that video encoder and/or
components thereof may perform to encode video data, in accordance with one or more

aspects of this disclosure.

DETAILED DESCRIPTION
[0019] In general, techniques of this disclosure are directed to header parameter sets
(HPSs). In specific examples, a video coding device may use the HPSs described
herein, in conjunction with network abstraction layer (NAL) units, to efficiently code
and/or signal one or both of picture-level and slice-level parameters. As used herein, a
video coding device may generally refer to any device that performs one or both of
video encoding and video decoding. Additionally, the techniques described in this
disclosure may be applicable to one or more video coding standards with which a video
coding device may comply. Examples of such video coding standards may include
ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual,
ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC
MPEG-4 AVC), including its Scalable Video Coding (SVC) and Multiview Video
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Coding (MVC) extensions, the High Efficiency Video Coding (HEVC) standard
presently under development, and extensions of such standards.

[0020] According to HEVC, a video coding device may use one or more of video,
sequence, picture and adaptation parameter set (VPS, SPS, PPS, and APS) mechanisms
to decouple the transmission of infrequently changing information from the
transmission of coded block data. For instance, in some implementations, the video
coding device may convey one or more of the VPS, SPS, PPS, and APS “out-of-band.”
In other words, according to such implementations, the video coding device may not
signal one or more of the VPS, SPS, PPS, and APS together with NAL units that
include encoded video data. Additionally, out-of-band transmission is often more
reliable (e.g., error-resistant or error-resilient) than in-band transmission.

[0021] Additionally, the video coding device may code each individual picture on a
slice-by-slice basis, such that different slices of a single picture may be of equal or
different lengths (e.g., expressed as respective numbers of blocks in each slice). In turn,
the video coding device may associate each slice with a corresponding slice header.
Similarly to the various parameter sets described above, a slice header may include
syntax elements, such as one or more parameters, that apply to all blocks of the
corresponding slice. In turn, the video coding device may determine that a NAL unit
includes data corresponding to one or more slices of a picture, separated by slice header
information included in the NAL unit.

[0022] According to the current HEVC working draft, each slice header includes a PPS
ID and, optionally, an APS ID. In other words, each slice header may reference the PPS
for the picture to which the corresponding slice belongs. Additionally, each slice header
may, in some scenarios, reference the APS for the picture to which the corresponding
slice belongs. Earlier video coding standards included one or more techniques by which
a video coding device may determine various parameters that are common across the
picture-level. As one example, according to the audio-visual coding standard for the
mobile multimedia application (AVS-M) standard, a picture header NAL unit included
those picture-level parameters that must be the same for all slices of a picture, but are
not included in the PPS corresponding to the picture.

[0023] Existing solutions, such as the solution of the AVS-M standard described above,
may introduce one or more potential problems. For instance, in the context of HEVC,
the slice header may include several syntax elements, most of which are the same with

respect to all slices in a picture. Existing solutions may not enable a video coding
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device to conserve computing resources and bandwidth by inheriting syntax elements
that are common to all slices of a picture, while also accommodating any syntax
clements that vary across two or more slices of the picture. Thus, a video coding device
may function more efficiently by implementing techniques by which the video coding
device is not required to repeatedly send and/or receive parameter sets for each slice,
where the parameter sets, or portions thereof, are common to all slices of the picture.
Additionally, the video coding device may implement the techniques to also allow for
one or more parameters that change from one slice of the picture to another.

[0024] In accordance with one or more techniques of this disclosure, a video coding
device may utilize header parameter sets to enable efficient and error-resilient signaling
of picture-level and slice level information shared by multiple NAL units. As used
herein, the term “layer” may refer to a layer in the context of scalable coding, a view in
the context of multiview coding, or a combination of a view and an indication of
whether the current NAL unit belongs to texture or depth in three-dimensional video
(3DV) coding. Additionally, as used herein, “inter-layer prediction” may refer to inter-
view prediction, e.g., a prediction between a texture component and a depth component,
and, in some instances, virtual or synthesized layer/view/depth components. Various
implementations of the techniques are described in more detail below, with respect to
the accompanying drawings.

[0025] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize the techniques described in this disclosure. As shown in
FIG. 1, system 10 includes a source device 12 that generates encoded video data to be
decoded at a later time by a destination device 14. Source device 12 and destination
device 14 may comprise any of a wide range of devices, including desktop computers,
notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone handsets
such as so-called “smart” phones, so-called “smart” pads, televisions, cameras, display
devices, digital media players, video gaming consoles, video streaming device, or the
like. In some cases, source device 12 and destination device 14 may be equipped for
wireless communication.

[0026] Destination device 14 may receive the encoded video data to be decoded via a
link 16. Link 16 may comprise any type of medium or device capable of moving the
encoded video data from source device 12 to destination device 14. In one example,
link 16 may comprise a communication medium to enable source device 12 to transmit

encoded video data directly to destination device 14 in real-time. The encoded video
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data may be modulated according to a communication standard, such as a wireless
communication protocol, and transmitted to destination device 14. The communication
medium may comprise any wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local arca
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 12 to
destination device 14.

[0027] Alternatively, encoded data may be output from output interface 22 to a storage
device 31. Similarly, encoded data may be accessed from storage device 31 by input
interface. Storage device 31 may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, storage device 31 may
correspond to a file server or another intermediate storage device that may hold the
encoded video generated by source device 12. Destination device 14 may access stored
video data from storage device 31 via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from storage device 31 may be a
streaming transmission, a download transmission, or a combination of both.

[0028] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, streaming video
transmissions, ¢.g., via the Internet, encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data storage medium, or other

applications. In some examples, system 10 may be configured to support one-way or
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two-way video transmission to support applications such as video streaming, video
playback, video broadcasting, and/or video telephony.

[0029] In the example of FIG. 1, source device 12 includes a video source 18, video
encoder 20 and an output interface 22. In some cases, output interface 22 may include a
modulator/demodulator (modem) and/or a transmitter. In source device 12, video
source 18 may include a source such as a video capture device, ¢.g., a video camera, a
video archive containing previously captured video, a video feed interface to receive
video from a video content provider, and/or a computer graphics system for generating
computer graphics data as the source video, or a combination of such sources. As one
example, if video source 18 is a video camera, source device 12 and destination device
14 may form so-called camera phones or video phones. However, the techniques
described in this disclosure may be applicable to video coding in general, and may be
applied to wireless and/or wired applications.

[0030] The captured, pre-captured, or computer-generated video may be encoded by
video encoder 20. The encoded video data may be transmitted directly to destination
device 14 via output interface 22 of source device 12. The encoded video data may also
(or alternatively) be stored onto storage device 31 for later access by destination device
14 or other devices, for decoding and/or playback.

[0031] Destination device 14 includes an input interface 28, a video decoder 30, and a
display device 32. In some cases, input interface 28 may include a receiver and/or a
modem. Input interface 28 of destination device 14 receives the encoded video data
over link 16. The encoded video data communicated over link 16, or provided on
storage device 31, may include a variety of syntax elements generated by video encoder
20 for use by a video decoder, such as video decoder 30, in decoding the video data.
Such syntax elements may be included with the encoded video data transmitted on a
communication medium, stored on a storage medium, or stored a file server.

[0032] Display device 32 may be integrated with, or external to, destination device 14.
In some examples, destination device 14 may include an integrated display device and
also be configured to interface with an external display device. In other examples,
destination device 14 may be a display device. In general, display device 32 displays
the decoded video data to a user, and may comprise any of a variety of display devices
such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.
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[0033] Video encoder 20 and video decoder 30 may operate according to a video
compression standard, such as the High Efficiency Video Coding (HEVC) standard
presently under development, and may conform to the HEVC Test Model (HM).
Alternatively, video encoder 20 and video decoder 30 may operate according to other
proprietary or industry standards, such as the ITU-T H.264 standard, alternatively
referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), or extensions of such
standards. The techniques of this disclosure, however, are not limited to any particular
coding standard. Other examples of video compression standards include MPEG-2 and
ITU-T H.263.

[0034] Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0035] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0036] The JCT-VC is working on development of the HEVC standard. The HEVC
standardization efforts are based on an evolving model of a video coding device referred
to as the HEVC Test Model (HM). The HM presumes several additional capabilities of
video coding devices relative to existing devices according to, e.g., ITU-T H.264/AVC.
For example, whereas H.264 provides nine intra-prediction encoding modes, the HM
may provide as many as thirty-three intra-prediction encoding modes.

[0037] In general, the working model of the HM describes that a video frame or picture
may be divided into a sequence of treeblocks or largest coding units (LCU) that include

both luma and chroma samples. A treeblock has a similar purpose as a macroblock of
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the H.264 standard. A slice includes a number of consecutive treeblocks in coding
order. A video frame or picture may be partitioned into one or more slices. Each
treeblock may be split into coding units (CUs) according to a quadtree. For example, a
treeblock, as a root node of the quadtree, may be split into four child nodes, and each
child node may in turn be a parent node and be split into another four child nodes. A
final, unsplit child node, as a leaf node of the quadtree, comprises a coding node, i.e., a
coded video block. Syntax data associated with a coded bitstream may define a
maximum number of times a treeblock may be split, and may also define a minimum
size of the coding nodes.

[0038] A CU may include a luma coding block and two chroma coding blocks. The CU
may have associated prediction units (PUs) and transform units (TUs). Each of the PUs
may include one luma prediction block and two chroma prediction blocks, and each of
the TUs may include one luma transform block and two chroma transform blocks. Each
of the coding blocks may be partitioned into one or more prediction blocks that
comprise blocks to samples to which the same prediction applies. Each of the coding
blocks may also be partitioned in one or more transform blocks that comprise blocks of
sample on which the same transform is applied.

[0039] A size of the CU generally corresponds to a size of the coding node and is
typically square in shape. The size of the CU may range from 8x8 pixels up to the size
of the treeblock with a maximum of 64x64 pixels or greater. Each CU may define one
or more PUs and one or more TUs. Syntax data included in a CU may describe, for
example, partitioning of the coding block into one or more prediction blocks.
Partitioning modes may differ between whether the CU is skip or direct mode encoded,
intra-prediction mode encoded, or inter-prediction mode encoded. Prediction blocks
may be partitioned to be square or non-square in shape. Syntax data included in a CU
may also describe, for example, partitioning of the coding block into one or more
transform blocks according to a quadtree. Transform blocks may be partitioned to be
square or non-square in shape.

[0040] The HEVC standard allows for transformations according to TUs, which may be
different for different CUs. The TUs are typically sized based on the size of PUs within
a given CU defined for a partitioned LCU, although this may not always be the case.
The TUs are typically the same size or smaller than the PUs. In some examples,
residual samples corresponding to a CU may be subdivided into smaller units using a

quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT
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may represent the TUs. Pixel difference values associated with the TUs may be
transformed to produce transform coefficients, which may be quantized.

[0041] In general, a PU includes data related to the prediction process. For example,
when the PU is intra-mode encoded, the PU may include data describing an intra-
prediction mode for the PU. As another example, when the PU is inter-mode encoded,
the PU may include data defining a motion vector for the PU. The data defining the
motion vector for a PU may describe, for example, a horizontal component of the
motion vector, a vertical component of the motion vector, a resolution for the motion
vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a reference
picture to which the motion vector points, and/or a reference picture list (e.g., List 0,
List 1, or List C) for the motion vector.

[0042] In general, a TU is used for the transform and quantization processes. A given
CU having one or more PUs may also include one or more TUs. Following prediction,
video encoder 20 may calculate residual values from the video block identified by the
coding node in accordance with the PU. The coding node is then updated to reference
the residual values rather than the original video block. The residual values comprise
pixel difference values that may be transformed into transform coefficients, quantized,
and scanned using the transforms and other transform information specified in the TUs
to produce serialized transform coefficients for entropy coding. The coding node may
once again be updated to refer to these serialized transform coefficients. This disclosure
typically uses the term “video block™ to refer to a coding node of a CU. In some
specific cases, this disclosure may also use the term “video block™ to refer to a
treeblock, i.e., LCU, or a CU, which includes a coding node and PUs and TUs.

[0043] A video sequence typically includes a series of video frames or pictures. A
group of pictures (GOP) generally comprises a series of one or more of the video
pictures. A GOP may include syntax data in a header of the GOP, a header of one or
more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the respective slice. Video encoder 20 typically operates on video blocks
within individual video slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks may have fixed or varying
sizes, and may differ in size according to a specified coding standard.

[0044] As an example, the HM supports prediction in various PU sizes. Assuming that
the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of
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2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or
NxN. The HM also supports asymmetric partitioning for inter-prediction in PU sizes of
2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU
is not partitioned, while the other direction is partitioned into 25% and 75%. The
portion of the CU corresponding to the 25% partition is indicated by an “n” followed by
an indication of “Up”, “Down,” “Left,” or “Right.” Thus, for example, “2NxnU” refers
to a 2Nx2N CU that is partitioned horizontally with a 2Nx0.5N PU on top and a
2Nx1.5N PU on bottom.

[0045] In this disclosure, “NxN” and “N by N”” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,
e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a
vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0046] Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data to which the transforms specified by TUs
of the CU are applied. The residual data may correspond to pixel differences between
pixels of the unencoded picture and prediction values corresponding to the CUs. Video
encoder 20 may form the residual data for the CU, and then transform the residual data
to produce transform coefficients.

[0047] Following any transforms to produce transform coefficients, video encoder 20
may perform quantization of the transform coefficients. Quantization generally refers to
a process in which transform coefficients are quantized to possibly reduce the amount of
data used to represent the coefficients, providing further compression. The quantization
process may reduce the bit depth associated with some or all of the coefficients. For
example, an n-bit value may be rounded down to an m-bit value during quantization,
where # 1s greater than m.

[0048] In some examples, video encoder 20 may utilize a predefined scan order to scan
the quantized transform coefficients to produce a serialized vector that can be entropy
encoded. In other examples, video encoder 20 may perform an adaptive scan. After

scanning the quantized transform coefficients to form a one-dimensional vector, video
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encoder 20 may entropy encode the one-dimensional vector, e.g., according to context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), Probability
Interval Partitioning Entropy (PIPE) coding or another entropy encoding methodology.
Video encoder 20 may also entropy encode syntax elements associated with the encoded
video data for use by video decoder 30 in decoding the video data.

[0049] To perform CABAC, video encoder 20 may assign a context within a context
model to a symbol to be transmitted. The context may relate to, for example, whether
neighboring values of the symbol are non-zero or not. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.

Codewords in VLC may be constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to less probable symbols. In
this way, the use of VLC may achieve a bit savings over, for example, using equal-
length codewords for each symbol to be transmitted. The probability determination
may be based on a context assigned to the symbol.

[0050] One or both of video encoder 20 and video decoder 30 may implement
techniques of this disclosure to utilize a header parameter set (HPS) to enable efficient
and reliable encoding, signaling, and decoding of the slice headers of a picture. In one
implementation of the techniques, video encoder 20 may generate an HPS that includes
one or more syntax elements that would otherwise be specified individually in each of
one or more slice headers for an encoded picture. As one example, video encoder 20
may generate the HPS such that the HPS includes one or more syntax elements that are
common to all slice headers of the encoded picture. As another example, video encoder
20 may generate the HPS such that the HPS includes one or more syntax elements that
are common to two or more slice headers of the encoded picture, but not common to all
slice headers of the encoded picture.

[0051] Additionally, video encoder 20 may generate one or more slice headers of the
encoded picture to reference the HPS. More specifically, by generating the slice
headers to reference the HPS, video encoder 20 may incorporate at least one of the
syntax elements of the HPS into the particular slice headers that reference the HPS. In
other words, video encoder 20 may inherit the values of portions of such slice headers
from the HPS into the particular slice headers that reference the HPS. By generating
multiple slice headers to inherit syntax elements of the same values from the HPS, video

encoder 20 may implement the techniques of this disclosure to mitigate, or potentially
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eliminate, duplicate generation of shared syntax elements for multiple slice headers.
Instead, by implementing the techniques, video encoder 20 may generate the shared
syntax elements once, with respect to generating the HPS, and generate multiple slice
headers to inherit the shared syntax elements from the HPS, thereby conserving
computing resources and bandwidth/storage capacity required for signaling.

[0052] In this example, video decoder 30 may implement corresponding techniques to
more efficiently and robustly decode the encoded picture signaled by video encoder 20.
For instance, in decoding the slice headers of an encoded picture received as part of an
encoded bitstream, video decoder 30 may determine that an HPS includes one or more
syntax elements specified individually by the one or more slice headers. More
specifically, video decoder 30 may determine that one or more slice headers of the
encoded picture reference an HPS that is signaled as part of the encoded bitstream.
Based on the determination that the particular slice headers reference the HPS, video
decoder 30 may decode the particular slice headers by inheriting certain syntax elements
from the HPS into the particular slice headers that reference the HPS. By inheriting
syntax elements from the HPS into multiple slice headers of the encoded picture, video
decoder 30 may implement the techniques of this disclosure to mitigate, or potentially
eliminate, duplicate decoding of shared syntax elements for multiple slice headers.
Instead, by implementing the techniques, video decoder 30 may decode the shared
syntax elements once, with respect to decoding the HPS, and decode multiple slice
headers to inherit the shared syntax elements from the HPS, thereby conserving
computing resources that video decoder 30 may otherwise expend in decoding the
encoded picture.

[0053] According to one implementation of the techniques described herein, one or both
of video encoder 20 and video decoder 30 may determine that the HPS is included in a
different NAL unit than the encoded data corresponding to the picture. For instance,
video encoder 20 may encapsulate the HPS in a particular NAL unit, and encapsulate
the encoded picture (e.g., including the corresponding slice headers and encoded blocks
arranged in slices) in a different NAL unit. Additionally, video encoder 20 may signal
the NAL units separately, i.c., video encoder 20 may signal the encoded HPS and the
encoded picture in separate NAL units.

[0054] Additionally, according to this implementation, video encoder 20 may associate
the NAL unit that includes the HPS with one or more NAL units that include encoded

slices (and corresponding slice headers) of the encoded picture. More specifically,
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video encoder 20 may generate one or more video coding layer (VCL) NAL units that
encapsulate the slices and corresponding slice headers of the encoded picture.
Conversely, video encoder 20 may generate a non-VCL NAL unit that encapsulates the
HPS. Video encoder 20 may generate the respective NAL units such that, in
combination, the non-VCL NAL unit and the one or more VCL NAL units form an
entire access unit (AU) associated with the encoded picture. As used herein, an AU
may include all video data and parameter data that represent a time instance of the video
(e.g., an encoded picture in combination with all applicable parameter data).

[0055] In this implementation, video decoder 30 may receive separate NAL units, with
one NAL unit encapsulating the HPS, and one or more different NAL units that
encapsulate the encoded slices and corresponding slice headers of the picture. As
described with respect to video encoder 20, video decoder 30 may determine that a
received non-VCL unit encapsulates the encoded HPS, while one or more VCL NAL
units encapsulate the encoded slices and slice headers of the picture. More specifically,
video decoder 30 may determine that the non-VCL NAL unit encapsulating the HPS
and the one or more VCL units encapsulating the encoded slices and slice headers
combine to form an AU corresponding to the encoded picture.

[0056] In some examples according to this implementation, one or both of video
encoder 20 and video decoder 30 may determine that the non-VCL NAL unit
encapsulating the HPS is associated with VCL NAL units of the same AU, but not with
VCL NAL units of another AU. In other words, one or both of video encoder 20 and
video decoder 30 may determine, in these scenarios, that a particular HPS only includes
syntax elements that may be inherited by slice headers of a single encoded picture.
[0057] According to some implementations of the techniques described herein, video
encoder 20 and video decoder 30 may determine that a single AU includes multiple
HPSs. For instance, when encoding a picture according to two-dimensional (2D) video
coding, video encoder 20 may generate each HPS to include a unique identifier (ID). In
turn, video encoder 20 may generate a slice header of the encoded picture, to reference
multiple HPSs of the corresponding AU. More specifically, video encoder 20 may
generate the slice header to reference each of the multiple HPSs using the respective 1D
of each HPS.

