Uı	United States Patent [19]		[11]	Patent Number:	5,004,770
Cor	tolano et	al.	[45]	Date of Patent:	Apr. 2, 1991
[54]		RIC SUBSTRATES STABILIZED SUBSTITUTED HINDERED	[56]	References Cite U.S. PATENT DOCU	
[75]		Frank P. Cortolano, Valhalla; Raymond Seltzer, New City; Ambelal R. Patel, Ardsley, all of N.Y.	4,344 4,426 4,426 4,665 4,691	,471 1/1984 Berner ,472 1/1984 Berner ,185 5/1987 Winter et al.	
[73]	Assignee:	Ciba-Geigy Corporation, Ardsley, N.Y.		OTHER PUBLICAT	
[21]	Appl. No.:	416,621		tokh et al., "Development V, 41–70, (1982).	ts in Polymer Stabili-
[22]	Filed:	Oct. 3, 1989		Examiner—Kriellion Mor Agent, or Firm—Harry F	
	Rela	ted U.S. Application Data	[57]	ABSTRACT	
[63]	Continuation abandoned.	on-in-part of Ser. No. 259,955, Oct. 19, 1988,		amines based on various containing heterocyclic r	· · · ·

524/100, 103

[51] Int. Cl.⁵ C08K 5/3435

[52] U.S. Cl. 524/99; 524/91;

[58] Field of Search 524/91, 95, 99, 102,

524/99; 524/100; 524/102; 524/103; 524/394;

23 Claims, No Drawings

hindered nitrogen atom on the ring is substituted with

OH or OR substituents and the 4-position of the ring is substituted with a diversity of substituents are effective

in protecting a variety of non-polyolefin substrates

against the adverse effects of light, heat and oxygen.

POLYMERIC SUBSTRATES STABILIZED WITH N-SUBSTITUTED HINDERED AMINES

RELATED APPLICATION

This application is a continuation-in-part of application Ser. No. 259,955, filed Oct. 19, 1988 now abandoned.

It is well known that polymeric substrates undergo 10 and R_1 being defined hereinafter. progressive changes in their physical properties, including color changes, embrittlement and loss of mechanical properties, when exposed to processing conditions or to sunlight or other sources of ultraviolet radiation. Retardation of these deleterious effects has been achieved 15 use of a derivative having one of formulae A to P utilizing a broad range of additives, including those exhibiting light-stabilizing properties, such additives including benzophenones, benzotriazoles, substituted benzoic acid esters, nickel complexes, aromatic oxamides and sterically hindered amines.

The latter group of chemicals and their stabilizing activity in a wide variety of substrates are likewise well known and have been described in a broad range of patents and technical literature. In view of the extensive 25 nature of such art, reference is made to U.S. Pat. Nos. 4,426,471, 4,426,472, 4,344,876, 4,590,231 and U.S. Pat. No. 4,691,015 for a summary of representative hindered amine light stabilizers.

It has now been surprisingly determined that the 30 polymeric substrates recited herein can be effectively stabilized by the incorporation therein of the indicated N-OH and N-OR₁ substituted hindered amines. Thus, these compounds serve to protect the polymeric materials against the adverse effects of actinic, oxidative 35 and thermal degradation. In particular, they serve to reduce color formation resulting from processing conditions and are especially effective in stabilizing organic materials against the degradative effects of actinic stimuli. Since these stabilizers are considerably less basic than conventional hindered amines, they also have little or no detrimental effect on the thermal stability of the polymer during processing at elevated temperatures. Certain effects are specifically to be noted in polyvinyl 45 chloride formulations wherein conventional hindered amines adversely impact on thermal stability during processing. Thus, these PVC formulations contain various organotin and/or mixed metal heat stabilizers for the specific purpose of providing thermal stability dur- 50 ing processing and subsequent use. The conventional hindered amines added to provide light stability negate at least a portion of the thermal stability thereby resulting in discolored and/or degraded products. In contrast, the substitution pattern of the instant compounds, particularly the -NOAlkyl compounds, provides the desired long term light stability without a substantial concomitant negation of thermal stability. Improvements are also to be seen in weatherability during outdoor exposure. In addition, the instant compounds significantly reduce the pigment interactions such as color drift and flocculation encountered with the conventional hindered amines when present in pigmented substrates.

The substituted hindered amine compounds applicable for use in this invention contain a group of the for-

wherein the N-substituent is -OH or -OR1 with R

Some are known compounds while others are claimed in copending applications Ser. No. 99,414, 99,418 and 99,419 now abandoned.

More particularly, the instant invention relates to the

$$\begin{bmatrix}
RCH_2 & CH_3 & R \\
R_1O - N & & & \\
RCH_2 & CH_3 & & & \\
\end{bmatrix}_m$$
(A)

$$\begin{bmatrix}
RCH_2 & CH_3 & R \\
R_1O - N & & & \\
RCH_2 & CH_3 & & & \\
RCH_2 & CH_3 & & & & \\
\end{bmatrix}$$
(B)

$$\begin{array}{c|c}
RCH_2 CH_3 & R \\
R_1O-N & O-R_5 \\
RCH_2 CH_3 & R
\end{array}$$
(C)

$$\begin{bmatrix} RCH_2 CH_3 & R & R_6 \\ N-C=0 \\ R_1O-N & RCH_2 CH_3 & 0 \end{bmatrix}_n$$
(D)

$$\begin{array}{c} \text{RCH}_2 \text{ CH}_3 & \text{R} \\ \\ \text{R}_1\text{O}-\text{N} & \\ \\ \text{RCH}_2 \text{ CH}_3 & \\ \end{array} \qquad \begin{array}{c} \text{(E)} \\ \\ \text{Q}_1-\text{E}-\text{CO}-\text{NH}-\text{CH}_2-\text{OR}_{10} \\ \\ \end{array}$$

$$(F)$$

$$(CO)$$

$$Q_1$$

$$CH_3$$

$$RCH_2$$

$$OR_1$$

$$(F)$$

-continued

$$T_{4} = \begin{bmatrix} T_{5} & T_{6} \\ M & \\ N & N - OR_{1} \\ Y & \\ T_{5} & T_{6} \end{bmatrix}_{n}$$

$$\begin{bmatrix} T_5 & T_6 \\ R_1O-N & COO \\ T_5 & T_6 \end{bmatrix}_n$$

$$N(CH_2COO - T_5 T_6 N - OR_1)_3$$

$$\begin{bmatrix} T_5 & & & \\ T_6 & & & & \\ R_1O - N & & & N - CO \\ & & & & T_5 & \\ & & & & & T_6 & \\ \end{bmatrix}_n$$

$$R_{1}O-N$$
 $E_{1}-E_{2}$
 $E_{1}-E_{2}$

(I) 20 $\begin{bmatrix} H_{3}C & CH_{2}R & R & C \\ R_{1}O - N & N & C \\ H_{3}C & CH_{2}R & C \\ \end{bmatrix} E_{6}$

(J) wherein

35

(K)

R is hydrogen or methyl,

 R_1 is independently hydrogen, $C_1\text{--}C_{18}$ alkyl, $C_2\text{--}C_{18}$ alkenyl, $C_2\text{--}C_{18}$ alkynyl, $C_5\text{--}C_{12}$ cycloalkyl, $C_6\text{--}C_{10}$ bicycloalkyl, $C_5\text{--}C_8$ cycloalkenyl, $C_6\text{--}C_{10}$ aryl, $C_7\text{--}C_9$ aralkyl, $C_7\text{--}C_9$ aralkyl substituted by alkyl or aryl, or

0 || -C-

40 wherein D is C₁-C₁₈ alkyl, C₁-C₁₈ alkoxy, phenyl, phenyl substituted by hydroxy, alkyl or alkoxy, or amino or amino mono- or disubstituted by alkyl or phenyl;

m is 1-4,

when m is 1,

R₂ is hydrogen, C₁-C₁₈ alkyl optionally interrupted by one or more oxygen atoms, C₂-C₁₂ alkenyl, C₆-C₁₀ aryl, C₇-C₁₈ aralkyl, glycidyl, a monovalent acyl radisolatic of an aliphatic, cycloaliphatic, araliphatic or aromatic carboxylic acid, or of a carbamic acid, preferably an acyl radical of an aliphatic carboxylic acid having 2-18 C atoms, of a cycloaliphatic carboxylic acid having 5-12 C atoms or of an aromatic carboxylic acid have 7-15 C atoms, or

(M)
$$C(CH_3)_3$$
 $C(CH_3)_3$ $C(CH_3)_3$ $C(CH_3)_3$ $C(CH_3)_3$ $C(CH_3)_3$ $C(CH_3)_3$ $C(CH_3)_3$ $C(CH_3)_3$ $C(CH_3)_3$

wherein x is 0 or 1, or

-continued

wherein y is 2-4;

when m is 2,

R2 is C1-C12 alkylene, C4-C12 alkenylene, xylylene, a divalent acyl radical of an aliphatic, cycloaliphatic, araliphatic or aromatic dicarboxylic acid or of a dicarbamic acid, preferably an acyl radical of an aliphatic dicarboxylic acid having 2-18 C atoms, of a cycloaliphatic or aromatic dicarboxylic acid having 8-14 C atoms, or of an aliphatic, cycloaliphatic or aromatic dicarbamic acid having 8-14 C atoms;

wherein D₁ and D₂ are independently hydrogen, an alkyl radical containing up to 8 carbon atoms, an aryl or aralkyl radical including 3,5-di-t-butyl-4-hydroxybenzyl radical, D₃ is hydrogen, or an alkyl or alkenyl radical containing up to 18 carbon atoms, and d is 0-20;

when m is 3, R2 is a trivalent acyl radical of an aliphatic, unsaturated aliphatic, cycloaliphatic, or aro- 40 matic tricarboxylic acid;

when m is 4, R₂ is a tetravalent acyl radical of a saturated or unsaturated aliphatic or aromatic tetracarboxylic acid including 1,2,3,4-butanetetracarboxylic acid, 1,2,4,5-pentanetetracarboxylic acid;

p is 1, 2 or 3,

R₃ is hydrogen, C₁--C₁₂ alkyl, C₅-C₇ cycloalkyl, C_{7-C9} aralkyl, C_{2-C18} alkanoyl, C_3-C_5 alkenoyl or benzoyl;

when p is 1,

R₄ is hydrogen, C₁-C₁₈ alkyl, C_{5-C7} cycloalkyl, C2-C8 alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, aryl, aralkyl, or it is glyc- 55 idyl, a group of the formula -CH2-CH(OH)-Z or of the formula -CO-Z or -CONH-Z wherein Z is hydrogen, methyl or phenyl; or a group of the formulae

with h as 0 or 1;

or R₃ and R₄ together when p is 1 can be alkylene of 4 to 6 carbon atoms or 2-oxo-polyalkylene or the cyclic acyl radical of an aliphatic or aromatic 1,2- or 1,3-dicarboxylic acid,

when p is 2,

 R_4 is a direct bond or is C_1-C_{12} alkylene, C_6-C_{12} arylene, xylylene, a -CH2CH(OH)-CH2 group, or a $-CH_2$ —CH(OH)— CH_2 —O—X—O—CH--CH(OH)-CH₂- wherein X is C_2 - C_{10} alkylene, C₆-C₁₅ arylene or C₆-C₁₂ cycloalkylene; or, provided that R₃ is not alkanoyl, alkenoyl or benzoyl, R₄ can also be a divalent acyl radical of an aliphatic, cycloaliphatic or aromatic dicarboxylic acid or dicarbamic acid, or can 25 be the group —CO—; or

where T₈ and T₉ are independently hydrogen, alkyl of 1 to 18 carbon atoms, or T₈ and T₉ together are alkylene of 4 to 6 carbon atoms or 3-oxapentamethylene, preferably T_8 and T_9 together are 3-oxapentamethylene;

when p is 3,

R4 is 2,4,6-triazinyl,

n is 1 or 2,

when n is 1,

R₅ and R'₅ are independently C₁-C₁₂ alkyl, C₂--C₁₂ 1,2,3,4-but-2-enetetracarboxylic acid, and 1,2,3,5- and 45 alkenyl, C_7 — C_{12} aralkyl, or R_5 is also hydrogen, or R_5 and R'5 together are C2-C8 alkylene or hydroxyalkylene or C₄-C₂₂ acyloxyalkylene;

when n is 2,

 R_5 and R'_5 together are $(-CH_2)_2C(CH_2-)_2$;

