US 20240192875A1

a2y Patent Application Publication o) Pub. No.: US 2024/0192875 A1l

a9y United States

Liu et al. 43) Pub. Date: Jun. 13, 2024
(54) REMAPPING BAD BLOCKS IN A MEMORY (52) US. CL
SUB-SYSTEM CPC oo GOGF 3/064 (2013.01); GOGF 3/0619

(71) Applicant: MICRON TECHNOLOGY, INC.,
Boise, ID (US)

(72) Inventors: Yang Liu, San Jose, CA (US); Wenyen
Chang, San Jose, CA (US); Wei Wang,
Dublin, CA (US); Aaron Lee,
Sunnyvale, CA (US); Jiangli Zhu, San
Jose, CA (US)

(21) Appl. No.: 18/519,611
(22) Filed: Nov. 27, 2023

Related U.S. Application Data

(60) Provisional application No. 63/431,412, filed on Dec.

9, 2022.

Publication Classification

(2013.01); GOGF 3/0679 (2013.01)

(57) ABSTRACT

A system includes a memory device having a plurality of
memory planes and a processing device operatively coupled
with the memory device. The processing device to is per-
form operations including identifying a first block stripe of
the memory device. The first block stripe includes a first
plurality of blocks arranged across the plurality of memory
planes. The operations further include determining that the
first plurality of blocks of the first block stripe has greater
than a threshold number of blocks associated with an error
condition. Responsive to determining that the first plurality
of blocks has greater than the threshold number of blocks
associated with the error condition, the operations further
include mapping a block of the first plurality of blocks
associated with the error condition to a second block stripe
including a second plurality of blocks having fewer than the

(51) Int. CL threshold number of blocks associated with the error con-
GO6F 3/06 (2006.01) dition.
136 > Address Register
114 e
> "o 1C10 2n e Status Register
- 122 N

| Column Decode
- 111

132

Memory Command Register
Sub- 124
System
Co?‘;rgiler Local Row Array of
— CE#t—» Media 9 Dec Memory Cells
CLE— Controlier [@limmm— 108 104
AL E i 135 »
WE# o
RE#—» | Program | |« -
WPH Manager > Data Register
134 121
_| Cache Register
> 118 = 4

VT ‘Old

US 2024/0192875 Al

(=
S il
<
- - JOV4HIALINI
3 0¥l 30IA3A AMOWIN
= AHOWIN
-
o e —
S — BLT 0zl
. PET i N
- 1eBEUEW AHOWIW V00T INILSAS ISOH
g weJboud
J ——
el Rl ZTT ¥0SS300¥d
18]|0Jju0D
EIpS 2007
0¢T 301IA3A GTT d3TIOYLNOD
AHOWIAN WIALSAS-aNS AHOWAN

Ll W31SAS-8NS AJON3IN

Patent Application Publication

US 2024/0192875 Al

Jun. 13, 2024 Sheet 2 of 9

Patent Application Publication

41 "SOid

=TT ocl 49
Js1s189y ayoe) _
x4% < ret <
Jeysibey eleg P Www%nm_w__ A]MMR_,
—#IM
acr = B 12
—_— — Ja|joJjuo A
70T =) > M__ows_o REEEL
s|len Aowspy | 29 jeooq [#30 ST
10 ey Moy Jg|jonue)
- welsAg
(74} -ans
1938180y puBWIWOY Aows|
1
8p0oo9(UWN|o) -
t44%
Jo)sibey sneyg | » =TT
jouo)d O/l _ N _
Vit <
Jo1s1Bay ssalppy _ ocl
-

US 2024/0192875 Al

Jun. 13, 2024 Sheet 3 of 9

Patent Application Publication

00¢

¢ 'Ol

0€1 ADINIA AYONIN

GC AVHEY AHONEIN

9G¢ A1avl
ONIddVINTH
007149 avd

FEL YIDOVNVYIN NVHDO 0N

R

gl
FOVIHSILNI AHONIN

€ 'Ol

velL
iebeuey weiboid

gel
Jejjonuo? eips| [8o07

US 2024/0192875 Al

(=)}
[
(=]
4 — [ORU— — [P——

Fee Fpec FEee Heee |
m 0014 M0071g %0014 Moo1g | 49 3dIELS X004
wn I R

558 5%8¢ 5C0E 528 | son

99E 3dIYLS Y0079
m ¥2014 00714 MD01d 0074
o
iy Io6e e Eises T |
- %0079 %0074 %0079 500719 9€ 3dIYLS X001
=
= R JE— R —
= [y Tec TEK K | e
FOE 3dIYLS D01d
3007d 30079 %0079 50078 $ 90

g agec avee acse acee | ___
= %0018 %0078 %0018 #0018 | £9¢ 3dIMLSX00TE
[F] PR PO P R
= 3GoE 358 0T 3eE |
m 500714 %0079 %2014 soo1g | €98 3dIMLS X008
= acae aroc gcoe e |
= %0074 %0079 %0078 soo1g | F9¢AdIMLS ©O0TE
S vooT vhee veae vzee | —
Z %0014 %0074 %0014 s001g | 09 3dIELS MO0
Z
g \ (I K A Tz 0%
£ - £INVId ZaNYd LANY1d 03INYd
=W

US 2024/0192875 Al

Jun. 13, 2024 Sheet 5 of 9

Patent Application Publication

¥ "Sld

oC9F

acor

BCOV SSaIppy

20
adus 3oo|g adiis 3o0|9 €9y >o0ld
YA 4 acov BZ9OV SsaIppy 29 Yoo|g
adus 3oo|g adiis 3o0|9
oLoy q19¥ B9 Ssal
aduis oolg | eduys Yoolg 19 SSSIPbY L9y 1201d
209 q09¥ e09Y SSaIpPY 09 oolg
adus 3oo|g aduis ¥o0|g
NOILYNILS3a
Y9018 304NOS %0078 $S33AAV %0079 X3aNI X008

9G¢ 319V1L ONIddVINTH Y0079 avd

S 'Old

US 2024/0192875 Al

G1G 3dI¥LS Y0079 ANOD3S
V O1 NOILIANOD d0dd3 3HL H1IM d31VIOOSSY
3dIdLS X0019 LSdId FHL 40 X009 1SdId V dVIN

01§
NOILIANOO d0dd3 NV HLIM d31VIDO0SSY SM00714
40 439NN dTOHSTFHHL V NVHL d31V3dO
SVH 3dIdL1S X009 LSdId 3HL 1VHL ANINEG313d

Jun. 13, 2024 Sheet 6 of 9

G0S A0I1N3d

\ AHJOW3N FHL 40 3dId1S M00149 1SdId V AJILN3dI

00S

Patent Application Publication

US 2024/0192875 Al

Jun. 13, 2024 Sheet 7 of 9

009

Patent Application Publication

9 'Oid

029 dN0YD
ANOD3S JHL NI S3dIH1S XD019 OL dNOUO
1SdI4 3HL NI S3dIdLS X0019 WOd4 NOILIANOD
d0ddd IHL H1IM d31VIODO0SSY SX0014 dVIN

!

