
(12) United States Patent

USOO8984639B1

(10) Patent No.: US 8,984,639 B1
Easttom (45) Date of Patent: *Mar. 17, 2015

(54) METHOD AND APPARATUS OF (52) U.S. Cl.
PERFORMING DATA EXECUTABLE CPC G06F2I/565 (2013.01)
INTEGRITY VERIFICATION USPC 726/24; 726/22; 726/23: 713/150;

713/189
(71) Applicant: Open Invention Network LLC, (58) Field of Classification Search

Durham, NC (US) None
See application file for complete search history.

(72) Inventor: William Charles Easttom, McKinney,
TX (US) (56) References Cited

(73) Assignee: Open Invention Network, LLC, U.S. PATENT DOCUMENTS
Durham, NC (US) 2006/0101408 A1* 5/2006 Kotamarthi et al. 717/126

- 2007/0209060 A1* 9, 2007 Rhodes T26/3
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 0 days. Primary Examiner — Shewaye Gelagay
This patent is Subject to a terminal dis- Assistant Examiner — Khoi Le
claimer. (74) Attorney, Agent, or Firm — Haynes and Boone, LLP

(21) Appl. No.: 14/459,125 (57) ABSTRACT

(22) Filed: Aug. 13, 2014 Disclosed are an apparatus and method of verifying an appli
e - a 9 cation installation procedure. One example method of opera

O O tion may include receiving an application at a computer
Related U.S. Application Data device and initiating the installation of the application on the

(63) Continuation of application No. 13/293.934, filed on computer device. The method may also provide executing the
Nov. 10, 2011, now Pat No. 8819,827. application during the installation procedure and creating a

s s sy- - - s hash value corresponding to the executed application data.
(60) Provisional application No. 61/412.236, filed on Nov. The method may further provide storing the hash value in

10, 2010. memory and comparing the hash value to a pre-stored hash
value to determine whether to continue the installation of the

(51) Int. Cl. application.
GSB 23/00 (2006.01)
G06F 2/56 (2013.01) 17 Claims, 6 Drawing Sheets

SERVER COMPARES
HASH SEN FROM
COMPUTER OTHE
STORED HASH

112

HASH WALUE
SERVER

HASH S

106

TRANSFERRED TO
SERVER

VERIFICATION
RESPONSE

TRANSFERRED
BACK TO
COMPUTER

USER COMPUTER
OPENS APPLICATION

USER cyputer AND HASH WALUES
COMPUTED ANE)

RANSFERRED TO THE
HASHWAUE SERVER

110

U.S. Patent Mar. 17, 2015 Sheet 1 of 6 US 8,984,639 B1

>
NEW SOFTWARE

INSTALLED USER COMPUTER
102 104

SOFTWARE EXECUTABLE:
1 10100101001001001001001001

S.

HASH ALGORTHM

NY.

HASHED VALUE: CFFEEO200202O2 /

FIG. 1

U.S. Patent Mar. 17, 2015 Sheet 2 of 6 US 8,984,639 B1

TRANSFER HASH
VALUE

NEW SOFTWARE NSSESS
INSTALLED USER COMPUTER HASH VALUE

102 104 SERVER
106

SOFTWARE EXECUTABLE:
1 1 0100101001001001001001001

HASH AL GORTHM

HASHED VALUE: CFFEEO20020202

FIG. 2

/

U.S. Patent Mar. 17, 2015 Sheet 3 of 6 US 8,984,639 B1

SERVER COMPARES
HASH SENT FROM
COMPUTER TO THE
STORED HASH

112

HASHVALUE
SERVER

106

HASH IS

TRANSFERRED TO 4 - SERVER
Y ...?

VERIFICATION
RESPONSE

TRANSFERRED
BACK TO
COMPUTER

USER COMPUTER
OPENS APPLICATION USER COMPUTER

104 AND HASH VALUES
COMPUTED AND

TRANSFERRED TO THE
HASH VALUE SERVER

110

FIG. 3

U.S. Patent Mar. 17, 2015 Sheet 4 of 6 US 8,984,639 B1

NEW SOFTWARE
INSTALLED USER COMPUTER

102 104
a /

EXECUTABLE HASH IS COMPUTED:
CFFEEO20020202

/

EXECUTABLE HASH IS STORED IN A
SECURE DIRECTORY ON THE HARD

DISK.