R₆ is hydrogen, C₁-C₁₂ alkyl, allyl, benzyl, glycidyl or C_2 - C_6 alkoxyalkyl;

when n is 1,

R₇ is hydrogen, C₁-C₁₂ alkyl, C₃-C₅ alkenyl, C₇-C₉ aralkyl, C₅-C₇ cycloalkyl, C₂-C₄ hydroxyalkyl, C₂-C₆ alkoxyalkyl, C₆-C₁₀ aryl, glycidyl, a group of the formula $-(CH_2)$ COO-Q or of the formula $-(CH_2)$.),—O—CO—Q wherein t is 1 or 2, and Q is C₁-C₄ alkyl or phenyl; or

when n is 2,

60 R₇ is C₂-C₁₂ alkylene, C₆-C₁₂ arylene, a group $-CH_2CH(OH)$ $-CH_2$ -O-X $-O-CH_2$ $-CH(OH-CH_2)$)—CH₂— wherein X is C₂-C₁₀ alkylene, C₆-C₁₅ arylene or C₆-C₁₂ cycloalkylene, or a group -CH₂C- $H(OZ')CH_2$ — $(OCH_2$ — $CH(OZ')CH_2)_2$ — wherein Z' is 65 hydrogen, C₁-C18 alkyl, allyl, benzyl, C₂-C₁₂ alkanoyl or benzoyl;

 Q_1 is $-N(R_8)$ — or -O—;-. E is C_1 - C_3 alkylene, the group $-CH_2-CH(R_9)-O$ — wherein R_9 is hydrogen, methyl or phenyl, the group —(CH₂)₃—NH— or a direct bond;

 R_{10} is hydrogen or C_1 – C_{18} alkyl, R_8 is hydrogen, C_1 – C_{18} alkyl, C_5 – C_7 cycloalkyl, C_7 – C_{12} aralkyl, cyanoethyl, C_6 – C_{10} aryl, the group — CH_2 — $CH(R_9)$ —OH wherein R_9 has the meaning defined above; a group of the formula

or a group of the formula

$$-G-N-E-CO-NH-CH_2-OR_2$$
 R
 CH_3
 RCH_2
 CH_2R
 CH_2R

wherein G is C₂-C₆ alkylene or C₆-C12 arylene; or R₈ is a group —E—CO—NH—CH₂—OR₁₀;

Formula F denotes a recurring structural unit of a ³⁰ polymer where T₃ is ethylene or 1,2-propylene, or is the repeating structural unit derived from an alpha-olefin copolymer with an alkyl acrylate or methacrylate; preferably a copolymer of ethylene and ethyl acrylate, and ₃₅ where k is 2 to 100;

 T_4 has the same meaning as R_4 when p is 1 or 2, T_5 is methyl,

 T_6 is methyl or ethyl, or T_5 and T_6 together are tetramethylene or pentamethylene, preferably T_5 and T_6 are each methyl,

M and Y are independently methylene or carbonyl preferably M is methylene and Y is carbonyl, and T_4 is ethylene where n is 2;

 T_7 is the same as R_7 , and T_7 is preferably octamethylene where n is 2,

 T_{10} and T_{11} are independently alkylene of 2 to 12 carbon atoms, or T_{11} is

T₁₂ is piperazinyl,

$$-NR_{11}-(CH_2)_d-NR_{11}-$$
 or

$$-NH(CH_2)_a$$
 $-N(CH_2)_b$ $-N[(CH_2)_c$ $-N]_t$ H

where R₁₁ is the same as R₃ or is also

a, b and c are independently 2 or 3, and f is 0 or 1, preferably a and c are each 3, b is 2 and f is 1; and e is 2, 3 or 4, preferably 4;

 T_{13} is the same as R_2 with the proviso that T_{13} cannot be hydrogen when n is 1;

E₁ and E₂, being different, each are —CO— or —N-(E₅)— where E₅ is hydrogen, C₁-C₁₂ alkyl or C₄-C₂₂ alkoxycarbonylalkyl, preferably E₁ is —CO— and E₂ is —N(E₅)—,

E₃ is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, 20 naphthyl, said phenyl or said naphthyl substituted by chlorine or by alkyl of 1 to 4 carbon atoms, or phenylalkyl of 7 to 12 carbon atoms, or said phenylalkyl substituted by alkyl of 1 to 4 carbon atoms,

E₄ is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, 25 naphthyl or phenylalkyl of 7 to 12 carbon atoms, or

E₃ and E₄ together are polymethylene of 4 to 17 carbon atoms, or said polymethylene substituted by up to four alkyl groups of 1 to 4 carbon atoms, preferably methyl, and

E₆ is an aliphatic or aromatic tetravalent radical.

In the structures A to P, if any substituents are C_1 – C_{18} alkyl, they are for example methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-hexadecyl or n-octadecyl. Typical cycloalkyl groups include cyclopentyl and cyclohexyl; typical cycloalkenyl groups include cyclohexenyl; while typical aralkyl groups include benzyl, alpha-methyl-benzyl, alpha,alpha-dimethylbenzyl or phenethyl. C_1 – C_{12} alkyl and cyclohexyl are preferred.

If R_2 is a monovalent acyl radical of a carboxylic acid, it is for example an acyl radical of acetic acid, stearic acid, salicylic acid, benzoic acid or β -(3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid.

45 If R₂ is a divalent acyl radical of a dicarboxylic acid, it is for example an acyl radical of oxalic acid, adipic acid, succinic acid, suberic acid, sebacic acid, phthalic acid dibutylmalonic acid, dibenzylmalonic acid or butyl-(3,5-di-tert-butyl-4-hydroxybenzyl)-malonic acid, or bicycloheptenedicarboxylic acid, with succinates, sebacates, phthalates and isophthalates being preferred.

If R_2 is a divalent acyl radical of a dicarbamic acid, it is for example an acyl radical of hexamethylenedicarbamic acid or of 2,4-toluylenedicarbamic acid.

The following compounds are examples of polyalkylpiperidine starting materials useful in making the hydroxylamine derivatives of formula A.

4-benzyloxy-2,2,6,6-tetramethylpiperidine 4-acryloyloxy-2,2,6,6-tetramethylpiperidine

4-hydroxy-2,2,6,6-tetramethylpiperidine
 4-stearoyloxy-2,2,6,6-tetramethylpiperidine
 di-(2,2,6,6-tetramethylpiperidin-4-yl) adipate
 di-(2,2,6,6-tetramethylpiperidin-4-yl) sebacate
 di-(2,2,6,6-tetramethylpiperidin-4-yl)phthalate
 alpha,alpha'-(di-2,2,6,6-tetramethyl

piperidine-4-oxy)-p-xylene

di-(2,2,6,6-tetramethylpiperidin-4-yl)succinate di-(2,2,6,6-tetramethylpiperidin-4-yl)malonate

1,4-dihydroxy-2,2,6,6-tetramethylpiperidine 1-acetoxy-4-hydroxy-2,2,6,6-tetramethylpiperidine (2,2,6,6-tetramethylpiperidin-4-yl)-[4-(2-oxoazepin-1-yl)-2,2,6,6-tetramethylpiperidin-4-yl]acetate.

As C₇-C₉ aralkyl, R₃ is particularly phenethyl or 5 above all benzyl.

As C_2 – C_{18} alkanoyl, R_3 for example propionyl, butyryl, octanoyl, dodecanoyl, hexadecanoyl, octadecanoyl, but preferably acetyl; and a C_3 – C_5 alkenoyl, R_3 is in particular acryloyl.

If R_4 is C_2 – C_8 alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, it is for example 1-propenyl, allyl, methallyl, 2-butenyl, 2-pentenyl, 2-hexenyl, 2-octenyl, 2,2-dicyanovinyl, 1-methyl-2-cyano-2-methoxycarbonyl-vinyl or 2,2-15 diacetylaminovinyl.

If any substituents are C_2 – C_{12} alkylene, they are for example ethylene, propylene, 2,2-dimethylpropylene, tetramethylene, hexamethylene, octamethylene, decamethylene or dodecamethylene.

If any substituents are C_6 – C_{15} arylene, they are for example o-, m- or p-phenylene, 1,4-naphthylene or 4,4'-diphenylene.

As C₆-C₁₂ cycloalkylene, X is especially cyclohexylene.

The following compounds are examples of polyalkylpiperidine starting materials useful in making the hydroxylamine derivatives of formula B.

N,N'-bis(2,2,6,6-tetramethylpiperidin-4-yl)-hexamethylene-1,6-diamine,

N,N'-bis-(2,2,6,6-tetramethylpiperidin-4-yl)-hexamethylene-1,6-diacetamide,

4-benzylamino-2,2,6,6-tetramethylpiperidine,

N-n-butyl-N-(2,2,6,6-tetramethylpiperidin-4-yl)-4hydroxy-3,5-di-tert.butyl benzamide,

N,N'-bis-(2,2,6,6-tetramethylpiperidin-4-yl)-N,N'-dibutyl-adipamide,

N,N'-bis-(2,2,6,6-tetramethylpiperidin-4-yl)-N,N'-dicy-clohexyl-(2-hydroxypropylene-diamine),

N,N'-bis-(2,2,6,6-tetramethylpiperidin-4-yl)-p-xylylenediamine,

4-(3-methyl-4-hydroxy-5-tert-butyl-benzoyl acetamido)-2,2,6,6-tetramethylpiperidine,

alpha-cyano-β-methyl-β-[N-(2,2,6,6-tetramethylpiperidin-4-yl]-amino-acrylic acid methyl ester

1-acetoxy-N-butylamino-2,2,6,6-tetramethylpiperidine 1-oxyl-2,2,6,6-tetramethylpiperidin-4-one

 CH_3

CH

If R_5 is C_2 – C_8 alkylene or hydroxyalkylene, it is for example ethylene, 1-methyl-ethylene, propylene, 2-ethylpropylene or 2-ethyl-2-hydroxymethylpropylene.

As C₄-C₂₂ acyloxyalkylene, R₅ is for example 2-ethyl-2-acetoxymethyl-propylene.

The following compounds are examples for polyalkylpiperidine starting materials useful in making the hydroxylamine derivatives of formula C.

9-aza-8,8,10,10-tetramethyl-1,5-dioxaspiro[5.5]undecane

9aza-8,8,10,10-tetramethyl-3-ethyl-1,5-dioxaspiro[5.-5]undecane.

2,2,6,6-tetramethylpiperidine-4-spiro-2'-(1',3'-dioxane)-5'-spiro-5"-(1",3"-dioxane)-2"-spiro-4"'-(2"',2"'-6"',6"'-tetramethylpiperidine).

If any substituents are C_2 – C_6 alkoxyalkyl, they are for example methoxymethyl, ethoxymethyl, propoxymethyl, tert-butoxyethyl, ethoxyethyl, ethoxypropyl, n-butoxymethyl, tert-butoxyethyl, isopropoxyethyl or propoxypropyl.

If R_7 is C_3 – C_5 alkenyl, it is for example 1-propenyl, allyl, methallyl, 2-butenyl or 2-pentenyl.

As C₇-C₉ aralkyl, R₇ is in particular phenethyl or above all benzyl; and as C₅-C₇ cycloalkyl, R₇ is especially cyclohexyl.

If R_7 is C_2 – C_4 hydroxyalkyl, it is for example 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 2-hydroxybutyl or 4-hydroxybutyl.

As C_6-C_{10} aryl, R_7 is in particular phenyl, or alpha- or β -naphthyl which is unsubstituted or substituted by halogen or C_1-C_4 alkyl.

If R₇ is C₂-C₁₂ alkylene, it is for example ethylene, propylene 2,2-dimethylpropylene, tetramethylene, hexamethylene, octamethylene, decamethylene or 35 dodecamethylene.

