10 - 0337246

	(19) (12)			KR) 31)	
(51) 。Int. CI. ⁷ C08F 285/00				(45) (11) (24)	2002 11 30 10 - 0337246 2002 05 07
(21) (22)	10 - 1995 - 0001680 1995 01 28		(65) (43)		1995 - 0032338 1995 12 20
(30)	08/189349	1994 (01 31	(US)
(73)	19850 - 5439			2801	
(72)	19701			239	9
(74)					
:					
(54)					

•

1

1 71 9700 ... 21000 ... 21000 ... 9700 ...

```
5
                         (
                                                  )
                 - g -
  9600
 6
                                        18000
        5
                                                                                         ( )
                                      )
                                                     가
                                                  (irradiation)
                                                                가
                                          (:
                              ( : )
                                                                                        가
             4,595,726
                                                          %,
                                                    100
                                                                              30
                                              3
                가
                                          가
(
                                                                                       3 -
                 , 135
                                      15
                                                          135
                                                                    140
                                                                    가
                                        2
                                                     가
                                                                                    4,595,
                                               )
                                                                가
                                           가
                                                                                    가
726
```

- 2 -

4

```
가
                                            3,240,843
                    가
                               , 가
           가
                                                 9%
                               9%
           5,140,074
                                                          ( ;
                                            가
                                                                 2
                                                                    가
                                                                        1
                                                                             240
              0.1
                    6.0pph(
                                        100
                                                     )
                                                           60
                                                                   125
          가 , 5 145pph
                                가
                                                   4.5pph/min,
                                                                       4.0pph/min,
                                           가
가
               3.0pph/min
 1
             ( ,
                                     )
                               가
  1
                                                                  125
                                                             60
                                                                  가
                       5
                            145pph
                                            2
      가,
               150pph
                                                                         가
          가
                                    가
                                                                            가
                                                                     가
                  가
```

- 3 -

```
, 0.1 0.2pph/min
                             가
                                                         0.3pph/min .
                                              가
 0.1
       4.5pph/min,
                      0.3
                            4.0pph/min
                                              가
                                                     가
                40pph
                                        4.0pph/min
                                                         가
         40pph
                                가
- 가
                                                  가
                                     ) ,
                                                             가
          가
                                                  가
          가가
 가
                                 가가
  가
                                      가가
                                                          가가
                                                  가
                          가
                                         가 (
                                                      ),
                      가
                              가
                                                      가
                                         가가
           가
                      가
  )
                                 가
 가
            가
                   가 가
                                                   가
  가
                                                              125 ,
                                                      60
                120
                                          가
          80
                               60
                                                        가
                                        60
                   가
                        . 125
             가
                                                         가
                                       , 125
                                                             240
                                                        1
      가
                                 3
                                                 10
                                                               2
                                                                   1
                                                      가
                                                가
                 1
                                    2
가
                                                가
                                                               가
                                               가
                                가
                                                가
                    가
                                                          2.5
                    가가
```

- 4 -

C₂₋₈ -(a) , C₂ - C₁₀ 1 -(b) C_{2-8} 10 C₄ - C₁₀ 1 -; 가 %, %, 가 20 16 10 %, C₄₋₁₀ -5 %], (C) C_{3-8} 16 % 20 5 %], (d) [10 40 % 70 % , 1- , 3- -1- , 4- -1- , 1- , 3,4- -1- , 1-0.91g/cm³ , 가 가 C ₃₋₁₀ -0.919/cm³ . / -1, / -1 /4- -1- . . , LLDPE LDPE 0.91g/cm³ , HDPE HDPE LDPE 0.95 9/cm³ . 0.4 가 0. 가 . . 가 0.20 , 07 0.12 50% , 가 , 가 40% 0.1 m²/g 1μ 0.4 7mm 90% 가 5 가 1 240 , 100 , 가 10 40 1 [:

- 5 -

```
, 1,1 -
                                                       , 1,1 -
( -3 -
, 2,5 -
- 3 -
- 2,5 - (
                                                        , 1,1 -
                                ) 가
                                                  ]가
(n - )
[ :
                                                        가
                 ]
                                                      98
                           12.5
                                75
가
             0.1
                  6.0pph,
                                0.2
                                    3.0pph
                        H_2C-CR-(, R
(1)
(2)
(3)
                                     ),
                                                               ),
      가
                              100
                                           240
                                       5
        가
                                               70
                                                               5
       , 가
                  25
                                        가 1×10<sup>-3</sup>
              ( : ), ( : ),
            )가
```