FIG. 4A

NEW SOFTWARE
INSTALLED

102

USER COMPUTER
104

a /

EXECUTABLE HASH IS COMPUTED:
CFFEEO20020202

a /

EXECUTABLE HASH IS ENCRYPTED
AND STORED IN A SECURE DIRECTORY

ON THE HARD DISK.

FIG. 4B

U.S. Patent Mar. 17, 2015 Sheet 5 of 6 US 8,984,639 B1

500

520 510
-N1 -N1

PROCESSOR CH MEMORY

SOFTWARE
MODULE

530 -N1

FIG. 5

U.S. Patent Mar. 17, 2015 Sheet 6 of 6 US 8,984,639 B1

Receiving an application at a Computer
Cevice.

602

Initiating the installation of the application
on the Computer device.

604

Executing the application during the
installation procedure.

606

Creating a hash value Corresponding to the
executed application data and

608 storing the hash value in memory.

Comparing the hash value to a pre-stored
hash value to determine Whether to

610 Continue the installation of the application.

FIG. 6

US 8,984,639 B1
1.

METHOD AND APPARATUS OF
PERFORMING DATA EXECUTABLE

INTEGRITY VERIFICATION

CROSS-REFERENCE TO RELATED 5
APPLICATIONS

This application is a continuation of application Ser. No.
13/293,934, filed on Nov. 10, 2011, entitled “METHOD AND
APPARATUS OF PERFORMING DATA EXECUTABLE 10
INTEGRITY VERIFICATION', now issued U.S. Pat. No.
8,819,827, issued on Aug. 26, 2014, which claims benefit to
provisional application 61/412.236, entitled “Executable
Integrity Verification', filed on Nov. 10, 2010, the entire
contents of which are hereby incorporated by reference. 15

TECHNICAL FIELD OF THE INVENTION

This invention relates to a method and apparatus of ensur
ing data files and related applications are properly installed 20
and Verified for added security measures, and more particu
larly, to Verifying the application contents for added data
integrity.

BACKGROUND OF THE INVENTION 25

A malicious data application, data file or computer pro
gram may be harmful to the operating system or other appli
cation currently operating on a user's computer. One example
of a malicious data application may be a Trojan horse, which 30
is a type of malicious application that appears to be a legiti
mate application, but contains a malicious payload if
executed by an unknowing user on a corresponding user
computer device. The payload could be a virus, Spyware,
rootkit, logic bomb, or any type of malware currently plagu- 35
ing the computer community.

In general, malicious software is wrapped with a legitimate
file to fool the computer users. For example, one might wrap
a spyware program to an innocuous file such as a game. There
are many methodologies to perform this type of wrapping 40
process. In one example, there are tools such as EliteWrap,
which will perform the wrapping procedure for a user.
Another methodology is actually built into the NTFS file
system of Windows(R operating systems, which takes advan
tage of alternate data streams (ADS). An ADS is a method- 45
ology within NTFS that allows one to tie a file to another file.

In operation, the user will only see one of the files in
Windows Explorer or when listing files from the command
line. However, when that file is executed the hidden file will
also be executed. This is a well known vulnerability in the 50
security community. Whatever the specific methodology
used for tying malicious Software to an innocuous program,
when the process is complete the resulting program is said to
have been Trojaned. Current methods for determining if a
given file or executable has been Trojaned are frequently 55
ineffective. The current methods depend solely onlooking for
signatures of known Trojans or simply if the file has features
that might contain a Trojan at all.

The ethical hacker (EC) council sponsors the certified ethi
cal hacker certification test and recommends that if one sus- 60
pects a given executable is Trojaned, the user should compare
a MD5 hash of the executable with the MD5 hash provided on
the installation media. This comparison process requires the
user to first Suspect an executable has been Trojaned, then
elect to perform a test of that executable. Also, the installation 65
media must have a hash of the original executable, and the
user must have a mechanism for hashing the current execut

2
able. This methodology while effective is cumbersome. It
also is dependent upon both user knowledge, and upon the
vendor of the executable having provided a hash of the
executable on the installation media. Furthermore, this meth
odology is only implemented if and when a user Suspects a
particular executable has been Trojaned. As a result, Trojaned
executables would frequently be missed.