If R_7 is C_6-C_{12} arylene, it is for example 0-, m- or p-phenylene, 1,4-naphthylene or 4,4'-diphenylene.

If Z' is C_2 - C_{12} alkanoyl, it is for example propionyl, butyryl, octanoyl, dodecanoyl or preferably acetyl.

The following compounds are examples of polyalkylpiperidine starting materials useful in making hydroxylamine derivatives of formula D.

3-benzyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4.5]-decane-2,4-dione.

3-n-octyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4.5]-decane-2,4-dione,

3-allyl-1,3,8-triaza-1,7,7,9,9-pentamethylspiro[4.5]-decane-2,4-dione,

or the compounds of the following formulae:

CH₃

CH₃ CH₃
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8 CH_8 CH_8 CH_9 CH

As C₅-C₇ cycloalkyl, R₈ is in particular cyclohexyl.

As C_6 – C_{10} aryl, R_8 is particularly phenyl, or alpha-or β -naphthyl which is unsubstituted or substituted with halogen or C_1 – C_4 alkyl.

As C₁-C₃ alkylene, E is for example methylene, eth- 15 ylene or propylene.

As C_2 – C_6 alkylene, G is for example ethylene, propylene, 2,2-dimethylpropylene, tetramethylene or hexamethylene; and as C_6 – C_{12} arylene, G is o-, m- or p-phenylene, 1,4-naphthylene or 4,4'-diphenylene.

The following compounds are examples of polyalkylpiperidine starting materials useful in making the hydroxylamine derivatives of formula E.

N-hydroxymethyl-N'-2,2,6,6-tetramethylpiperidin-4-ylurea,

N-methoxymethyl-N'-2,2,6,6-tetramethylpiperidin-4-yl

N-methoxymethyl-N'-n-dodecyl-N'-2,2,6,6-tetrame-thylpiperidin-4-yl-urea, and

O-(2,2,6,6-tetramethylpiperidin-4-yl)-N-methoxymethylurethane.

When the instant hydroxylamine derivative is of formula F, the following polymeric compounds are examples of starting materials useful in preparing said derivatives.

Additional starting hindered amine derivatives include for formula J:

poly-{[6-[(1,1,3,3-tetramethylbutyl)-imino]-1,3,5-tria-zine-2,4-diyl][2-(1-oxyl-2,2,6,6-tetramethyl piperi-dyl)-imino]-hexamethylene-4[4-(1-oxyl-2,2,6,6-tetramethylpiperidyl]-imino]},

For compounds of formula O, R_3 is preferably C_1 – C_{12} alkyl and C_5 – C_7 cycloalkyl and more preferably 55 methyl, octyl, dodecyl and cyclohexyl.

For compounds of formula P, the following species are typical of tetracarboxylic acid dianhydrides suitable for the preparation thereof:

2,3,9,10-perylene tetracarboxylic acid dianhydride

1,4,5,8-naphthalene tetracarboxylic acid dianhydride

- 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride
- 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride
- 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride

phenanthrene-1,8,9,10-tetracarboxylic acid dianhydride

2,3,3',4'-benzophenonetetracarboxylic acid dianhydride pyromellitic dianhydride

3,3',4,4'-benzophenonetetracarboxylic acid dianhydride 2,2',3,3'-benzophenonetetracarboxylic acid dianhydride

3,3',4,4'-biphenyltetracarboxylic acid dianhydride

2,2',3,3'-biphenyltetracarboxylic acid dianhydride 4,4'-isopropylidenediphthalic anhydride

3,3'-isopropylidenediphthalic anhydride

4,4'-oxydiphthalic anhydride

4,4'-sulfonyldiphthalic anhydride

3,3'-oxydiphthalic anhydride

4,4'-methylenediphthalic anhydride

4,4'-thiodiphthalic anhydride

4,4'-ethylidenediphthalic anhydride

25 2,3,6,7-naphthalenetetracarboxylic acid dianhydride 1,2,4,5-naphthalenetetracarboxylic acid dianhydride 1,2,5,6-naphthalenetetracarboxylic acid dianhydride benzene-1,2,3,4-tetracarboxylic acid dianhydride pyrazine-2,3,5,6-tetracarboxylic acid dianhydride.

The following compounds are examples of hydroxylamines derivatives applicable for use in the invention:

1. di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)phthalate

2. di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)isophthalate

3. di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate

4. di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl) succinate

40 5. di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl) adipate

 di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl) nbutylmalonate

7. di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl) 2,2-diethylmalonate

poly-{[6-[(1,1,3,3-tetramethylbutyl)-imino]-1,3,5tria-zine-2,4-diyl][2-(1-acetoxy-2,2,6,6-tetramethyl-piperidyl)-imino]-hexamethylene-[4-(1-acetoxy2,2,6,6-tetramethylpiperidyl)-imino]}

50 9. 1,4-diacetoxy-2,2,6,6-tetramethylpiperidine

10. 1-acetoxy-4-hydroxy-2,2,6,6-tetramethylpiperidine

 di-(1-propionoxy-2,2,6,6-tetramethylpiperidine-4yl)adipate

12. di-(4-benzoyloxy-2,2,6,6-tetramethylpiperidine-4-yl)oxalate

13. (1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)-4-hydroxy-3,5-di-tert.butylbenzoate

4. 2-(4-hydroxy-3,5-di-tert.butylbenzyl)2-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl) n-butylmalonate

60 15. N-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)-N-(n-butyl)-4-(4-hydroxy-3,5-di-tert.butylbenzoyloxy)-3,5-di-tert.butylbenzamide

1,6-di-(N-acetyl-N-(1-acetoxy-2,2,6,6-tetramethyl-piperidin-4-yl)]aminohexane

65 17. di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yloxy)hexane-1,6-dicarbamate

 1-acetoxy-4-(N-acetyl-N-n-dodecylamino)-2,2,6,6tetramethylpiperidine

- 19. di-(1-propionoxy-2,2,6,6-tetramethylpiperidin-4-yl) succinate
- 20. di-(4-n-octadecanoyloxy-2,2,6,6-tetramethylpipera-zin-1-yl)oxalate
- 21. 1,4-di-(2-ethylhexanoyloxy)-2,2,6,6-tetramethyl- 5 piperidine
- 22. di-(1-benzoyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate
- 23. 1-benzoyloxy-4-(N-n-butyl-N-benzoylamino)-2,2,6,6-tetramethylpiperidine
- 24. 1-(1-benzoyloxy-2,2,6,6-tetramethylpiperdin-4-yl)azepin-2-one
- 25. [1-benzoyloxy-1'-benzyloxy-di-(2,2,6,6-tetramethyl-piperidin-4-yl)]isophthalate
- 26. 1,4-di-(4-hydroxy-3,5-di-tert-butylbenzoyloxy)2,2,6,6-tetramethylpiperidine
- n-butyl-(4-benzoyloxy-2,2,6,6-tetramethylpiperidin-4-yl)carbonate
- 28. 1-carbamoyloxy-4-benzoyloxy-2,2,6,6-tetramethyl- 20 62.
- di(1-carbamoyloxy-2,2,6,6-tetramethylpiperidin-4yl)sebacate
- di-(1-n-butylcarbamoyloxy-2,2,6,6-tetramethylpiperidin-4-yl)2,2-diethylmalonate
- 31. di-(4-benzoyloxy-2,2,6,6-tetramethylpiperidin-1-yl)2,4,4-trimethylhexane-1,6-dicarbamate
- 32. alpha,alpha'-(di-1-ethoxy-2,2,6,6-tetramethylpiperi-din-4-yloxy)-p-xylene
- 33. 4-benzyloxy-1-ethoxy-2,2,6,6-tetramethylpiperidine 30 67.
- 34. 1,4-dibenzyloxy-2,2,6,6-tetramethylpiperidine
- alpha,alpha'-(di-1-benzyloxy-2,2,6,6-tetramethylpiperidin-4-yloxy)-p-xylene
- di-(1-benzyloxy-2,2,6,6-tetramethylpiperidin-4yl)sebacate
- 37. 4-benzoyloxy-1-(alpha-methylbenzyloxy)2,2,6,6-tetramethylpiperidine
- 38. di-[1-(alpha-methylbenzyloxy)-2,2,6,6-tetramethyl-piperidin-4-yl]sebacate
- 39. 1,4-dimethoxy-2,2,6,6-tetramethylpiperidine
- 40. 4-benzoyloxy-1-methoxy-2,2,6,6-tetramethylpiperidine
- 41. di-(1-methoxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate
- 42. di-(1-methoxy-2,2,6,6-tetramethylpiperidin-4-yl)succinate
- (1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4yl)3,5-di-t.butyl-4-hydroxybenzoate
- 44. 1-cyclohexyloxy-4-octadecanoyloxy-2,2,6,6-tet-ramethylpiperidine
- di-(1-methoxy-2,2,6,6-tetramethylpiperidin-4yl)isophthalate
- di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4yl)sebacate
- 47. di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)isophthalate
- 48. di-(1-heptyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate
- 49. di-[1-(alpha-methylbenzyloxy)-2,2,6,6-tetramethyl- 60 piperidin-4-yl]terephthalate
- di-(1-ethoxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate
- di-(1-cumyloxy-2,2,6,6-tetramethylpiperidin-4yl)sebacate
- 52. 3,15-di-alpha-methylbenzyloxy-2,2,4,4,14,14,16,16-octamethyl-7,11,18,21-tetraoxa-3,15-diazatrispiro [5.2.2.5.2.2]heneicosane

14

- 53. 3,15-dicyclohexyloxy-2.2,,4,4,14,14,16,16-octameth-yl-7,11,18,21-tetraoxa-3,15-diazatrispiro[5.2.2.5.2.2-]heneicosane
- 54. di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)succinate
- 55. di-[1-(alpha-methylbenzyloxy)-2,2,6,6-tetramethylpiperidin-4-yl]succinate
- di-(1-nonyloxy-2,2,6,6-tetramethylpiperidin-4yl)sebacate
- 57. di-(1-octadecyloxy-2,2,6,6-tetramethylpiperidin-4yl)sebacate
 - 58. di-(1-nonyloxy-2,2,6,6-tetramethylpiperidin-4-yl)succinate
 - 59. di-[1-(1-methylcyclohexyloxy)-2,2,6,6-tetramethylpiperidin-4-yl]sebacate
 - 60. di-[1-(3-cyclohexen-1-yloxy)-2,2,6,6-tetramethyl-piperidin-4-yl]sebacate
 - 61. di-(1-tert.butoxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate
 - 62. di-(1-carbamoyloxy-2,2,6,6-tetramethylpiperidin-4-yl)n-butylmalonate
 - di-[1-(bicyclo-[4.4.0]-decyl-1-oxy)-2,2,6,6tetramethylpiperidin-4-yl]sebacate
 - 64. di-(1-n-butylcarbamoyloxy-2,2,6,6-tetramethyl-piperidin-4-yl)phthalate
 - 65. di-(1-n-butylcarbamoyloxy-2,2,6,6-tetramethylpiperidin-4-yl)n-butylmalonate
 - di-(1-phenylcarbamoyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate
- 60 67. 4-benzoyloxy-1-benzyloxy-2,2,6,6-tetramethylpiperidine
 - 68. di-(1-methoxy-2,2,6,6-tetramethylpiperidin-4-yl)(3,5-di-tert.butyl-4-hydroxybenzyl) n-butylmalonate
- 35 69. 8-alpha-methylbenzyloxy-7,7,9,9-tetramethyl-8-aza-1,4-dioxaspiro[4.5]decane
 - di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4yl)(3,5-di-tert.butyl-4-hydroxybenzyl) n-butylmalonate
- 40 71. di-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate
 - 72. di-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) succinate
 - 73. bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-n-butylamino] sebacamide
 - 74. bis(1-cyclooctyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate
 - 75. N,N',N'',N'''-tetrakis{2,4-bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-n
 - butylamino]1,3,5-triazin-6-yl}-3,3'-ethylenediiminodipropylamine
 - 2,4-bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yl)-n-butylamino]-6-t-octylamino-1,3,5triazine
 2,4-bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yl)-n-butylamino]-6-t-octylamino-1,3,5triazine
 - tetramethylpiperidin-4-yl)-n-butylamino]-6-morpholino-1,3,5-triazine
 - 78. N,N'-bis(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidine-4-yl)-N,N'-bis{2,4-bis[N-(1-cyclohexyloxy-2,2,6,6'-tetramethyl-piperidin-4-yl)n-
 - butylamino]1,3,5-triazin-6-yl}hexamethylenediamine
 79. 2,4,6-tris[N-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yl)-n-butylamino]-1,3,5-triazine
 - 80. N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) succinimide
- 65 81. di-(1-hydroxy-2,2,6,6-tetramethylpiperidine-4-yl) methylmalonate
 - 1-hydroxy-4-salicyloxy-2,2,6,6-tetramethylpiperidine