- 6 -

```
가
                                                                            (:
                                                                                          )
                                                             가
                           가
                                                     가
                                                                          ,
가
                                                                                              가
                                                                                       가
                                                                             가 15
                                                                                      %
                  , 가
                                        %
                                                                                        0.004
        5
                                    1
                                 가
%
                                                                                             가
                                                                  110
                                                                                      5
         120
                                 20
     1
                                                                                60
                                                                                         125
                                                                                가,
                                                            가
                                 2
                 1
                                             가
                    가
                                                                가
                                                       가
                                                         가
   %
                        굴곡 모듈러스
                                         ASTM D-790 및 D-618, 과정 A
                                         (0.5in/min, 성형 T-바아의 크로스헤드
                                         쇽도 및 중앙부)
                        노치된 이조드
                                         ASTM D-256-87
                                         ASTM D-1238, 조건 L
                        용융유동숙도(MFR)
                        파단신도
                                         ASTM D-638
                        항복신도
                                         ASTM D-638
```

```
인장강도
                                     ASTM D-638
     1
                       7025 XOS
MFR 9dg/min
                                                     ( : HIMONT Italia S.r.l.) 500
                      가 2
g 가
                                    0.004
                15
                                            %
                         100 가 ,
                                                    180
                                                           200rpm
                                                                             0.56pp
                          (LUPEROL) PMS 3 -
        150g
                                                    - 2 -
                                    1 1.00pph(
  5.62g
               5
                    100
                                                              100
                                    100
                    가
                           30
                                                                  가
                                                                        30
                                                        가
                                                                             120
  1
가
                                       가
                                                                  가 30
                                                                             120
                        - g -
                                                             87%가
                       5.8dg/min
                 MFR
                                                        0.004
                       550g
                                                               %
                                                                           )
                                                         가
                                                   80
                                                                          0.28pph
            113 -
                                                 1.39g
                                                                           . 5
                                                                                  1
                                                 1.00pph (
00
                                                                  100
                                (BA) 148.4g 1
                                                                                 )
                         가
                                35
                                                             가
                                                                                  12
                                                     가
                                                                               가
0
     가
       120
30
          ) - g -
g -
                                                                       1B
                                                                1A
     2
  1
                                                 450g
                                                                               9.09g
```

ASTM D-638 (이중문 성형된 T-바아에

의해 생긴 바마의 중앙에 위치한 용접

라인)

용접라인 강도

- 8 -

1A 1B

1A

중합반응	실시예 1	실시예 2
제 1 단계		
단량체	스티렌	스티렌
단량체, pph	30.00	54.00
개시제, 루페르졸	PMS	PMS
개시제, 활성 pph	0.56	1.01
몰바 1 (단량체:활성 개시제)	111	111
폴리프로필렌 중량, g	500	450
단량체 중량, g	150	243
개시제 용맥 중량, g	5.62	9.09
전체 중량(g)	655.62	702.09
반응 온도, °C	100	100
최종 생설물, g	630	678.3
PS 전환율, %	87	94
첨가슉도(ml/min)	4.6	4.2
MFR, dg/10min	5.8	2.5
XSRT*, %	18	27

단량체	ВА	ВА
단량체, pph	35.08	34.95
개시제, 루페르졸	11	11
개시제,활성 pph	0.28	0.28
물비 2 (단량체:활성 개시제)	170	170
그래프트 공중합체 중량, 9	550	575
단량체 중량, g	148.4	130.5
개시제 용액 중량, g	1.58	1.39
충 중량, g	699.98	706.89
반응 온도, °C	80	80
최중 생설물, 9	665	676
BA 전환율, %	77	77
첨가속도, ml/min	5.1	5.4
MFR, dg/10min	1.2	0.5
XSRT, %	20	27

^{*}XSRT = 실온에서 크실렌중에서 가용성인 물질

최종 특성	⁶ 실시예 1	실시예 2
PP*, 중량%	55	64
PS**, 중량%	30	19
PBA***, 중량%	15	17
굴곡 모듈러스, kpsi	216	177
노치된 이조드, ft-1b/in	1.8	5,5
인장강도, psi	3954	3429
용접라인 강도, psi	2462	2488
보유강도, %	62	73
파단신도 @ 용접라인,%	4.0	5.9

*PP =

**PS =

***PBA =

3

142g 1 2 142g 7 1 .(-g-)-g-

가 .