[0058] By generating a slice header to reference multiple HPSs, video encoder 20 may
inherit particular portions of each referenced HPS in generating the slice header. In this

manner, video encoder 20 may further reduce duplication of data generation with
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respect to a slice header. More specifically, by inheriting pertinent parameters from
multiple HPSs, video encoder 20 may mitigate the need to generate and encode multiple
parameters of the slice header, by expanding the available inheritance sources to include
multiple HPSs of the AU. According to these implementations, video encoder 20 may
generate each HPS to include one or more flags. More specifically, video encoder 20
may set a value of each flag to indicate whether the particular HPS includes specific
data, such as specific parameters. In this manner, video encoder 20 may implement
techniques of this disclosure such that each HPS need not include a complete set of
parameters available for inheritance into slice headers of the AU.

[0059] Similarly, according to these implementations, video decoder 30 may determine,
based on a received encoded bitstream, that an AU includes multiple HPSs, each
associated with a unique ID. Additionally, video decoder 30 may determine that a slice
header included in the AU references two or more of the multiple HPSs, using the
respective IDs of the HPSs. Additionally, video encoder 30 may use flag values
included in each HPS to determine the specific portions of header information (e.g.,
parameters) included in each HPS. Based on the HPS IDs referenced by a slice header,
and the information included in the referenced HPSs, video decoder 30 may inherit
specific parameters from each referenced HPS to decode the slice header that references
the HPSs.

[0060] By inheriting parameters from the HPSs into one or more slice headers, video
decoder 30 may conserve computing resources that video decoder 30 may otherwise
expend in decoding the AU. As described with respect to video encoder 20, a potential
advantage of these implementations is that a single HPS need not include all parameters
available for inheritance to the slice headers of the AU. Additionally, these
implementations may expand the available inheritance sources for the slice headers to
include multiple HPSs, further mitigating the need for video decoder 30 to duplicate the
decoding process with respect to shared parameters of multiple slice headers of the AU.
[0061] In various examples, video encoder 20 may inherit parameters from one or more
HPSs into one or more slice headers of the corresponding AU, and signal the parameter
values as part of the slice headers. In these examples, video encoder 20 may not signal
the HPSs, as the slice headers are signaled with the parameter values already being set.
According to such examples, video decoder 30 may be blind to the HPS-based
techniques implemented by video encoder 20. In other words, video decoder 30 may

decode the signaled slice headers without needing to receive, decode, or otherwise
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process encoded data corresponding to the one or more HPSs. In other examples, as
described above, video encoder 20 may signal the HPSs, and may signal the slice
headers to reference specific HPSs, thereby enabling video decoder 30 to implement one
or more techniques of this disclosure to use the HPSs in decoding the slice headers of an
AU.

[0062] According to specific examples of this disclosure, one or both of video encoder
20 and video decoder 30 may use particular portions of a NAL unit header to indicate
the applicability of an HPS to a particular slice header. More specifically, video
encoder 20 may indicate the applicability of an HPS to a slice header, by using reserved
portions of the header of a VCL NAL unit that includes the slice header. For instance,
video encoder 20 may use a syntax element referred to as the reserved _one 5bits of the
VCL NAL unit header to reference one or more HPSs included in the same AU as the
VCL NAL unit. The reserved one 5bits syntax element of the NAL unit header may be
referred to herein as a layer id minusl syntax element, when used by video encoder 20
to indicate the applicability of an HPS. In turn, video decoder 30 may determine the
applicability of a particular HPS to a slice header, based on whether the
layer id minusl syntax element of the header of the VCL NAL unit including the slice
header references the HPS.

[0063] According to these examples, one or both of video encoder 20 and video decoder
30 may use the layer id minusl syntax element to reference one or more HPSs in the
same AU as the VCL NAL unit. Additionally, the number of HPSs included in the AU
may be less than the number of layers in a corresponding encoded bitstream that video
encoder 20 may generate for signaling the AU. As described above, the term “layer”
may be used herein to refer to a layer in the context of scalable coding, a view in the
context of multiview coding, or a combination of a view and an indication of whether
the current NAL unit belongs to texture or depth in three-dimensional video (3DV)
coding.

[0064] Additionally, video encoder 20 and/or video decoder 30 may identify each layer
using a corresponding unique identifier, such as a “layerID” syntax element. In
examples, video encoder 20 may generate the value of the layerID syntax element from
the existing layer id _minus]1 syntax element, using the following equation: layerID =
layer id minusl + 1. In such examples, video decoder 30 may use the signaled layerID
value to determine the corresponding layerID associated with particular HPSs and slice

headers signaled in the encoded bitstream.
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[0065] In such examples, video encoder 20 and/or video decoder 30 may determine that
a slice header for a slice belonging to a particular layer may inherit parameters from the
HPS associated with the closest lower layer. For instance, an HPS of the AU may be
associated with a layerID value of N. In ascending order of layerID values, the next
HPS of the AU may be associated with a layerID value of M, where M has a value
greater than N. In this example, all slice headers associated with layerID values in the
range of (N, M-1) may inherit parameters from the HPS associated with layerID N.
Similarly, slice headers associated with a layerID value of M may inherit parameters
from the HPS associated with the layerID value of M.

[0066] In the context of the example described above, the HPSs associated with layerID
values N and M may be referred to herein as “neighboring” HPSs. More specifically,
even if layerID values exist between N and M, but none of the intervening layerIDs is
associated with an HPS, then the HPSs associated with layerIDs N and M are
considered to be neighboring HPSs. Additionally, multiple HPSs may be associated
with a single layerID value. For instance, two or more HPSs may be associated with
layerID N.

[0067] In accordance with one or more aspects of this disclosure, one or both of video
encoder 20 and video decoder 30 may determine an HPS by reusing particular portions
of one or more neighboring HPSs that are associated with a lesser layerID value. For
instance, to determine an HPS using a neighboring HPS, video encoder 20 and/or video
decoder 30 may reuse the data specified in a neighboring HPS at a lesser layerID. In the
context of the example above, video encoder 20 and/or video decoder 30 may determine
an HPS associated with layerID M, by reusing portions of one or more HPSs associated
with layerID N.

[0068] For instance, if exactly one HPS is associated with layerID N, then video
encoder 20 and/or video decoder 30 may reuse portions of the HPS at layerID N, to
determine values of an HPS at layerID M. More specifically, video encoder 20 and/or
video decoder 30 may determine that the determined HPS at layerID M references the
single HPS at layerID N, and reuse the pertinent portions of the neighboring HPS at
layerID N to determine the HPS at layerID M. In scenarios where multiple HPSs are
associated with layerID N, video encoder 20 and/or video decoder 30 may determine the
HPS at layerID M by reusing pertinent portions of particular neighboring HPSs (at
layerID N), that are referenced by the HPS at layerID M.
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[0069] More specifically, if the HPS at layerID M references a single neighboring HPS
selected from multiple neighboring HPSs at layerID N, video encoder 20 and/or video
decoder 30 may reuse portions of only the referenced neighboring HPS. On the other
hand, if the HPS at layerID M references two or more of the multiple neighboring HPSs
at layerID N, then video encoder 20 and/or video decoder 30 may reuse pertinent
portions of each of the referenced neighboring HPSs to determine the HPS at layerID
M. For instance, video encoder 20 may, to signal the HPS at layerID M, signal the
reused portions of each of the referenced neighboring HPSs. Additionally, in some
scenarios, video encoder 20 and/or video decoder 30 may disable determination of HPSs
based on reusing neighboring HPSs. For instance, if video encoder 20 and/or video
decoder 30 determine that the respective layers identified by layerIDs N and M do not
exhibit inter-layer dependency (e.g., in terms of video data), then video encoder 20
and/or video decoder 30 may disable the inter-dependent HPS determination between
these two layers.

[0070] In some instances of inter-layer, inter-dependent HPS determination described
above, video encoder 20 and/or video decoder 30 may implement techniques similar to
depth-first tree-traversal processes. An example of depth-first tree-traversal includes
beginning at a root node (in this case, a lowest layer), and traversing the full path to a
leaf node (in this case, a highest layer), before backtracking and traversing paths defined
by an carliest node having two or more child nodes. More specifically, video encoder
20 and/or video decoder 30 may process the layer (expressed by the layerID value) of
the current HPS as a leaf node, or alternatively, as a child node of a next lower layer
including an HPS, which forms the corresponding parent node. Additionally, video
encoder 20 and/or video decoder 30 may determine that the next lower layer including
an HPS includes one or more reference HPSs for the current HPS, i.e., that a portion of
the current HPS may be determined based on the reference HPSs via parameter reuse.
[0071] To determine the layerID associated with the reference HPSs, video encoder 20
and/or video decoder 30 may determine that the layer including the current HPS is a
child node of a tree. Examples of a child node may include any node except for the root
node of the tree, such as any intermediate node or any leaf node of the tree. If video
encoder 20 and/or video decoder 30 determines that the immediately preceding (lower)
layer of the tree is not associated with an HPS, then video encoder 20 and/or video
decoder 30 may decrement the value of the child node to equal the layerID for the

immediately preceding layer. Video encoder 20 and/or video decoder 30 may
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recursively decrement the value of the child node until video encoder 20 and/or video
decoder 30 reaches a layerID that is associated with one or more potential reference
HPSs. In this manner, video encoder 20 and/or video decoder 30 may determine the
layerID (referred to herein as refLayerID) of one or more potential reference HPSs for a
current HPS. In examples where video encoder 20 and/or video decoder 30 enable
inter-layer HPS dependency based on inter-layer dependency for video data, video
encoder 20 and/or video decoder 30 may determine that the encoded bitstream includes,
with respect to each HPS determined inter-dependently, the corresponding refLayerID
associated with the reference HPSs.

[0072] In some examples in accordance with the techniques of this disclosure, video
encoder 20 and/or video decoder 30 may determine that an HPS is applicable only
within the AU that includes the non-VCL NAL unit encapsulating the HPS. In such
scenarios, video encoder 20 and/or video decoder 30 may determine that data included
in the VCL NAL unit encapsulating the encoded slice headers activates one or more of
the corresponding VPS, SPS, PPS, or APS. Based on various factors, the slice headers
may activate one or more of these parameter sets directly (e.g., by referencing the
particular parameter sets), or indirectly (e.g., by referencing the non VCL NAL unit of
the HPS, which may in turn reference the particular parameter sets).

[0073] According to other aspects of this disclosure, video encoder 20 and/or video
decoder 30 may determine that each slice header of an AU references at least one HPS.
In such cases, video encoder 20 and/or video decoder 30 may determine that the non-
VCL NAL units that include referenced HPSs activate one or more of the VPS, SPS,
PPS, and optionally, the APS. In other words, according to these aspects of this
disclosure, a slice header may not directly activate one or more of the VPS, SPS, PPS,
and the APS, but instead, may indirectly activate one or more of these parameter sets via
referencing one or more HPSs.

[0074] According to some implementations of the techniques of this disclosure, video
encoder 20 and/or video decoder 30 may implement one of two available modes, with
respect to the use of HPSs. In a first mode, video encoder 20 and/or video decoder 30
may determine that any HPS may only apply to slice headers that are included in the
same AU as the non-VCL NAL unit encapsulating the HPS. In other words, according
to the first mode, “lifetime” of an HPS may be limited or bounded within a single AU.
According to a second mode, video encoder 20 and/or video decoder 30 may determine

that an HPS includes parameters that are potentially inheritable to slice headers of the
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current AU, as well as slice headers of other AUs. Implementation of the second mode
may enable the slice header(s) to activate the applicable HPSs. As used herein, HPS
activation may be analogous to APS activation, as defined in the current HEVC working
draft (WD9). As described above with respect to other implementations, slice headers
may activate one or more of the VPS, SPS, PPS, and APS directly (e.g., by referencing
the particular parameter sets), or indirectly (e.g., by referencing the non VCL NAL unit
of the HPS, which may in turn reference the particular parameter sets).

[0075] In this manner, one or both of source device 12 and destination device 14 may
be an example of a device for coding video data, comprising a video coder, namely,
video encoder 20 and video decoder 30, respectively. Additionally, in accordance with
the techniques described above, one or both of video encoder 20 and video decoder 30
may be examples of a video coder configured to determine a header parameter set that
includes one or more syntax elements specified individually by each of one or more
slice headers, and determine the one or more slice headers that reference the header
parameter set to inherit at least one of the syntax elements included in the header
parameter set, where the slice headers are each associated with a slice of encoded video
data.

[0076] Additionally, according to one or more aspects described above, to determine the
header parameter set, the video coder may be configured to determine the header
parameter set for an access unit that includes one or more slice headers, and the header
parameter set for the access unit includes the one or more syntax elements for any slices
associated with the access unit but not for any slices associated with a different access
unit. In accordance with one or more aspects of the described techniques, to determine
the header parameter set, the video coder is configured to determine the header
parameter set for an access unit different than an access unit that includes the header
parameter set and the one or more slice headers, and the header parameter set
determined for the access unit includes the one or more syntax elements for any slices
associated with one or both of the access unit different than the access unit that includes
the header parameter set and the access unit that includes the header parameter set.
[0077] In some example implementations of the techniques described above, to
determine the header parameter set, the video coder is configured to determine the
header parameter set for a first layer of the encoded video data. According to some of
these implementations, to determine the header parameter set for a first layer of the

encoded video data, the video coder is configured to determine the header parameter set



WO 2014/004657 PCT/US2013/047865
22

for a first layer of the encoded video data that inherits syntax elements specified in a
header parameter set for a second layer of the encoded video data. In one such
implementation, the second layer is a lower layer than the first layer. In another such
implementation, to determine the one or more slice headers, the video coder is
configured to determine a slice header that references at least one of the syntax elements
included within the header parameter set for the first layer and at least one syntax
element included within the header parameter set for the second layer.

[0078] In still another such implementation, the first layer of the encoded video data
provides encoded video data that augments the second layer of the encoded video data
to enable higher resolutions of the encoded video data. According to yet another such
implementation, the first layer of the encoded video data provides a different view than
a view provided by the second layer of the encoded video data. In some examples, the
device (e.g., source device 12 and/or destination device 14) that includes the video
coder may include an integrated circuit, a microprocessor, and a communication device
that includes the video coder.

[0079] As described above, in some instances, the video coder comprises a video
decoder, such as video decoder 30, configured to entropy decode the encoded video
data. In other instances, the video coder comprises a video encoder, such as video
encoder 20, configured to entropy encode the encoded video data. It will be appreciated
that, in some implementations, video decoder 30 may also be configured to encode
video data.

[0080] FIG. 2 is a block diagram illustrating an example of video encoder 20 that may
implement techniques for signaling data for LTRPs in an SPS or slice header. Video
encoder 20 may perform intra- and inter-coding of video blocks within video slices.
Intra-coding relies on spatial prediction to reduce or remove spatial redundancy in video
within a given video frame or picture. Inter-coding relies on temporal prediction to
reduce or remove temporal redundancy in video within adjacent frames or pictures of a
video sequence. Intra-mode (I mode) may refer to any of several spatial based coding
modes. Inter-modes, such as uni-directional prediction (P mode) or bi-prediction (B
mode), may refer to any of several temporal-based coding modes.

[0081] As shown in FIG. 2, video encoder 20 receives a current video block within a
video frame to be encoded. In the example of FIG. 2, video encoder 20 includes mode
select unit 40, reference frame memory 64, summer 50, transform processing unit 52,

quantization unit 54, and entropy encoding unit 56. Mode select unit 40, in turn,
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includes motion compensation unit 44, motion estimation unit 42, intra-prediction unit
46, and partition unit 48. For video block reconstruction, video encoder 20 also
includes inverse quantization unit 58, inverse transform unit 60, and summer 62. A
deblocking filter (not shown in FIG. 2) may also be included to filter block boundaries
to remove blockiness artifacts from reconstructed video. If desired, the deblocking filter
would typically filter the output of summer 62. Additional filters (in loop or post loop)
may also be used in addition to the deblocking filter. Such filters are not shown for
brevity, but if desired, may filter the output of summer 50 (as an in-loop filter).

[0082] During the encoding process, video encoder 20 receives a video frame or slice to
be coded. The frame or slice may be divided into multiple video blocks. Motion
estimation unit 42 and motion compensation unit 44 perform inter-predictive coding of
the received video block relative to one or more blocks in one or more reference frames
to provide temporal prediction. Intra-prediction unit 46 may alternatively perform intra-
predictive coding of the received video block relative to one or more neighboring blocks
in the same frame or slice as the block to be coded to provide spatial prediction. Video
encoder 20 may perform multiple coding passes, ¢.g., to select an appropriate coding
mode for each block of video data.

[0083] Moreover, partition unit 48 may partition blocks of video data into sub-blocks,
based on evaluation of previous partitioning schemes in previous coding passes. For
example, partition unit 48 may initially partition a frame or slice into LCUs, and
partition each of the LCUs into sub-CUs based on rate-distortion analysis (e.g., rate-
distortion optimization). Mode select unit 40 may further produce a quadtree data
structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the
quadtree may include one or more PUs and one or more TUs.

[0084] Mode select unit 40 may select one of the coding modes, intra or inter, ¢.g.,
based on error results, and provides the resulting intra- or inter-coded block to summer
50 to generate residual block data and to summer 62 to reconstruct the encoded block
for use as a reference frame. Mode select unit 40 also provides syntax elements, such as
motion vectors, intra-mode indicators, partition information, and other such syntax
information, to entropy encoding unit 56.

[0085] Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of generating motion vectors,

which estimate motion for video blocks. A motion vector, for example, may indicate
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the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference frame (or other coded unit) relative to
the current block being coded within the current frame (or other coded unit). A
predictive block is a block that is found to closely match the block to be coded, in terms
of pixel difference, which may be determined by sum of absolute difference (SAD), sum
of square difference (SSD), or other difference metrics. In some examples, video
encoder 20 may calculate values for sub-integer pixel positions of reference pictures
stored in reference frame memory 64. For example, video encoder 20 may interpolate
values of one-quarter pixel positions, one-cighth pixel positions, or other fractional
pixel positions of the reference picture. Therefore, motion estimation unit 42 may
perform a motion search relative to the full pixel positions and fractional pixel positions
and output a motion vector with fractional pixel precision.

[0086] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in reference frame memory 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

[0087] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation unit 42. Again, motion estimation unit 42 and motion compensation
unit 44 may be functionally integrated, in some examples. Upon receiving the motion
vector for the PU of the current video block, motion compensation unit 44 may locate
the predictive block to which the motion vector points in one of the reference picture
lists. Summer 50 forms a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current video block being coded, forming
pixel difference values, as discussed below. In general, motion estimation unit 42
performs motion estimation relative to luma coding blocks, and motion compensation
unit 44 uses motion vectors calculated based on the luma coding blocks for both chroma
coding blocks and luma coding blocks. Mode select unit 40 may also generate syntax
elements associated with the video blocks and the video slice for use by video decoder

30 in decoding the video blocks of the video slice.
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[0088] Intra-prediction unit 46 may intra-predict a current block, as an alternative to
the inter-prediction performed by motion estimation unit 42 and motion compensation
unit 44, as described above. In particular, intra-prediction unit 46 may determine an
intra-prediction mode to use to encode a current block. In some examples, intra-
prediction unit 46 may encode a current block using various intra-prediction modes,
¢.g., during separate encoding passes, and intra-prediction unit 46 (or mode select unit
40, in some examples) may select an appropriate intra-prediction mode to use from the
tested modes.

[0089] For example, intra-prediction unit 46 may calculate rate-distortion values using a
rate-distortion analysis for the various tested intra-prediction modes, and select the
intra-prediction mode having the best rate-distortion characteristics among the tested
modes. Rate-distortion analysis generally determines an amount of distortion (or error)
between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bitrate (that is, a number of bits) used to
produce the encoded block. Intra-prediction unit 46 may calculate ratios from the
distortions and rates for the various encoded blocks to determine which intra-prediction
mode exhibits the best rate-distortion value for the block.