15 di-(1-hydroxy-2,2,6,6-tetramethylpiperdine-4-yl)

83.

isophthalate 84. 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl 3,5-di-

tert-butyl-4-hydroxyhydrocinnamate

85. di(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl) seb- 5

86. di-(1-hydroxy-2,3,6-trimethyl-2,6-diethyl-piperidin-4-yl) phthalate

87. di-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl) nbutyl-(3,5-di-tert-butyl-4-hydroxybenzyl) malonate

88. hexane-1',6'-bis-(4-carbamoyloxy-1-hydroxy-2,2,6,6tetramethylpiperidine)

89. N,N'-bis-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4yl)hexamethylene-1,6-diacetamide

4-(N-cyclohexylacetamido)-1-hydroxy-2,2,6,6-tet- 15 ramethylpiperidine

91. 1,6-di-(N-acetyl)-N-(1-hydroxy-2,2,6,6-tetramethylpiperidine-4-yl)]aminohexane

92. N-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)epsilon-caprolactam

93. N-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)succinimide

94. N-(1-hydroxy-2,3,6-trimethyl-2,6-diethyl-piperidin-4-yl)-maleimide

95. 8-aza-2,7,7,9,9-pentamethyl-8-hydroxy-1,4-dioxys-25 piro[4.5]decane

9-aza-3-hydroxymethyl-3-ethyl-9-hydroxy-8,8,10,10-tetramethyl-1,5-dioxaspiro[5.5]undecane

3-n-octyl-1,3,8-triaza-8-hydroxy-7,7,9,9-tetramethyl-spiro[4.5]decan-2,4-dione

98. 8-hydroxy-2,7,7,9,9-pentamethyl-2-hexyl-1-oxa-3,8diazaspiro[4.5]decan-4-one

3-hydroxy-2,2,4,4-tetramethyl-7-oxa-3,20-diazadispiro[5.1.11.2]heneicosan-21-one

100. 1,1'-ethylenebis-(4-hydroxy-3,3,5,5-tetramethylpip- 35 erazin-2-one)

101. 1,1'-sebacoyl-bis(3-hydroxy-2,2,4,4,6-pentamethylhexahydropyrimidine)

102. hydroxylamine derivative of polycondensation product of 2,4-dichloro-6-tert-octylamino-s-triazine 40 4,4'-hexamethylenebis-(amino-2,2,6,6-tetrameand

N,N',N"',N"'-tetrakis[4,6-bis(butyl-(1-hydroxy-103. 2,2,6,6-tetramethylpiperidin-4-yl)amino)-s-triazin-2yl]1,10-diamino-4,7-diazadecane

104. hydroxylamine derivative of polycondensation product of 2,4-dichloro-6-morpholino-s-triazine and 4,4'-hexamethylenebis-(amino-2,2,6,6-tetramethylpiperidine)

105. piro[5.1.5.3]hexadecane-14,16-dione

106. 4-benzoyloxy-1-hydroxy-2,2,6,6-tetramethylpiperi-

107. 3-hydroxy-2,2,4,4-tetramethyl-20-(2-lauryloxycarbonyl)ethyl-7-oxa-3,20-diazadispiro[5.1.11.2]heneicosan-21-one 108. di-(1-hydroxy-2,2,6,6,-tetramethylpiperidin-4-yl) phthalate

109. 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl stearate

110. di-(1-hydroxy-2,2,6,6-tetramethylpiperidine-4-yl) 60 terephthalate

4-(4-tert.butylbenzoyloxy)-1-hydroxy-2,2,6,6-tet-111. ramethylpiperidine

(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)-4hydroxy-3,5-di-tert.butylbenzoate

113. (1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)-4-(4hydroxy-3,5-di-tert.butylbenzoyloxy)-3,5-di-tert-.butylbenzoate

16

(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)-[4-114. (2-oxazepin-1-yl)-2,2,6,6-tetramethylpiperidin-4-yl) acetate

115. alpha, alpha'-di-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-oxy)-p-xylene

di-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl) 116. diethylmalonate

117. N-n-butyl-N-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)-4-hydroxy-3,5-di-tert.butylbenzamide

(1-hydroxy-2,2,6,6-tetramethyl-4-10 118. tetrakis piperidyl)-1,2,3,4-butane-tetracarboxylate

119. di-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4yl)isophthalate

120. di-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)nbutylmalonate

121. di-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)-2-(4-hydroxy 3,5-di-t.-butylbenzyl)-n-butylmalonate

The hydroxylamine derivatives of the instant invention are generally prepared by oxidizing the corresponding hindered amine with an appropriate peroxy compound such as hydrogen peroxide or tert-butyl hydroperoxide in the presence of a metal carbonyl or metal oxide catalyst followed by reduction of the oxyl intermediate formed to the desired N-hydroxy derivative, preferably by catalytic hydrogenation. Thereafter, the N-acyloxy derivatives are prepared by reacting the N-hydroxy hindered amine with the appropriate acid chloride, anhydride, isocyanate or substituted chloroformate. The catalytic hydrogenation can also be con-30 ducted in acetic anhydride to prepare the N-acetoxy derivative.

O-alkyl substituted N-hydroxy derivatives can be synthesized by several routes. The N-hydroxy derivative can be alkylated with sodium hydride and halogenated hydrocarbons such as benzyl bromide and ethyl iodide. N-methoxy variants can be prepared by thermolysis of a chlorobenzene solution of nitroxyl radical and di-tert-butyl peroxide. The product is formed by a coupling reaction between the nitroxyl radical and methyl radical generated from β -scission of a t-butoxy radical. Other N-alkoxy variants are synthesized by coupling nitroxyl radicals with hydrocarbon radicals generated from thermal decomposition of di-tert-butyl peroxide in the presence of hydrocarbon solvents such 45 as cyclohexane, toluene, and ethylbenzene.

A preferred approach is the preparation of N-alkoxy hindered amines directly from hindered amines. For example, a mixture of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, aqueous t-butyl hydroperoxide, molybde-15-n-octadecyl-7-hydroxy-7,15-diazadis- 50 num oxide, and ethylbenzene gives a 90% yield of Nalpha-methylbenzyloxy HALS.

> The oxalates of formula N can be prepared by react-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)stearate, benzoate, and the like, with oxalylchloride, or for 55 G₁ being —NH—G'—NH by reacting the appropriate 1-hydroxy-2,2,6,6-tetramethylpiperidine with the appropriate diisocyanate.

The hindered amine precursors are largely commercially available or can be prepared by known methods.

The stabilizer system according to the invention is suitable for stabilizing those organic polymers which contain hetero atoms, double bonds or aromatic rings. The following are examples thereof:

1. polymers derived from doubly unsaturated hydro-65 carbons, e.g. polyisoprene or polybutadiene;

polystyrene;

3. copolymers of styrene or alpha-methyl styrene with dienes or acryl derivatives, such as styrene-butadi-

ene, styrene-acrylonitrile, styrene-acrylonitrile-methacrylate, mixtures of high impact strength from styrenecopolymers and another polymer, such as polyacrylate, a diene-polymer or an ethylene-propylene-diene terpolymer, as well as block copolymers of styrene such as 5 styrene-butadiene-styrene, styrene-isoprene-styrene or styrene-ethylene/butylenestyrene;

4. graft polymers of styrene, such as styrene or polybutadiene, styrene and acrylonitrile on polybutadiene, as well as mixtures with the copolymers mentioned 10 under (3), such as those known as ABS polymers;

- 5. halogen-containing vinyl polymers, such as polyvinyl chloride, polyvinylidene cloride, polyvinyl fluoride, polychloroprene, chlorinated rubber, vinyl chloride/vinylidene chloride copolymers, vinyl chloride/vinyl 15 2,6-diphenyl-4-octadecyloxyphenol acetate copolymers or vinylidene chloride/vinyl acetate copolymers, and alloys of polyvinyl halides with polymers mentioned under (3), specifically acrylonitrile/ethylenepropylene-diene monomer/styrene andacrylonitrile/styrene/butyl acrylate.
- 6. polymers derived from alpha, beta-unsaturated acids and derivatives thereof, polyacrylates and polymethacrylates, polymethylmethacrylate, polyacrylic amides and polyacrylonitrile;
- 7. polymers derived from unsaturated alcohols or 25 their acyl derivatives or acetals, such as polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, polyvinyl benzoate, polyvinyl butyral, polyallyl phthalate, polyallyl melamine and copolymers thereof with other vinyl compounds, such as ethylene/vinyl acetate copolymers; 30
- 8. polyacetals such as polyoxymethylene, and also those polyoxymethylenes containing as comonomers, e.g. ethylene oxide;
 - 9. polyurethanes;
 - 10. polycarbonates;
- 11. aliphatic and aromatic polyamides and copolyamides derived from diamines and dicarboxylic acids and/or from aminocarboxylic acids or the corresponding lactams, such as polyamide 6, polyamide 6/6, polyamide 6/10, polyamide 11 and polyamide 12;
- 12. polyesters derived from dicarboxylic acids and dialcohols and/or from hydroxycarboxylic acids or corresponding lactones, such as polyethylene glycol poly-1,4-dimethylol-cyclohexterephthalate and aneterephthalate.

Substrates of particular interest are polyvinyl chloride, particularly pigmented rigid polyvinyl chloride, polyurethanes, styrenic polymers such as ABS polymers and polyvinyl chloride alloys.

In general, the compounds of the present invention 50 are employed in from about 0.01 to about 5% by weight of the stabilized composition, although this will vary with the particular substrate and application. An advantageous range is from about 0.05 to about 2%, and especially 0.1 to about 1%.

The stabilizers of the instant invention may readily be incorporated into the indicated polymeric substrates by conventional techniques, at any convenient state prior to the manufacture of shaped articles therefrom. For example, the stabilizer may be mixed with the polymer 60 3,5-di-tert.butyl-4-hydroxybenzyl-phosphoric in dry powder form, or a suspension or emulsion of the stabilizer may be mixed with a solution, suspension, or emulsion of the polymer. The resulting stabilized polymer compositions of the invention may optionally also contain various conventional additives, such as the fol- 65 4-hydroxy-lauric acid anilide lowing.