2A 2B .

4

142g 1 142g 2 3 .(-g-)-g- 7t .

2A 2B .

```
125g
                                   120g
                                                                         1
                    41g
                                                        2
      3
                                  . (
                                                 - g -
                                                                                          ) - g -
                          가
                                                                                     2A
                                                                                           2B
      6
                           41g
                                           11
                                                                                                         125g
                                              11
                             120g
                                                                               2
                                                                         - g -
                              3
                                                                                                     ) - g -
                                                         . (
                                                  가
(
                               )
                                                                                     2A
                                                                                           2B
      7
      87g
                                         56g
                                                                                                      58g
                                                  1
                  (MMA)
                                  84g
                                           2
                                                                                                        6
                     . (
                                    - g -
                                                                             )) - g -
                                                                                         (
                             가
          )
                                                                                     2A
                                                                                           2B
  2A
                         중합반응
                                          실시예 3 실서예 4 실시예 5 실시예 6 실시예 7
                         <u>제 1단계</u>
                         단량체 1
                                            스티렌
                                                      MMA
                                                             스티렌
                                                                      MMA
                                                                              스티렌
                         단량체 1, pph
                                            34.89
                                                     34.89
                                                              30.56
                                                                      10.02
                                                                               21.27
                         단량체 2
                                                               MMA
                                                                                MMA
                         단량체 2, pph
                                                               29.34
                                                                               13.69
                                                                               11
                         개시제 루페르졸
                                             PMS
                                                      11
                                                                11
                                                                       11
                         개시제, 활성, pph
                                             0.69
                                                                                0.50
                                                     0.51
                                                               0.84
                                                                      0.15
                         몰비 1
                         (단량체:활성 개시제)
                                             105
                                                     120
                                                               121
                                                                       119
                                                                                120
                         폴리프로필렌 중량, g
                                             407
                                                     407
                                                               409
                                                                      409
                                                                                409
                         단량체 1 중량, g
                                             142
                                                     142
                                                               125
                                                                       41
                                                                                87
                         단량체 2 중량, g
                                                               120
                                                                                56
                         개시제 용맥, g
                                             5.6
                                                    2.75
                                                               4.6
                                                                      0.8
                                                                                2.7
```

90

90

115

반용 온도, C

단량체 1	мма	스티렌	MMA	스티렌	스티렌
단량체 1, pph	34.89	34.89	10.02	30.56	14.18
단량체 2				ММА	мма
단량체 2, pph				29.34	20.54
개시제 루페르졸	11	PMS	11	11	11
개시제, 활성, pph	0.51	0.69	0.15	0.84	0.50
몰비 2					
(단량체:활성 개시제)	120	105	119	121	120
단량체 1 중량, g	142	142	41	125	58
단량체 2 중량, g				120	84
개시제 용액 중량, 9	2.75	5.6	0.8	4.6	2.7
총 중량, g	699.4	699.4	700.4	700.4	699.4
반응 온도, C	90	115	90	90	90
최종 생성물, g	672	663	674	676	676
전환율, %	93	90	93	93	93
실제 첨가속도 ml/min	3.7/5	3.9/5	4.4/5	4.6/5	4.0/4

2B

최종 특성	실시예 3	실시예 4	실시예 5	실시예	6 실시예 7
굴곡 모듈러스, kpsi	337.3	340.2	325.5	328.6	323.6
노지된 이조드, ft-lb/in	0.18	0.15	0.33	0.32	0.28
인장강도, psi	5916	5583	5087	5113	5058
용접 라인 강도, psi	4445	4816	4456	4648	3790
보유 강도, %	75	86	88	91,	75
파단신도 @ 용접라인,%	5.3	5.9	5.9	6.4	4.5

2 - g -

1 .