[0090] After selecting an intra-prediction mode for a block, intra-prediction unit 46 may
provide information indicative of the selected intra-prediction mode for the block to
entropy encoding unit 56. Entropy encoding unit 56 may encode the information
indicating the selected intra-prediction mode. Video encoder 20 may include in the
transmitted bitstream configuration data, which may include a plurality of intra-
prediction mode index tables and a plurality of modified intra-prediction mode index
tables (also referred to as codeword mapping tables), definitions of encoding contexts
for various blocks, and indications of a most probable intra-prediction mode, an intra-
prediction mode index table, and a modified intra-prediction mode index table to use for
cach of the contexts.

[0091] Video encoder 20 forms a residual video block by subtracting the prediction data
from mode select unit 40 from the original video block being coded. Summer 50
represents the component or components that perform this subtraction operation.
Transform processing unit 52 applies a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform, to the residual block, producing a video
block comprising residual transform coefficient values. Transform processing unit 52

may perform other transforms which are conceptually similar to DCT. Wavelet
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transforms, integer transforms, sub-band transforms or other types of transforms could
also be used. In any case, transform processing unit 52 applies the transform to the
residual block, producing a block of residual transform coefficients. The transform may
convert the residual information from a pixel value domain to a transform domain, such
as a frequency domain. Transform processing unit 52 may send the resulting transform
coefficients to quantization unit 54. Quantization unit 54 quantizes the transform
coefficients to further reduce bit rate. The quantization process may reduce the bit
depth associated with some or all of the coefficients. The degree of quantization may be
modified by adjusting a quantization parameter. In some examples, quantization unit 54
may then perform a scan of the matrix including the quantized transform coefficients.
Alternatively, entropy encoding unit 56 may perform the scan.

[0092] Following quantization, entropy encoding unit 56 entropy codes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy coding technique. In the
case of context-based entropy coding, context may be based on neighboring blocks.
Following the entropy coding by entropy encoding unit 56, the encoded bitstream may
be transmitted to another device (e.g., video decoder 30) or archived for later
transmission or retrieval.

[0093] Inverse quantization unit 58 and inverse transform unit 60 apply inverse
quantization and inverse transformation, respectively, to reconstruct the residual block
in the pixel domain, ¢.g., for later use as a reference block. Motion compensation unit
44 may calculate a reference block by adding the residual block to a predictive block of
one of the frames of reference frame memory 64. Motion compensation unit 44 may
also apply one or more interpolation filters to the reconstructed residual block to
calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the
reconstructed residual block to the motion compensated prediction block produced by
motion compensation unit 44 to produce a reconstructed video block for storage in
reference frame memory 64. The reconstructed video block may be used by motion
estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a
block in a subsequent video frame.

[0094] Entropy encoding unit 56 of video encoder 20 may be configured to implement

one or more of techniques of this disclosure to utilize a header parameter set (HPS) in
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generating and signaling encoded video data and corresponding parameters to represent
an access unit (AU). Entropy encoding unit 56 may implement techniques of this
disclosure to utilize an HPS to more efficiently and reliably encode and signal the slice
headers of a picture. Additionally, entropy encoding unit 56 may utilize the HPS-based
techniques of this disclosure to enable a decoding device, such as video decoder 30, to
more efficiently decode the encoded AU. In one implementation of the techniques,
entropy encoding unit 56 may generate an HPS that includes one or more syntax
elements specified individually in each of one or more slice headers for an encoded
picture. For instance, entropy encoding unit 56 may generate the HPS such that the
HPS includes one or more syntax elements that are common to all slice headers of the
encoded picture. As another example, entropy encoding unit 56 may generate the HPS
such that the HPS includes one or more syntax elements that are common to two or
more slice headers of the encoded picture, but not common to all slice headers of the
encoded picture.

[0095] Additionally, entropy encoding unit 56 may generate one or more slice headers
of the encoded picture to reference the HPS. More specifically, by generating the slice
headers to reference the HPS, entropy encoding unit 56 may incorporate at least one of
the syntax elements of the HPS into the particular slice headers that reference the HPS.
In other words, entropy encoding unit 56 may generate the values of portions of such
slice headers, by inheriting particular syntax elements from the HPS into the slice
headers that reference the HPS. By generating multiple slice headers to inherit syntax
elements of the same values from the HPS, entropy encoding unit 56 may implement
the techniques of this disclosure to mitigate, or potentially eliminate, duplicate
generation of shared syntax elements for multiple slice headers. Instead, by
implementing the techniques, entropy encoding unit 56 may generate the shared syntax
elements once, with respect to generating the HPS, and generate multiple slice headers
to inherit the shared syntax elements from the HPS, thereby conserving computing
resources and bandwidth/storage capacity required for signaling.

[0096] According to one implementation of the techniques described herein, entropy
encoding unit 56 may generate an HPS such that the HPS is included in a different NAL
unit from one or more NAL units that include the encoded video data corresponding to
the picture. For instance, entropy encoding unit 56 may encapsulate the HPS in a
particular NAL unit, and encapsulate data for the encoded picture (e.g., including the

corresponding slice headers and encoded blocks arranged in slices) in a different NAL



WO 2014/004657 PCT/US2013/047865
28

unit. Additionally, entropy encoding unit 56 may signal the NAL units separately, i.c.,
entropy encoding unit 56 may signal the encoded HPS and the encoded picture in
separate NAL units.

[0097] Additionally, according to this implementation, entropy encoding unit 56 may
associate the NAL unit that includes the HPS with one or more NAL units that include
encoded slices (and corresponding slice headers) of the encoded picture. More
specifically, entropy encoding unit 56 may generate one or more video coding layer
(VCL) NAL units that encapsulate the slices and corresponding slice headers of the
encoded picture. Conversely, entropy encoding unit 56 may generate a non-VCL NAL
unit that encapsulates the HPS. Entropy encoding unit 56 may generate the respective
NAL units such that, in combination, the non-VCL NAL unit and the one or more VCL
NAL units form entire access unit AU associated with the encoded picture.

[0098] In some examples according to this implementation, entropy encoding unit 56
may associate the non-VCL NAL unit encapsulating the HPS with VCL NAL units of
the same AU, but not with VCL NAL units of any other AU. In other words, entropy
encoding unit 56 may, in these scenarios, generate a particular HPS to include only
syntax clements that are eligible to be inherited by slice headers of a single encoded
picture.

[0099] According to some implementations of the techniques described herein, entropy
encoding unit 56 may determine that a single AU includes multiple HPSs. For instance,
when encoding a picture according to two-dimensional (2D) video coding, entropy
encoding unit 56 may generate each HPS to include a unique identifier (ID). In turn,
entropy encoding unit 56 may generate a slice header of the encoded picture, to
reference multiple HPSs of the corresponding AU. More specifically, entropy encoding
unit 56 may generate the slice header to reference each of the multiple HPSs using the
respective ID of each HPS.

[0100] By generating a slice header to reference multiple HPSs, entropy encoding unit
56 may inherit particular portions of each referenced HPS in generating the slice header.
In this manner, entropy encoding unit 56 may further reduce duplication of data
generation with respect to a slice header. More specifically, by inheriting pertinent
parameters from multiple HPSs, entropy encoding unit 56 may mitigate the need to
generate and encode multiple parameters of the slice header, by expanding the available
inheritance sources to include multiple HPSs of the AU. According to these

implementations, entropy encoding unit 56 may generate each HPS to include one or
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more flags. More specifically, entropy encoding unit 56 may set a value of each flag to
indicate whether the particular HPS includes specific data, such as specific parameters.
In this manner, entropy encoding unit 56 may implement techniques of this disclosure
such that each HPS need not include a complete set of parameters available for
inheritance into slice headers of the AU.

[0101] In various examples, entropy encoding unit 56 may inherit parameters from one
or more HPSs into one or more slice headers of the corresponding AU, and signal the
parameter values as part of the slice headers. In these examples, entropy encoding unit
56 may not signal the HPSs, as entropy encoding unit 56 may signal the slice headers
with the parameter values already being set. According to such examples, entropy
encoding unit 56 may generate and use the HPSs in such a manner that a video decoder
may be blind to the implemented HPS-based techniques. In other words, according to
such examples, a corresponding video decoder may receive the encoded bitstream and
decode the signaled slice headers without requiring entropy encoding unit 56 to signal
encoded data corresponding to the one or more HPSs. In other examples, as described
above, entropy encoding unit 56 may signal the HPSs, and may signal the slice headers
to reference specific HPSs, thereby enabling a video decoder to implement one or more
techniques of this disclosure to use the HPSs in decoding the slice headers of an AU.
[0102] According to specific examples of this disclosure, entropy encoding unit 56 may
use particular portions of a NAL unit header to indicate the applicability of an HPS to a
particular slice header. More specifically, entropy encoding unit 56 may indicate the
applicability of an HPS to a slice header, by using reserved portions of the header of a
VCL NAL unit that includes the slice header. For instance, entropy encoding unit 56
may use a syntax element referred to as the reserved one 5bits (referred to in the
context of the techniques described herein as a layer id minus1) syntax element of the
VCL NAL unit header to reference one or more HPSs included in the same AU as the
VCL NAL unit. In this example, entropy encoding unit 56 may enable a video decoder
to determine the applicability of a particular HPS to a slice header, based on whether the
layer id minusl syntax element of the header of the signaled VCL NAL unit that
encapsulates the slice header references the HPS.

[0103] According to these examples, entropy encoding unit 56 may use the
layer id minusl syntax element to reference one or more HPSs in the same AU as the
VCL NAL unit. Additionally, the number of HPSs included in the AU may be less than

the number of layers in a corresponding encoded bitstream that entropy encoding unit
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56 generates for signaling the AU. As described above, the term “layer” may be used
herein to refer to a layer in the context of scalable coding, a view in the context of
multiview coding, or a combination of a view and an indication of whether the current
NAL unit belongs to texture or depth in three-dimensional video (3DV) coding.

[0104] Additionally, entropy encoding unit 56 may identify each layer using a
corresponding unique identifier, such as a “layerID” syntax element. In examples,
entropy encoding unit 56 may generate the value of the layerID syntax element from the
existing layer id minusl syntax element, using the following equation: layerID =
layer id minusl + 1. In such examples, entropy encoding unit 56 may enable a video
decoder to use the signaled layerID value to determine the corresponding layerID
associated with particular HPSs and slice headers signaled in the encoded bitstream.
[0105] In such examples, entropy encoding unit 56 may determine that a slice header
for a slice belonging to a particular layer is eligible to inherit parameters from the HPS
associated with the closest lower layer. As one example, an HPS of the AU may be
associated with a layerID value of N. In ascending order of layerID values, the next
HPS of the AU may be associated with a layerID value of M, where M has a value
greater than N. In this example, entropy encoding unit 56 may determine that all slice
headers associated with layerID values in the range of (N, M-1) are eligible to inherit
parameters from the HPS associated with layerID N. Similarly, entropy encoding unit
56 may determine that slice headers associated with a layerID value of M are eligible to
inherit parameters from the HPS associated with the layerID value of M.

[0106] In the context of the example described above, the HPSs associated with layerID
values N and M may be referred to herein as “neighboring” HPSs. More specifically,
even if layerID values exist between N and M, but none of the intervening layerIDs is
associated with an HPS, then the HPSs associated with layerIDs N and M are
considered to be neighboring HPSs. Additionally, entropy encoding unit 56 may
associate multiple HPSs with a single layerID value. For instance, entropy encoding
unit 56 may associate two or more HPSs with layerID N.

[0107] In accordance with one or more aspects of this disclosure, entropy encoding unit
56 may generate an HPS by reusing pertinent portions of one or more neighboring HPSs
that are associated with a lesser layerID value. For instance, to generate an HPS using a
neighboring HPS, entropy encoding unit 56 may reuse the data specified in a

neighboring HPS at a lesser layerID. In the context of the example above, entropy
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encoding unit 56 may generate an HPS associated with layerID M, by reusing portions
of one or more HPSs associated with layerID N.

[0108] For instance, if exactly one HPS is associated with layerID N, then entropy
encoding unit 56 may reuse portions of the HPS at layerID N, to generate values of an
HPS at layerID M. More specifically, entropy encoding unit 56 may determine that the
generated HPS at layerID M references the single HPS at layerID N, and reuse the
pertinent portions of the neighboring HPS at layerID N to generate the HPS at layerID
M. In scenarios where multiple HPSs are associated with layerID N, entropy encoding
unit 56 may generate the HPS at layerID M by reusing pertinent portions of particular
neighboring HPSs (at layerID N), that are referenced by the HPS at layerID M.

[0109] More specifically, if the HPS associated with layerID M references a single
neighboring HPS selected from multiple neighboring HPSs at layerID N, entropy
encoding unit 56 may reuse portions of only the referenced neighboring HPS, to
generate the HPS at layerID M. On the other hand, if the HPS at layerID M references
two or more of the multiple neighboring HPSs at layerID N, then entropy encoding unit
56 may reuse pertinent portions of each of the referenced neighboring HPSs to generate
the HPS at layerID M. For instance, entropy encoding unit 56 may, in order to signal
the HPS at layerID M, signal the reused portions of each of the referenced neighboring
HPSs. Additionally, in some scenarios, entropy encoding unit 56 (or one or more other
components of video encoder 20) may disable inter-dependent HPS generation based on
neighboring HPSs. For instance, if entropy encoding unit 56 determines that the
respective layers identified by layerIDs N and M do not exhibit inter-layer dependency
(e.g., in terms of video data), then entropy encoding unit 56 may disable the inter-
dependent HPS generation between these two layers.

[0110] In some instances of inter-layer, inter-dependent HPS generation described
above, video entropy encoding unit 56 may implement techniques similar to depth-first
tree-traversal processes, as described above. More specifically, entropy encoding unit
56 may process the layer (expressed by the layerID value) of the current HPS as a leaf
node, or alternatively, as a child node of a next lower layer including an HPS, which
forms the corresponding parent node. Additionally, entropy encoding unit 56 may
determine that the next lower layer to include an HPS includes one or more reference
HPSs for the current HPS. In other words, entropy encoding unit 56 may determine that
a portion of the current HPS is eligible to be generated from the reference HPSs via

parameter reuse.
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[0111] To determine the layerID associated with the reference HPSs, entropy encoding
unit 56 may determine that the layer including the current HPS is a child node, such as
an intermediate node or a leaf node, of a tree. In examples, entropy encoding unit 56
may determine that the immediately preceding (lower) layer, represented as the parent
node of the current node, is not associated with an HPS. In such scenarios, entropy
encoding unit 56 may decrement the value of the child node to equal the value of the
parent node, i.¢., the layerID for the immediately preceding layer. Additionally, entropy
encoding unit 56 may iteratively decrement the value of the child node until reaching a
layerID that is associated with one or more potential reference HPSs.

[0112] In this manner, entropy encoding unit 56 may determine the layerID (referred to
herein as refLayerID) of one or more potential reference HPSs for a current HPS. In
examples where entropy encoding unit 56 enables inter-layer HPS dependency based on
inter-layer dependency for video data, entropy encoding unit 56 may determine that the
encoded bitstream includes, with respect to each inter-dependently generated HPS, the
corresponding refLayerID associated with the reference HPSs. Additionally, upon
identifying the one or more reference HPSs, entropy encoding unit 56 may generate the
current HPS by reusing portions of the identified one or more reference HPSs.

[0113] According to one or more examples of this disclosure, entropy encoding unit 56
may determine that an HPS is applicable only within the AU that includes the non-VCL
NAL unit encapsulating the HPS. In such scenarios, entropy encoding unit 56 may
determine that data included in the VCL NAL unit encapsulating the encoded slice
headers activates one or more of the corresponding VPS, SPS, PPS, or APS. Based on
various factors, the slice headers may activate one or more of these parameter sets
directly (e.g., by referencing the particular parameter sets), or indirectly (e.g., by
referencing the non VCL NAL unit of the HPS, which may in turn reference the
particular parameter sets). More specifically, entropy encoding unit 56 may generate
the slice headers to include data that activates the HPS or one or more of the parameter
sets listed above, as the case may be.

[0114] According to other examples of this disclosure, entropy encoding unit 56 may
determine that each slice header of an AU references at least one HPS. More
specifically, in such instances, entropy encoding unit 56 may each slice header of the
AU to include data that references at least one HPS, such by indicating the
corresponding HPS ID. In such cases, entropy encoding unit 56 may generate the non-

VCL NAL units that include referenced HPSs, such that the non-VCL NAL units
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activate one or more of the VPS, SPS, PPS, and optionally, the APS. In other words,
according to these aspects of this disclosure, a slice header may not directly activate one
or more of the VPS, SPS, PPS, and the APS, but instead, may indirectly activate one or
more of these parameter sets via referencing one or more HPSs.

[0115] In some examples, entropy encoding unit 56 may reuse HPS IDs across layers,
based on slice headers of a particular layer only referring to HPSs of a particular (e.g.,
most recent) layer. According to these examples, entropy encoding unit 56 may identify
a particular HPS using both the corresponding layerID and the HPS ID within the layer.
In other examples, entropy encoding unit 56 may not reuse HPS IDs across layers.
According to these examples, entropy encoding unit 56 may identify a particular HPS
only by the HPS ID, without specifying a corresponding layerID.

[0116] According to some examples of the techniques of this disclosure, entropy
encoding unit 56 may implement one of two available modes, with respect to the use of
HPSs. In a first mode, entropy encoding unit 56 may determine that any generated HPS
may only apply to slice headers that are included in the same AU as the non-VCL NAL
unit encapsulating the HPS. According to a second mode, entropy encoding unit 56
may determine that an HPS includes parameters that are potentially inheritable to slice
headers of the current AU, as well as slice headers of other AUs. In instances where
entropy encoding unit 56 implements the second mode, entropy encoding unit 56 may
enable the slice header(s) to activate the applicable HPSs. As used herein, HPS
activation may be analogous to APS activation, as defined in the current HEVC working
draft (WD9). As described above with respect to other implementations, entropy
encoding unit 56 may encode one or more slice headers, such that the slice headers may
activate one or more of the VPS, SPS, PPS, and APS directly (e.g., by referencing the
particular parameter sets), or indirectly (e.g., by referencing the non VCL NAL unit of
the HPS, which may in turn reference the particular parameter sets).

[0117] As described with respect to FIG. 2, video encoder 20 and/or components
thereof may perform a method of encoding video data, the method including generating
a header parameter set that includes one or more syntax elements specified individually
by cach of one or more slice headers, and generating the one or more slice headers to
reference the header parameter set to inherit at least one of the syntax elements included
in the header parameter set, where the slice headers are each associated with a slice of
the encoded video data. In some example implementations of the method described

above with respect to video encoder 20, generating the header parameter set may
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include generating the header parameter set for an access unit that includes the one or
more slice headers, where the header parameter set generated for the access unit
includes the one or more syntax elements for any slices associated with the access unit
but not for any slices associated with a different access unit.

[0118] In some examples of the method described above with respect to video encoder
20, generating the header parameter set may include generating the header parameter set
for an access unit different than an access unit that includes the header parameter set and
the one or more slice headers, where the header parameter set generated for the access
unit includes the one or more syntax elements for any slices associated with one or both
of the access unit different than the access unit that includes the header parameter set
and the access unit that includes the header parameter set.

[0119] According to some examples of the method described above with respect to
video encoder 20, generating the header parameter set may include generating the
header parameter set for a first layer of the video data. In some of these
implementations, generating the header parameter set for a first layer of the video data
may include generating the header parameter set for a first layer of the video data that
inherits syntax elements specified in a header parameter set for a second layer of the
video data.

[0120] In one example, the second layer is a lower layer than the first layer. According
to another example, generating the one or more slice headers may include generating a
slice header that references at least one of the syntax elements included within the
header parameter set for the first layer and at least one syntax element included within
the header parameter set for the second layer. In still another example, the first layer of
the video data provides video data that augments the second layer of the video data to
enable higher resolutions of the video data. According to yet another example, the first
layer of the video data provides a different view than a view provided by the second
layer of the video data.