G199 NOILIANOD
40443 3HL HLIM d31VIO0SSY SX0014 40
d39NNN ATOHSIHHL V NVHL SS31 ONIAVH HOV3
'SAdIYLS MD019 40 dNOYD ANODIS V AdISSV1D

f

019 NOILIONOD HOY¥3
NV HLIM d31VIOO0SSY SX0014 40 439NN
d10HS3FYHL V NVHL 40N ONIAVH HOV3
'SIAIYLS MD019 40 dNOYD 1S¥I4 V AJISSV1D

#

G09 AJINIA AHOWIN
V 40 S3dI41S %0019 40 ALITVENTd V NVOS

Patent Application Publication Jun. 13, 2024 Sheet 8 of 9 US 2024/0192875 A1

700

s

IDENTIFY A PLURALITY OF BLOCK STRIPES OF
THE MEMORY DEVICE 705

v

DETERMINE A THRESHOLD NUMBER OF BLOCKS
PER BLOCK STRIPE ASSOCIATED WITH THE
ERROR CONDITION 710

Y

IDENTIFY A FIRST BLOCK STRIPE BASED ON THE
FIRST BLOCK STRIPE HAVING MORE THAN THE
THRESHOLD NUMBER OF BLOCKS ASSOCIATED
WITH THE ERROR CONDITION 715

v

IDENTIFY A SECOND BLOCK STRIPE BASED ON
THE SECOND BLOCK STRIPE HAVING FEWER
THAN THE THRESHOLD NUMBER OF BLOCKS

ASSOCIATED WITH THE ERROR CONDITION 720

v

DETERMINE ONE OR MORE PARAMETERS
ASSOCIATED WITH A BLOCK OF THE FIRST BLOCK
STRIPE ASSOCIATED WITH THE ERROR
CONDITION TO MAP THE FIRST BLOCK TO THE
SECOND BLOCK STRIPE 725

!

STORE THE ONE OR MORE PARAMETERS IN A
DATA STRUCTURE 730

l PERFORM A WRITE OPERATION TO THE FIRST |
| BLOCK STRIPE BASED ON THE DATA STRUCTURE |
l 135 l

Patent Application Publication Jun. 13, 2024 Sheet 9 of 9 US 2024/0192875 A1

800
PROCESSING DEVICE
802
INSTRUCTIONS
826
PROGRAM)) BT, o STATICSI\(;I6EMORY
MANAGER R o —
134
5
BUS
MAIN MEMORY 804 s 0200
Y
INSTRUCTIONS
826
PROGRAM
MANAGER DATA STORAGE SYSTEM
134 818
MACHINE-READABLE
MEDIUM 824
NETWORK Y
INTERFACE INSTRUCTIONS
DEVICE 826
808
PROGRAM
MANAGER 134
AV
NETWORK
820

FIG. 8

US 2024/0192875 Al

REMAPPING BAD BLOCKS IN A MEMORY
SUB-SYSTEM

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application No. 63/431,412, filed Dec. 9,
2022, the entire contents of which are incorporated by
reference herein.

TECHNICAL FIELD

[0002] Embodiments of the disclosure relate generally to
memory sub-systems, and more specifically, relate to remap-
ping bad blocks in a memory sub-system.

BACKGROUND

[0003] A memory sub-system can include one or more
memory devices that store data. The memory devices can be,
for example, non-volatile memory devices and volatile
memory devices. In general, a host system can utilize a
memory sub-system to store data at the memory devices and
to retrieve data from the memory devices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The disclosure will be understood more fully from
the detailed description given below and from the accom-
panying drawings of various embodiments of the disclosure.
The drawings, however, should not be taken to limit the
disclosure to the specific embodiments, but are for expla-
nation and understanding only.

[0005] FIG. 1A illustrates an example computing system
that includes a memory sub-system in accordance with some
embodiments of the present disclosure.

[0006] FIG. 1B is a block diagram of a memory device in
communication with a memory sub-system controller of a
memory sub-system, according to an embodiment.

[0007] FIG. 2 is a block diagram illustrating a memory
sub-system implementing the remapping of bad blocks in a
memory device in accordance with some embodiments of
the present disclosure.

[0008] FIG. 3 is a block diagram illustrating a set of blocks
in block stripes across a multi-plane memory device in
accordance with some embodiments of the present disclo-
sure.

[0009] FIG. 4 schematically illustrates an example bad
block remapping table in accordance with some embodi-
ments of the present disclosure.

[0010] FIG. 5 is a flow diagram of an example method to
remap bad blocks in a memory sub-system in accordance
with some embodiments of the present disclosure.

[0011] FIG. 6 is a flow diagram of an example method to
remap bad blocks in a memory sub-system in accordance
with some embodiments of the present disclosure.

[0012] FIG. 7 is a flow diagram of an example method to
generate a bad block remapping table in accordance with
some embodiments of the present disclosure.

[0013] FIG. 8 is a block diagram of an example computer
system in which embodiments of the present disclosure may
operate.

DETAILED DESCRIPTION

[0014] Aspects of the present disclosure are directed to
remapping bad blocks in a memory sub-system. A memory

Jun. 13, 2024

sub-system can be a storage device, a memory module, or a
combination of a storage device and memory module.
Examples of storage devices and memory modules are
described below in conjunction with FIG. 1A. In general, a
host system can utilize a memory sub-system that includes
one or more components, such as memory devices that store
data. The host system can provide data to be stored at the
memory sub-system and can request data to be retrieved
from the memory sub-system.