Another well known way to perform software application
Verifications is with code signing. In this example, the Soft
ware vendor must sign the code. If it was not signed, then the
operating system has no way of verifying the software. With
code signing the purpose is to Verify that the Software being
downloaded from the Internet is valid. Once the product is
installed, it is not checked at each execution. Code signing is
dependent upon third party digital signatures, which may not
be present in all instances of installation.

SUMMARY OF THE INVENTION

One embodiment of the present invention may include a
method of Verifying an application installation procedure.
The method may include receiving an application at a com
puter device and initiating the installation of the application
on the computer device. The method may also include execut
ing the application during the installation procedure and cre
ating a hash value corresponding to the executed application
data. The method may further include storing the hash value
in memory and comparing the hash value to a pre-stored hash
value to determine whether to continue the installation of the
application.

Another example embodiment of the present invention is
an apparatus configured to verify an application installation
procedure. The apparatus may include a receiver configured
to receive an application and a processor configured to initiate
the installation of the application, execute the application
during the installation procedure, and create a hash value
corresponding to the executed application data. The appara
tus also includes a memory configured to store the hash value.
The processor is further configured to compare the hash value
to a pre-stored hash value to determine whether to continue
the installation of the application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example software installation proce
dure including a hash computing operation, according to
example embodiments of the present invention.

FIG. 2 illustrates an example software installation proce
dure including a hash computing operation and hash server
communication, according to an example embodiment of the
present invention.

FIG. 3 illustrates a detailed example software installation
procedure including a hash computing operation and hash
server communication, according to an example embodiment
of the present invention.

FIG. 4A illustrates an example software installation pro
cedure including a hash computing operation and local Stor
age procedure, according to an example embodiment of the
present invention.

FIG. 4B illustrates an example software installation proce
dure including an encrypted hash computing operation and
local storage procedure, according to an example embodi
ment of the present invention.

FIG. 5 illustrates an example network entity device con
figured to store instructions, Software, and corresponding
hardware for executing the same, according to example
embodiments of the present invention.

US 8,984,639 B1
3

FIG. 6 illustrates a flow diagram of an example method of
operation, according to example embodiments of the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

It will be readily understood that the components of the
present invention, as generally described and illustrated in the
figures herein, may be arranged and designed in a wide vari
ety of different configurations. Thus, the following detailed
description of the embodiments of a method, apparatus, and
system, as represented in the attached figures, is not intended
to limit the scope of the invention as claimed, but is merely
representative of selected embodiments of the invention.
The features, structures, or characteristics of the invention

described throughout this specification may be combined in
any Suitable manner in one or more embodiments. For
example, the usage of the phrases "example embodiments'.
“some embodiments', or other similar language, throughout
this specification refers to the fact that a particular feature,
structure, or characteristic described in connection with the
embodiment may be included in at least one embodiment of
the present invention. Thus, appearances of the phrases
“example embodiments”, “in some embodiments”, “in other
embodiments', or other similar language, throughout this
specification do not necessarily all refer to the same group of
embodiments, and the described features, structures, or char
acteristics may be combined in any suitable manner in one or
more embodiments.

In addition, while the term “message' has been used in the
description of embodiments of the present invention, the
invention may be applied to many types of network data, such
as, packet, frame, datagram, etc. For purposes of this inven
tion, the term “message' also includes packet, frame, data
gram, and any equivalents thereof. Furthermore, while certain
types of messages and signaling are depicted in exemplary
embodiments of the invention, the invention is not limited to
a certain type of message, and the invention is not limited to
a certain type of signaling.

FIG. 1 illustrates an example computer configuration
according to example embodiments. Referring to FIG. 1, a
user computer 104 is illustrated as being in communication
with the Internet, a remote server, etc. to accept and receive
Software application updates via downloads. The user com
puter may be a tablet computing device, Smartphone device,
cellular enabled device, laptop, personal computer (PC) or
similar computing device.

FIG. 1 illustrates a process of creating a hashed executable
or related data files and/or programs. A user computer 104
may receive a new software install command or batch file
procedure from a remote location. The user computer may
automatically accept the download and begin installing the
new software via the received packet data from the remote
Source. Alternatively, the user may be prompted to accept or
deny the software download and/or install from the remote
source. The downloaded software executable may be pro
cessed via the user computer 104 and applied to a predeter
mined hash algorithm, which in turn, produces a hash coded
value of the received software executable. The hash of each
executable would then be stored in a secure location. The
created hash value may be compared to a hash value that is
provided with the installation application and/or a hash value
pre-stored at a remote location.