2가 2C .

 2C

 최종 특성
 실시예 3 실시예 4 비교실시예 1 비교실시예 2

40 70	글 시에 3	교시에	미끄글시에	I DITE AND E
글국 모듈러스, kpsi	337.3	340.2	316.3	365.5
노치된 이조드, ft-1b/in	0.18	0.15	0.27	0.18
인장강도, psi	5916	5583	5031	5947
용접 라인 강도, psi	4445	4816	4467	3469
보유 강도,%	75	86	88	58
파단신도 @ 용접라인,%	5.3	5.9	5.9	3.4

, 3 4 1 , . 2

, , 2 가 .

8

1 , 30pph 527.5g . (0.004 %) 80 가 , . , , 0.24pph 11

3 - 1.3g . 121.2g 5 10 5.9ml/min . 가 30 .

10 - 0337246

8

가 . 120 120 가 30 (- g -) - g -3B ЗА 9 10 54pph 8 (- g -) - g -3A 3B 11 85pph

3A 3B ...

중합반응 실시예 8 실시예 9 신시예 ¹10 ^{실시하}

85pph

) - g -

(

ЗА

- g -

중합반응	실 <u>시예 8</u>	실시예 <u>9</u>	실시예 10	실시에 11
제 2 단계				
- 단량체 단량체, oph 개시제, 루페르졸 개시제, 활성 pph 몰비	BA 29.9 11 0.24	BA 35.42 11 0.28	BA 51 11 0.41	BA 42.55 11 0.34
(단량체:활성 개시제)	170	170	170	170
그래프트 공중합체 중량,g 단량체 중량,g 가시제 용액 중량, g 총 중량, g 반응온도, C	527.5 121.2 1.3 650.0 80	527.0 121.8 1.4 650.2 80	487.4 162.0 1.7 651.1 80	527.5 121.6 1.3 650.4 80
최종 생성물, g 전환율, 3	617 73	612 69	582 58	578 41

3

1 1 가 .

10 - 0337246

50pph , 1 2

가 .

3B

12

,

3B .

3В .

최종 특성 실시예 8 비교실시예 3

PS 중량, % 20 26

PBA 중량, % 15 15

글국 모듈러스, kps1 222.8 240.7

노지된 이조드, ft-lb/in 3.7 3.0

인장 강도, psi 4266 4422 용접라인 강도, psi 2794 1285 보유 강도, % 65 29 파단신도 @ 용접라인, % 4.5 1.6

8 3

. , 3 가 .

161b (AN) 5.41b 1

4A 4B

1.31b	(MMA)	0.421b	0.951	b
1			181g	
2		12	(- g -
) -	g -		
			4A	4B
14				
152g 3	(MA) 61g (BA) 124.6g	- g	1 2) - g -
, and the second		9		
			4A	4B

4A

중하바용	실 <u>시예 12</u>	실시에 13	실시예 14
제 1 단계			
단량체 1 단량체 1, pph 단량체 2 단량제 2, pph 다량체 3	스틱렌 40.5 AN 13.5	스티렌 25 MMA 7.5	스티렌 42.71 MA 17.14
단왕계 3, pph 가시제 루페르콜 개시제, 활성 pph 목비 1	11 1.0	AN 17.5 11 0.93	11 0.67
『단량계(활성 개시제)	110	122	151
폴리프로필렌 중량 단량체 중량 1 단량체 중량 2 단양체 중량 3 개시제 용액 중량 ' 반응온도, C	40 lbs 16 lbs 5.4 lbs 0.542 lbs	5.3 lbs 1.3 lbs 0.42 lbs 0.95 lbs 30.1 g	355.9 g 152 g 61 g 3.2 g 90
단량체 단량체, oph 가시제 루페르졸 가시제, 활성 pph 몰비 2 (다란계·화서 가시제)	BA 35.42 11 0.18	BA 35 11 0.28	BA 35 11 0.28
(단량체:활성 개시제) 단량체 중량,g 그래프트 공중합체 중량,g 개시제 용액 중량, g 충 중량, g 반응온도, C	170 121.6 527 1.3 649.9	172 181 517 1.9 699.9	170 124.6 1.3 698.0
최종 생성물, g 전환율, %	578 41	644 70	659 89