[0015] A memory sub-system can include high density
non-volatile memory devices where retention of data is
desired when no power is supplied to the memory device.
One example of non-volatile memory devices is a negative-
and (NAND) memory device. Other examples of non-
volatile memory devices are described below in conjunction
with FIG. 1A. A non-volatile memory device is a package of
one or more dies. Each die can consist of one or more planes.
For some types of non-volatile memory devices (e.g.,
NAND devices), each plane consists of a set of physical
blocks. Each block includes a set of pages. Each page
consists of a set of memory cells (“cells”). A cell is an
electronic circuit that stores information. Depending on the
cell type, a cell can store one or more bits of binary
information, and has various logic states that correlate to the
number of bits being stored. The logic states can be repre-
sented by binary values, such as “0” and “1”, or combina-
tions of such values.

[0016] A dieis also referred to as a logical unit (LUN). A
LUN can contain one or more planes. A memory sub-system
can use a striping scheme to treat various sets of data as units
when performing data operations (e.g., write, read, erase). A
LUN stripe is a collection of planes that are treated as one
unit when writing, reading, or erasing data. Each plane in a
LUN stripe can carry out the same operation, in parallel, of
all the other planes in the LUN stripe. A block stripe is a
collection of blocks, one from each plane in a LUN, that are
treated as a unit. The blocks in a block stripe have the same
identifier(s) that associates the blocks to the block stripe
(e.g., block number, block stripe index, etc.).

[0017] A memory sub-system includes memory devices
having bad blocks. A “bad block™ herein refers to a block
that is no longer reliable for storing or retrieving data, for
example, due to a defect (e.g., manufacturing defect) or due
to wear. A manufactured bad block (MBB) is unreliable due
to such a defect and may already be listed in a bad block list
(or look up table). A grown bad block (GBB) refers to a bad
block being unreliable due to wear and can be identified
based on a threshold. In some embodiments, for example,
GBBs are identified as having one or more invalid bits
whose reliability is not guaranteed. This level of reliability
may be determined, for example, by the bad block dropping
below a bit error rate (BER) threshold designated as the
point of wear below which there exists unacceptable unre-
liability. Other ways of detecting a bad block include failure
of'the block to fully or properly be erased, failure to program
the block, and/or failure to read data out of the block, e.g.,
attempting a read operation results in an uncorrectable data
read error.

[0018] Due to non-uniformity and variation in a manufac-
turing process, the memory sub-system initially includes a
small percentage of bad blocks (e.g., “factory error bad
blocks™). In addition, good blocks (i.e., blocks that are not
classified as a bad block and that can initially reliably store
data) can become bad blocks (referred to as “grown bad

US 2024/0192875 Al

blocks™) as blocks wear out during the lifetime of the
memory sub-system and/or due to damage or defects of the
memory cells. For example, during an erase operation, the
data stored in one or more memory cells of bad blocks can
fail to be properly erased. Accordingly, in the memory
sub-system, bad blocks are not used to store data. Instead,
the memory sub-system tracks bad blocks in order to avoid
storing any data at the bad blocks. Therefore, the memory
capacity of the memory sub-system can decrease as more
blocks become unreliable and are thus not used for data
storage.

[0019] More than a threshold amount of bad blocks in a
block stripe can lead to poor or inconsistent performance.
Some memory sub-systems may skip programming block
stripes with more than a threshold amount of bad blocks.
This practice can remedy inconsistencies introduced into the
memory sub-system performance by the excessive number
of bad blocks but at the expense of wasting block stripes.
Because locations of bad blocks in a memory device are not
random (e.g., bad blocks tend to be located near each other
in the LUN), some systems form block stripes by assigning
memory blocks at differing locations in the LUN to a block
stripe in an attempt to dissociate the locality of the blocks
(e.g., to decrease the likelihood of assigning neighboring
bad blocks to the block stripe). For example, some systems
assign different blocks on differing planes from different
LUNs to a block stripe. This practice can alleviate problems
caused by too many bad blocks in a block stripe by generally
reducing the number of bad blocks per block stripe. How-
ever, some block stripes can include significantly more bad
blocks than other block stripes. Performance of the memory
sub-system can thus still be inconsistent.

[0020] Aspects of the present disclosure address the above
and other deficiencies by remapping bad blocks in block
stripes of a memory sub-system in order to increase the
performance consistency of the memory sub-system.
Accordingly, memory sub-systems operating according to
aspects of the present disclosure can have a more consistent
distribution of bad blocks amongst block stripes. In some
embodiments, this is accomplished by identifying a block
stripe having multiple blocks across multiple memory planes
of the LUN. The block stripe may have a selected skew
offset for offsetting the blocks assigned to the block stripe in
relation to the memory planes of the LUN. For example, a
block stripe may be made up of memory blocks in neigh-
boring planes. The selection of memory blocks may be
“skewed” so that the block stripe does not include memory
blocks residing in the same corresponding position in neigh-
boring planes. Instead, memory blocks are selected to be
offset from one another in neighboring planes, creating a
“skew” of memory blocks as described in more detail herein
below. In some embodiments, software determines that the
multiple blocks of the identified block stripe include greater
than a threshold number of bad blocks. The threshold
number may be related to the ratio of the total number of bad
blocks in a memory sub-system to the number of block
stripes in a memory sub-system. For example, the threshold
number can be calculated using the ratio of the total number
of bad blocks to the number of block stripes as described in
more detail herein below. Responsive to determining that the
block stripe has more bad blocks than the threshold number,
software maps one or more blocks from the block stripe
from their initial block stripe to another block stripe having
fewer than the threshold number of bad blocks. Mapping bad

Jun. 13, 2024

blocks from one block stripe to another reduces the number
of bad blocks of the first block stripe while increasing the
number of bad blocks of the second block stripe. Thus, bad
memory blocks are more evenly distributed amongst the
block stripes, leading to an increase in performance consis-
tency of the memory sub-system.