[0121] In some examples, video encoder 20 may be included in a device for coding
video data, such as a desktop computer, notebook (i.e., laptop) computer, tablet
computer, set-top box, telephone handset such as a so-called “smart” phone, so-called
“smart” pad, television, camera, display device, digital media player, video gaming
console, video streaming device, or the like. In these or other examples, such a device
for coding video data may include one or more of an integrated circuit, a

microprocessor, and a communication device that includes video encoder 20. In some
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examples, video encoder 20 may also be configured to decode encoded video data, such
as through entropy decoding the encoded video data.

[0122] FIG. 3 is a block diagram illustrating an example of video decoder 30 that may
implement techniques for decoding video data that has been encoded using parallel
motion estimation. In the example of FIG. 3, video decoder 30 includes an entropy
decoding unit 70, motion compensation unit 72, intra prediction module 74, inverse
quantization unit 76, inverse transform module 78, summer 80, and reference picture
memory 82. In the example of FIG. 2, video decoder 30 includes prediction module 71,
which, in turn, includes motion compensation unit 72 and intra prediction module 74.
Video decoder 30 may, in some examples, perform a decoding pass generally reciprocal
to the encoding pass described with respect to video encoder 20 (FIG. 2). Motion
compensation unit 72 may generate prediction data based on motion vectors received
from entropy decoding unit 70, while intra prediction module 74 may generate
prediction data based on intra-prediction mode indicators received from entropy
decoding unit 70.

[0123] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors or intra-
prediction mode indicators, and other syntax elements. Entropy decoding unit 70
forwards the motion vectors and other syntax elements to motion compensation unit 72.
Video decoder 30 may receive the syntax elements at the video slice level and/or the
video block level.

[0124] When the video slice is coded as an intra-coded (I) slice, intra prediction module
74 may generate prediction data for a video block of the current video slice based on a
signaled intra prediction mode and data from previously decoded blocks of the current
frame or picture. When the video frame is coded as an inter-coded (i.e., B, P or GPB)
slice, motion compensation unit 72 produces predictive blocks for a video block of the
current video slice based on the motion vectors and other syntax elements received from
entropy decoding unit 70. The predictive blocks may be produced from one of the
reference pictures within one of the reference picture lists. Video decoder 30 may
construct the reference frame lists, List 0 and List 1, using default construction

techniques based on reference pictures stored in reference picture memory §2.
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[0125] Motion compensation unit 72 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive blocks for the current
video block being decoded. For example, motion compensation unit 72 uses some of
the received syntax elements to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an inter-prediction slice
type (e.g., B slice, P slice, or GPB slice), construction information for one or more of
the reference picture lists for the slice, motion vectors for each inter-encoded video
block of the slice, inter-prediction status for each inter-coded video block of the slice,
and other information to decode the video blocks in the current video slice.

[0126] Motion compensation unit 72 may also perform interpolation based on
interpolation filters. Motion compensation unit 72 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 72
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0127] Inverse quantization unit 76 inverse quantizes, i.c., de quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
70. The inverse quantization process may include use of a quantization parameter QPY
calculated by video decoder 30 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied.

[0128] Inverse transform module 78 applies an inverse transform, e.g., an inverse DCT,
an inverse integer transform, or a conceptually similar inverse transform process, to the
transform coefficients in order to produce residual blocks in the pixel domain.

[0129] After motion compensation unit 72 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
module 78 with the corresponding predictive blocks generated by motion compensation
unit 72. Summer 80 represents the component or components that perform this
summation operation. If desired, a deblocking filter may also be applied to filter the
decoded blocks in order to remove blockiness artifacts. Other loop filters (either in the
coding loop or after the coding loop) may also be used to smooth pixel transitions, or

otherwise improve the video quality. The decoded video blocks in a given frame or
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picture are then stored in reference picture memory 82, which stores reference pictures
used for subsequent motion compensation. Reference picture memory 82 also stores
decoded video for later presentation on a display device, such as display device 32 of
FIG. 1.

[0130] Video decoder 30, and various components thereof, may implement techniques
of this disclosure, such as techniques described with respect to the use of a header
parameter set (HPS), to decode one or more slice headers of an access unit (AU)
represented by data of the received encoded video bitstream. For instance, entropy
decoding unit 70 may implement one or more techniques of this disclosure to utilize a
header parameter set (HPS) to more efficiently, accurately, and reliably decode slice
headers of an encoded picture represented in the received encoded video bitstream. In
some examples, entropy decoding unit 70 may decode the slice headers of an encoded
picture, based on determining that an HPS includes one or more syntax elements that
would otherwise be specified individually by the one or more slice headers.

[0131] More specifically, entropy decoding unit 70 may determine that one or more
slice headers of the encoded picture reference an HPS that is signaled as part of the
encoded video bitstream. Based on the determination that the particular slice headers
reference the HPS, entropy decoding unit 70 may decode the particular slice headers by
inheriting certain syntax elements from the HPS into the particular slice headers that
reference the HPS. By inheriting syntax elements from the HPS into multiple slice
headers of the encoded picture, entropy decoding unit 70 may implement the techniques
of this disclosure to mitigate, or potentially eliminate, duplicate decoding of shared
syntax elements for multiple slice headers. Instead, by implementing the techniques,
entropy decoding unit 70 may decode the shared syntax elements once, with respect to
decoding the HPS, and decode multiple slice headers by inheriting the shared syntax
clements from the HPS. By using the HPS to decode multiple slice headers, entropy
decoding unit 70 may conserve computing resources that video decoder 30 may
otherwise expend in decoding the encoded picture.

[0132] According to one example of the techniques described herein, entropy decoding
unit 70 may determine that the HPS is included in a different NAL unit than the
encoded data corresponding to the picture. For instance, entropy decoding unit 70 may
receive separate NAL units, with one NAL unit encapsulating the HPS, and one or more
different NAL units that encapsulate the encoded slices and corresponding slice headers

of the picture. Additionally, entropy decoding unit 70 may determine that a received
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non-VCL unit encapsulates the encoded HPS, while one or more VCL NAL units
encapsulate the encoded slices and slice headers of the picture. More specifically,
entropy decoding unit 70 may determine that the non-VCL NAL unit encapsulating the
HPS and the one or more VCL units encapsulating the encoded slices and slice headers
combine to form a single AU that corresponds to the encoded picture.

[0133] In some examples, entropy decoding unit 70 may determine that the non-VCL
NAL unit encapsulating the HPS is associated with VCL NAL units of the same AU,
but not with VCL NAL units of another AU. In other words, entropy decoding unit 70
may determine, in these scenarios, that a particular HPS only includes syntax elements
that may be inherited by slice headers of a single encoded picture. Based on this
determination, entropy decoding unit 70 may determine that slices of a first AU are
eligible to inherit parameter data from the HPS of the first AU, but may determine that
slice headers of a second AU are not eligible to inherit any parameter data from the HPS
of the first AU.

[0134] According to some examples of the techniques described herein, entropy
decoding unit 70 may determine that a single AU includes multiple HPSs. For instance,
when decoding a picture according to two-dimensional (2D) video coding, entropy
decoding unit 70 may identify each HPS based on a unique identifier (HPS ID) included
in each respective HPS. In turn, entropy decoding unit 70 may determine that a slice
header of the encoded picture references multiple HPSs of the corresponding AU. More
specifically, entropy decoding unit 70 may entropy decode the slice header to determine
that the slice header references each of the multiple HPSs by specifying the respective
ID of each HPS.

[0135] By determining that a slice header references multiple HPSs, entropy decoding
unit 70 may inherit particular portions of each referenced HPS in decoding the slice
header, and thereby, the corresponding slice of the encoded picture. Additionally,
entropy decoding unit 70 may use flag values included in each HPS to determine the
specific portions of header information (e.g., parameters) included in each HPS. Based
on the HPS IDs referenced by a slice header, and the information included in the
referenced HPSs, entropy decoding unit 70 may decode the slice header by inheriting
specific parameters from each referenced HPS to decode the slice header that references
the HPSs.

[0136] By inheriting parameters from the HPSs into one or more slice headers, entropy

decoding unit 70 may conserve computing resources that video decoder 30 may
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otherwise expend in decoding the AU. A potential advantage of these implementations
is that a single HPS need not include all parameters available for inheritance to the slice
headers of the AU. Additionally, these implementations may expand the available
inheritance sources for the slice headers to include multiple HPSs, further mitigating the
need for entropy decoding unit 70 to duplicate the decoding process with respect to
shared parameters of multiple slice headers of the AU.

[0137] In various examples, video decoder 30 and components thereof, such as entropy
decoding unit 70, may be blind to the HPS-based techniques implemented by a video
encoder that signals the encoded video bitstream. In other words, entropy decoding unit
70 may decode the signaled slice headers without needing to receive, decode, or
otherwise process encoded data corresponding to the one or more HPSs. In other
examples, as described above, entropy decoding unit 70 may receive the slice headers
and specific HPSs referenced by the slice headers. In these examples, entropy decoding
unit 70 may implement one or more techniques of this disclosure to use the HPSs in
decoding the slice headers of an AU.

[0138] According to some specific examples of this disclosure, entropy decoding unit
70 may use particular portions of a NAL unit header to whether, and to what extent, an
HPS is applicable to a particular slice header. More specifically, entropy decoding unit
70 may determine whether an HPS is applicable to a slice header, based on data
indicated at reserved portions of the header of a VCL NAL unit that includes the slice
header. In some instances, entropy decoding unit 70 may also determine the specific
portions of the HPS that are applicable to the slice header, using the data indicated by
the reserved portions of the VCL NAL unit header. For instance, entropy decoding unit
70 may determine the value of a syntax element referred to as the reserved one 5Sbits
(also referred to herein as the layer id minusl) of the VCL NAL unit header to
determine that a slice header in the VCL NAL unit references one or more HPSs
included in the same AU.

[0139] According to these or other examples described herein, entropy decoding unit 70
may use the layer id minusl syntax element to associate one or more HPSs with slice
headers that are in the same AU. Additionally, the number of HPSs included in the AU
may be less than the number of layers in the encoded video bitstream received by
entropy decoding unit 70. As described above, the term “layer” may be used herein to

refer to a layer in the context of scalable coding, a view in the context of multiview
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coding, or a combination of a view and an indication of whether the current NAL unit
belongs to texture or depth in three-dimensional video (3DV) coding.

[0140] Additionally, entropy decoding unit 70 may identify each layer using a
corresponding unique identifier, such as a “layerID” syntax element. In examples, the
value of the layerID syntax element may be based on the existing layer id minusl
syntax element, ¢.g., as expressed by the following equation: layerID =
layer id minusl + 1. In such examples, entropy decoding unit 70 may use the signaled
layerID value to determine the corresponding layerID associated with particular HPSs
and slice headers signaled in the encoded video bitstream.

[0141] In such examples, entropy decoding unit 70 may determine that a slice header
for a slice belonging to a particular layer may inherit parameters from the HPS
associated with the closest lower layer. For instance, an HPS of the AU may be
associated with a layerID value of N. In ascending order of layerID values, the next
HPS of the AU may be associated with a layerID value of M, where M has a value
greater than N. In this example, all slice headers associated with layerID values in the
range of (N, M-1) may inherit parameters from the HPS associated with layerID N.
Similarly, slice headers associated with a layerID value of M may inherit parameters
from the HPS associated with the layerID value of M.

[0142] In the context of one or more of the examples described above, the HPSs
associated with layerID values N and M may be referred to herein as “neighboring”
HPSs. More specifically, even if layerID values exist between N and M, but none of the
intervening layerIDs is associated with an HPS, then the HPSs associated with layerIDs
N and M are considered to be neighboring HPSs. Additionally, multiple HPSs may be
associated with a single layerID value. For instance, two or more HPSs may be
associated with layerID N.

[0143] According to one or more examples of this disclosure, entropy decoding unit 70
may decode an HPS using one or more neighboring HPSs that are associated with a
lesser layerID value. For instance, to decode an HPS from a neighboring HPS, entropy
decoding unit 70 may reuse the data specified in a neighboring HPS at a lesser layerID.
In the context of the example above, entropy decoding unit 70 may determine an HPS
associated with layerID M, by reusing portions of one or more HPSs associated with
layerID N.

[0144] For instance, if exactly one HPS is associated with layerID N, then entropy
decoding unit 70 may reuse portions of the HPS at layerID N, to decode values of an
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HPS at layerID M. More specifically, entropy decoding unit 70 may determine that the
inter-dependently decoded HPS at layerID M references the single HPS at layerID N,
and reuse the relevant portions of the neighboring HPS at layerID N to decode the HPS
at layerID M. In scenarios where multiple HPSs are associated with layerID N, entropy
decoding unit 70 may decode the HPS at layerID M by reusing pertinent portions of
particular neighboring HPSs (at layerID N), that are referenced by the HPS at layerID
M.

[0145] More specifically, if the HPS at layerID M references a single neighboring HPS
selected from multiple neighboring HPSs at layerID N, entropy decoding unit 70 may
reuse portions of only the referenced neighboring HPS, to decode the HPS at layerID M.
On the other hand, if the HPS at layerID M references two or more of the multiple
neighboring HPSs at layerID N, then entropy decoding unit 70 may reuse pertinent
portions of each of the referenced neighboring HPSs to decode the HPS at layerID M.
In one example, entropy decoding unit 70 may, to entropy decode the HPS at layerID
M, reuse pertinent decoded portions of each of the referenced neighboring HPSs.
Additionally, in some scenarios, entropy decoding unit 70, and/or other components of
video decoder 30, may disable inter-dependent decoding of HPSs from neighboring
HPSs. For instance, if entropy decoding unit 70 determines that the respective layers
identified by layerIDs N and M do not exhibit inter-layer dependency (e.g., in terms of
video data), then entropy decoding unit 70 may disable the inter-dependent HPS
decoding between the respective layers identified by layerIDs N and M.

[0146] In some instances of inter-layer, inter-dependent HPS decoding described above,
entropy decoding unit 70 may implement techniques similar to depth-first tree-traversal
processes, as described above. More specifically, entropy decoding unit 70 may process
the layer (expressed by the layerID value) of the current HPS as a leaf node, or
alternatively, as a child node of a next lower layer to include an HPS. In other words,
entropy decoding unit 70 may determine that the next lower layer to include an HPS
forms the parent node. Additionally, entropy decoding unit 70 may determine that the
layer corresponding to the parent node includes one or more reference HPSs for the
current HPS, i.¢., that a portion of the current HPS may be inter-dependently decoded
based on the reference HPSs via parameter reuse.

[0147] To determine the layerID associated with the reference HPSs, entropy decoding
unit 70 may determine that the layer including the current HPS is a child node, such as

an intermediate node or a leaf node, of a tree. If entropy decoding unit 70 determines
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that the immediately preceding (lower) layer of the tree is not associated with an HPS,
then entropy decoding unit 70 may decrement the value of the child node to equal the
layerID for the immediately preceding layer. Additionally, entropy decoding unit 70
may recursively decrement the value of the child node until entropy decoding unit 70
reaches a layerID that is associated with one or more potential reference HPSs. In this
manner, entropy decoding unit 70 may determine the layerID (referred to herein as
refLayerID) of one or more potential reference HPSs for a current HPS. In examples
where entropy decoding unit 70 enables inter-layer HPS dependency based on inter-
layer dependency for video data, entropy decoding unit 70 may determine that the
received encoded video bitstream includes, with respect to each inter-dependently
decoded HPS, the corresponding refLayerID associated with the reference HPSs.

[0148] In some examples in accordance with the techniques of this disclosure, entropy
decoding unit 70 may determine that an HPS is applicable only within the AU that
includes the non-VCL NAL unit encapsulating the HPS. In such scenarios, entropy
decoding unit 70 may determine that data included in the VCL NAL unit encapsulating
the encoded slice headers activates one or more of the corresponding VPS, SPS, PPS, or
APS. Based on various factors, entropy decoding unit 70 may determine that the slice
headers either activate one or more of these parameter sets directly (e.g., by referencing
the particular parameter sets), or indirectly (e.g., by referencing the non VCL NAL unit
of the HPS, which may in turn reference the particular parameter sets).

[0149] According to other examples of this disclosure, entropy decoding unit 70 may
determine, from the received encoded video bitstream that cach slice header of an AU
references at least one HPS. In such cases, entropy decoding unit 70 may determine that
the non-VCL NAL units that include referenced HPSs activate one or more of the VPS,
SPS, PPS, and optionally, the APS. In other words, according to these aspects of this
disclosure, entropy decoding unit 70 may determine that a slice header does not directly
activate one or more of the VPS, SPS, PPS, and the APS, but instead, that the slice
header indirectly activates one or more of these parameter sets via referencing one or
more HPSs.

[0150] According to some examples of the techniques of this disclosure, entropy
decoding unit 70 may operate according to one of two available modes, with respect to
the use of HPSs. In a first mode, entropy decoding unit 70 may determine that any HPS
included in the received encoded video bitstream applies exclusively to slice headers

that are included in the same AU as the non-VCL NAL unit that encapsulates the HPS.
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According to a second mode, entropy decoding unit 70 may determine that an HPS
includes parameters that are potentially inheritable to slice headers of the current AU, as
well as slice headers of other AUs. According to the second mode, entropy decoding
unit 70 may enable the slice header(s) to activate the applicable HPSs. As used herein,
HPS activation may be analogous to APS activation, as defined in the current HEVC
working draft (WD9). As described above with respect to other implementations,
entropy decoding unit 70 may enable slice headers to activate one or more of the VPS,
SPS, PPS, and APS either directly (e.g., by referencing the particular parameter sets), or
indirectly (e.g., by referencing the non VCL NAL unit of the HPS, which may in turn
reference the particular parameter sets).

[0151] As described with respect to FIG. 3, video decoder 30 and/or components
thereof may perform a method of decoding video data, the method including
determining a header parameter set that includes one or more syntax elements specified
individually by each of one or more slice headers, and determining the one or more slice
headers that reference the header parameter set to inherit at least one of the syntax
elements included in the header parameter set, where the slice headers are each
associated with a slice of the encoded video data. In some example implementations of
the method described above with respect to video decoder 30, determining the header
parameter set may include determining the header parameter set for an access unit that
includes one or more slice headers, where the header parameter set for the access unit
includes the one or more syntax elements for any slices associated with the access unit
but not for any slices associated with a different access unit.

[0152] In some examples of the method described above with respect to video decoder
30, determining the header parameter set may include determining the header parameter
set for an access unit different than an access unit that includes the header parameter set
and the one or more slice headers, where the header parameter set determined for the
access unit includes the one or more syntax elements for any slices associated with one
or both of the access unit different than the access unit that includes the header
parameter set and the access unit that includes the header parameter set.

[0153] According to some examples of the method described above with respect to
video decoder 30, determining the header parameter set may include determining the
header parameter set for a first layer of the encoded video data. In some of these
examples, determining the header parameter set for a first layer of the encoded video

data may include determining the header parameter set for a first layer of the encoded
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video data that inherits syntax elements specified in a header parameter set for a second
layer of the encoded video data.

[0154] In one such example, the second layer is a lower layer than the first layer.
According to another example, determining the one or more slice headers may include
determining a slice header that references at least one of the syntax elements included
within the header parameter set for the first layer and at least one syntax element
included within the header parameter set for the second layer. In still another example,
the first layer of the video data provides video data that augments the second layer of
the video data to enable higher resolutions of the encoded video data. According to yet
another example, the first layer of the video data provides a different view than a view
provided by the second layer of the encoded video data.

[0155] In various examples, video decoder 30 may be included in a device for coding
video data, such as a desktop computer, notebook (i.e., laptop) computer, tablet
computer, set-top box, telephone handset such as a so-called “smart” phone, so-called
“smart” pad, television, camera, display device, digital media player, video gaming
console, video streaming device, or the like. In examples, such a device for coding
video data may include one or more of an integrated circuit, a microprocessor, and a
communication device that includes video decoder 30.