- 1. Antioxidants
- 1.1. Alkylated monophenols, for example

2,6-di-tert.butyl-4-methylphenol

2-tert.butyl-4,6-dimethylphenol

2,6-di-tert.butyl-4-ethylphenol

2,6-di-tert.butyl-4-n-butylphenol

2,6-di-tert.butyl-4-i-butylphenol 2,6-di-cyclopentyl-4-methylphenol

2-(α-methylcyclohexyl)-4,6-dimethylphenol

2,6-di-octadecyl-4-methylphenol

- 2,4,6-tri-cyclohexylphenol 2,6-di-tert.butyl-4-methoxymethylphenol
 - 1.2. Alkylated hydroquinones, for example

2,6-di-tert.butyl-4-methoxyphenol

2,5-di-tert.butyl-hydroquinone

2,5-di-tert.amyl-hydroquinone

- 1.3. Hydroxylated thiodiphenyl ethers, for example
- 2,2'-thio-bis-(6-tert.butyl-4-methylphenol)
- 2,2'-thio-bis-(4-octylphenol)
- 4,4'-thio-bis-(6-tert.butyl-3-methylphenol)
- 20 4,4'-thio-bis-(6-tert.butyl-2-methylphenol)
 - 1.4. Alkylidene-bisphenols, for example
 - 2,2'-methylene-bis-(6-tert.butyl-4-methylphenol)
 - 2,2'-methylene-bis-(6-tert.butyl-4-ethylphenol)
 - 2,2'-methylene-bis-[4-methyl-6-(α -methylcyclohexyl)phenol
 - 2,2'-methylene-bis-(4-methyl-6-cyclohexylphenol)
 - 2,2'-methylene-bis-(6-nonyl-4-methylphenol)
 - 2,2'-methylene-bis-[6-(α-methylbenzyl)-4-nonylphenol]
 - 2,2'-methylene-bis- $[6-(\alpha,\alpha-\text{dimethylbenzyl})-4-\text{nonyl}$ phenol]
 - 2,2'-methylene-bis-(4,6-di-tert.butylphenol)
 - 2,2'-ethylidene-bis-(4,6-di-tert.butylphenol)
 - 2,2'-ethylidene-bis-(6-tert.butyl-4-isobutylphenol)
 - 4,4'-methylene-bis-(2,6-di-tert.butylphenol)
- 35 4,4'-methylene-bis-(6-tert.butyl-2-methylphenol)
 - 1,1-bis-(5-tert.butyl-4-hydroxy-2-methylphenyl-butane
 - 2,6-di-(3-tert.butyl-5-methyl-2-hydroxybenzyl)-4methylphenol
 - 1,1,3-tris-(5-tert.butyl-4-hydroxy-2-methylphenyl)butane
 - 1,1-bis-(5-tert.butyl-4-hydroxy-2-methylphenyl)-3-ndodecylmercaptobutane ethylenglycol-bis-[3,3-bis-(3'-tert.butyl-4'-hydroxyphenyl)-butyrate]
 - di-(3-tert.butyl-4-hydroxy-5-methylphenyl)-dicyclopentadiene
 - di-[2-(3'-tert.butyl-2'-hydroxy-5'-methyl-benzyl)-6-tert-.butyl-4-methylphenyl]-terephthalate.
 - 1.5. Benzyl compounds, for example
 - 1,3,5-tri-(3,5-di-tert.butyl-4-hydroxybenzyl)-2,4,6trimethylbenzene-di-(3,5-di-tert.butyl-4-hydroxybenzyl)sulfide
 - 3,5-di-tert.butyl-4-hydroxybenzyl-mercapto-acetic acid isooctyl ester
- bis-(4-tert.butyl-3-hydroxy-2,6-dimethylbenzyl)dithiolterephthalate
- 1,3,5-tris-(3,5-di-tert.butyl-4-hydroxybenzyl)-isocyanu-
- 1,3,5-tris-(4-tert.butyl-3-hydroxy-2,6-dimethylbenzyl-)isocvanurate
- aciddioctadecyl ester
 - 3,5-di-tert.butyl-4-hydroxybenzyl-phosphoric acidmonoethyl ester, calcium-salt
 - 1.6. Acylaminophenols, for example
- 4-hydroxy-stearic acid anilide
- 2,4-bis-octylmercapto-6-(3,5-tert.butyl-4-hydroxyanilino)s-triazine

octyl-N-(3,5-di-tert.butyl-4-hydroxyphenyl)-carbamate

1.7. Esters of β -(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid with monohydric or polyhydric alcohols, for example

methanol octadecanol 1,6-hexanediol neopentylglycol thiodiethyleneglycol diethyleneglycol triethyleneglycol pentaerythritol tris-hydroxyethyl isocyanurate di-hydroxyethyl oxalic acid diamide

1.8. Esters of β -(5-tert-butyl-4-hydroxy-3-methyl-phenyl)propionic acid with monohydric or polyhydric alcohols, for example

methanol octadecanol 1,6-hexanediol neopentylglycol thiodiethyleneglycol diethyleneglycol triethyleneglycol pentaerythritol tris-hydroxyethyl isocyanurate di-hydroxyethyl oxalic acid diamide

2 1.9. Amides of β -(3,5-di-tert.butyl-4-hydroxy-phenyl)propionic acid for example

N,N'-di-(3,5-di-tert.butyl-4-hydroxyphenylpropionyl)hexamethylenediamine

N,N'-di-(3,5-di-tert.butyl-4-hydroxyphenylpropionyl)-trimethylenediamine

N,N'-di-(3,5-di-tert.butyl-4-hydroxyphenylpropionyl)-hydrazine

2. UV absorbers and light stabilizers

- 2.1. 2-(2'-Hydroxyphenyl)-benzotriazoles, for example, the 5'-methyl-, 3',5'-di-tert.butyl-, 5'-tert.butyl-, 5'-(1,1,3,3-tetramethylbutyl)-, 5-chloro-3',5'-di-tert.butyl-, 5-chloro-3'-tert.butyl-5'-methyl-, 3'-sec.butyl-5'-tert.butyl-, 4'-octoxy, 3',5'-di-tert.amyl-, 3',5'-bis(α , α -dimethylbenzyl)-derivative.
- 2.2. 2-Hydroxy-benzophenones, for example, the 4-40 hydroxy-, 4-methoxy-, 4-octoxy, 4-decyloxy-, 4-decyloxy-, 4-benzyloxy, 4,2',4'-trihydroxy- and 2'-hydroxy-4,4'-dimethoxy derivative.
- 2.3. Esters of optionally substituted benzoic acids for example, phenyl salicylate, 4-tert.butyl-phenylsalicylate, octylphenyl salicylate, dibenzoylresorcinol, bis-(4-tert.butylbenzoyl)-resorcinol, benzoylresorcinol, 3,5-ditert.butyl-4-hydroxybenzoic acid 2,4-di-tert.butyl-phenyl ester and 3,5-di-tert.-butyl-4-hydroxybenzoic acid hexadecyl ester.
- 2.4. Acrylates, for example, α -cyano- β , β -diphenylacrylic acid ethyl ester or isooctyl ester, α -carbomethoxy-cinnamic acid methyl ester, α -cyano- β -methyl-pmethoxy-cinnamic acid methyl ester or butyl ester, α -carbomethoxy-p-methoxy-cinnamic acid methyl ester, N-(β -carbomethoxy- β -cyanovinyl)-2-methyl-indoline.
- 2.5 Nickel compounds, for example, nickel complexes of 2,2'-thio-bis-[4-(1,1,3,3-tetramethylbutyl)-phenol], such as the 1:1 or 1:2 complex, optionally with additional ligands such as n-butylamine, triethanolamine or N-cyclohexyl-di-ethanolamine, nickel dibutyldithiocarbamate, nickel salts of 4-hydroxy-3,5-di-tert.butylbenzylphosphonic acid monoalkyl esters, such as of the methyl, ethyl or butyl ester, nickel complexes of ketox-65 imes such as of 2-hydroxy-4-methyl-phenyl undecyl ketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxy-pyrazol, optionally with additional ligands.

20

2.6. Sterically hindered amines, for example bis-(2,2,6,6-tetramethylpiperidyl)-sebacate bis-(1,2,2,6,6-pentamethylpiperidyl)-sebacate n-butyl-3,5-di-tert.butyl-4-hydroxybenzyl malonic acid bis-(1,2,2,6,6-pentamethylpiperidyl)ester, condensation product of 1-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid, condensation product of N,N'-(2,2,6,6-tetramethylpiperidyl)-hexamethylendiamine and 4-tert.octylamino-2,6-dichloro-1,3,5-s-triazine, tris(2,2,6,6-tetramethylpiperidyl)-nitrilotriacetate, tetra-

and 4-tert.octylamino-2,0-dicinoro-1,3,3-s-triazine, tris(2,2,6,6-tetramethylpiperidyl)-nitrilotriacetate, tetra-kis-(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butanetetra-carbonic acid, 1,1'(1,2-ethanediyl)-bis-(3,3,5,5tetrame-thylpiperidyl)

thylpiperazinone).

2.7. Oxalic acid diamides, for example, 4,4'-di15 octyloxyoxanilide, 2,2'-di-octyloxy-5,5'-di-tert.butyloxanilide, 2,2'-di-dodecyloxy-5,5'-di-tert.butyl-oxanilide, 2-ethoxy-2'-ethyl-oxanilide, N,N'-bis (3-dimethylaminopropyl)oxalamide, 2-ethoxy-5-tert.butyl-2'ethyloxanilide and its mixture with 2-ethoxy-2'-ethyl20 5,4'-di-tert.butyloxanilide and mixtures of ortho- and
para-methoxy-as well as of o- and p-ethoxy-disubstituted oxanilides.

- 3. Metal deactivators, for example, N,N'-diphenyloxalic acid diamide, N-salicylal-N'-salicyloylhydrazine, N,N'-bis-salicyloylhydrazine, N,N'-bis-(3,5-di-tert.butyl-4-hydroxyphenylpropionyl)-hydrazine, 3salicyloylamino-1,2,4-triazole, bis-benzylidene-oxalic acid dihydrazide.
- 4. Phosphites and phosphonites, for example, tri-30 phenyl phosphite, diphenylalkyl phosphites, phenyldialkyl phosphites, tri-(nonylphenyl)phosphite, trilauryl phosphite, trioctadecyl phosphite, di-stearyl-pentaerythritol diphosphite, tris-(2,4-di-tert.butylphenyl) phosphite, di-isodecylpentaerythritol diphosphite, di-(2,4-ditert.butylphenyl)pentaerythritol diphosphite, tristearylsorbitol triphosphite, tetrakis-(2,4-di-tert butylphenyl)4,4'-diphenylylenediphosphonite.
 - 5. Compounds which destroy peroxide, for example, esters o β -thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercapto-benzimidazole or the zinc salt of 2-mercaptobenzimidazole, zinc-dibutyl-dithiocarbamate, dioctadecyldisulfide, pentaerythritol-tetrakis(β -dodecylmercapto)-propionate.
 - Polyamide stabilizers, for example copper salts in combination with iodides and/or phosphorus compounds and salts of divalent manganese.
 - 7. Basic co-stabilizers, for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids for example Ca stearate, Zn stearate, Mg stearate, Na ricinoleate and K palmitate, antimony pyrocatecholate or zinc pyrocatecholate.
 - 8. Hydroxylamine co-stabilizers, for example, dibenzyl hydroxylamine, dioctyl hydroxylamine, didodecyl hydroxylamine and dioctadecyl hydroxylamine.
 - 9. Nucleating agents, for example, 4-tert butyl-benzoic acid, adipic acid, diphenylacetic acid.
 - 10. Fillers and reinforcing agents, for example, calcium carbonate, silicates, glass fibers, asbestos, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides, carbon black, graphite.
 - 11. Other additives, for example, plasticizers, lubricants, emulsifiers, pigments, optical brighteners, flame-proofing agents, anti-static agents, blowing agents and thiosynergists such as dilaurylthiodipropionate or distearylthiodipropionate.

Of particular value in the instant compositions are the benzotriazoles of high molecular weight and low volatility such as 2-[2-hydroxy-3,5-di(alpha,alpha-dimethylbenzyl)-phenyl]-2H-benzotriazole, 2-(2-hydroxy-3,5-di-2-(2-hydroxy-3- 5 tert-octylphenyl)-2H-benzotriazole, alpha, alpha-dimethylbenzyl-5-tert-octyl-phenyl)-2Hbenzotriazole, 2-(2-hydroxy-3-tert-octyl-5-alpha,alpha-2-(2dimethylbenzylphenyl)-2H-benzotriazole, hydroxy-3,5-di-tertamylphenyl)-2H-benzotriazole, 2-[2hydroxy-3-tert-butyl-5(2-(omega-hydroxy-octa-(ethyleneoxy)carbonyl)-ethylphenyl]2H-benzotriazole, dodecylated 2-(2-hydroxy-5-methylphenyl)2H-benzotriazole and the 5-chloro compounds corresponding to each of the above named benzotriazoles.

Most preferably the benzotriazoles useful in the in- 15 stant compositions are 2-[2-hydroxy-3,5-di(alpha,alphadimethyl-benzyl)phenyl]-2H-benzotriazole and 2-[2hydroxy-3-tert-butyl-5-(2-(omega-hydroxy-octa-(ethyleneoxy)carbonyl)-ethylphenyl]-2H-benzotriazole.