FIG. 2 illustrates a process of creating a hashed executable
or related data files and/or programs and sharing the hashed
data with a server, according to example embodiments of the
present invention. Referring to FIG. 2, a secure server 106 on

5

10

15

25

30

35

40

45

50

55

60

65

4
the organizational network may be known as a hash value
server. In this example, executable hashes would be stored in
a manner similar to the way digital certificates are stored. The
procedure used to receive and install a software application
may be fully automated and transparent to the user. The
procedure may not be dependent on the Software vendors
providing hashes and may be applicable to all executables on
a given system, and further applicable to multiple environ
ments (i.e., the user home/individual computer, the organiza
tion network computer, etc.).

According to one example, the executable integrity verifi
cation procedure used may provide that each new program
installed on the system would have a hash value computed
and stored. In most operating systems, including Windows.(R),
only administrators can install software. As a result, the pro
cess of receiving and updating a software install may also be
tied to administrative privileges. As noted above, the proce
dure used to compute a hash upon installation of the Software
is illustrated in FIG. 1.

In FIG. 2, when any executable was launched on the user
computer 104, a query would be issued to the hash value
server 106, which sends that server the hash value of the
current executable. The hash value server 106 would then
compare that recently created hash value to a pre-stored hash
value. If the hash values matched, then the hash value server
106 would respond by authorizing the requesting user com
puter 104 to execute the application. If the hash values did not
match then the server would respond with a warning to the
requesting computer that the application integrity was com
promised and that further installation should be aborted.
Upon installation of the application, the executable and any

corresponding dynamic link libraries (DLLs) will be hashed.
A hash value may be computed for any program, data file or
even an entire drive. The application data may change during
program use. Trojan horses may affect the executable or the
DLLs associated with the application. The executable should
be installed prior to performing a hashing operation. For
example, on installation disks, the files are compressed so
hashing prior to installation would not suffice as the files after
installation would be different. Therefore, after installation
the executable and other DLLs will be hashed.
Once the program or installation is installed on a computer,

ahash is calculated at that point in time. That calculated hash
may be used to compare to the originally installed program to
ensure no Trojan horse has since been attached to alter the
installed program or that the executable has not been changed
by malware or other malicious software attacks. Ideally, every
time the executable is launched it will behashed and checked.
The hashing procedure takes a few seconds to process with
modern processing speeds. In less sensitive environments the
hashes may be calculated every so often (i.e., once a day)
similar to a virus Scan.
The verification procedure is illustrated in the client/server

communication example of FIG. 3. Referring to FIG. 3, a
hash verification procedure is illustrated as having a series of
operations used to ensure the application installation and
corresponding hashing operations are performed correctly.
The user computer 104 may begin by opening a software
program or application. During the application opening/ex
ecuting procedure a hash value is computed based on the
contents of the application and transferred to the hash value
server 110. The hash value may be wholly or partially based
on the digital data contents of the application.
Once the hash value is calculated it is transferred from the

user computer 104 to the hash value server 106 via a network
communication link. The hash value server 106 may compare
the received hash value to a previously stored hash value 112.

US 8,984,639 B1
5

The comparison may yield a matchora non-match. If the hash
values match, a verification message is transferred to the user
computer 104 indicating that the Software application may be
executed and installed for use on the user computer 104. If the
hash values do not match, a warning or stop installation
message is sent to the user computer 104 to abort the appli
cation installation to prevent any malicious code from being
installed on the user machine.

In cases where no matching hash value was found on the
hash value server 106, the server could either respond deny
ing the program permission to run or in another example,
warn the user that the integrity of the program could not be
verified. The user or user computer 104 could then decide to
proceed with the application execution. This warning could
be presented to the user in the form of a decision window
Application could not be verified. Do you wish to proceed
with this application installation? YES or NO. In the case of
an automated approach, the application installation may auto
matically be revoked from further installation.
The hash value server 106, would be effective in an orga

nizational network setting but not as effective in a home
setting or any situation in which an individual computer was
operating independent of a network. According to another
example, immediately following the installation of any new
executable on the user computer 104, a hash would be calcu
lated for that executable. That hash could be stored in a secure
location on the user's computer (rather than on a hash value
server). Such as a system folder only accessible to users with
administrator/root privileges.