4 13 1 4 (- g -) 13 2 - g -4B 5 () 12 1 - g -가 2 12 - g -가 () - g -- g -4B 4B 비교 비교 실시예4 실시예5 최종 특성 실시예 13 실시<u>예 14</u> 221 0.9 3411 1439 42 글곡 모듈러스 노치된 이조드 인장 강도 용접라인 강도 보유 강도 파단 신도 용정라인 % , kpsi , ft-lb/in , psi , psi , % 169 2.3 3643 1910 52 218 0.7 3561 221 1.1 4558 221 1.2 3532 2642 58 2212 1384 39 4.4 4.2 3.5 1.9 2.0 12 13 4 5 2가 가 (TEM) (DMTA) , 2가 (TEM) 6 (1 2), (3 4)

(5

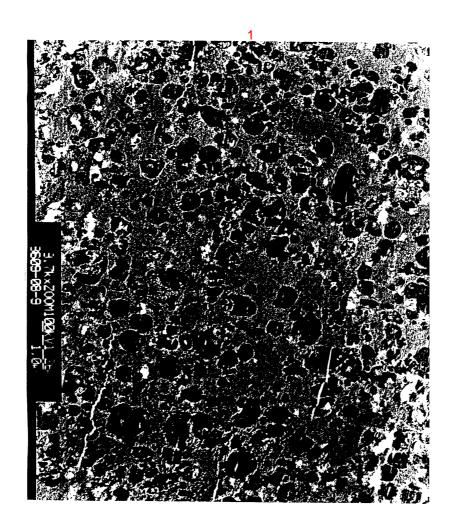
6)

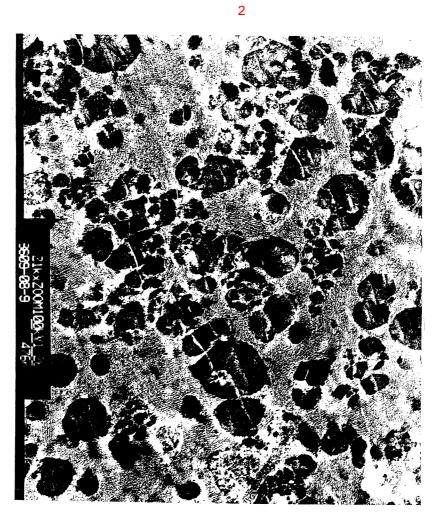
```
1
     2
                                                                 - g -
                                   - g -
                    3가
                                                                 3
가
3
      4
                                     - g -
                                            ) - g -
                        가
3가
                      3가
                                5,140,074
 5
     6
g- ( - -
                       )
        , 2
                                                              )
                                                가
                            )가
         (DMTA)
                                                              Τ-
3mm × 12.5mm × 32mm
3 °/min - 100 170
                       가
                                1Hz
              , 3 4
(DMTA) 가
     2
                                                  5
                                                      6
1
     2
DMTA
                        3
                                가
                                           3가
                가
                                           - 33
14.5
                                        TEM
                                                           3
                        110
                                                    , 3가
 3 4
                               DMTA
                                            - 31.5
 16.5
                         107.5
 5 6
, 14.5
                         DMTA
                                    65.5
```