Of particular interest in connection with the stabiliza- 20 tion of polyvinyl halides are formulations containing (1) a polyvinyl halide, (2) a thermal stabilizer and (3) a NOR₁ hindered amine derivative of the instant invention, preferably a NOR1 derivative without R1 acyl groups. Thermal stabilizers are generally known. Ir. 25cluded among such derivatives are organotin carboxylate compounds characterized by having an oxygen atom bonded directly to the tin atom. Such compounds may be identified as carboxylates or alcoholates containing Sn-ORad, Sn-OOCRad, RadCOO-S- 30 n-O-Sn-OOCRad or Sn-OOCCH=CHCOORad groups wherein "Rad" defines a series of alkyl, cycloalkyl, aryl or aralkyl substituents. Other organotins include organotin mercaptoesters and organotin mercaptides, the former containing groups of Sn-[S(CH-35 2)u-COORad] while the latter correspond to the general formula (RadS)—Sn—Rad.

Other categories of thermal stabilizers are barium/cadmium, barium/zinc, calcium/zinc, antimony and lead compounds, including salts of fatty acids.

These formulations can contain optional ingredients such as titanium dioxide, other pigments, fillers, plasticizers, and the like, as well as the UV absorbers and antioxidants noted hereinabove.

The following examples further illustrate the embodiments of the instant invention. All parts given are by weight unless otherwise noted.

EXAMPLE 1

This example illustrates the performance of the in- 50 stant compounds in polyvinyl chloride formulations. In particular, it illustrates the manner in which the instant compounds minimize the detrimental effect on thermal stability during processing of such formulations, which detrimental effect is encountered with conventional hindered amine light stabilizers.

The following rigid polyvinyl chloride formulations are prepared.

					_	
	Parts					
	A	В	C	D	_	
polyvinyl chloride resin ¹	100.0	100.0	100.0	100.0	_	
tin mercaptide ²	1.5	_	2.0			
tin carboxylate ³	_	2.5	_	2.0	6	
methacrylic acid/ester processing aid ⁴	1.5	1.5	2.0	2.0		
acrylic impact modifier ⁵	6.0	6.0	7.0	7.0		
paraffin wax	1.0	0.3	1.0	1.0		

-continued

		P	Parts				
	A	В	С	D			
polyethylene wax	0.1	0.1	0.2	0.2			
calcium stearate	1.0		0.8				
titanium dioxide		_	5.0	5.0			
brown pigment ⁶	0.9	0.9	_				
pigment ⁷	0.1	0.1		_			

²THERMOLITE T-137 from M&T Chemicals ³IRGASTAB T-634 from CIBA-GEIGY Corp. ACRYLOID K120N from Rohm and Haas ACRYLOID K323B from Rohm and Haas CROMOPHTAL BROWN 5R from CIBA-GEIGY Corp. MONARCH X-3228 from CIBA-GEIGY Corp.

GEON 103EP-76 from B. F. Goodrich Co.

The ingredients are blended together with one part per hundred of the indicated derivative. Thereafter,

(I) 60 gram samples are tested in a Brabender Plasti-Corder at 190° C. Changes in torque are measured over time. Longer times to degradation are indicative of reduced detrimental effects of the light stabilizer on the thermal stability of the PVC during processing.

(II) Samples are also milled on a two roll mill (front roll @171° C. - back roll @165° C.) for a period of three minutes after band formation. The resulting material is then compression molded (temperature 182° C., 2 minutes contactpressure, 1 minute pumping pressure, 2 minutes full pressure, cool to 38° C.) and cut into test plaques (5.1 cm. × 5.1 cm.). The plaques are exposed in a Xenon Arc Weatherometer at black panel temperature of 60°-66° C. and relative humidity of 25-35%. Samples are withdrawn at periodic intervals and yellowness index and/or ΔE values measured according to ASTM D-1925-63T utilizing an Applied Color Systems Spectro-Sensor II Colorimeter. Higher values are indicative of less stability.

The results obtained in these tests are noted in the following tables.

TABLE 1

TABLET						
(Test I)						
Degradation						
PVC-A	PVC-B					
29.0	24.5					
14.5	14.0					
23.0	24.5					
26.0	23.5					
30.0	23.5					
26.5	25.5					
26.0	23.5					
30.0	24.0					
27.0	21.5					
24.0	20.0					
25.0	23.5					
19.0	23.0					
18.5	23.0					
15.0	19.5					
26.2	21.1					
14.5	15.7					
10.8	10.5					
22.0	18.3					
28.8	21.5					
28.0	20.0					
	(Test I) Degradation PVC-A 29.0 14.5 23.0 26.0 30.0 26.5 26.0 30.0 27.0 24.0 25.0 19.0 18.5 15.0 26.2 14.5 10.8 22.0 28.8	(Test I) Degradation Time (Min.) PVC-A PVC-B 29.0 24.5 14.5 14.0 23.0 24.5 26.0 23.5 30.0 23.5 26.5 25.5 26.0 23.5 30.0 24.0 27.0 21.5 24.0 20.0 25.0 23.5 19.0 23.0 18.5 23.0 15.0 19.5 26.2 21.1 14.5 15.7 10.8 10.5 22.0 18.3 28.8 21.5				

 $\begin{array}{lll} A & -bis(2.2,6,6\text{-tetramethylpiperidin-4-yl}) sebacate \\ B & -poly\{[6\text{-(morpholino)-imino]-1,3,5-triazine-2,4-diyl}][2\text{-(2,2,6,6-tetramethyl-1,3,5-triazine-2,4-diyl]}][2\text{-(2,2,6,6-tetramethyl-1,3,5-triazine-2,4-diyl]}][2\text{-(2,2,6,6-tetramethyl-1,3,5-triazine-2,4-diyl]}][2\text{-(2,2,6,6-tetramethyl-1,3,5-triazine-2,4-diyl]}][2\text{-(2,2,6,6-tetramethyl-1,3,5-triazine-2,4-diyl-1,3,5-triazine-2,4-diyl-1,3,5-triazine-2,4-diyl-1,3-d$ piperidyl)-imino]-hexamethylene-4-[4-(2,2,6,6-tetramethylpiperidyl)-imino]}

It is thus seen that the compounds substantially maintain the thermal stability of the PVC formulations.

EXAMPLE 2

This example illustrates the stabilization performance of the instant derivatives utilizing test procedure II in

Example 1 and determining the ΔE value utilizing the FMC II calculation method and based on calculations initially and after 3014 hours.

 	,		5
 Stabilizer	PVC Form	ΔE	
 	В	6.7	
45	В	2.8	
46	В	1.1	
47	В	0.6	
48	В	4.7	10
67*	В	5.0	
		<u>3014</u>	
	С	15.8	
40	C	12.1	
46	С	8.3	
47	Ç	14.4	15
48	C	11.2	
_	D	10.8	
47	D	9.9	
48	D	10.6	
49	D	4.5	

^{*1-}cyclohexyloxy variation

These data thus indicate the stability impact of these compounds in PVC formulations.

EXAMPLE 3

This example illustrates the stabilization performance of the instant compounds in polyurethane formulations.

The polyurethane to be utilized is formed from the reaction of a modified methylene diisocyanate (ISON-ATE 143L from Dow Chemical), a polyether-based polyol (VORANOL 4701 from Dow Chemical) and 1,4-butanediol. The reaction catalyst is dibutyltin dilaurate at 40 ppm to allow for reasonable pour time of 30 seconds at ambient temperature after mixing. The additives are predissolved in 5 grams of the blended polyol mixture. Polyurethane plaques are prepared as noted above and are exposed in a Dry Xenon Arc Weatherometer for up to 300 hours and monitored for color generation (YI) and 60° gloss retention.

	Conc.		YI at hrs.			60° C	loss at	hours
Stabilizers	(% by wt.)	0	50	100	300	0	50	100
	-	10	46	63	70	106	75	10
C/D/38	0.2/0.4/0.4	11	26	44	55	93	93	14
C/D/46	0.2/0.4/0.4	11	24	41	54	96	90	37
C/D/52	0.2/0.4/0.4	11	24	39	49	90	84	35
C/D/53	0.2/0.4/0.4	10	23	38	48	88	86	47
C/D/54	0.2/0.4/0.4	10	25	43	55	95	95	22
C/D/55	0.2/0.4/0.4	_	_	_	51	_	_	_
C/D/70	0.2/0.4/0.4	10	24	41	54	87	86	17
C/D/49	0.2/0.4/0.4	11	24	40	52	97	90	31
C/D/A	0.2/0.4/0.4	_	_	_	47	_	_	-

Stabilizer C - triethylene glycol bis(3-methyl-5-tert.butyl-4 hydroxyphenyl) propio-

Stabilizer D - 2-[3',5'-di-(1,1-dimethylpropyl)-2'-hydroxy-phenyl]-5-benzotriazole

EXAMPLE 4

This example illustrates the stabilization performance of the instant compounds in acrylonitrile/butadiene/styrene polymer.

The ABS polymer (DOW 342EZ) is blended with 4% by weight, TiO₂-containing pigment and with the indicated amounts of stabilizer, compounded on a two roll mill at 150° C./163° C. for five minutes and compression molded at 218° C. to form 5 cm×5 cm×0.2 cm 65 test plaques. The plaques are then exposed in the Interior Automotive Xenon Arc Weatherometer at 89° C. and 100% relative humidity in the dark cycle. Yellow-

24

ness Index values and ΔE values are determined originally and after 400 hours exposure.

5		Conc.	YI (ΔE) after hours		
-	Stabilizer	(% by wt.)	0	400	
		_	14	43 (15.1)	
	46	1.0	14	28 (7.3)	
	D/46	0.5/0.5	14	27 (6.4)	
)	47	1.0	14	30 (8.5)	
,	D/47	0.5/0.5	14	29 (8.0)	
	54	1.0	14	25 (6.0)	
	D/54	0.5/0.5	14	27 (6.7)	
	71	1.0	14	26 (6.9)	
	D/71	0.5/0.5	14	27 (7.0)	

These data further indicate the improved performance characteristics of the instant systems.

EXAMPLE 5

This examples illustrates the stabilization performance of the instant compounds in various polyvinyl chloride alloys.

In each instance the PVC alloy is blended with the indicated amounts of stabilizer system and processed according to the general procedure of Example 4. ΔE values are determined as in Example 2 based on calculations initially and after 2500 hours in the first series of data and after 3500 hours in the second series of data. In addition, equivalent plaques are exposed outdoors in an Arizona climate, with the unexposed samples and samples exposed for six months being subjected to a drop weight impact test procedure for determination of impact retention.

•		Series 1	(AES/PV	/C*)_
	Stabilizer	Conc. (% by wt.)	ΔE	% Impact Retention
ວ ້	_		7.0	61
	B/D**	0.3/0.7	1.3	75
	46/D**	0.5/0.5	1.6	88

^{*}Acrylonitrile/EPDM/Styrene-PVC (ROVEL from Dow) containing tin mercaptide heat stabilizer (#2) in PVC

**Same alloy as * except contains equivalent amount of tin carboxylate (#3) in PVC

_	Series 2 (ASA/PVC*)								
50	Stabilizer	Conc. (% by wt.)	ΔE	% Impact Retention					
			4.8	68					
	B/D**	0.5/0.5	2.2	99					
	46/D**	0.5/0.5	2.8	93					

^{*}Acrylonitrile/Styrene/Butyl Acrylate-PVC (GELOY from GE Corp.) containing tin mercaptide heat stabilizer (#2) in PVC

**Same alloy as * except contains equivalent amount of tin carboxylate (#3) in PVC

EXAMPLE 6

This example illustrates the stabilization performance of the instant compounds in polymethylmethacrylate.

In this instance, the stabilizer is added prior to the polymerization reaction of the polymethylmethacrylate. Sheets are cast from the polymer and evaluated as to Yellowness Index and spectrophotographic transmission. In addition, the liquid polymer is evaluated as to relative viscosity. Values are obtained on the initial samples and on the samples after 2000 hour exposure.