FIG. 4A illustrates an example of performing a local secure
storage of the computed hash value. Referring to FIG.4, once
the hash value is computed, the user computer 104 proceeds
to store the hash value in a secure folder or directory locally
on the user computer 104. In yet another example, the hash
values stored on the user computer 104 would be encrypted.

FIG. 4B illustrates the process of encrypting the computed
hash value and storing it in a secure directory of the hard disk.
If the hash values are stored locally and are not encrypted,
then there is the possibility of an attacker trojaning an
executable then putting that trojaned executables hash into
the hash value repository. In another example, after installing
a new program the hash for that program would be calculated
and the user would be prompted to insert some removable
media (e.g., CD, DVD, USB memory device, etc.) to store the
hash value. Applications could only be executed when the
removable media was present so that the hash values could be
compared.
None of the above-noted hashing examples are limited to a

specific hashing algorithm. The hashing algorithm may
include a secure hashing algorithm (SHA) SHA-1 and SHA1,
a message digest algorithm (MDX) MD4 and MD5 or any
hashing algorithm. The purpose of the hashis simply to verify
the integrity of the target application.

Example embodiments provide executable integrity veri
fication each time software is executed, it is checked for
validity. This specifically will prevent techniques like using
alternate data streams that attach other files to existing files.
Code signing cannot provide protection from Such installa
tion procedures. According to other example embodiments
executable integrity verification may be used to have the
operating system creates its own hash for each executable at
installation time. As a result, there is no reliance on third
parties, nor even a need to be connected to the internet. By
performing a hash comparison each time a program is
executed, the integrity can be guaranteed for each use and not
just an initial installation effort.

10

15

25

30

35

40

45

50

55

60

65

6
The operations of a method or algorithm described in con

nection with the embodiments disclosed herein may be
embodied directly in hardware, in a computer program
executed by a processor, or in a combination of the two. A
computer program may be embodied on a computer readable
medium, Such as a storage medium. For example, a computer
program may reside in random access memory (RAM),
flash memory, read-only memory (“ROM), erasable pro
grammable read-only memory ("EPROM), electrically
erasable programmable read-only memory (“EEPROM),
registers, hard disk, a removable disk, a compact disk read
only memory (“CD-ROM), or any other form of storage
medium known in the art.
An exemplary storage medium may be coupled to the

processor Such that the processor may read information from,
and write information to, the storage medium. In the alterna
tive, the storage medium may be integral to the processor. The
processor and the storage medium may reside in an applica
tion specific integrated circuit (ASIC). In the alternative,
the processor and the storage medium may reside as discrete
components. For example FIG. 5 illustrates an example net
work element 500, which may represent any of the above
described network components of FIGS. 1-4.
As illustrated in FIG. 5, a memory 510 and a processor 520

may be discrete components of the network entity 500 that are
used to execute an application or set of operations. The appli
cation may be coded in Software in a computer language
understood by the processor 520, and stored in a computer
readable medium, such as, the memory 510. The computer
readable medium may be a non-transitory computer readable
medium that includes tangible hardware components in addi
tion to software stored in memory. Furthermore, a software
module 530 may be another discrete entity that is part of the
network entity 500, and which contains software instructions
that may be executed by the processor 520. In addition to the
above noted components of the network entity 500, the net
work entity 500 may also have a transmitter and receiver pair
configured to receive and transmit communication signals
(not shown).

FIG. 6 illustrates an example method of operation. Refer
ring to FIG. 6, a method of Verifying an application installa
tion procedure is provided. The method may include receiv
ing an application at a computer device at operation 602, and
initiating the installation of the application on the computer
device at operation 604. The method may also include execut
ing the application during the installation procedure at opera
tion 606. At this point in the installation procedure, the hash
value may be created prior to the application being installed in
its entirety. This may prevent harmful applications from
effecting system performance since the final installation pro
cedure has not yet been verified or performed. The method
may further include creating a hash value corresponding to
the executed application data and storing the hash value in
memory at operation 608. The method may further include
comparing the hash value to a pre-stored hash value to deter
mine whether to continue the installation of the application at
operation 610.

While preferred embodiments of the present invention
have been described, it is to be understood that the embodi
ments described are illustrative only and the scope of the
invention is to be defined solely by the appended claims when
considered with a full range of equivalents and modifications
(e.g., protocols, hardware devices, software platforms etc.)
thereto.