[0156] FIG. 4 is a conceptual diagram illustrating an example header parameter set
(HPS) model 140 incorporating inter-layer dependency, in accordance with one or more
aspects of this disclosure. HPS model 140 illustrates three layers 142A-142C,
associated with an access unit (AU). As described above, the term “layer,” as used
herein, may refer to a layer in the context of scalable coding, a view in the context of
multiview coding, or a combination of a view and an indication of whether the current
NAL unit belongs to texture or depth in three-dimensional video (3DV) coding.
Additionally, each of layers 142A—-142C may also be referred to herein as
“enhancement layers.” Although any one or more of the devices and/or components
described herein may process HPS model 140, for ease of discussion purposes only,
HPS model 140 is described herein with respect to video decoder 30 of FIGS. 1 and 3.
[0157] As shown, HPS model 140 includes three slice headers 144A—144C, each being
associated with a respective layer of layers 142A-142C. Additionally, HPS model 140
includes three HPSs 146-146C at layer 142A, and two HPSs 146D—-146E, at layer
142C. In this disclosure, the three layers 142A—142C are referred to collectively as
layers 142, the three slice headers 144A—144C are referred to collectively as slice
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headers 144, and the five HPSs 146 A—146E are referred to collectively as HPSs 146.
To decode an AU of an encoded bitstream received from video encoder 20, video
decoder 30 may use one or more of HPSs 146, to decode one or more of slice headers
144.

[0158] HPS model 140 illustrates a specific example of a scenario in which video
decoder 30 may inherit slice header parameters from multiple HPSs 146, either directly
or indirectly. More specifically, as used herein, direct inheritance may refer to
examples in which video decoder 30 reuses parameters specified, originally in one or
more of HPSs 146, in decoding one of slice headers 144. On the other hand, as used
herein, indirect inheritance may refer to examples in which video decoder 30 determines
that one of slice headers 144 references one or more of HPSs 146, and that, in turn, the
referenced one or more of HPSs 146 are inter-dependently decoded based on one or
more remaining parameter sets of HPSs 146.

[0159] In the example of FIG. 4, layer 142B does not include any of HPSs 146, while
cach of layers 142A and 142C includes one or more of HPSs 146. In some instances in
this disclosure, HPSs 146 A—146C may be referred to as “HPS 0,” “HPS 1,” and “HPS
2” with respect to layer 142A (e.g. having a layerID value of 0). Similarly, HPSs 146D
and 146E may be referred to herein as “HPS 0 and “HPS 1 with respect to layer 142C.
In implementing the techniques of this disclosure, video decoder 30 may determine that
HPSs 146A-146C are “neighboring” parameter sets to HPSs 146D—-146E. More
specifically, video decoder 30 may determine that HPSs 146A—146C neighbor HPSs
146D—146E, even though layer 142B intervenes between the respective layers of HPSs
146A—146C and neighboring HPSs 146D—-146E.

[0160] Video decoder 30 may determine HPSs 146 A—146C neighbor HPSs 146D—
146E, based on determining that intervening layer 142B does not include any header
parameter sets. In one example use case, video decoder 30 may determine that layer
142A is associated with a layerID value of 0, layer 142B is associated with a layerID
value of 1, and layer 142C is associated with a layerID value of 2. Based on the
described sequence of layerID values, video decoder 30 may determine that layer 142B
is positioned between layers 142A and 142C.

[0161] The specific example of HPS model 140 includes particular HPS-slice header
dependencies, as well as particular inter-HPS dependencies. For instance, slice header
144A, at layerID 0 in the example above, may exhibit varying dependencies with
respect to each of the three HPSs 146A—146C. For example, video decoder 30 may
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inherit particular parameter values from each of the HPSs 146A—-146C, to decode slice
header 144A. More specifically, video decoder 30 may inherit particular portions of
slice header 144A from each of HPSs 146A—146C. For instance, video decoder 30 may
inherit an initial “part 0” of slice header 144A from HPS 146B, a subsequent “part 1” of
slice header 144A from HPS 146A, and a still subsequent “part 2” of slice header 144A
from HPS 146C.

[0162] Additionally, slice header 144A may include additional parameters (e.g.,
denoted by parts up to “part N’). Video decoder 30 may determine the remaining parts
of slice header 144A, up to part N, either by inheriting parameters from HPSs 146A—
146C, or by decoding parameters that are explicitly signaled as part of slice header
144A. In other words, video decoder 30 may decode parameters that are present in slice
header 144A, or override any values signaled in slice header 144A with parameters
signaled in any of HPSs 146A—-146C.

[0163] Similarly, according to this example, slice header 144B may inherit parameters
from one or more of HPSs 146A—-146C. As shown in FIG. 4, slice header 144B
corresponds to layer 142B, which is associated with a layerID value of 1. According to
one or more implementations described herein, video decoder 30 may determine that
cach of slice headers 144 is eligible to inherit parameters from those of HPSs 146 that
are at the same layer as or a lower layer than the respective one of slice headers 144.
[0164] For instance, video decoder 30 may determine that slice header 144B is eligible
to inherit parameters from HPSs 146A—-146C, based on HPSs 146A—-146C being
positioned at layer 142A, which is associated with a layerID value of 0. In a specific
example, video decoder 30 may inherit part 0 and part 1 of slice header 144B from HPS
146A, and may inherit part 2 of slice header 144B from HPS 146B. Additionally, video
decoder 30 may decode the remaining parameters of slice header 144B (e.g., denoted by
parts up to “part N”’) on a case-by-case basis, ¢.g., either by decoding the parameters
directly from slice header 144B, or overriding any data in slice header 144B by
inheriting parameters from one or more of HPSs 146A—146C. In this manner, HPS
model 140 illustrates an instance of inter-layer dependency of a slice header on one or
more HPSs.

[0165] It will be appreciated that, in scenarios where layer 142B includes one or more
HPSs, video decoder 30 may inherit parts of slice header 144B from any of the HPSs at
layer 142B. More specifically, according to such examples, video decoder 30 may

inherit parameters to one of slice headers 144, from those of HPSs 146 that are at either
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the same layer or at a lower layer than the particular slice header 144. For instance, in
one such scenario, slice header 144B may inherit parameters directly from an HPS at
layer 142B, and inherit parameters, either directly or indirectly, from HPSs 146A-146C
at lower layer 142A.

[0166] Additionally, HPS model 140 includes slice header 144C at layer 142C. In
examples, video decoder 30 may determine that layer 142C is associated with a layerID
value of 2. More specifically, based on the layerID value of 2, video decoder 30 may
determine that layer 142C is a higher layer than layers 142A and 142B, which, in such
examples, may be associated with layerID values of 0 and 1, respectively. In turn,
based on aspects of inter-layer dependency as described herein, video decoder 30 may
decode portions of slice header 144C by inheriting, either directly or indirectly,
parameters specified in HPSs of lower layers 142A and 142B.

[0167] In the specific example of HPS model 140, two HPSs, namely HPSs 146D—
146E, are positioned at the same layer as slice header 144C. By applying one or more
aspects of inter-layer dependency as described herein, video decoder 30 may decode
slice header 144C using any of HPSs 146, as all of HPSs 146 are positioned at either the
same layer (i.e., layer 142C) as, or at a lower layer (i.c., layer 142A) than slice header
144C. With respect to slice header 144C, HPS model 140 illustrates examples of
indirect inheritance.

[0168] More specifically, as shown in FIG. 4, video decoder 30 may decode slice
header 144C by inheriting particular parameters from each of HPSs 146D—-146E, which
are positioned at the same layer as slice header 144C. In turn, video decoder 30 may
decode each of HPSs 146D—146E by reusing particular portions of each of HPSs 146A—
146C. In the specific example of HPS 140, video decoder 30 may inherit portions of
HPS 146D from HPS 146A, and may inherit portions of 146E from each of HPSs
146B-146C. It will be appreciated that while video decoder 30 may inherit particular
portions of HPSs 146D—-146E from one or more of HPSs 146A—-146C, video decoder 30
may decode other portions of HPSs 146D—146E directly, based on parameters signaled
in an encoded bitstream received by video decoder 30. For instance, video decoder 30
may reuse as many parameters as possible to decode HPSs 146D-146E, while directly
decoding non-reusable parameters. In this manner, video decoder 30 may optimize the
decoding process by reusing pertinent parameters in HPSs 146D—146E, while directly

decoding other parameters to maintain accuracy and mitigate decoding errors.
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[0169] In some example use cases of decoding slice headers 144 according to HPS
model 140, video decoder 30 may inherit three initial portions, referred to herein as
“parts” 0-2, of slice header 144C from HPS 146D. Video decoder may, in various
instances, inherit parts 0—2 from the same portions of HPS 146D, or from different
portions of HPS 146D. According to these example use cases, video decoder 30 may
inherit a final portion of slice header 144C from HPS 146E. In one such example, video
decoder 30 may associate the final portion of slice header 144C as part N+1, indicating
that slice header 144C includes one additional part (e.g., parameter) than each of slice
headers 144A-144B, which may each include N parts.

[0170] Video decoder 30 may decode one or more of parts 0—(N+1) of slice header
144C based on indirect inter-layer dependency. As one example, video decoder 30 may
inherit one or more parameters (the “inherited parameters”) from HPS 146 to decode
part 0 of slice header 144C. Additionally, video decoder 30 may decode HPS 146 by
reusing the inherited parameters from HPS 146A. In this manner, video decoder 30
may indirectly inherit parameters from HPS 146A into slice header 144C, using HPS
146D as a conduit.

[0171] FIG. 5 is a flowchart illustrating an example process 100 that video decoder 30
and/or components therecof may perform to decode encoded video data, in accordance
with one or more aspects of this disclosure. Process 100 may begin when video decoder
30 receives an access unit (AU) for an encoded picture of video data (102). For
instance, video decoder 30 may receive the encoded AU as part of an encoded bitstream
signaled by video encoder 20. Additionally, video decoder 30 may determine a header
parameter set (HPS) for one or more slice headers of the encoded picture of the AU
(104).

[0172] As described, video decoder 30 may use each of the one or more slice headers to
decode a slice of the encoded picture. In specific examples, video decoder 30 may use
syntax elements, such as syntax elements that specify parameters, of slice header to
decode the corresponding slice. Video decoder 30 may decode an HPS to determine
one or more parameters to inherit into one or more slice headers of the AU.
Additionally, video decoder 30 may determine that the slice headers that are eligible to
inherit parameters from a particular HPS of the AU are positioned at an equal or higher
layer than the corresponding HPS.

[0173] Video decoder 30 may decode a slice header of the encoded picture using one or

more signaled HPSs (106). More specifically, video decoder 30 may decode the slice
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header by inheriting particular parameters from each of the one or more HPSs into the
slice header. In examples, video decoder 30 may inherit different portions of the slice
header from different HPSs of the AU, and may decode certain portions of the slice
header independently of HPS-specified syntax elements.

[0174] Video decoder 30 may decode the corresponding slice of the encoded picture
using the decoded slice header (108). As described, video decoder 30 may use decoded
parameters of the slice header to decode the corresponding slice. Upon decoding the
slice, video decoder 30 may decode the next slice header (effectively returning to 106),
whether the next slice header belongs to the same picture or a subsequent picture of the
encoded bitstream, as the case may be.

[0175] FIG. 6 is a flowchart illustrating an example process 120 that video encoder 20
and/or components thereof may perform to encode video data, in accordance with one
or more aspects of this disclosure. Process 120 may begin when video encoder 20
receives a picture of video data (122). For instance, video encoder 20 may receive the
picture from video source 18 of source device 12. Additionally, video encoder 20 may
encode the picture on a slice-by-slice basis (124).

[0176] More specifically, video encoder 20 may divide the encoded picture into a series
of encoded blocks. Additionally, video encoder 20 may determine that particular
sequences of encoded blocks form a slice of the encoded picture. Video encoder 20
may preface each slice with a slice header, and in examples, may insert an end-of-slice
symbol at the end of each slice. Video encoder 20 may include various parameters in
the slice header. In turn, video encoder 20 may use one or more of the parameters of the
slice header to encode the corresponding slice. Moreover, video encoder 20 may enable
a video decoder to decode the slice by using parameters of the corresponding decoded
slice header.

[0177] Video encoder 20 may generate an HPS for one or more slice headers of the
encoded picture (126). For instance, video encoder 20 may generate the HPS to include
one or more parameters that are common to multiple slice headers of the encoded
picture. In examples, video encoder 20 may generate multiple HPSs for the encoded
picture. As an example, video encoder 20 may generate a first HPS that includes
parameter values common to a group of slice headers, and may generate a second HPS
that includes corresponding parameters, with a different value, that are common to

another group of slice headers.
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[0178] Additionally, video encoder 20 may encode one or more slice headers of the
picture using one or more of the generated HPSs (128). As described, video encoder 20
may encode one or more slice headers by inheriting parameter values included in one or
more HPSs referenced by the slice headers. In turn, video encoder 20 may encode a
current slice of the picture using the corresponding slice header (130). Upon encoding a
current slice, video encoder 20 may encode the next slice header, whether the next slice
header corresponds to a subsequent slice of the same picture, or to a slice of a
subsequent picture, as the case may be.

[0179] In this manner, either of video decoder 30 or video encoder 20 may be an
example of a device for coding video data, the device including means for determining a
header parameter set that includes one or more syntax elements specified individually
by ecach of one or more slice headers, and means for determining the one or more slice
headers that reference the header parameter set to inherit at least one of the syntax
elements included in the header parameter set, where the slice headers are each
associated with a slice of the encoded video data.

[0180] Additionally, in this manner, either of destination device 14 or source device 12
may be an example of a computing device that includes or is coupled to a computer-
readable storage medium having stored thereon instructions that, when executed, cause
a programmable processor of the computing device to determine a header parameter set
that includes one or more syntax elements specified individually by each of one or more
slice headers, and determine the one or more slice headers that reference the header
parameter set to inherit at least one of the syntax elements included in the header
parameter set, where the slice headers are each associated with a slice of encoded video
data.

[0181] In one example of the techniques of this disclosure, video encoder 20 and/or
video decoder 30 may determine that a layer may include multiple HPSs, and that, in
instances of an HPS including reused data from a reference-HPS, that the HPS may only
reuse data from a single reference-HPS. Additionally, video encoder 20 and/or video
decoder 30 may determine that the HPS is associated with a NAL unit type reserved in
the current HEVC draft specification. Video encoder 20 and/or video decoder 30 may
use data represented in syntax table 1 below, to determine an SPS raw byte sequence
payload (RBSP) syntax. In syntax table 1 below, underlining denotes changes from
(e.g., additions to) the existing syntax, ¢.g., as included in the current HEVC draft

specification.
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seq_parameter_set rbsp( ) { Descriptor
profile_ide u(8)
reserved_zero_8bits /* equal to 0 */ u(8)
level_idc u(8)
seq_parameter_set_id ue(v)
multiple hps enabled flag u(l)
hps use by multiple aus flag u(l)

j

Syntax Table 1
[0182] SPS RBSP semantics, as included in syntax table 1, are as follows. If the
“multiple_hps enabled flag” is set to a value equal to 1, then this syntax element may
indicate support for a particular AU including more than one HPS, or support for a
single layer representation/view component including more than one HPS. On the other
hand, if the “multiple_hps enabled flag” is set to a value equal to 0, then this syntax
element may indicate that, at most, one HPS may be included within a single AU, or
within a single layer representation or view component. If the
“hps_use by multiple aus flag” is set to a value equal to 1, then this syntax element
may indicate that an HPS may be referred to by coded slices in more than one AU. On
the other hand, if the “hps_use by multiple aus flag” is set to a value equal to 0, then
this syntax element may indicate that an HPS may only be referred to by coded slices in,
at most, one AU. In some instances, the “multiple hps enabled flag” may be included
in the PPS, with the same semantics as above.
[0183] Syntax table 2 below illustrates an example of HPS RBSP syntax, with

underlining to denote changes from existing syntax.

header parameter set( ) { Descriptor
header_para_set_id ue(v)
pic parameter set id ue(v)
rap pic flag u(l)
if( rap pic_flag)
idr_pic_flag u(l)
// the ones that do not change among slices
if( lidr_pic_flag) {
if( thps use by multiple_aus flag )
pic_order_cnt_lsb u(v)
short_term_ref pic_set_sps_flag u(l)
if( Ishort term ref pic set sps flag)
short term ref pic set( num short term ref pic sets)
else
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short_term_ref pic_set_idx uv)
if( long term ref pics present flag) {
num_long_term_pics ue(v)

for(1=0;1<num long term pics; i++) {

poc_lsb_1t[ 1] uv)
delta_poc_msb_present_flag[ 1] u(l)
if( delta_poc_msb_present flag[i1])
delta_poc_msb_cycle It[ 1] ue(v)
used_by_curr_pic_It_flag[ 1] u(l)
§
§
§
slice_type ue(v)
if( output_flag present flag )
pic_output_flag u(l)
if( separate_colour plane flag == 1)
colour_plane_id u2)

if( rap_pic_flag) {

if( thps_use by _multiple aus_flag )

rap_pic_id ue(v)

no_output_of prior_pics_flag u(l)

}

// above are the info. that is typically shared by all HPSs of a layer of an AU

if(adaptive loop filter enabled flag)

aps_id ue(v)

// RPL or info. related to RPL

if( slice_type == P || slice_type == B) {

if( sps_temporal mvp enable flag)

pic_temporal_mvp_enable_flag u(l)

num_ref idx_active_override_flag u(l)

if{ num_ref idx active override flag) {

num_ref_idx_l0_active_minusl ue(v)

if( slice_type == B)

num_ref_idx_I1_active_minusl ue(v)

}

if( lists modification present flag)

ref pic list modification( )

if( slice type==B)

mvd_l1_zero_flag u(l)

if( pic_temporal mvp enable flag) {

if( slice type==B)

collocated_from_l10_flag u(l)

if slice_type !1=1 &&
((collocated from 10 flag && mnum ref idx 10 active minusl > 0) ||
(Icollocated from 10 flag && num ref idx 11 active minusl >0))

collocated_ref idx ue(v)
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}

if( slice_type ==P| | slice_type==B)

five_minus_max_num_merge_cand

ue(v)

// prediction weights

if( (weighted pred flag && slice type ==P) ||
( weighted bipred idc == 1 && slice type == B))

pred_weight table( )

//deblocking

if( deblocking_filter control present flag) {

if( deblocking_filter override enabled flag)

deblocking_filter override_flag

u(l)

if( deblocking_filter override flag) {

slice_header_disable_deblocking_filter flag

u(l)

if( !slice_header disable deblocking filter flag) {

beta_offset_div2

se(v)

tc_offset_div2

se(v)

}

// other info. that may not be common but don’t need to predict

if( cabac_init present flag && slice type !=1)

cabac_init flag

slice gp delta

if( seq loop filter across slices_enabled flag &&
(‘slice_adaptive loop filter flag || slice sample adaptive offset flag ||
ldisable deblocking filter flag))

slice loop filter across slices enabled flag

u(l)

}

hps_extension_flag

u(l)

if( hps_extension_flag )

while( more rbsp data( ) )

hps_extension_data_flag

u(l)

Syntax Table 2

[0184] An alternative arrangement of syntax table 2 is illustrated in syntax table 2a

below.

header parameter set() {

Descriptor

header_para_set_id

ue(v)

if( multiple_hps_enabled flag)

common_info_present_flag

u(1)

if (common_info present flag)

common_info table()

// above are the info. that is typically shared by all HPSs of a layer of an AU

if( multiple_hps_enabled flag)

ref_pic_list_related_info_present_flag

u(l)
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if (ref pic list related info present flag)

reference pic related info table( )

// prediction weights

if( (weighted pred flag && slice type==P) ||
( weighted bipred ide == 1 && slice type == B))

if( multiple hps enabled flag)

pred_weight_table_present_flag

u(1)

if (pred_weight table present flag )

pred_weight table( )

}

//deblocking

if ( deblocking filter control present flag ) {

if( multiple hps enabled flag)

deblocking para_table_present_flag

u(1)

if (deblocking para table present flag)

deblocking para table( )