		YI		. Visc. 2/25° C.)		Trans. 0 nm)
Stabilizer	0	2000	0	2000	0	2000
_	2.2	2.5	2.61	1.16	75	82
A	2.8	1.7	2.73	1.36	71	89
46	2.1	1.5	2.38	1.34	75	90
54	2.1	1.5	2.74	1.36	75	90
71	2.0	1.7	2.62	1.34	78	89

What is claimed is:

1. A stabilized composition comprising

(a) an organic polymer containing hetero atoms, double bonds or aromatic rings and

(b) an effective stabilizing amount of a substituted 15 hindered amine derivative containing the group

wherein R is hydrogen or methyl, and R_1 is hydrogen, C_1 – C_{18} alkyl, C_2 – C_{18} alkenyl, C_2 – C_{18} alkynyl, C_5 – C_{12} cycloalkyl, C_6 – C_{10} bicycloalkyl, C_5 – C_8 cycloalkenyl, C_6 – C_{10} aryl, C_7 – C_9 aralkyl substituted by alkyl or aryl, or

wherein D is C_1 – C_{18} alkyl, C_1 – C_{18} alkoxy, phenyl, pheny substituted by hydroxy, alkyl or alkoxy, or amino or amino mono- or disubstituted by alkyl or phenyl.

2. The composition according to claim 1, which contains as component (b) a hindered amine derivative corresponding to the formulae A-P

$$\begin{bmatrix}
RCH_2 CH_3 & R \\
R_1O-N & R_3 \\
RCH_2 CH_3
\end{bmatrix}$$
(B)

$$\begin{bmatrix}
RCH_2 CH_3 & R \\
R_1O-N & O \\
RCH_2 CH_3
\end{bmatrix}$$

$$O R'_5$$

$$CC)$$

$$O R_5$$

$$O R_5$$

$$O R_5$$

-continued

$$\begin{bmatrix} RCH_2 CH_3 & R & R_6 \\ & & & \\ R_1O-N & & & \\ & & & \\ RCH_2 CH_3 & & & \\ & & & \\ \end{bmatrix}_n R_7$$
(D)

$$\begin{array}{c} \text{RCH}_2 \text{ CH}_3 & \text{R} \\ \\ \text{R}_1\text{O}-\text{N} & \\ \\ \text{RCH}_2 \text{ CH}_3 & \\ \end{array} \qquad \begin{array}{c} \text{(E)} \\ \\ \text{Q}_1-\text{E}-\text{CO}-\text{NH}-\text{CH}_2-\text{OR}_{10} \\ \\ \end{array}$$

$$(F)$$

$$(F)$$

$$(CO)$$

$$(CH_3)$$

$$(CH_3)$$

$$(CH_2R)$$

$$(CH_2R)$$

$$(CH_2R)$$

$$T_{4} = \begin{bmatrix} T_{5} & T_{6} \\ M & - \\ N & N - OR_{1} \\ Y & - \\ T_{5} & T_{6} \end{bmatrix}_{n}$$
(G)

$$\begin{bmatrix} T_5 & T_6 \\ R_1O - N & COO \\ T_5 & T_6 \end{bmatrix}_n$$
 (H)

$$N(CH2COO - N-OR1)3$$

$$T5 T6$$
(I)

-continued

$$\begin{bmatrix}
T_5 \\
T_6
\end{bmatrix}$$

$$R \\
R_1O-N \\
T_5$$

$$T_6$$

$$R \\
N-CO \\
T_{13}$$

$$T_5$$

$$T_6$$

$$R \\
T_7$$

$$T_7$$

$$T_$$

$$R_{1}O-N$$
 E_{1}
 E_{1}
 E_{2}
 E_{1}
 E_{2}
 E_{3}
 E_{1}
 E_{2}
 E_{3}
 E_{1}
 E_{2}
 E_{3}
 E_{1}
 E_{2}

$$\begin{array}{c|c}
H_3C & CH_2R & R & O \\
R_1O - N & R_3 & R_3
\end{array}$$

$$\begin{array}{c|c}
C & R_3
\end{array}$$

$$\begin{array}{c|c}
C & A5
\end{array}$$

wherein

R is hydrogen or methyl,

R₁ is independently hydrogen, C₁-C₁₈ alkyl, C₂-C₁₉ alkenyl, C₂-C₁₈ alkynyl, C₅-C₁₂ cycloalkyl, 60 C₆-C₁₀ bicycloalkyl, C₅-C₈ cycloalkenyl, C₆-C₁₀ aryl, C₇-C₉ aralkyl, C₇-C₉ aralkyl substituted by alkyl or aryl, or

wherein D is C_1 – C_{18} alkyl, C_1 – C_{18} alkoxy, phenyl, phenyl substituted by hydroxy, alkyl or alkoxy, or amino or amino mono- or disubstituted by alkyl or phenyl;

m is 1-4.

when m is 1,

R₂ is hydrogen, C₁-C₁₈ alkyl optionally interrupted by one or more oxygen atoms, C₂-C₁₂ alkenyl, C₆-C₁₀ aryl, C₇-C₁₈ aralkyl, glycidyl, a monovalent acyl radical of an aliphatic, cycloaliphatic, araliphatic or aromatic carboxylic acid, or of a carbamic acid

$$C(CH_3)_3$$
 C
 $C(CH_3)_3$
 C
 $C(CH_3)_3$
 C
 $C(CH_3)_3$
 C
 $C(CH_3)_3$

wherein x is 0 or 1, or

$$(CH2)y \longrightarrow N \longrightarrow CH3 CH3 O | V - CH2 - C - CH3 CH$$

wherein y is 2-4;

when m is 2,

35

R₂ is C₁-C₁₂ alkylene, C₄-C₁₂ alkenylene, xylylene, a divalent acyl radical of an aliphatic, cycloaliphatic, araliphatic or aromatic dicarboxylic acid or of a dicarbamic acid,

when m is 3, R₂ is a trivalent acyl radical of an aliphatic, unsaturated aliphatic, cycloaliphatic, or aromatic tricarboxylic acid;

when m is 4, R₂ is a tetravalent acyl radical of a saturated or unsaturated aliphatic or aromatic tetracarboxylic acid;

p is 1, 2 or 3,

R₃ is hydrogen, C₁-C₁₂ alkyl, C₅-C₇ cycloalkyl, C₇-C₉ aralkyl, C₂-C₁₈ alkanoyl, C₃-C₅ alkenoyl or benzoyl;

when p is 1,

R₄ is hydrogen, C₁-C₁₈ alkyl, C₅-C₇ cycloalkyl, C₂-C₈ alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, aryl, aralkyl, or it is glycidyl, a group of the formula —CH₂—CH(OH)—Z or of the formula —CONH—Z wherein Z is hydrogen, methyl or phenyl; or a group of the formulae

$$R CH_3 CH_2R$$
 $N-OR_1 \text{ or } CH_3 CH_2R$

-continued

with h as 0 or 1;

or R_3 and R_4 together when p is 1 can be alkylene of 4 to 6 carbon atoms or 2-oxapolyalkylene or the cyclic acyl radical of an aliphatic or aromatic 1,2- 15 or 1,3-dicarboxylic acid,

when p is 2,

R₄ is a direct bond or is C₁-C₁₂ alkylene, C₆-C₁₂ arylene, xylylene, a —CH₂CH(OH)—CH₂ group, or a group —CH₂—CH(OH)—CH₂—O—X-20—O—CH₂—CH(OH)—CH₂— wherein X is C₂-C₁₀ alkylene, C₆-C₁₅ arylene or C₆-C₁₂ cycloalkylene; or, provided that R₃ is not alkanoyl, alkenoyl or benzoyl, R₄ can also be a divalent acyl radical of an aliphatic, cycloaliphatic or aromatic 25 dicarboxylic acid or dicarbamic acid, or can be the group —CO—; or R₄ is

R4 is N N N

 $N \longrightarrow N$ $T_8 \longrightarrow T_9$

where T_8 and T_9 are independently hydrogen, alkyl of 1 to 18 carbon atoms, or T_8 and T_9 together are alkylene of 4 to 6 carbon atoms or 3-oxapentamethylene;

when p is 3,

R₄ is 2,4,6-triazinyl,

n is 1 or 2,

when n is 1,

R₅ and R'₅ are independently C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₇-C₁₂ aralkyl, or R₅ is also hydrogen, or R₅ and R'₅ together are C₂-C₈ alkylene or hydroxyalkylene;

when n is 2,

 R_5 and R'_5 together are $(-CH_2)_2C(CH_2-)_2$;

R₆ is hydrogen, C₁-C₁₂ alkyl, allyl, benzyl, glycidyl or C₂-C₆ alkoxyalkyl;

when n is 1,

R₇ is hydrogen, C₁-C₁₂ alkyl, C₃-C₅ alkenyl, C₇-C₉ aralkyl, C₅-C₇ cycloalkyl, C₂-C₄ hydroxyalkyl, C₂-C₆ alkoxyalkyl, C₆-C₁₀ aryl, glyoidyl, a group of the formula —(CH₂)_t—COO—Q or of the formula —(CH₂)_t—O—CO—Q wherein t is 1 or 2, and Q is C₁-C₄ alkyl or phenyl; or

when n is 2,

R₇ is C₂-C₁₂ alkylene, C₆-C₁₂ arylene, a group —CH₂CH(OH)—CH₂—O—X—O—CH₂—CH-(OH)—CH₂— wherein X is C₂-C₁₀ alkylene, C₆-C₁₅ arylene or C₆-C₁₂ cycloalkylene, or a group —CH₂CH(OZ')CH₂—(OCH₂—CH-

(OZ')CH₂)₂— wherein Z' is hydrogen, C₁-C₁₈ alkyl, allyl, benzyl, C₂-C₁₂ alkanoyl or benzoyl; Q₁ is —N(R₈)— or —O—;

E is C₁-C₃ alkylene, the group -CH₂-CH(R-9)-O- wherein R₉ is hydrogen, methyl or phenyl, the group -(CH₂)₃-NH- or a direct bond;

R₁₀ is hydrogen or C₁-C₁₈ alkyl;

R₈ is hydrogen, C₁-C₁₈ alkyl, C₅-C₇ cycloalkyl, C₇-C₁₂ aralkyl, cyanoethyl, C₆-C₁₀ aryl, the group —CH₂—CH(R₉)—OH wherein R₉ has the meaning defined above; a group of the formula

or a group of the formula

$$-G-N-E-CO-NH-CH2-OR2$$

$$RCH3$$

$$RCH2$$

$$OR1$$

$$CH2R$$

wherein G is C_2 - C_6 alkylene or C_6 - C_{12} arylene; or R_8 is a group —E—CO—NH—CH₂—OR₁₀;

T₃ is ethylene or 1,2-propylene, or is the repeating structural unit derived from an alpha-olefin copolymer with an alkyl acrylate or methacrylate;

k is 2 to 100;

30

35

45

55

 T_4 has the same meaning as R_4 when p is 1 or 2, T_5 is methyl,

 T_6 is methyl or ethyl, or T_5 and T_6 together are tetramethylene or pentamethylene;

M and Y are independently methylene or carbonyl; T_7 is the same as R_7 ;

 T_{10} and T_{11} are independently alkylene of 2 to 12 carbon atoms, or T_{11} is

T₁₂ is piperazinyl,

 $-NR_{11}-(CH_2)_d-NR_{11}-$ or

$$-\mathrm{NH}(\mathrm{CH}_2)_a - \mathrm{N}(\mathrm{CH}_2)_b - \mathrm{N}[(\mathrm{CH}_2)_c - \mathrm{N}]_f \mathrm{H}$$

where R₁₁ is the same as R₃ or is also

45

a, b and c are independently 2 or 3, and f is 0 or 1, e is 2, 3 or 4;

 T_{13} is the same as R_2 with the proviso that T_{13} cannot be hydrogen when n is 1;

E₁ and E₂, being different, each are —CO— or —N-(E₅)— wherein E₅ is hydrogen, C₁-C₁₂ alkyl or ¹⁵ C₄-C₂₂ alkoxycarbonylalkyl.