[0021] Advantages of the present disclosure include pro-
viding more consistent memory sub-system performance.
For example, by evenly distributing bad blocks across block
stripes on a LUN, sequential write operations are not ham-
pered by seemingly random distribution of bad blocks that
could otherwise occur. Because bad blocks are more evenly
distributed across the block stripes, the memory sub-system
is more likely to meet performance consistency benchmarks.
Therefore, fewer manufactured memory sub-systems having
errors (e.g., bad blocks) are thrown away, leading to greater
manufacturing output. Additionally, performance of
memory sub-systems according to embodiments described
herein can have increased performance, leading to faster
memory operations such as sequential write operations and
decreased latency.

[0022] FIG. 1A illustrates an example computing system
100 that includes a memory sub-system 110 in accordance
with some embodiments of the present disclosure. The
memory sub-system 110 can include media, such as one or
more volatile memory devices (e.g., memory device 140),
one or more non-volatile memory devices (e.g., memory
device 130), or a combination of such.

[0023] A memory sub-system 110 can be a storage device,
a memory module, or a combination of a storage device and
memory module. Examples of a storage device include a
solid-state drive (SSD), a flash drive, a universal serial bus
(USB) flash drive, an embedded Multi-Media Controller
(eMMC) drive, a Universal Flash Storage (UFS) drive, a
secure digital (SD) card, and a hard disk drive (HDD).
Examples of memory modules include a dual in-line
memory module (DIMM), a small outline DIMM (SO-
DIMM), and various types of non-volatile dual in-line
memory modules (NVDIMMs).

[0024] The computing system 100 can be a computing
device such as a desktop computer, laptop computer, net-
work server, mobile device, a vehicle (e.g., airplane, drone,
train, automobile, or other conveyance), Internet of Things
(I0T) enabled device, embedded computer (e.g., one
included in a vehicle, industrial equipment, or a networked
commercial device), or such computing device that includes
memory and a processing device.

[0025] The computing system 100 can include a host
system 120 that is coupled to one or more memory sub-
systems 110. In some embodiments, the host system 120 is
coupled to multiple memory sub-systems 110 of different
types. FIG. 1A illustrates one example of a host system 120
coupled to one memory sub-system 110. As used herein,
“coupled to” or “coupled with” generally refers to a con-
nection between components, which can be an indirect
communicative connection or direct communicative connec-
tion (e.g., without intervening components), whether wired
or wireless, including connections such as electrical, optical,
magnetic, etc.

[0026] The host system 120 can include a processor chip-
set and a software stack executed by the processor chipset.
The processor chipset can include one or more cores, one or
more caches, a memory controller (e.g., NVDIMM control-
ler), and a storage protocol controller (e.g., PCle controller,

US 2024/0192875 Al

SATA controller). The host system 120 uses the memory
sub-system 110, for example, to write data to the memory
sub-system 110 and read data from the memory sub-system
110.

[0027] The host system 120 can be coupled to the memory
sub-system 110 via a physical host interface. Examples of a
physical host interface include a serial advanced technology
attachment (SATA) interface, a peripheral component inter-
connect express (PCle) interface, universal serial bus (USB)
interface, Fibre Channel, Serial Attached SCSI (SAS), a
double data rate (DDR) memory bus, Small Computer
System Interface (SCSI), a dual in-line memory module
(DIMM) interface (e.g., DIMM socket interface that sup-
ports Double Data Rate (DDR)), etc. The physical host
interface can be used to transmit data between the host
system 120 and the memory sub-system 110. The host
system 120 can further utilize an NVM Express (NVMe)
interface to access components (e.g., memory devices 130)
when the memory sub-system 110 is coupled with the host
system 120 by the physical host interface (e.g., PCle bus).
The physical host interface can provide an interface for
passing control, address, data, and other signals between the
memory sub-system 110 and the host system 120. FIG. 1A
illustrates a memory sub-system 110 as an example. In
general, the host system 120 can access multiple memory
sub-systems via a same communication connection, multiple
separate communication connections, and/or a combination
of communication connections.

[0028] The memory devices 130, 140 can include any
combination of the different types of non-volatile memory
devices and/or volatile memory devices. The volatile
memory devices (e.g., memory device 140) can be random
access memory (RAM), such as dynamic random access
memory (DRAM) and synchronous dynamic random access
memory (SDRAM).

[0029] Some examples of non-volatile memory devices
(e.g., memory device 130) include a negative-and (NAND)
type flash memory and write-in-place memory, such as a
three-dimensional cross-point (“3D cross-point”) memory
device, which is a cross-point array of non-volatile memory
cells. A cross-point array of non-volatile memory cells can
perform bit storage based on a change of bulk resistance, in
conjunction with a stackable cross-gridded data access array.
Additionally, in contrast to many flash-based memories,
cross-point non-volatile memory can perform a write in-
place operation, where a non-volatile memory cell can be
programmed without the non-volatile memory cell being
previously erased. NAND type flash memory includes, for
example, two-dimensional NAND (2D NAND) and three-
dimensional NAND (3D NAND).

[0030] Each of the memory devices 130 can include one or
more arrays of memory cells. One type of memory cell, for
example, single level cells (SL.C) can store one bit per cell.
Other types of memory cells, such as multi-level cells
(MLCs), triple level cells (TLCs), quad-level cells (QLCs),
and penta-level cells (PLCs) can store multiple bits per cell.
In some embodiments, each of the memory devices 130 can
include one or more arrays of memory cells such as SI.Cs,
MLCs, TLCs, QLCs, PLCs or any combination of such. In
some embodiments, a particular memory device can include
an SLC portion, and an MLC portion, a TLC portion, a QL.C
portion, or a PLC portion of memory cells. The memory
cells of the memory devices 130 can be grouped as pages
that can refer to a logical unit of the memory device used to

Jun. 13, 2024

store data. With some types of memory (e.g., NAND), pages
can be grouped to form blocks.

[0031] Although non-volatile memory components such
as a 3D cross-point array of non-volatile memory cells and
NAND type flash memory (e.g., 2D NAND, 3D NAND) are
described, the memory device 130 can be based on any other
type of non-volatile memory, such as read-only memory
(ROM), phase change memory (PCM), self-selecting
memory, other chalcogenide based memories, ferroelectric
transistor random-access memory (FeTRAM), ferroelectric
random access memory (FeRAM), magneto random access
memory (MRAM), Spin Transfer Torque (STT)-MRAM,
conductive bridging RAM (CBRAM), resistive random
access memory (RRAM), oxide based RRAM (OxRAM),
negative-or (NOR) flash memory, or electrically erasable
programmable read-only memory (EEPROM).