}

// other info. that may or may not be common but don’t need to be put in as a new
category to be predicted.

if( cabac_init present flag && slice type 1= 1)

cabac_init_flag

u(1)

slice_qp_delta

se(v)

if( seq loop filter across slices _enabled flag &&
(slice_adaptive loop_filter flag || slice sample adaptive offset flag ||
!disable deblocking filter flag))

slice_loop_filter_across_slices_enabled_flag

u(1)

}

if(adaptive_loop filter enabled flag)

aps_id

ue(v)

// extension ...

hps_extension_flag

u(1)

if( hps_extension flag )

while( more rbsp data( ) )

hps_extension_data_flag

u(l)

}

common_info_table() {

Descriptor

pic_parameter set id

ue(v)

if('IdrPicFlag ) {

pic_order cnt Isb

uv)

short term ref pic set sps flag

u(l)

if( Ishort term ref pic set sps flag)

short term ref pic set( num short term ref pic sets)
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short term ref pic set idx u(v)
if( long term ref pics present flag) {
num_long term pics ue(v)
for(1=0; I <num long term pics; i++) {
poc Isb It[ 1] u(v)
delta poc msb present flag[i] u(l)
if( delta poc_msb present flag[i1])
delta poc msb cycle 1t[ 1] ue(v)
used by curr pic It flag[ 1] u(l)
H
H
H
slice_type ue(v)
if( output flag present flag)
pic_output flag u(l)
if( separate_colour plane flag == 1)
colour plane id u(2)
if( RapPicFlag) {
rap_pic_id ue(v)
no_output of prior pics flag u(l)
H
H
reference pic_related info table (){ Descriptor
if(slice type == P || slice type == B) {
if( sps_temporal mvp enable flag)
pic_temporal mvp enable flag u(l)
num_ref idx_active override flag u(l)
if( num ref idx active override flag) {
num_ref idx 10 active minusl ue(v)
if( slice type == B)
num_ref idx 11 active minusl ue(v)
H
H
if( lists modification present flag)
ref pic list modification( )
if( slice type==B)
mvd 11 zero flag u(l)
if( pic_temporal mvp enable flag) {
if( slice type==B)
collocated from 10 flag u(l)
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if( slice_type I=1 &&
((collocated from 10 flag && num ref idx 10 active minusl > 0) ||
(Icollocated from 10 flag && num ref idx 11 active minusl > 0))

collocated ref idx ue(v)
H
if( slice_type=="P||slice type==B)
five minus max num merge cand ue(v)
H
deblocking para table( ){ Descriptor
if( deblocking_filter override enabled flag)
deblocking filter override flag u(l)
if( deblocking_filter override flag ) {
slice_header disable deblocking filter flag u(l)
if( Islice_header disable deblocking filter flag) {
beta offset div2 se(v)
tc_offset div2 se(v)
H
H
H
Syntax Table 2a

[0185] Semantics of the HPS RBSP may be as follows. The semantics of a syntax
element, if currently present in slice header in the latest HEVC draft specification, may
remain the same as specified in the latest HEVC draft specification. The

“header para_set id” identifies an HPS, within a particular layer. The

“common_info present flag,” if set to a value equal to 1, may indicate that the
common_info_table( ) is present in the current HPS. On the other hand, if
“common_info present flag” is set equal to 0, this syntax element may indicate that the
common_info_table( ) is not present in the current HPS. When not present, video
encoder 20 and/or video decoder 30 may infer the value of this syntax element to be
equal to 1.

[0186] The “ref pic_list related info present flag,” if set equal to 1, may indicate that
the reference pic related info table( ) is included in the current HPS. Conversely, if
“ref pic_list related info present flag” is set equal to 0, this syntax element may
indicate that the reference pic related info table( ) is not included in the current HPS.
When not present, video encoder 20 and/or video decoder 30 may infer the value of this
syntax element to be equal to 1. The “pred weight table present flag,” if set equal to
1, may indicate that the pred weight table( ) is present in the current HPS, and

conversely, if the pred weight table present flag is set equal to 0, this syntax element
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may indicate that the pred weight table( ) is not present in the HPS. When not present,
video encoder 20 and/or video decoder 30 may infer the value of this syntax element to
be equal to 1.

[0187] If the “deblocking para table present flag” is set equal to 1, this syntax
element may specify that the deblocking para table () is present in the current HPS.
On the other hand, if the deblocking para table present flag is to a value equal to 0,
this syntax element may indicate that the deblocking para table () is not present in the
current HPS. When not present, video encoder 20 and/or video decoder 30 may infer the
value of this syntax element to be equal to 1. If the “hps_extension_flag” is set equal

to 0, this syntax element may indicate that no hps_extension data flag syntax elements
are present in the RBSP syntax structure. If the hps_extension flag is set equal to 1,
video decoder 30 may disregard all data that follow the value 1 for hps_extension_flag
in a NAL unit. The value of the “hps_extension_data flag” may not affect the
conformance of video decoder 30 to the techniques of this disclosure.

[0188] An HPS syntax table and the corresponding common syntax table, in accordance
with certain examples of the techniques described herein, are illustrated in syntax tables

3 and 3a below.

header parameter set() { Descriptor
header_para_set_id ue(v)
slice type ue(v)

1f{ multiple hps _enabled flag )

common info present flag u(l)

if{ common_info present flag)

common_info table( 1)
// above are the info. that is typically shared by all HPSs of a layer of an AU
if{ multiple hps_enabled flag )

ref pic list related info present flag u(l)

if( ref pic list related info present flag)

reference pic_related info table( )

// prediction weights
if( (weighted pred flag && slice type ==P) ||
( weighted bipred idc == 1 && slice type == B))
{

if{ multiple hps_enabled flag )
pred weight table present flag u(l)

if (pred _weight table present flag)
pred_weight table( )

§
//deblocking

if ( deblocking filter control present flag) {
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1f{ multiple hps enabled flag )

deblocking para table present flag wl)
if (deblocking_para_table present flag)
deblocking para_table( )
§
// other info. that may or may not be common, or may be common for a subset of
slices in a picture, but don’t need to be put in as a new category to be separately
predicted.
if( cabac_init present flag && slice type 1=1)
cabac_init_flag u(l)
slice_qp_delta se(v)
if( seq loop filter across slices_enabled flag &&
(slice_adaptive loop filter flag || slice sample adaptive offset flag ||
ldisable deblocking filter flag))
slice_loop_filter_across_slices_enabled_flag u(l)
if( adaptive loop filter enabled flag)
aps_id ue(v)
if( separate_colour plane flag == 1)
colour plane id u(2)
// extension ...
hps_extension_flag u(l)
if( hps_extension flag )
while( more rbsp data( ) )
hps_extension_data_flag u(l)
§
Syntax Table 3
common_info table( inHpsFlag ) { Descriptor
if( inHpsFlag ) {
rap_pic_flag u(l)
if( rap pic_flag)
idr_pic_flag u(l)
!
pic parameter set id ue(v)
if( thpsIdrPicFlag ) {
if( thps_use_by_multiple aus_flag )
pic_order_cnt_Isb uv)
short_term_ref pic_set_sps_flag u(l)
if( Ishort term ref pic set sps flag)
short term ref pic set( num short term ref pic sets)
else
short_term_ref pic_set_idx u(v)
if( long term ref pics present flag) {
num_long_term_pics ue(v)
for(1=0;1<num long term pics; i++) {
poc_lsb 1t[ 1] uv)
delta_poc_msb_present_flag[ 1] u(l)

if( delta_poc_msb_present flag[i1])
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delta_poc_msb_cycle_It[ 1] ue(v)
used_by_curr_pic_lt_flag[ 1] u(l)
§
§
§
if{ output flag present flag)
pic_output_flag u(l)
if( hpsRapPicFlag ) {
if( 'hps_use_by multiple aus flag )
rap_pic_id ue(v)
no_output_of prior_pics_flag u(l)
§
§
Syntax Table 3a

[0189] The semantics of HPS RBSP for syntax tables 3 and 3a may be the same as the
semantics described above with respect to syntax tables 1-2a, but may also include
additional semantics as follows. The “rap pic_flag” may specify the value of the
variable hpsRapPicFlag. The value of rap_pic_flag may be equal to RapPicFlag of the
coded slice NAL unit referring to the HPS that includes the common _info_table( )
syntax structure. Video encoder 20 and/or video decoder 30 may derive the value of
hpsRapPicFlag as follows. If rap pic_flag is present, video encoder 20 and/or video
decoder 30 may set the value of hpsRapPicFlag to be equal to rap pic_flag. Otherwise,
if rap_pic_flag is not present, video encoder 20 and/or video decoder 30 may set the
value of rap_pic_flag to equal the RapPicFlag value of the coded slice NAL unit for
which the slice header includes the common_info table( ) syntax structure.

[0190] The “idr_pic_flag” may indicate the value of the variable hpsldrPicFlag. Video
encoder 20 and/or video decoder 30 may set the value of idr_pic_flag to be equal to
IdrPicFlag of the coded slice NAL unit referring to the HPS that contains the
common_info_table( ) syntax structure. If rap pic_flag is present and the value is equal
to 0, video decoder 30 may infer the value of idr_pic_flag to be equal to 0. Video
encoder 20 and/or video decoder 30 may derive the value of hpsldrPicFlag as follows.
Ifrap _pic_flag is present, video encoder 20 and/or video decoder 30 may set the value
of hpsldrPicFlag to be equal to the value of idr_pic_flag. On the other hand, if
rap_pic_flag is not present, video encoder 20 and/or video decoder 30 may set the value
of idr_pic_flag is set to be equal to IdrPicFlag of the coded slice NAL unit for which the

slice header includes the common_info table( ) syntax structure.
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[0191] In accordance with examples conforming to the semantics described above with
respect to syntax tables 3 and 3a, slice header syntax may be specified in accordance
with syntax table 4 below. Underlining in syntax table 4 indicates changes from

existing slice header syntax.

slice_header( ) { Descriptor
slice_address ue(v
common_info HPS id ue(v
if (lmultiple hps_enabled flag)
prediction from one HPS flag u(l)
if( !prediction from _one HPS flag) {
reference pic related info HPS id ue(v
if( (weighted pred flag && slice type==P) ||
(weighted bipred ide == 1 && slice type == B))
pred weight table HPS id ue(v
if ( deblocking_filter control present flag )
deblocking para table HPS id ue(v
H
if( dependent slice_enabled flag)
dependent_slice_flag u(l)
if( adaptive loop_filter enabled flag ) {
slice_adaptive loop_filter flag u(l)
if( slice_adaptive loop_filter flag && alf coef in_slice flag)
alf param( )
if( slice_adaptive loop_filter flag && !lalf coef in slice flag)
alf cu_control param( )
H
if( sample adaptive offset enabled flag) {
slice_sample_adaptive_ offset_flag[ 0 ] u(l)
if( slice_sample adaptive offset flag[ 0]) {
slice_sample_adaptive offset_flag[ 1 ] u(l)
slice_sample_adaptive offset_flag[ 2 ] u(l)
H
H
other info override flag u(l)
if (other_info_override_flag) {
if( cabac_init present flag && slice type 1= 1)
cabac_init_flag u(l)
slice_qp_delta se(v)
if( seq loop filter across slices_enabled flag &&
(slice_adaptive loop filter flag || slice sample adaptive offset flag ||
!disable deblocking filter flag))
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slice_loop_filter_across_slices_enabled_flag u(l)
H
if(adaptive_loop filter enabled flag)
aps_id ue(v)
H
if( tiles_or entropy coding sync idc == 1 ||
tiles or_entropy coding sync idc == 2) {
num_entry_point_offsets ue(v)
if( num_entry point offsets >0 ) {
offset_len_minusl ue(v)
for(1=0;1<num_entry point offsets; i++)
entry_point_offset[ 1] uv)
H
H
if( slice_header_extension present flag) {
slice_header_extension_length ue(v)
for(1=0;1 <slice_header extension_ length; i++)
slice_header_extension_data_byte u(8)
H
H
Syntax Table 4
[0192] An alternative set of slice header syntax is illustrated in syntax table 4a below.
slice_header( ) { Descriptor
slice_address ue(v)
if( slice_address 1=0)
dependent slice flag u(l)
if( !dependent slice flag) {
common info hps id ue(v
if{ hps_use by multiple aus_flag ){
pic_order_cnt Isb uv)
if( RapPicFlag )
rap_pic_id ue(v
!
other info override flag u(l)
if( other_info_override flag) {
slice_type ue(v)
if( cabac_init present flag && slice type !=1)
cabac_init_flag u(l)
slice_qp_delta se(v)
if( adaptive loop filter enabled flag)
aps_id ue(v)
if( separate_colour plane flag == 1)
colour_plane_id u2)
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i

if( !multiple hps enabled flag)

prediction from one hps flag

u(l)

if( !prediction from one hps flag) {

reference pic related info hps id

ue(v)

if( ( weighted pred flag && slice type ==P) ||

( weighted bipred idc == 1 && slice type == B))

pred weight table hps id

ue(v)

if ( deblocking_filter control present flag )

deblocking para table hps id

ue(v)

i

if( other info override flag)

if( seq loop filter across slices_enabled flag &&
(‘slice_adaptive loop filter flag || slice sample adaptive offset flag ||
Islice_header disable deblocking filter flag))

slice_loop_filter_across_slices_enabled_flag

u(l)

if( adaptive loop filter enabled flag) {

slice_adaptive_loop_filter flag

u(l)

if( slice_adaptive loop filter flag && alf coef in slice flag)

alf param( )

if( slice_adaptive loop filter flag && !alf coef in slice flag)

alf cu control param()

}

if( sample adaptive offset enabled flag) {

slice_sample_adaptive_offset_flag[ 0 ]

u(l)

if( slice_sample adaptive offset flag[ 0]) {

slice_sample_adaptive_offset_flag[ 1 ]

u(l)

slice_sample_adaptive_offset_flag[ 2 ]

u(l)

}

if{ tiles_or_entropy_coding_sync_idc == 1 ||
tiles or entropy coding sync idc == 2) {

num_entry_point_offsets

ue(v)

if{ num_entry point offsets > 0) {

offset_len_minusl1

ue(v)

for(1=0;1<num entry point offsets; i++)

entry_point_offset[ 1]

uv)

}

if( slice_header extension present flag) {

slice_header_extension_length

ue(v)

for(1=0;1 <slice header extension length; i++)

slice_header_extension_data_byte

u(8)

Syntax Table 4a
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[0193] Yet another alternative of slice header syntax is illustrated in syntax table 4b

below.
slice_header( ) { Descriptor
slice_address ue(v)
if( slice_address == 0)
single slice no hps flag u(l)
_clse
dependent slice flag u(l)
if( single_slice_no hps_flag && !dependent slice flag) {
slice tvpe ue(v)
common_info table( 0)
if( hps use_by multiple_aus flag )
pic_order_cnt_Isb uv)
if( thps_use by multiple_aus flag && RapPicFlag )
rap_pic_id ue(v
reference pic_related info table( )
if( (weighted pred flag && slice type ==P) ||
(weighted_bipred idc == 1 && slice_type == B))
pred_weight table( )
if ( deblocking filter control present flag )
deblocking para table( )
if( cabac_init present flag && slice type !=1)
cabac_init_flag u(l)
slice_qp_delta se(v)
if( seq loop filter across slices_enabled flag &&
(‘slice_adaptive loop filter flag || slice sample adaptive offset flag ||
ldisable deblocking filter flag))
slice_loop_filter_across_slices_enabled_flag u(l)
§
if(adaptive loop_filter_enabled flag)
aps_id ue(v)
t else if( !dependent_slice flag ) {
other info override flag ul)
if (other_info_override flag) {
slice type ue(v
if( cabac_init present flag && slice type !=1)
cabac_init_flag u(l)
slice_qp_delta se(v)
if( seq loop filter across slices_enabled flag &&
(‘slice_adaptive loop filter flag || slice sample adaptive offset flag ||
ldisable deblocking filter flag))
slice_loop_filter_across_slices_enabled_flag u(l)
if(adaptive loop_filter_enabled flag)
aps_id ue(v)
¢
common_info_hps_id ue(v

if( hps_use_by_multiple aus_flag ){




WO 2014/004657
64

PCT/US2013/047865

pic order cnt Isb

E

v

if( RapPicFlag )

rap pic id

=

clVv

i

if (!lmultiple _hps enabled flag)

prediction from one hps flag

1

E

if( !prediction from one hps flag) {

reference pic related info hps id

uciv

if( ( weighted pred flag && slice type ==P) ||
( weighted bipred idc == 1 && slice type == B))

pred weight table hps id

uciv

if ( deblocking_filter control present flag )

deblocking para table hps id

uciv

1
_t

1f( !dependent slice flag) {

if( adaptive loop filter enabled flag) {

slice_adaptive_loop_filter flag

if( slice_adaptive loop filter flag && alf coef in slice flag)

alf param( )

if( slice_adaptive loop filter flag && !alf coef in slice flag)

alf cu control param()

}

if( sample adaptive offset enabled flag) {

slice_sample_adaptive_offset_flag[ 0 ]

u(l)

if( slice_sample adaptive offset flag[ 0]) {

slice_sample_adaptive offset_flag[ 1 ]

u(l)

slice_sample_adaptive_offset_flag[ 2 ]

u(l)

}

if{ tiles_or_entropy_coding_sync_idc == 1 ||
tiles_or_entropy_coding sync idc == 2) {

num_entry_point_offsets

ue(v)

if{ num_entry point offsets > 0) {

offset_len_minusl1

ue(v)

for(1=0;1<num entry point offsets; i++)

entry_point_offset[ 1]

uv)

}

if( slice_header extension present flag) {

slice_header_extension_length

ue(v)

for(1=0;1 <slice header extension length; i++)

slice_header_extension_data_byte

u(8)
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[0194] Still another alternative of slice header syntax is illustrated in syntax table 4¢

below.
slice_header( ) { Descriptor
slice_address ue(v)
if( slice_address == 0)
single slice no hps flag u(l)
_clse
dependent slice flag u(l)
if( Isingle slice no_hps flag && !dependent slice flag )
other info override flag ul)
if( ( single_slice no_hps_flag || other_info override flag)
&& !dependent slice_flag )
slice_type ue(v)
if( single _slice no hps flag && !dependent slice flag ){
common_info table(0 )
reference pic_related info table ()
if( (weighted pred flag && slice type ==P) ||
( weighted bipred idc == 1 && slice type == B))
pred_weight table( )
if ( deblocking_filter control present flag )
deblocking para_table( )
_t
if( ( single_slice no_hps_flag || other_info_override flag )
&& !dependent slice flag ) {
if( cabac_init present flag && slice type !=1)
cabac_init_flag u(l)
slice_qp_delta se(v)
if( adaptive loop filter enabled flag)
aps_id ue(v)
i
if( !single slice no_hps flag && !dependent slice flag) {
common _info hps id ue(v
if (lmultiple hps_enabled flag)
prediction from one hps flag u(l)
if( !prediction_from_one hps flag) {
reference pic related info hps id ue(v
if( ( weighted pred flag && slice type==P) ||
( weighted bipred idc == 1 && slice type == B))
pred weight table hps id ue(v
if ( deblocking_filter control present flag )
deblocking para table hps id ue(v
¢
_t
if{ hps_use by multiple aus_flag ){
pic order cnt Isb uv)
if( RapPicFlag )
rap pic id ue(v
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1

1f( !dependent slice flag) {

u(l)

if( adaptive loop filter enabled flag) {
slice_adaptive_loop_filter flag

if( slice_adaptive loop filter flag && alf coef in slice flag)

alf param( )

if( slice_adaptive loop filter flag && !alf coef in slice flag)

slice_header alf cu control param()

i
u(l)

if( sample adaptive offset enabled flag) {

slice_sample_adaptive_offset_flag[ 0 ]

u(l)

if( slice_sample adaptive offset flag[ 0]) {
u(l)

slice_sample_adaptive_offset_flag[ 1 ]

slice_sample_adaptive_offset_flag[ 2 ]