E₃ is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, naphthyl, said phenyl or said naphthyl substituted by chlorine or by alkyl of 1 to 4 carbon atoms, or phenylalkyl of 7 to 12 carbon atoms, or said phenylalkyl substituted by alkyl of 1 to 4 carbon atoms;

E₄ is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, naphthyl or phenylalkyl of 7 to 12 carbon atoms, or 25

E₃ and E₄together are polymethylene of 4 to 17 carbon atoms, or said-polymethylene substituted by up to four alkyl groups of 1 to 4 carbon atoms;

R₂ of formula (N) is as previously defined when m is 1;

G₁ is a direct bond, C₁-C₁₂ alkylene, phenylene or —NH—G'—NH wherein G' is C₁-C₁₂ alkylene; and

E₆ is an aliphatic or aromatic tetravalent radical.

3. The composition of claim 2, wherein R_1 is other 35 than hydrogen.

4. The composition according to claim 3 wherein the compound of component (b) is selected from the group consisting of

di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)phthalate,

di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)isophthalate.

di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)seba-

di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)succi-

di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)adi-

di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)-n-butylmalonate,

di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl) 2,2-diethylmalonate

poly- [6-[(1,1,3,3-tetramethylbutyl)-imino]-1,3,5-triazine-2,4-diyl][2-(1-acetoxy-2,2,6,6-tetramethylpiperidyl)-imino]-hexamethylene-[4-(1-acetoxy-2,2,6,6-tetramethylpiperidyl)-imino]

1,4-diaoetoxy-2,2,6,6-tetramethylpiperidine acetoxy-4-hydroxy-2,2,6,6-tetramethylpiperidine di-(1-propionoxy-2,2,6,6-tetramethylpiperidine-4-yl)adipate

di-(4-benzoyloxy-2,2,6,6-tetramethylpiperidine-4yl)oxalate

(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)-4-hydroxy-3,5-di-tert.butylbenzoate

2-(4-hydroxy-3,5-di-tert.butylbenzyl)-2-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl) n-butylmalonate

N-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl)-N-(n-butyl)-4-(4-hydroxy-3,5-di-tert.butylbenzoyloxy)-3,5-di-tert.butylbenzamide

1,6-di-(N-acetyl-N-(1-acetoxy-2,2,6,6-tetramethyl-piperidin-4-yl)]aminohexane

di-(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yloxy)hexane-1,6-dicarbamate

1-acetoxy-4-(N-acetyl-N-n-dodecylamino)-2,2,6,6tetramethylpiperidine

di-(1-propionoxy-2,2,6,6-tetramethylpiperidin-4-yl) succinate

di-(4-n-octadecanoyloxy-2,2,6,6-tetramethylpiperazin-1-yl)oxalate

1,4-di-(2-ethylhexanoyloxy)-2,2,6,6-tetramethylpiperidine

di-(1-benzoyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate

1-benzoyloxy-4-(N-n-butyl-N-benzoylamino)-2,2,6,6-tetramethylpiperidine

(1-benzoyloxy-2,2,6,6-tetramethylpiperdin-4-yl)azepin-2-one

[1-benzoyloxy-1'-benzyloxy-di-(2,2,6,6-tetramethyl-piperidin-4-yl)]isophthalate

1,4-di-(4-hydroxy-3,5-di-tert-butylbenzoyloxy)2,2,6,5-tetramethylpiperidine

n-butyl-(4-benzoyloxy-2,2,6,6-tetramethylpiperidin-4-yl)carbonate

1-carbamoyloxy-4-benzoyloxy-2,2,6,6-tetramethylpiperidine

di(1-carbamoyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate

di-(1-n-butylcarbamoyloxy-2,2,6,6-tetramethylpiperi-din-4-yl)2,2-diethylmalonate

di-(4-benzoyloxy-2,2,6,6-tetramethylpiperidin-1-yl)2,4,4-trimethylhexane-1,6-dicarbamate

alpha,alpha'-(di-1-ethoxy-2,2,6,6-tetramethylpiperidin-4-yloxy)-p-xylene

4-benzyloxy-1-ethoxy-2,2,6,6-tetramethylpiperidine 1,4-dibenzyloxy-2,2,6,6-tetramethylpiperidine

alpha,alpha'-(di-1-benzyloxy-2,2,6,6-tetramethylpiperidin-4-yloxy)-p-xylene

di-(1-benzyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate

4-benzoyloxy-1-(alpha-methylbenzyloxy)2,2,6,6-tetramethylpiperidine

di-[1-(alpha-methylbenzyloxy)-2,2,6,6-tetramethyl-piperidin-4-yl]sebacate

1,4-dimethoxy-2,2,6,6-tetramethylpiperidine

4-benzoyloxy-1-methoxy-2,2,6,6-tetramethylpiperidine

di-(1-methoxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate

di-(1-methoxy-2,2,6,6-tetramethylpiperidin-4-yl)succinate

(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-3,5-di-t.butyl-4-hydroxybenzoate

1-cyclohexyloxy-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine

di-(1-methoxy-2,2,6,6-tetramethylpiperidin-4-yl)isophthalate

di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate

di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)isophthalate

di-(1-heptyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate

di-[1-(alpha-methylbenzyloxy)-2,2,6,6-tetramethyl-piperidin-4-yl]terephthalate

- di-(1-ethoxy-2,2,6,6-tetramethylpiperidin-4-yl)seba-
- di-(1-cumyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate
- 3,15-di-alpha-methylbenzyloxy-2,2,4,4,14,14,16,16-octamethyl-7,11,18,21-tetraoxa-3,15-diazatris-piro[5.2.2.5.2.2]heneicosane
- 3,15-dicyclohexyloxy-2,2,4,4,14,14,16,16-oxtamethyl-7,11,18,21-tetraoxa-3,15-diazatrispiro[5.2.2.5.2.2-]heneicosane
- di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)succinate
- di-[1-(alpha-methylbenzyloxy)-2,2,6,6-tetramethyl-piperidin-4-yl]succinate
- di-(1-nonyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate
- di-(1-octadecyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate
- di-(1-nonyloxy-2,2,6,6-tetramethylpiperidin-4-yl)succinate
- di-[1-(1-methylcyclohexyloxy)-2,2,6,6-tetramethylpiperidin-4-yl]sebacate
- di-[1-(3-cyclohexen-1-yloxy)-2,2,6,6-tetramethyl-piperidin-4-yl]sebacate
- di-(1-tert.butoxy-2,2,6,6-tetramethylpiperidin-4yl)sebacate
- di-(1-carbamoyloxy-2,2,6,6-tetramethylpiperidin-4-yl)n-butylmalonate
- di-[1-(bicyclo-[4.4.0]-decyl-1-oxy)-2,2,6,6-tetramethylpiperidin-4-yl]sebacate
- di-(1-n-butylcarbamoyloxy-2,2,6,6-tetramethylpiperidin-4-yl)phthalate
- di-(1n-butylcarbamoyloxy-2,2,6,6-tetramethylpiperidin-4-yl)n-butylmalonate
- di-(1-phenylcarbamoyloxy-2,2,6,6-tetramethylpiperi- 35 din-4-yl)sebacate
- 4-benzoyloxy-1-benzyloxy-2,2,6,6-tetramethylpiperidine
- di-(1-methoxy-2,2,6,6-tetramethylpiperidin-4-yl)(3,5-di-tert.butyl-4-hydroxybenzyl) n-butylmalonate
- 8-alpha-methylbenzyloxy-7,7,9,9-tetramethyl-8-aza-1,4-dioxaspiro[4.5]decane
- di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)(3,5-di-tert.butyl-4-hydroxybenzyl) n-butylmalonate
- di-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate
- di-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) succinate
- bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)n-butylamino] sebacamide 50 kyl substituted by alkyl or aryl. 17. The composition of claim
- bis(1-cyclooctyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate
- N,N',N","'-tetrakis{2,4-bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-n-butylamino]-1,3,5-triazin-6-yl}-3,3'-ethylenediiminodipropylamine
- 2,4-bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yl)-n-butylamino]6-t-octylamino-1,3,5-triazine
- 2,4-bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yl)-n-butylamino]-6-morpholino-1,3,5-triazine
- N,N'-bis(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidine-4-yl)-N,N'-bis{2,4-bis[N-(1-cyclohexyloxy-2,2,6,6'-tetramethyl-piperidin-4-yl)n-butylamino]1,3,5-triazin-6-yl}hexamethylenediamine

2,4,6-tris[N-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yl)-n-butylamino]1,3,5-triazine and

N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) succinimide.

- 5. The composition of claim 4, wherein said compound is di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperi-din-4-yl)sebacate.
- 6. The composition of claim 4, wherein said compound is di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperi10 din-4-yl)isophthalate.
 - 7. The composition of claim 4, wherein said compound is di-(1-heptyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate.
 - 8. The composition of claim 4, wherein said compound is di-(1-ethoxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate.
 - 9. The composition of claim 4, wherein said compound is 3,15-dicyclohexyloxy-2,2,4,4,14,14,16,16-octamethyl-7,11,18,21-tetraoxa-3,15-diazatrispiro[5.2.2.5.2.2]-heneicosane.
 - 10. The composition of claim 3, wherein said compound is di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperi-din-4-yl)succinate.
 - 11. The composition of claim 3, wherein said compound is di-(1-alpha-methylbenzyloxy-2,2,6,6-tetrame-thylpiperidin-4-yl)-sebacate.
- 12. The composition of claim 3, wherein said compound is di-(loctyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate.
 - 13. The composition of claim 1, wherein said organic polymer is polybutadiene, polyisoprene, polystyrene, a styrene copolymer, a styrene graft polymer, a halogencontaining vinyl homo- or copolymer, a polyvinyl chloride alloy, a polymer derived from an alpha,beta-unsaturated acid, a polymer derived from an unsaturated alcohol or its acyl or acetyl derivative, a polyacetal, a polyurethane, a polycarbonate, a polyamide or a polyester.
 - 14. The composition of claim 13, wherein said organic polymer is polyvinyl chloride, a polyurethane or acrylonitrile/butadiene/styrene.
- 15. The composition of claim 14, wherein said organic polymer is polyvinyl chloride containing a thermal stabilizer therein.
 - 16. The composition of claim 15, wherein in component (b) R_1 is C_1 – C_{18} alkyl, C_2 – C_{18} alkenyl, C_5 – C_{12} eycloalkyl, C_6 – C_{10} bicycloalkyl, C_5 – C_8 cycloalkenyl, C_6 – C_{10} aryl, C_7 – C_9 aralkyl or C_7 – C_9 aralkyl substituted by alkyl or aryl.
 - 17. The composition of claim 16, wherein said thermal stabilizer is selected from the group consisting of organotin, barium/cadmium, barium/zinc, calcium/zinc, antimony and lead compounds.
 - 18. The composition of claim 16, wherein the organotin compound is selected from the group consisting of tin carboxylates, tin mercaptides and tin maleates.
- 19. The composition of claim 16, wherein said compound is di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate, di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate di-(1-heptyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate or di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)succinate.
- 20. The composition of claim 14, wherein said poly-65 mer is a polyurethane and said compound is di-(1cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate, di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)isophthalate, di-(1-ethoxy-2,2,6,6-tetramethyl-

piperidin-4-yl)sebacate or di-(1-octyloxy-2,2,6,6-tet-ramethylpiperidin-4-yl)sebacate.

21. The composition of claim 14, wherein said polymer is acrylonitrile/butadiene/styrene and said compound is di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate, 3,15-dicyclohexyloxy-2,2,4,4,14,14,16,16-octamethyl-7,11,18,21-tetraoxa-3,15-

diazatrispiro[5.2.2,5.2.2]-heneicosane or di-(alphamethylbenzyloxy-2,2,6,6-tetramethylpiperidin-4-

yl)sebacate.

22. The composition of claim 14, wherein said organic polymer is a polyurethane containing a 2-(2'-hydroxyphenyl)-benzotriazole therein.

23. A method of stabilizing an organic polymer containing hetero atoms, double bonds or aromatic ring, against oxidative, thermal or actinic degradation which comprises incorporating into said organic polymer an effective stabilizing amount of component (b) according to claim 1.

10 * * * * *