[0032] A memory sub-system controller 115 (or controller
115 for simplicity) can communicate with the memory
devices 130 to perform operations such as reading data,
writing data, or erasing data at the memory devices 130 and
other such operations. The memory sub-system controller
115 can include hardware such as one or more integrated
circuits and/or discrete components, a buffer memory, or a
combination thereof. The hardware can include a digital
circuitry with dedicated (i.e., hard-coded) logic to perform
the operations described herein. The memory sub-system
controller 115 can be a microcontroller, special purpose
logic circuitry (e.g., a field programmable gate array
(FPGA), an application specific integrated circuit (ASIC),
etc.), or other suitable processor.

[0033] The memory sub-system controller 115 can include
a processing device, which includes one or more processors
(e.g., processor 117), configured to execute instructions
stored in a local memory 119. In the illustrated example, the
local memory 119 of the memory sub-system controller 115
includes an embedded memory configured to store instruc-
tions for performing various processes, operations, logic
flows, and routines that control operation of the memory
sub-system 110, including handling communications
between the memory sub-system 110 and the host system
120.

[0034] In some embodiments, the local memory 119 can
include memory registers storing memory pointers, fetched
data, etc. The local memory 119 can also include read-only
memory (ROM) for storing micro-code. While the example
memory sub-system 110 in FIG. 1A has been illustrated as
including the memory sub-system controller 115, in another
embodiment of the present disclosure, a memory sub-system
110 does not include a memory sub-system controller 115,
and can instead rely upon external control (e.g., provided by
an external host, or by a processor or controller separate
from the memory sub-system).

[0035] In general, the memory sub-system controller 115
can receive commands or operations from the host system
120 and can convert the commands or operations into
instructions or appropriate commands to achieve the desired
access to the memory devices 130. The memory sub-system
controller 115 can be responsible for other operations such
as wear leveling operations, garbage collection operations,
error detection and error-correcting code (ECC) operations,
encryption operations, caching operations, and address
translations between a logical address (e.g., a logical block
address (LBA), namespace) and a physical address (e.g.,
physical block address) that are associated with the memory

US 2024/0192875 Al

devices 130. The memory sub-system controller 115 can
further include host interface circuitry to communicate with
the host system 120 via the physical host interface. The host
interface circuitry can convert the commands received from
the host system into command instructions to access the
memory devices 130 as well as convert responses associated
with the memory devices 130 into information for the host
system 120.

[0036] The memory sub-system 110 can also include
additional circuitry or components that are not illustrated. In
some embodiments, the memory sub-system 110 can include
a cache or buffer (e.g., DRAM) and address circuitry (e.g.,
a row decoder and a column decoder) that can receive an
address from the memory sub-system controller 115 and
decode the address to access the memory devices 130.
[0037] In some embodiments, the memory devices 130
include local media controllers 135 that operate in conjunc-
tion with memory sub-system controller 115 to execute
operations on one or more memory cells of the memory
devices 130. An external controller (e.g., memory sub-
system controller 115) can externally manage the memory
device 130 (e.g., perform media management operations on
the memory device 130). In some embodiments, memory
sub-system 110 is a managed memory device, which is a raw
memory device 130 having control logic (e.g., local media
controller 135) on the die and a controller (e.g., memory
sub-system controller 115) for media management within
the same memory device package. An example of a managed
memory device is a managed NAND (MNAND) device.
[0038] The memory sub-system 110 includes a memory
interface component 113 that can handle interactions of
memory sub-system controller 115 with the memory devices
of memory sub-system 110, such as memory device 130. For
example, memory interface component 113 can receive data
from memory device 130, such as data retrieved in response
to a read operation or a write operation. In some examples,
the memory sub-system controller 115 can include a pro-
cessor 117 (processing device) configured to execute
instructions stored in local memory 119 for performing the
operations described herein.

[0039] In some embodiments, memory device 130
includes a program manager 134 configured to carry out bad
block remapping operations. In some embodiments, local
media controller 135 includes at least a portion of program
manager 134 and is configured to perform the functionality
described herein. In some embodiments, the program man-
ager 134 is part of the host system 110, an application, or an
operating system. Further details with regards to the opera-
tions of program manager 134 are described below. In some
embodiments, program manager 134 is implemented on
memory device 130 using firmware, hardware components,
or a combination of the above. In some embodiments,
program manager 134 receives, from a requestor, such as the
memory sub-system controller 115 (e.g., specifically,
memory interface 113), a request to configure and/or gen-
erate (e.g., identify) one or more block stripes on a memory
array (e.g., a LUN, etc.) of the memory device 130. In some
embodiments, the program manager 134 can identify block
stripes having more than a threshold number of bad blocks.
The program manager 134 can further identify block stripes
having fewer than the threshold number of bad blocks.
[0040] In some embodiments, the program manager can
remap bad blocks from block stripes with more than the
threshold number of bad blocks to block stripes having

Jun. 13, 2024

fewer than the threshold number of bad blocks. In some
embodiments, the program manager 134 can store param-
eters associated with the mapping of the bad blocks in a data
structure (e.g., bad block remapping table 256 in FIG. 2A
and FIG. 2B) for later reference (e.g., by the memory
interface 113, etc.) for servicing a data command such as a
write command or a read command. For example, the
parameters stored by the program manager 134 can include
a block stripe index parameter identifying the bad block as
having initially been mapped to another block stripe. In
another example, the parameters can include an origination
parameter identifying the bad block as initially belonging to
a specific block stripe having more than the threshold
number of bad blocks. In yet another example, the param-
eters can include a location parameter identifying the loca-
tion of the remapped bad block in the memory array (e.g.,
the physical address of the remapped bad block).