US 8,984,639 B1

What is claimed is:
1. A method, comprising:
decompressing an application to one or more executables

and one or more libraries:
storing the one or more executables and one or more librar

ies at a computer device:
initiating an installation of the application on the computer

device;
hashing the one or more executable files and one or more

libraries to create one or more hash values:
transmitting the one or more hash value at a remote loca

tion;
storing the one or more hash values in memory at the

remote location;
transmitting a query to the memory at the remote location

to verify the one or more hash values of the one or more
executable files:

rehashing the one or more executables and one or more
libraries each time the one or more executables are
executed to create one or more rehash values:

comparing the one or more rehash values with the one or
more stored hashed values; and

determining whether to continue with an execution of the
one or more executables based on the comparing.

2. The method of claim 1, wherein the comparing the hash
value to a pre-stored hash value further comprises comparing
the hash value to a pre-stored hash value included with the
application data.

3. The method of claim 1, wherein storing the one or more
hash values in memory optionally comprises storing the one
or more hash values locally on the computer device.

4. The method of claim 1 comprising receiving the appli
cation at the computer device.

5. The method of claim 1, further comprising ending the
installation of the application on the computer device if the
created hash value does not match the pre-stored hash value.

6. The method of claim 1, further comprising continuing
the installation of the application on the computer device if
the created hash value does match the pre-stored hash value.

7. An apparatus, comprising:
a processor configured to:

decompress an application to one or more executables
and one or more libraries:

store the one or more executables and one or more librar
ies at a computer device:

initiate an installation of the application; hash the one or
more executable files and one or more libraries to
create one or more hash values of the one or more
executable files and one or more libraries of the appli
cation; transmit the one or more hash values at a
remote location; and

a memory, at the remote location, configured to store the
one or more hash values; and

wherein the processor is further configured to:
transmit a query to the memory at the remote location to

verify the one or more hash values of the one or more
executable files;

rehash the one or more executables and one or more
libraries each time the one or more executables are
executed to create one or more rehash values:

compare the one or more rehash values with the one or
more stored hashed values; and

determine whether to continue with an execution of the
one or more executables based on the comparison.

10

15

25

30

35

40

45

50

55

60

8
8. The apparatus of claim 7, wherein the processor being

configured to compare the hash value to a pre-stored hash
value further comprises comparing the hash value to a pre
stored hash value included with the application data.

9. The apparatus of claim 7, wherein the hash value is
optionally stored locally.

10. The apparatus of claim 7, comprising a receiver con
figured to receive the application.

11. The apparatus of claim 7, wherein the processor is
further configured to end the installation of the application if
the created hash value does not match the pre-stored hash
value.

12. The apparatus of claim 7, wherein the processor is
further configured to continue the installation of the applica
tion if the created hash value does match the pre-stored hash
value.

13. A non-transitory computer readable storage medium
configured to store instructions that when executed cause a
processor to perform:

decompressing the application to one or more executables
and one or more libraries:

storing the one or more executables and one or more librar
ies at a computer device:

initiating an installation of the application on the computer
device;

hashing the one or more executable files and one or more
libraries to create one or more hash values:

transmitting the one or more hash value at a remote loca
tion;

storing the one or more hash values in memory at the
remote location;

transmitting a query to the memory at the remote location
to verify the one or more hash values of the one or more
executable files;

rehashing the one or more executables and one or more
libraries each time the one or more executables are
executed to create one or more rehash values;

comparing the one or more rehash values with the one or
more stored hashed values; and

determining whether to continue with an execution of the
one or more executables based on the comparing.

14. The non-transitory computer readable storage medium
of claim 13, wherein the comparing the hash value to a pre
stored hash value further comprises comparing the hash value
to a pre-stored hash value included with the application data.

15. The non-transitory computer readable storage medium
of claim 13, wherein storing the one or more hash values in
memory optionally comprises storing the one or more hash
values locally on the computer device.

16. The non-transitory computer readable storage medium
of claim 13, wherein the processor is further configured to
perform receiving an application at the computer device.

17. The non-transitory computer readable storage medium
of claim 13, wherein the processor is further configured to
perform:

ending the installation of the application on the computer
device if the created hash value does not match the
pre-stored hash value; and

continuing the installation of the application on the com
puter device if the created hash value does match the
pre-stored hash value.