§
if( ( single_slice no_hps_flag || other_info_override flag )

&& !dependent slice flag &&

seq loop filter across_slices_enabled flag &&
(slice_adaptive loop filter flag || slice sample adaptive offset flag[ 0] ||

Islice_heder disable deblocking filter flag)
ul

(1)

)
slice_loop_filter_across_slices_enabled_flag

1]
2) 4

if( tiles_or_entropy_coding_sync_idc

ue(v)

tiles or entropy coding sync idc
num_entry_point_offsets

ue(v)

if{ num_entry point offsets > 0) {

offset_len_minusl1

for(1=0;1<num entry point offsets; i++)

uv)

entry_point_offset[ 1]

}

if( slice_header extension present flag) {

ue(v)

slice_header_extension_length

u(8)

for(1=0;1 <slice header extension length; i++)

slice_header_extension_data_byte

§
Syntax Table 4¢
[0195] Yet another alternative of slice header syntax is illustrated in syntax table 4d
below.
slice_header( ) { Descriptor
slice_address ue(v)
if( slice_address == 0)
single slice no hps flag u(l)

else
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dependent slice flag

u(D)

if( !single slice no_hps flag && !dependent slice flag )

other info override flag

u(l)

if( ( single slice no hps flag || other info override flag )
&& !dependent slice_flag )

slice type

ue(v)

if(!dependent slice flag) {

if (single slice no hps_flag )

common _info_table(0 )

else

common info hps id

ue(v)

1

if( hps_use_by_multiple aus_flag ){

pic_order cnt Isb

1f{ RapPicFlag )

rap pic id

_t

if( single slice no hps flag && !dependent slice flag ){

reference pic_related info table ()

if( (weighted pred flag && slice type ==P) ||
( weighted bipred idc == 1 && slice type == B))

pred_weight table( )

if ( deblocking filter control present flag )

deblocking para table( )

t

if( ( single_slice no_hps_flag || other_info override flag)
&& !dependent slice_flag) {

if( cabac_init present flag && slice type !=1)

cabac_init_flag

u(l)

slice_qp_delta

se(v)

if( adaptive loop filter enabled flag)

aps_id

ue(v)

}

if( !single slice no hps flag && !dependent slice flag) {

if (!lmultiple _hps enabled flag)

prediction from one hps flag

u(l)

if( !prediction from one hps flag) {

reference pic related info hps id

ue(v)

if( ( weighted pred flag && slice type==P) ||
( weighted bipred idc == 1 && slice type == B))

pred weight table hps id

ue(v)

if ( deblocking_filter control present flag )

deblocking para table hps id

ue(v)

.
1

1f( !dependent slice flag) {

if( adaptive loop filter enabled flag) {

slice_adaptive_loop_filter flag

u(l)
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if( slice_adaptive loop filter flag && alf coef in slice flag)

alf param( )

if( slice_adaptive loop filter flag && !alf coef in slice flag)

slice_header alf cu control param()

i
if( sample adaptive offset enabled flag) {
slice_sample_adaptive offset_flag[ 0 ] u(l)
if( slice_sample adaptive offset flag[ 0]) {
slice_sample_adaptive offset flag[ 1 ] u(l)
slice_sample_adaptive offset_flag[ 2 ] u(l)

§
if( ( single_slice no_hps_flag || other_info_override flag )
&& !dependent slice flag &é&
seq loop filter across_slices_enabled flag &&
(slice_adaptive loop filter flag || slice sample adaptive offset flag[ 0] ||
Islice_heder disable deblocking filter flag)

)

slice_loop_filter_across_slices_enabled_flag u(l)
if( tiles_or_entropy_coding_sync_idc == 1 ||

tiles_or_entropy coding_sync_idc == 2) {

num_entry_point_offsets ue(v)

if{ num_entry point offsets > 0) {

offset_len_minusl ue(v)

for(1=0;1<num entry point offsets; i++)

entry_point_offset[ 1] uv)
}
}
if( slice_header_extension present flag) {
slice_header_extension_length ue(v)
for(1=0;1<slice_header extension length; i++)
slice_header_extension_data_byte u(8)
}
}
Syntax Table 4d

[0196] Slice header semantics may be specified as follows for syntax elements that are
indicated as newly added in syntax tables 4-4d. The “single slice no_hps flag,” if set
equal to 1, may indicate that the current picture includes only one slice, and that all slice
header parameters for the single slice are directly included in the slice header. On the
other hand, if the single slice no_hps_flag is set equal to 0, this syntax element may
specify that the current picture may consist of multiple slices, and that one or more slice
header parameters may be inherited from one or more HPSs. If the
“prediction_from one hps flag” is set equal to 1, this syntax element may specify that

the current slice header includes data inherited from only one HPS. If the
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prediction_from _one HPS flag is set equal to 0, this syntax element may specify that
the current slice header may include data that is inherited from multiple HPSs. When
not present, video encoder 20 and/or video decoder 30 may infer the value of this syntax
clement to be equal to 1.

[0197] The “common_info hps id” may identify the HPS used to inherit the syntax
elements in the common_info table( ) for the current slice header. The

“reference pic related info hps id” may identify the HPS used to inherit the syntax
clements in the reference pic related info_table( ) for the current slice header. If not
present, video encoder 20 and/or video decoder 30 may infer the value of this syntax
element to be equal to common_info HPS id. The “pred weight table hps id” may
identify the HPS used to inherit the syntax elements in the pred weight table( ) for the
current slice header. If not present, video encoder 20 and/or video decoder 30 may infer
the value of this syntax element to be equal to common_info HPS id.

[0198] The “deblocking para table hps id” may identify the HPS used to inherit the
syntax elements in the deblocking_para table( ) for the current slice header. When not
present, video encoder 20 and/or video decoder 30 may infer the value of this syntax
element to be equal to common_info HPS id. Video decoder 30 may determine that
the “other info override flag,” if set equal to 1, indicates that other syntax elements,
including the cabac init flag, the slice qp_delta,

slice loop filter across slices enabled flag, and the aps_id in the slice header are
signalled in the slice header and override any corresponding syntax elements included in
the HPS.

[0199] In various examples in accordance with this disclosure, HPS RBSP syntax may

be specified as per one or both of Syntax Tables 5 and 5a below.

header parameter_set( ) { Descriptor
header_para_set_id ue(v)
base HPS id ue(v)

if (baseCommonlInfoPresent) {

common_info_overridden_flag u(l)

H
if(!common_info overridden flag &&multiple hps enabled flag)

common_info_present_flag u(l)

if (common_info overridden flag || common info present flag)

common_info table()

// above are the info. that is typically shared by all HPSs of a layer of an AU
if (baseRefPicListRelatedInfoPresent& & multiple hps enabled flag) {




WO 2014/004657 PCT/US2013/047865
70

ref_pic_list_related_info_overridden_flag u(l)

b

if (common_info overridden flag || ref pic list related info present flag)

reference pic related info table( )

// prediction weights

if(!common_info overridden flag &&
( (weighted pred flag && slice type ==P) ||
( weighted bipred ide == 1 && slice type == B)))

if (basePredWeightTablePresent && multiple hps enabled flag)

pred_weight_table_overridden_flag

if( ! pred weight table info overridden flag &&multiple hps enabled flag )

pred_weight_table_present_flag u(l)

if (pred weight table info overridden flag || pred weight table present flag )

pred_weight table( )

}

//deblocking

if ( baseDeblockingParaTablePresent&&deblocking filter control present flag )
{

deblocking para_table_overridden_flag

if(!deblocking para table overridden flag && multiple hps enabled flag )

deblocking para_table_present_flag u(l)

if (deblocking para table present flag| |
deblocking para table overridden flag)

deblocking para table( )

H
// other info. that may or may not be common but don’t need to be put in as a new
category to be predicted.
if( cabac_init present flag && slice type 1= 1)
cabac_init_flag u(l)
slice_qp_delta se(v)

if( seq loop filter across slices_enabled flag &&
(slice_adaptive loop filter flag || slice sample adaptive offset flag ||
!disable deblocking filter flag))

slice_loop_filter_across_slices_enabled_flag u(l)

}

if(adaptive_loop filter enabled flag)

aps_id ue(v)

// layer specific information ...

Syntax Table 5
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header parameter set( ) { Descriptor
header_para_set_id ue(v)
base hps id ue(v)
if( baseCommonInfoPresent )
common info overridden flag u(l)

if( lcommon _info overridden flag &&multiple hps enabled flag)

common info present flag u(l)

if( common_info_overridden flag || common_info present flag )

common_info table(1 )

// above are the info. that is typically shared by all HPSs of a layer of an AU

if(baseRefPicListRelatedInfoPresent& & multiple hps enabled flag)

ref pic list related info overridden flag u(l)

if( common_info overridden flag | | ref pic list related info present flag)

reference pic_related info table( )

// prediction weights

if( lcommon_info overridden flag &&
( (weighted pred flag && slice type ==P) ||
( weighted bipred idc == 1 && slice type == B)))

{

1f( basePredWeightTablePresent && multiple hps_enabled flag )

pred weight table overridden flag

if( ! pred weight table info overridden flag &&multiple hps enabled flag)

pred_weight table present flag u(l)

if (pred_weight table info overridden flag || pred weight table present flag)

pred_weight table( )

}

//deblocking

if( baseDeblockingParaTablePresent&&deblocking filter control present flag) {

deblocking para table overridden flag

if(!deblocking para table overridden flag && multiple hps enabled flag)

deblocking para table present flag u(l)

if (deblocking para table present flag | |
deblocking para table overridden flag)

deblocking para table( )

§
// other info. that may or may not be common but don’t need to be put in as a new
category to be predicted.
if( cabac_init present flag && slice type !=1)
cabac_init_flag u(l)
slice_qp_delta se(v)

if( seq loop filter across slices_enabled flag &&
(slice_adaptive loop filter flag || slice sample adaptive offset flag ||
ldisable deblocking filter flag))

slice_loop_filter_across_slices_enabled_flag u(l)
§
if(adaptive loop filter enabled flag)
aps_id ue(v)

// layer specific information ...
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Syntax Table Sa
[0200] Semantics for HPS RBSP syntax specified in Syntax Tables 5 and 5a may be as
follows. Video decoder 30 may use the “base _hps_id” to identify the HPS ID of a
lower layer, which video decoder 30 may, in turn, reuse (partially or in entirety) to
derive a current HPS. Video decoder 30 may derive the value of the
“baseCommonlInfoPresent” syntax element to be 1, if video decoder 30 determines
cither that the common_info table() is present in the base HPS, or reused for the base
HPS. Video decoder 30 may derive the value of the
“baseRefPicListRelatedInfoPresent” syntax element to be 1, if video decoder 30
determines either that the reference pic_related info table( )is present in the base HPS,
or reused for the base HPS. Additionally, video decoder 30 may derive the value of the
“basePredWeightTablePresent” syntax element to be 1, if video decoder 30 determines
cither that the pred weight table( ) is present in the base HPS, or that the
pred weight table( ) is reused for the base HPS.
[0201] Video decoder 30 may derive the value of the
“baseDeblockingParaTablePresent” to be 1, if video decoder 30 determines either that
the deblocking para table( ) is present in the base HPS, or is reused for the base HPS.
Additionally, if video decoder 30 derives the value of the
“common_info overridden flag” syntax element to be equal to 1, then this syntax
element may indicate that common_info_table( ) is present in the current HPS. More
specifically, in this scenario, video decoder 30 may use the common_info_table( ) to
override any information reused from the reference HPS. On the other hand, if video
decoder 30 determines that the value of the common_info overridden flag syntax
element is equal to 0, then this syntax element may indicate that the
common_info_table( ) is not present in the current HPS, when the reference HPS
includes the same portion of information.
[0202] If video decoder 30 determines that the value of the
“ref pic_list related info overridden flag” syntax element is equal to 1, this syntax
element may indicate that the reference pic_related info_table( ) is included in the
current HPS. More specifically, in this scenario, video decoder 30 may use one or more
values of the reference pic related info table( ) to override any corresponding data

reused from the reference HPS. Conversely, if video decoder 30 determines that the
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value of the ref pic_list related info_overridden flag syntax element is equal to 0, then
this syntax element may indicate that the reference pic_related info table( ) is not
present in the current HPS, when the reference HPS includes the corresponding
portion(s) of information. If video decoder 30 determines that the value of the

“pred weight table overridden flag” syntax element is equal to 1, this syntax element
may indicate that the pred_weight table( ) is present in the current HPS. In this
scenario, video decoder 30 may use the pred weight table( ) to override any
corresponding data reused from the reference HPS. Conversely, if video decoder 30
determines that the value of the pred weight table overridden flag is equal to 0, this
syntax element may indicate that the pred _weight table( ) is not present in the current
HPS, when the reference HPS includes the corresponding portion(s) of data.

[0203] Video decoder 30 may determine that the value of the

“deblocking para table overridden flag” syntax element is equal to 1, indicating that
the deblocking para table( ) is present in the current HPS. In this scenario, video
decoder 30 may use data of the deblocking para table( ) to override corresponding data
reused from the reference HPS. On the other hand, if video decoder 30 determines that
the deblocking para table overridden flag is set to a value equal to 0, this syntax
element may indicate that the deblocking para table( ) is not present in the current
HPS, when the reference HPS includes the corresponding portion(s) of data.

[0204] In some scenarios in accordance with this disclosure, video encoder 20 may
signal, and video decoder 30 may receive, syntax elements in the slice header, in a
similar fashion as described above with respect to HPSs. For instance, video decoder 30
may use the value of a flag in a slice header to determine whether a group of syntax
elements is inherited from a specific slice header (e.g. the first slice header) of the view
component of the base view in the same AU. Examples of slice header syntax elements
for base views are illustrated in syntax table 6, and slice header syntax elements for non-
base views are illustrated in syntax table 6a below. Changes from the current HEVC

working draft, in accordance with this disclosure, are denoted by underlining.
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slice_segment_header( ) { Descriptor
first_slice_segment_in_pic_flag u(l)
if( RapPicFlag)
no_output_of prior_pics_flag u(l)
slice_pic_parameter_set_id ue(v)
if( Mirst slice_segment in pic flag) {
if(dependent_slice_segments_enabled flag )
dependent_slice_segment_flag u(l)
slice_segment_address uv)
§
if( !dependent slice segment flag) {
discardable _flag u(l)
for (1=0; 1<num extra slice header bits — I; i++)
slice_reserved_undetermined_flag[ i ] u(l)
slice_type ue(v)
if( output flag present flag)
pic_output_flag u(l)
if( separate_colour plane flag == 1)
colour_plane_id u2)
if( IdrPicFlag ) {
pic_order_cnt_Isb uv)
short_term_ref pic_set_sps_flag u(l)
if( Ishort term ref pic set sps flag)
short term ref pic set( num short term ref pic sets)
else if( num_short term ref pic sets>1)
short_term_ref pic_set_idx u(v)
if( long term ref pics present flag) {
if( num_long_term ref pics sps>0)
num_long_term_sps ue(v)
num_long_term_pics ue(v)
for(1=0;1<num long term sps+num long term pics; i++) {
if(i<num_long term_sps && num long term ref pics_sps
> 1
: It_idx_sps[i] uv)
else {
poc_lsb 1t[ 1] uv)
used_by_curr_pic_lIt_flag[ 1] u(l)
§
delta_poc_msb_present_flag[ 1] u(l)
if( delta_poc_msb_present flag[i])
delta_poc_msb_cycle It[ 1] ue(v)
§
}
if( sps_temporal mvp enable flag )
slice_temporal_mvp_enable_flag u(l)
§
if( sample_adaptive_offset enabled flag) {
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slice_sao_luma_flag u(l)
slice_sao_chroma_flag u(l)
§
if(slice type == P || slice_type == B) {
num_ref_idx_active_override_flag u(l)
if( num ref idx active override flag) {
num_ref_idx_10_active_minus1 ue(v)
if( slice type == B)
num_ref_idx_I1_active_minus1 ue(v)
§
if( lists modification present flag && NumPocTotalCurr > 1)
ref pic lists modification( )
if( slice type==B)
mvd_l1_zero_flag u(l)
if( cabac_init present flag)
cabac_init_flag u(l)
if( slice_temporal mvp enable flag) {
if( slice type == B)
collocated_from_l10_flag u(l)
if( ( collocated from 10 flag &&
num_ref idx 10 active minusl >0)
|| (!collocated from 10 flag &&
num_ref idx 11 active minusl >0))
collocated_ref_idx ue(v)
§
if( ( weighted pred flag && slice type==P) ||
( weighted bipred flag && slice type == B))
pred_weight table( )
five_minus_max_num_merge_cand ue(v)
§
slice_qp_delta se(v)
if( pps_slice chroma qp offsets present flag) {
slice_cb_qp_offset se(v)
slice_cr_qp_offset se(v)
§
if( deblocking_filter control present flag ) {
if( deblocking_filter override enabled flag)
deblocking_filter override_flag u(l)
if( deblocking_filter override flag ) {
slice_disable_deblocking_filter flag u(l)
if( Islice_disable deblocking filter flag ) {
slice_beta_offset_div2 se(v)
slice_tc_offset_div2 se(v)
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if( loop_filter across slices enabled flag &&
(slice sao luma flag || slice sao chroma flag ||
Islice_disable deblocking filter flag))
slice_loop_filter_across_slices_enabled_flag u(l)
§
if( tiles_enabled flag || entropy coding sync enabled flag) {
num_entry_point_offsets ue(v)
if( num_entry point offsets >0 ) {
offset_len_minusl ue(v)
for(1=0;1<num entry point offsets; i++)
entry_point_offset[ 1] uv)
§
§
if( slice_segment header extension present flag) {
slice_segment_header_extension_length ue(v)
for(1=0;1<slice_segment header extension length; i++)
slice_segment_header_extension_data_byte[ i ] u(8)
§
byte_alignment( )
§

Syntax Table 6
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slice_segment_header( ) { Descriptor
first_slice_segment_in_pic_flag u(l)
common_info_pred_flag u(l)
if( lcommon_info_pred flag ) {
if( RapPicFlag )
no_output_of _prior_pics_flag u(l)
slice_pic_parameter_set_id ue(v)
4
if( irst_slice_segment in_ pic flag) {
if(dependent_slice_segments_enabled flag )
dependent_slice_segment_flag u(l)
slice_segment_address uv)
§
if( !dependent slice segment flag) {
discardable_flag u(l)
for (1=0; 1<num extra slice header bits— I; i++)
slice_reserved_undetermined_flag[ i ] u(l)
slice_type ue(v)
if( separate_colour plane flag == 1)
colour_plane_id u2)
if(_cabac_init_present flag )
cabac_init flag u(l)
if( lcommon_info_pred_flag )
common_info_table()
ref pic_list_related_info_pred_flag u(l)
if( Iref pic_list _related _info_pred _flag )
ref pic_list_related_info_table()
if( (weighted_pred_flag & & slice type==P) ||
( weighted bipred flag && slice type == B)) {
pred_weight _pred_flag u(l)
if( !pred_weight _pred flag )
pred_weight table()
4
deblocking para_table pred flag u(l)
if( !deblocking para_table _pred_flag )
deblocking para_table()
if( sample_adaptive_offset_enabled flag) {
slice sao_luma_flag u(l)
slice sao chroma flag u(l)
—
slice gp delta se(v)
if( pps_slice_chroma_qp_offsets_present_flag ) {
slice ¢cb gp offset se(v)
slice_er_gp_offset se(v)

i
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if( loop_filter across_slices enabled flag &&

(slice sao luma flag || slice sao chroma flag ||
Islice_disable deblocking filter flag))

slice_loop_filter_across_slices_enabled_flag u(l)

§
if( tiles_enabled flag || entropy coding sync enabled flag) {

num_entry_point_offsets ue(v)

if( num_entry point offsets > 0) {

offset_len_minusl ue(v)

for(1=0;1<num entry point offsets; i++)

entry_point_offset[ 1] uv)
}
}
if( slice_segment header extension_present flag ) {
slice_segment_header_extension_length ue(v)
for(1=0;1<slice_segment header extension_length; i++)
slice_segment_header_extension_data_byte[ i ] u(8)
}
byte_alignment( )
}
Syntax Table 6a

[0205] Semantics corresponding to the slice header syntax elements of syntax tables 6
and 6a may be defined as follows. If video decoder 30 determines that the
“discardable flag” has a value equal to 1, this syntax element may specify that video
decoder 30 does not require a view component in order to decode any other view
components with layer id greater than the layer id of the current view component,
whether directly (e.g., through inter-view prediction by view components in the current
AU), or indirectly (e.g., through inter prediction and inter-layer prediction associated
with view components in other AUs). Conversely, if video decoder 30 determines that
the discardable flag has a value equal to 0, this syntax element may specify that video
decoder 30 requires the view component in order to decode at least one other view
component with layer id greater than the layer id of the current view component,
whether directly or indirectly.