[0041] FIG. 1B is a simplified block diagram of a first
apparatus, in the form of a memory device 130, in commu-
nication with a second apparatus, in the form of a memory
sub-system controller 115 of a memory sub-system (e.g.,
memory sub-system 110 of FIG. 1A), according to an
embodiment. Some examples of electronic systems include
personal computers, personal digital assistants (PDAs), digi-
tal cameras, digital media players, digital recorders, games,
appliances, vehicles, wireless devices, mobile telephones
and the like. The memory sub-system controller 115 (e.g., a
controller external to the memory device 130), can be a
memory controller or other external host device.

[0042] Memory device 130 includes an array of memory
cells 104 logically arranged in rows and columns. Memory
cells of a logical row are typically connected to the same
access line (e.g., a wordline) while memory cells of a logical
column are typically selectively connected to the same data
line (e.g., a bit line). A single access line can be associated
with more than one logical row of memory cells and a single
data line can be associated with more than one logical
column. Memory cells (not shown in FIG. 1B) of at least a
portion of array of memory cells 104 are capable of being
programmed to one of at least two target data states.
[0043] Row decode circuitry 108 and column decode
circuitry 111 are provided to decode address signals.
Address signals are received and decoded to access the array
of memory cells 104. Memory device 130 also includes
input/output (I/O) control circuitry 112 to manage input of
commands, addresses and data to the memory device 130 as
well as output of data and status information from the
memory device 130. An address register 114 is in commu-
nication with 1/O control circuitry 112 and row decode
circuitry 108 and column decode circuitry 111 to latch the
address signals prior to decoding. A command register 124
is in communication with I/O control circuitry 112 and local
media controller 135 to latch incoming commands.

[0044] A controller (e.g., the local media controller 135
internal to the memory device 130) controls access to the
array of memory cells 104 in response to the commands and
generates status information for the external memory sub-
system controller 115, i.e., the local media controller 135 is
configured to perform access operations (e.g., read opera-
tions, programming operations and/or erase operations) on
the array of memory cells 104. The local media controller
135 is in communication with row decode circuitry 108 and
column decode circuitry 111 to control the row decode
circuitry 108 and column decode circuitry 111 in response to

US 2024/0192875 Al

the addresses. In one embodiment, local media controller
135 includes program manager 134, which can implement
the bad block remapping operations with respect to memory
device 130, as described herein.

[0045] The local media controller 135 is also in commu-
nication with a cache register 118. Cache register 118 latches
data, either incoming or outgoing, as directed by the local
media controller 135 to temporarily store data while the
array of memory cells 104 is busy writing or reading,
respectively, other data. During a programming operation
(e.g., a write operation), data can be passed from the cache
register 118 to the data register 121 for transfer to the array
of memory cells 104; then new data can be latched in the
cache register 118 from the I/O control circuitry 112. During
a read operation, data can be passed from the cache register
118 to the 1/O control circuitry 112 for output to the memory
sub-system controller 115; then new data can be passed from
the data register 121 to the cache register 118. The cache
register 118 and/or the data register 121 can form (e.g., can
form a portion of) a page buffer of the memory device 130.
A page buffer can further include sensing devices (not shown
in FIG. 1B) to sense a data state of a memory cell of the array
of memory cells 104, e.g., by sensing a state of a data line
connected to that memory cell. A status register 122 can be
in communication with /O control circuitry 112 and the
local memory controller 135 to latch the status information
for output to the memory sub-system controller 115.

[0046] Memory device 130 receives control signals at the
memory sub-system controller 115 from the local media
controller 135 over a control link 132. For example, the
control signals can include a chip enable signal CE #, a
command latch enable signal CLE, an address latch enable
signal ALE, a write enable signal WE #, a read enable signal
RE #, and a write protect signal WP #. Additional or
alternative control signals (not shown) can be further
received over control link 132 depending upon the nature of
the memory device 130. In one embodiment, memory device
130 receives command signals (which represent com-
mands), address signals (which represent addresses), and
data signals (which represent data) from the memory sub-
system controller 115 over a multiplexed input/output (I/O)
bus 136 and outputs data to the memory sub-system con-
troller 115 over I/O bus 136.

[0047] For example, the commands can be received over
input/output (/O) pins [7:0] of I/O bus 136 at /O control
circuitry 112 and can then be written into command register
124. The addresses can be received over input/output (I/O)
pins [7:0] of I/O bus 136 at 1/O control circuitry 112 and can
then be written into address register 114. The data can be
received over input/output (I/O) pins [7:0] for an 8-bit
device or input/output (I/O) pins [15:0] for a 16-bit device
at [/O control circuitry 112 and then can be written into
cache register 118. The data can be subsequently written into
data register 121 for programming the array of memory cells
104.

[0048] In an embodiment, cache register 118 can be omit-
ted, and the data can be written directly into data register
121. Data can also be output over input/output (I/O) pins
[7:0] for an 8-bit device or input/output (I/O) pins [15:0] for
a 16-bit device. Although reference can be made to I/O pins,
they can include any conductive node providing for electri-
cal connection to the memory device 130 by an external

Jun. 13, 2024

device (e.g., the memory sub-system controller 115), such as
conductive pads or conductive bumps as are commonly
used.

[0049] In some implementations, additional circuitry and
signals can be provided, and that the memory device 130 of
FIG. 1B has been simplified. It should be recognized that the
functionality of the various block components described
with reference to FIG. 1B cannot necessarily be segregated
to distinct components or component portions of an inte-
grated circuit device. For example, a single component or
component portion of an integrated circuit device could be
adapted to perform the functionality of more than one block
component of FIG. 1B. Alternatively, one or more compo-
nents or component portions of an integrated circuit device
could be combined to perform the functionality of a single
block component of FIG. 1B. Additionally, while specific
1/O pins are described in accordance with popular conven-
tions for receipt and output of the various signals, it is noted
that other combinations or numbers of /O pins (or other I/O
node structures) can be used in the various embodiments.
[0050] FIG. 2 is a block diagram illustrating a memory
sub-system 200 implementing the remapping bad blocks in
a memory device in accordance with some embodiments of
the present disclosure. In one embodiment, memory device
130 is operatively coupled with memory device 130. In one
embodiment, memory device 130 includes program man-
ager 134, a bad block remapping table 256, and memory
array 250, which is one example of the array of memory
cells of planes 372(0)-372(3) illustrated in FIG. 3. Memory
array 250 can include an array of memory cells formed at the
intersections of wordlines and bitlines. In one embodiment,
the memory cells are grouped into blocks, and the blocks are
further grouped into block stripes across planes, e.g., block
stripes 360-367 across planes 372(0)-372(3) in FIG. 3.