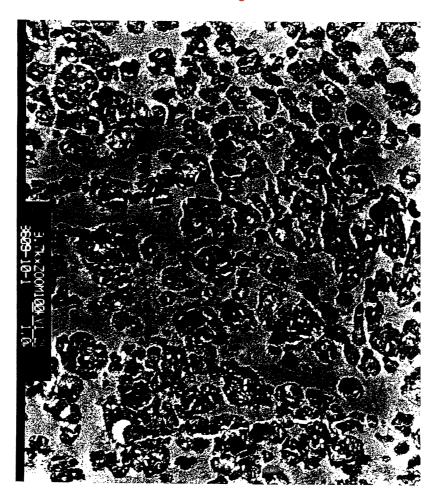
- 19 -

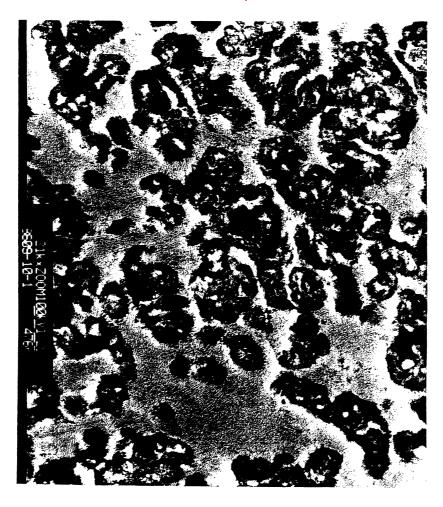
```
. DMTA
                                             가 2
                                                                                 65.5 가
                                                        - 35
                                                                                        110
                                                           (
         . DMTA
                                                                           - g -
                                                                                    (
                 ))-g-
3
                                     3
                                                                                        3
                                                                                                    가
                                                        - 30.5
                                                                                                               17.5
     (
                                                                  )
                                                                                 110
          5
                , 1
                                              3
                                                                                            5
                             3
                                                                          1
                                  가
                                                  5
   5
                           특성
                                                                제 1 도
                                                                            제 3 도
                                                                                         제 <sub>5</sub>도
                           중량% PS*
중량% PBA**
                                                               20.3
                                                                            28.6
                                                                            14.8
                                                                 15
                           굴곡 모듈러스
노치된 이조드
인장 강도
용접라인 강도
파단 신도
                                         , kpsi
, ft-lb/in
                                                             197.9
2.3
3886
                                                                          215.5
                                                                                         305
                                                                                         0.27
5144
                                                                            1.8
3954
                                              c-lb/in
, psi
, psi
<sup>@</sup> 용접라인<sup>%</sup>
                                                                                         3064
                                                               1633
                                                                            2462
                                                                2.4
                                                                             4.0
*PS =
**PBA =
                                                                                                     가
                                               가
(57)
1.
(A) (i)
                                         60
                                                     125
                                                                                        (
                              가
                                     1
                                          240
                                                      ) 0.1
                                                                    6.0pph
(ii)
                                                             (i)
                                                                                                           ( ,
                                                                              5
                                                                                      145pph
       가
                       가
                                                                                                                           가
                              가
                                     4.5pph/min
                                                                    5
                                                                               3
                                                                                      4
),
```

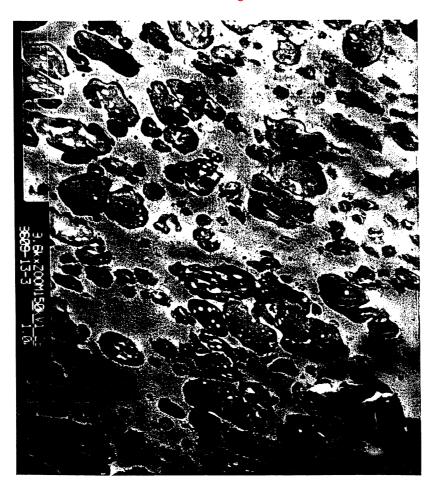
- 20 -


(iii)


```
(iv)
1 ,
                60 125
                                                              0.1 6.0pph
(B) (i) 1
                   (A)
                                                    60 125
                                               가 1 240 ) 0.1 6.0pp
h ,
(ii)
                                      (i)
                                                    145pph
                                               5
     ,
가
               가
                   가
                       4.5pph/min
                                          5
                                                3
가 ),
(iii)
                   2
     2.
                             C <sub>2-8</sub> -
                                                                       C<sub>2</sub>.
1
                                                        , (b)
           C<sub>3-8</sub> -
                   (d)
                                                                2
     3.
 1
                  가
     4.
 1
     5.
         , 1
                                       가,
가
                    가
     6.
         , 2
                                      가,
 5
 가
     7.
 4
                                      가,
                                                                    가
     , 1
                              가
```


- 21 -


8.


7	가	, 2	, 가 .	가		
	9.					
1		,				
	10.					
2		,				
	11.					
3		,				
	12.					
9		,			, (A) (11)	가
	13.					
10		, (B) (11)	가			
	14.					
10		, (B) (11)	가			