[0206] If video decoder 30 determines that the value of the “common_info pred flag”
syntax element is equal to 0, this syntax element may indicate that the syntax elements
in the common_info_table(), the “no_output prior pics” flag, and the
“slice_pic_parameter set id” are not inherited from any slice header of a base view, and
are explicitly present in the slice header. Conversely, if video decoder 30 determines
that the common_info pred flag is set to a value equal to 1, this syntax element may

indicate that syntax elements in the common_info_table(), the
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no_output_prior pics flag, and the slice pic parameter set id are the same as in the
first slice of the base view of the same AU.

[0207] If video decoder 30 determines that the value of the

“ref pic_list related info pred flag” is equal to 0, this syntax element may indicate
that the syntax elements in the ref pic_list related info_table() are not inherited from
any slice header of a base view, and more specifically, that the syntax elements in the
are explicitly present ref pic list related info table() in the slice header. On the other
hand, if video decoder 30 determines that the “ref pic_list related info pred flag” is
set to a value equal to 1, this syntax element may indicate that one or more syntax
elements in the ref pic_list related info_table() are the same as in the first slice of the
base view of the same AU. If video decoder 30 determines that the value of the

“pred weight pred flag” syntax element is equal to 0, this syntax element may indicate
that the syntax elements in the pred weight table() are not inherited from any slice
header of a base view, and that the syntax elements in the pred weight table() are
explicitly included in the slice header. On the other hand, if video decoder 30
determines that the value of the pred weight pred flag is equal to 1, this syntax
element may indicate that one or more syntax elements in the pred weight table() are
the same as in the first slice of the base view of the same AU.

[0208] If video decoder 30 determines that the value of the

“deblocking para table pred flag” syntax element is equal to 0, this syntax element
may indicate that the syntax elements in the deblocking para table() are not inherited
from any slice header of a base view, and, more specifically, that the syntax elements in
the deblocking para table() are explicitly present in the slice header. Conversely, if
video decoder 30 determines that the deblocking para table pred flag is set to a value
equal to 1, this syntax element may indicate that one or more syntax elements in the
deblocking para table() are the same as in the first slice of the base view of the same
AU.

[0209] Syntax table 7 below illustrates common information in accordance with syntax

tables 6 and 6a described above, with changes denoted by underlining.
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common_info_table() {
if( output flag_present flag )
pic output flag u(l)
if( HdrPicFlag ) {
pic_order_cnt_Isb uv)
short_term_ref pic_set_sps_flag u(l)

if( Ishort term ref pic set sps flag)

short term ref pic set( num short term ref pic sets)

else if( num_short term ref pic sets>1)

short_term_ref pic_set_idx u(v)

if( long term ref pics present flag) {

if{ num long term ref pics sps>0)

num_long_term_sps ue(v)

num_long_term_pics ue(v)

for(1=0;1<num long term sps +num long term pics; i++) {

if( i<num_long term sps && num_long term ref pics sps>

1
: It idx_sps[i] uv)

else {
poc_lsb_1t[ 1] uv)
used_by_curr_pic_lt flag[i] u(l)

}

delta_poc_msb_present_flag[ i ] u(l)

if( delta_poc_msb_present flag[i])
delta_poc_msb_cycle It[ 1] ue(v)

}
}
}
}
Syntax Table 7

[0210] The existing semantics of each syntax element (‘x”) in syntax table 7 (also
referred to herein as common_info_table()) may apply with the following addition: if
the value of the “common_info pred flag” is zero, video decoder 30 may infer the
value of x to be equal to the value of the syntax element x in the first slice header of the
base view of the same AU.

[0211] An example of reference picture list information, in accordance with syntax

table 7, is illustrated in syntax table 8 below, with changes denoted by underlining.
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ref pic list related info table() {
if( !IdrFlag )
if(_sps_temporal mvp_enable flag )

slice temporal mvp enable fla u(l)
if( slice_type == P || slice_type == B) {

num_ref idx_active_override_flag u(l)

if{ num ref idx active override flag) {

num_ref_idx_l0_active_minusl ue(v)

if( slice_type == B)

num_ref_idx_I1_active_minusl ue(v)

i
if( lists modification present flag && NumPocTotalCurr > 1)

ref pic lists modification()
if( slice type==B)
mvd_l1_zero_flag u(l)

if(_slice temporal mvp enable flag) {

if( slice_type == B)

collocated_from_l10_flag u(l)

if( ( collocated from 10 flag && num ref idx 10 active minusl >
0)
|| (!collocated from 10 flag &&
num_ref idx 11 active minusl >0))
collocated_ref_idx ue(v)

}

five_minus_max_num_merge_cand ue(v)

Syntax Table 8
[0212] The existing semantics of each syntax element (‘x’) in syntax table 8, or
“ref pic_list related info_ table(),” may apply with the following addition: if video
decoder 30 determines that the value of the “ref pic_list related info pred flag” syntax
element is zero, video decoder 30 may infer the value of x to be equal to the value of the
syntax element x in the first slice header of the base view of same AU.
[0213] Syntax table 9 below specifies examples of deblocking parameters in accordance

with the semantics of syntax table 8.
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deblocking para_table() {

if( deblocking_filter control present flag) {

if( deblocking_filter override enabled flag)

deblocking_filter override_flag u(l)

if( deblocking filter override flag) {

S slice_disable_deblocking_filter_flag u(l)
if( !slice_disable deblocking filter flag) {
slice_beta_offset_div2 se(v)
slice_tc_offset_div2 se(v)

Syntax Table 9
[0214] In examples, the existing semantics of each syntax element (‘x”) in syntax table
9, or deblocking para_table() above, applies with the following addition: if video
decoder 30 determines that the value of the “deblocking para pred flag” is zero, the
value of x is inferred to be equal to the value of the corresponding syntax element x in
the first slice header of the base view of the same AU. According to some aspects of
this disclosure, the existing semantics of each syntax element x in pred_weight table()
applies with the following addition: if video decoder 30 determines that the value of the
“pred weight pred flag” is zero, video decoder 30 may infer the value of x to be equal
to the value of the corresponding syntax element x in the first slice header of the base
view of the same AU.
[0215] In some instances, video encoder 20 and/or video decoder 30 may replace the
syntax elements common_info pred flag, ref pic_list related info pred flag,
pred weight pred flag and deblocking para pred flag with
common_info pred address plusl, ref pic_list related info pred address plusl,
pred weight pred address plusl and deblocking para pred address plusl,
respectively. In these examples, the new syntax elements point to the slice segment
headers of the base view from which the original syntax elements in the respective
tables are inherited. More specifically, if video decoder 30 determines that the
common_info pred address plusl syntax element is set to a value equal to zero, this
syntax element may indicate that the syntax elements in the common_info_table() are
not inherited from any slice header of a base view, and, more specifically, that the
syntax elements in the common_info_table() are explicitly included in the slice header.

On the other hand, if video decoder 30 determines that the
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common_info pred address plusl syntax element is set to any non-zero value, then
video decoder 30 may determine that the common_info_pred address plusl syntax
element, minus 1, indicates the address of the slice segment in the base view associated
with a slice segment header from which video decoder 30 derives the respective values
of the syntax elements in the common_info_table().

[0216] Video decoder 30 may determine, if the

“ref pic_list related info pred address plusl” syntax element is set to a value equal to
zero, that this syntax element indicates that the syntax elements in the

ref pic_list related info table() are not inherited from any slice header of a base view,
and rather, that the syntax elements of the ref pic list related info table() are explicitly
included in the slice header. On the other hand, if video decoder 30 determines that the
“ref pic_list related info pred address plusl” syntax element is set to any non-zero
values, then video decoder may determine that the

“ref pic_list related info pred address plusl” syntax element, minus 1 indicates the
address of the slice segment in the base view of the AU, that is associated with a slice
segment header from which video decoder 30 derives the values of the various syntax
clements in the ref pic_list related info_table().

[0217] In examples where video decoder 30 determines that the value of the

“pred weight pred address plusl” syntax element is equal to zero, video decoder 30
may determine that this syntax element indicates that the syntax elements in the
pred_weight table() are not inherited from any slice header of a base view, and that
rather, these syntax elements are explicitly included in the slice header. On the other
hand, if video decoder 30 determines that the pred weight pred address plusl syntax
element is set to any non-zero value, then video decoder may determine that the value of
pred weight pred address plusl, minus 1, indicates the address of the slice segment in
the base view associated with a slice segment header that video decoder 30 uses to
derive values of the syntax elements in the pred weight table().

[0218] If video decoder 30 detects that the value of the

“deblocking para table pred address plusl” syntax element is equal to zero, then
video decoder 30 may determine that this syntax element indicates that the syntax
elements in the deblocking para table() are not inherited from any slice header of a
base view, but rather, that these syntax elements are explicitly present in the slice
header. However, if video decoder 30 detects that

deblocking para table pred address plusl is set to any non-zero values, video decoder
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30 may determine that the value of the deblocking para table pred address plusl
syntax element, minus 1, indicates the address of the slice segment in the base view
associated with a slice segment header that video decoder 30 uses to derive the values of
the various syntax elements in the deblocking para_table().

[0219] In some instances, video decoder 30 may detect that one or more syntax
elements of the common_info_table(), ref pic_list related info_table(), or

deblocking para table() are explicitly present outside of the respective table, and thus,
such syntax elements are not inherited. In some instances, video decoder 30 may not
inherit the slice_pic_parameter set id syntax element, but rather, this syntax element
may always be present in the slice header. In some instances, the
slice_pic_parameter set id syntax element may be present as part of the

ref pic_list related info table(), and thus, video encoder 20 and/or video decoder 30
may inherit the slice pic_parameter set id syntax element.

[0220] Video decoder 30 may, in some instances, detect a flag may be present in the
video parameter set (VPS) extension, the flag indicating whether slice header
inheritance is enabled for all operation points, or otherwise, enabled for each given
operation point, or for a given layer. In some examples, video encoder 20 may signal a
syntax element in the VPS, to indicate to video decoder 30, from which slice header in
the base view to inherit syntax elements in the common_info_table(),

ref pic_list related info_table(), pred weight table() and deblocking para_table().
[0221] In some examples, video encoder 20 may signal a syntax element in a slice
header to indicate, to video decoder 30, whether to inherit portions of the slice header in
the current view from the base view, or from the first dependent view as defined in the
VPS extension. In some examples, video encoder 20 may signal, for each non-base
view, a syntax element in the VPS to assist video decoder 30 to determine from which
view to inherit the syntax elements in the slice segment header.

[0222] In some examples, video encoder 20 may signal the discardable flag and the
loop of slice reserved undetermined flag[ i ] in the slice header. In other words, video
encoder 20 may signal these syntax elements, without the signaling being conditioned
on the value of the dependent slice segment flag being equal to 1, and before any
entropy coded (i.e., ue(v)-coded ) syntax elements (e.g., immediately after the syntax
clement first_slice segment in pic flag). Additionally, according to some such
examples, video encoder 20 may move the syntax element num_extra slice _header bits

from the PPS to the VPS, and reuse/repeat the corresponding value in the SPS.
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[0223] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, various computer-
readable storage devices, or communication media including any medium that facilitates
transfer of a computer program from one place to another, e.g., according to a
communication protocol. In this manner, computer-readable media generally may
correspond to (1) tangible computer-readable storage media which is non-transitory or
(2) a communication medium such as a signal or carrier wave. Data storage media may
be any available media that can be accessed by one or more computers or one or more
processors to retrieve instructions, code and/or data structures for implementation of the
techniques described in this disclosure. A computer program product may include a
computer-readable medium.

[0224] By way of example, and not limitation, such computer-readable storage media
can comprisc RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0225] Instructions may be executed by one or more processors, such as one or more

digital signal processors (DSPs), general purpose microprocessors, application specific
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integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0226] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0227] Various examples have been described. These and other examples are within the

scope of the following claims.
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WHAT IS CLAIMED IS:

1. A method of decoding encoded video data, the method comprising:

determining a header parameter set that includes one or more syntax elements
specified individually by each of one or more slice headers, the header parameter set
being associated with a header parameter set identifier (HPS ID); and

determining one or more slice headers that reference the header parameter set to
inherit at least one of the syntax elements included in the header parameter set,

wherein the slice headers are each associated with a slice of the encoded video
data, and

wherein the slice headers each reference the header parameter set using the HPS

ID.

2. The method of claim 1,

wherein determining the header parameter set comprises determining the header
parameter set for an access unit that includes one or more slice headers, and

wherein the header parameter set for the access unit includes the one or more
syntax elements for any slices associated with the access unit but not for any slices

associated with a different access unit.

3. The method of claim 1,

wherein determining the header parameter set comprises determining the header
parameter set for an access unit different than an access unit that includes the header
parameter set and the one or more slice headers, and

wherein the header parameter set determined for the access unit includes the one
or more syntax elements for any slices associated with one or both of the access unit
different than the access unit that includes the header parameter set and the access unit

that includes the header parameter set.

4. The method of claim 1, wherein determining the header parameter set comprises

determining the header parameter set for a first layer of the encoded video data.

5. The method of claim 4, wherein determining the header parameter set for a first

layer of the encoded video data comprises determining the header parameter set for a
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first layer of the encoded video data that inherits syntax elements specified in a header

parameter set for a second layer of the encoded video data.

6. The method of claim 5, wherein the second layer is a lower layer than the first
layer.
7. The method of claim 5, wherein determining the one or more slice headers

comprises determining a slice header that references at least one of the syntax elements
included within the header parameter set for the first layer and at least one syntax

element included within the header parameter set for the second layer.

8. The method of claim 5, wherein the first layer of the encoded video data
provides video data that augments the second layer of the encoded video data to enable

higher resolutions of the encoded video data.

9. The method of claim 5, wherein the first layer of the encoded video data
provides a different view than a view provided by the second layer of the encoded video

data.

10. A method of encoding video data, the method comprising;:

generating a header parameter set that includes one or more syntax elements
specified individually by each of one or more slice headers, the header parameter set
being associated with a header parameter set identifier (HPS ID); and

generating one or more slice headers to reference the header parameter set to
inherit at least one of the syntax elements included in the header parameter set,

wherein the slice headers are each associated with a slice of the encoded video
data, and

wherein the slice headers each reference the header parameter set using the HPS

ID.

11.  The method of claim 10, wherein generating the header parameter set comprises
generating the header parameter set for an access unit that includes the one or more slice

headers, and
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wherein the header parameter set generated for the access unit includes the one
or more syntax elements for any slices associated with the access unit but not for any
slices associated with a different

access unit.

12. The method of claim 10,

wherein generating the header parameter set comprises generating the header
parameter set for an access unit different than an access unit that includes the header
parameter set and the one or more slice headers, and

wherein the header parameter set generated for the access unit includes the one
or more syntax elements for any slices associated with one or both of the access unit
different than the access unit that includes the header parameter set and the access unit

that includes the header parameter set.

13.  The method of claim 10, wherein generating the header parameter set comprises

generating the header parameter set for a first layer of the video data.

14.  The method of claim 13, wherein generating the header parameter set for a first
layer of the video data comprises generating the header parameter set for a first layer of
the video data that inherits syntax elements specified in a header parameter set for a

second layer of the video data.

15.  The method of claim 14, wherein the second layer is a lower layer than the first
layer.
16.  The method of claim 14, wherein generating the one or more slice headers

comprises generating a slice header that references at least one of the syntax elements
included within the header parameter set for the first layer and at least one syntax

element included within the header parameter set for the second layer.

17.  The method of claim 14, wherein the first layer of the video data provides video
data that augments the second layer of the video data to enable higher resolutions of the

video data.
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18.  The method of claim 14, wherein the first layer of the video data provides a

different view than a view provided by the second layer of the video data.

19. A device for coding video data, the device comprising a video coder configured
to:

determine a header parameter set that includes one or more syntax elements
specified individually by each of one or more slice headers, the header parameter set
being associated with a header parameter set identifier (HPS ID); and

determine one or more slice headers that reference the header parameter set to
inherit at least one of the syntax elements included in the header parameter set,

wherein the slice headers are each associated with a slice of encoded video data,

and

wherein the slice headers each reference the header parameter set using the HPS
ID.
20.  The device of claim 19, wherein the device comprises at least one of:

an integrated circuit;
a microprocessor; and

a communication device that comprises the video coder.

21. The device of claim 19,

wherein, to determine the header parameter set, the video coder is configured to
determine the header parameter set for an access unit that includes one or more slice
headers, and

wherein the header parameter set for the access unit includes the one or more
syntax elements for any slices associated with the access unit but not for any slices

associated with a different access unit.
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22. The device of claim 19,

wherein, to determine the header parameter set, the video coder is configured to
determine the header parameter set for an access unit different than an access unit that
includes the header parameter set and the one or more slice headers, and

wherein the header parameter set determined for the access unit includes the one
or more syntax elements for any slices associated with one or both of the access unit
different than the access unit that includes the header parameter set and the access unit

that includes the header parameter set.

23. The device of claim 19, wherein, to determine the header parameter set, the
video coder is configured to determine the header parameter set for a first layer of the

encoded video data.

24.  The device of claim 23, wherein, to determine the header parameter set for a first
layer of the encoded video data, the video coder is configured to determine the header
parameter set for a first layer of the encoded video data that inherits syntax elements

specified in a header parameter set for a second layer of the encoded video data.

25.  The device of claim 24, wherein the second layer is a lower layer than the first
layer.
26. The device of claim 24, wherein, to determine the one or more slice headers, the

video coder is configured to determine a slice header that references at least one of the
syntax elements included within the header parameter set for the first layer and at least

one syntax element included within the header parameter set for the second layer.

27.  The device of claim 24, wherein the first layer of the encoded video data
provides encoded video data that augments the second layer of the encoded video data

to enable higher resolutions of the encoded video data.

28.  The device of claim 24, wherein the first layer of the encoded video data
provides a different view than a view provided by the second layer of the encoded video

data.
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29.  The device of claim 19, wherein the video coder comprises a video decoder

configured to entropy decode the encoded video data.

30.  The device of claim 19, wherein the video coder comprises a video encoder

configured to entropy encode video data to generate the encoded video data.

31. A computer-readable storage medium having stored thereon instructions that,
when executed, cause a programmable processor of a computing device to:
determine a header parameter set that includes one or more syntax elements
specified individually by each of one or more slice headers, the header parameter set
being associated with a header parameter set identifier (HPS ID); and
determine one or more slice headers that reference the header parameter set to
inherit at least one of the syntax elements included in the header parameter set,

wherein the slice headers are each associated with a slice of encoded video data,

and

wherein the slice headers each reference the header parameter set using the HPS
ID.
32. A device for coding video data, the device comprising:

means for determining a header parameter set that includes one or more syntax
elements specified individually by each of one or more slice headers, the header
parameter set being associated with a header parameter set identifier (HPS ID); and

means for determining one or more slice headers that reference the header
parameter set to inherit at least one of the syntax elements included in the header
parameter set,

wherein the slice headers are each associated with a slice of the encoded video
data, and

wherein the slice headers each reference the header parameter set using the HPS

ID.
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