[0051] In some embodiments, the program manager 134
can generate (e.g., identity) the block stripes of the memory
array 250 by grouping the blocks into the block stripes. The
blocks may be grouped by indexing the blocks in a data
structure such as a look-up-table that associates the blocks
with discrete block stripes. In some examples, the program
manager 134 can scan the memory planes of the memory
array 250 to identify the bad blocks of the memory array
250. The scan operation may determine which blocks have
a BER below a BER threshold, and/or to determine which
blocks have not been fully or properly erased. Similarly, the
scan operation may be to determine which blocks data
cannot be read. In some embodiments, the bad blocks are
associated with an error condition. For example, the bad
blocks may have a BER above a BER threshold, may not be
fully or properly erased, and/or cannot be read. The program
manager 134 may assign the blocks to block stripes so that
neighboring bad blocks are not included on the same block
stripe. Blocks on a memory plane with a high density of bad
blocks may be assigned to different block stripes. In some
examples, the program manager 134 may assign blocks on
differing memory planes to the same block stripe instead of
assigning all blocks in a single plane to a block stripe.

[0052] In some embodiments, the program manager 134
may select a skew offset for a block stripe based on the scan
performed above. The skew offset can be selected so that
adjacent blocks in a block stripe physically reside at least a
threshold distance away from each other in a LUN. For
example, a first block in the block stripe may be in a first
position in a first plane, a second block in the block stripe

US 2024/0192875 Al

may be in a different second position in a second adjacent
plane, and a third block in the block stripe may be in a
different third position in a third adjacent plane. Each of the
first position, the second position, and the third position may
be offset by a selected distance (e.g., an offset by a number
of memory blocks in the memory planes) so that the first,
second, and third blocks are physically distanced away from
each other. This can be referred to as the “skew offset.” The
skew offset may determine the “offset” of planes for assign-
ment of blocks to the block stripe (e.g., the skew offset is the
physical distance between memory blocks of a block stripe
that physically reside on adjacent planes). For example, with
a skew offset of 1, a block stripe may include a first block
of a first plane, a second block of a second adjacent plane,
a third block of a third adjacent plane, and so on. In that
same example, another block stripe may include a second
block of the first plane, a third block of the second plane, a
fourth block of the third plane, and so on. In another
example, with a skew offset of 2, a block stripe may include
a first block of a first plane, a third block of the second plane,
a fifth block of a third and so on. In that same example,
another block stripe may include a second block of the first
plane, a forth block of the second, a sixth block of a third
plane, and so on. The program manager can then map the
blocks across the memory planes of the memory array 250
to the block stripes based on the skew offset.

[0053] After generating of the block stripes (e.g., identi-
fying of the block stripes), the distribution of bad blocks
amongst the block stripes may be inconsistent. In some
embodiments, the program manager 134 may scan the
generated block stripes to determine whether each block
stripe has more or less than a threshold number of bad
blocks. The threshold number of bad blocks may be calcu-
lated using the ratio of the total number of bad blocks to the
total number of block stripes (e.g., in the memory array 250).
The program manager 134 may classify the block stripes
into groups based on results of the scan. For example, the
program manager 134 may scan the block stripes and
classify the block stripes into groups. In some examples, a
first group of block stripes is made up of block stripes that
have more than the threshold number of bad blocks. A
second group of block stripes is made up of block stripes that
have fewer than the threshold number of bad blocks. In some
embodiments, the program manager 134 can map bad blocks
from block stripes of the first group (having more than the
threshold number of bad blocks) to block stripes of the
second group (having fewer than the threshold number of
bad blocks). Parameters and/or metadata associated with
mapping the bad blocks from block stripes of the first group
to block stripes of the second group (such as block indices,
physical block addresses, block source identifiers, block
destination identifiers, etc.) can be saved by the program
manager 134 in the bad block remapping table 256. In some
embodiments, the bad block remapping table 256 can be
utilized when write and/or read commands are serviced.
When a read or write command is called, the mapping
parameters stored in the bad block remapping table 256 can
be used to distinguish which blocks are assigned to a
particular block stripe for executing the read or write com-
mand. For example, the memory interface 113 may utilize
the bad block remapping table 256 to determine what blocks
belong to a given block stripe when servicing a write
command (e.g., a sequential write command). Performance
consistency (e.g., consistent rate of data transfer) of the

Jun. 13, 2024

memory array 250 during data write or read commands may
be increased by the remapping of bad blocks.

[0054] FIG. 3 is a block diagram illustrating a set of blocks
in block stripes across a multi-plane memory device in
accordance with some embodiments of the present disclo-
sure. Bach plane in the multi-plane memory device can
include one or more block stripes. A block stripe is a
collection of blocks, one from each plane, that are treated as
a single unit. The blocks in a block stripe have the same
block identifier (e.g., block number) in their respective
planes.

[0055] In one embodiment of the present disclosure, the
program manager 134 can identify a bad block located on a
block stripe within a plane, e.g., block 382A of block stripe
360 within plane 372(0). The program manager 134 can also
identify a replacement block located on a block stripe within
a different plane from the identified bad block, e.g., block
384E of block stripe 364 of plane 372(2). The replacement
block can be a block that is not associated with an error
condition, i.e., a good block. In one embodiment of the
present disclosure, the program manager 134 can replace the
identified bad block with the replacement block. Parameters
and/or metadata that map the replacement block to the block
stripe can be stored in a look-up-table for servicing read
and/or write commands as described herein.

[0056] FIG. 4 schematically illustrates an example bad
block remapping table 256 of FIG. 2 in accordance with
some embodiments of the present disclosure. In some
embodiments, the program manager 134 generates one or
more parameters that remap bad blocks. The program man-
ager 134 may store the one or more parameters in the bad
block remapping table 256. In some embodiments, the
program manager 134 stores a block index in the bad block
remapping table 256. A block index may identify each
individual block of the memory array 250. For example, the
program manager may store an index corresponding to block
360, block 361, block 362, block 363, and so on, etc. In some
embodiments, the program manager 134 stores an address
associated with each block (e.g., address 360a, address
361a, address 362a, address 3634, etc.). In some embodi-
ments, each address may identify a location of the associated
block. For example, the address may specify the physical
address (e.g., die, plane, etc.) of the associated block in the
memory array 250. In some embodiments, the physical
block address is indicated by a location parameter.

[0057] The program manager may save one Or more
parameters associated with the source and destination for
remapping bad blocks. For example, a source parameter
identifying the block stripe to which the bad block was
initially a part of may be generated and/or stored. Similarly,
a destination parameter identifying the block stripe to which
the bad block is remapped may be generated and/or stored.
In some embodiments, the program manager 134 stores a
block source parameter in the bad block remapping table
256. The block source parameter may identify the initial
block stripe to which the bad block was assigned (e.g., block
stripe 3605, block stripe 3615, block stripe 3625, block
stripe 3635, etc.). The source parameter can be used to
dissociate the bad block from the source block stripe for
executing read and/or write operations. Similarly, in some
embodiments, the program manager 134 stores a block
destination parameter in the bad block remapping table 256.
The block destination parameter may identify a block stripe
to which the bad block is remapped (e.g., block stripe 360c¢,

US 2024/0192875 Al

block stripe 361c¢, block stripe 362¢, block stripe 363c¢, etc.).
The destination parameter can be used to associate the bad
block with the destination block stripe for executing read
and/or write operations. In some embodiments, the block
stripe to which the bad block is remapped is different from
the initial block stripe. For example, block stripe 3605 is
different from block stripe 360c. Processing logic may refer
to the bad block remapping table 256 when performing
operations such as write operations or read operations. In
some embodiments, the bad block remapping table 256 can
be included on the memory device (e.g., the memory device
130 in FIG. 1A).

[0058] FIG. 5 is aflow diagram of an example method 500
to remap bad blocks in a memory sub-system in accordance
with some embodiments of the present disclosure. The
method 500 can be performed by processing logic that can
include hardware (e.g., processing device, circuitry, dedi-
cated logic, programmable logic, microcode, hardware of a
device, integrated circuit, etc.), software (e.g., instructions
run or executed on a processing device), or a combination
thereof. In some embodiments, the method 500 is performed
by the program manager 134 of FIGS. 1A and 1B. Although
shown in a particular sequence or order, unless otherwise
specified, the order of the processes can be modified. Thus,
the illustrated embodiments should be understood only as
examples, and the illustrated processes can be performed in
a different order, and some processes can be performed in
parallel. Additionally, one or more processes can be omitted
in various embodiments. Thus, not all processes are required
in every embodiment. Other process flows are possible. In
some embodiments, method 500 can occur during the low
level formatting of the memory device (e.g., memory device
130 of FIGS. 1A, 1B, and 2).

[0059] At operation 505, the processing logic identifies a
first block stripe of a memory device including multiple
memory planes (e.g., memory device 130). The first block
stripe can be identified by identifying multiple blocks across
the memory planes and treating the blocks as a single unit.
Each block can reside on a plane of the multiple memory
planes. As an example illustrated in FIG. 3, block stripe 363
includes block 382D of plane0 372(0), block 383D of planel
372(1), block 384D of plane2 372(2), and block 385D of
plane3 372(3). To identify the first block stripe, the first
block stripe may be scanned to determine whether each
block of the first block stripe is associated with an error
condition. For example, the processing logic scans the first
block stripe for bad blocks (e.g., memory blocks having a
BER above or below a threshold, memory blocks that are not
fully or properly erased, memory blocks from which data
cannot be read, etc.).

[0060] At operation 510, the processing logic determines
that the first block stripe has greater than a threshold number
of blocks associated with an error condition (e.g., greater
than a threshold number of bad blocks). For example, the
processing logic determines that the first block stripe has
more than the threshold number of bad blocks as the result
of a scanning operation (e.g., scanning for bad blocks). The
threshold number of bad blocks may be determined based on
a ratio of the total number of bad blocks on the memory
device (e.g., the LUN) to the number of block stripes on the
memory device.

[0061] At operation 515, responsive to determining that
the first block stripe has greater than the threshold number
of bad blocks, the processing logic maps a first block of the

Jun. 13, 2024

first block stripe (e.g., a first bad block) to a second block
stripe. The second block stripe may have fewer than the
threshold number of bad blocks. In some examples, mapping
the first block (e.g., the bad block) from the first block stripe
to the second block stripe reduces the number of bad blocks
in the first block stripe while increasing the number of bad
blocks in the second block stripe. By remapping one or more
bad blocks from the first block stripe to the second block
stripe, the bad blocks may be more evenly distributed
amongst the block stripes.

[0062] FIG. 6 is a flow diagram of an example method 600
to remap bad blocks in a memory sub-system, in accordance
with some embodiments of the present disclosure. The
method 600 can be performed by processing logic that can
include hardware (e.g., processing device, circuitry, dedi-
cated logic, programmable logic, microcode, hardware of a
device, integrated circuit, etc.), software (e.g., instructions
run or executed on a processing device), or a combination
thereof. In some embodiments, the method 600 is performed
by the program manager 134 of FIGS. 1A and 1B. Although
shown in a particular sequence or order, unless otherwise
specified, the order of the processes can be modified. Thus,
the illustrated embodiments should be understood only as
examples, and the illustrated processes can be performed in
a different order, and some processes can be performed in
parallel. Additionally, one or more processes can be omitted
in various embodiments. Thus, not all processes are required
in every embodiment. Other process flows are possible. In
some embodiments, method 600 can occur during the low
level formatting of the memory device (e.g., memory device
130 of FIGS. 1A, 1B, and 2).

[0063] At operation 605, processing logic scans a plurality
of block stripes of a memory device. The plurality of block
stripes may include a first block stripe having more than a
threshold number of bad blocks and a second block stripe
having fewer than the threshold number of bad blocks. Each
of the first block stripe and the second block stripe may be
scanned to determine whether each has more or fewer than
the threshold number of bad blocks. The threshold number
can be calculated using a ratio of the total number of bad
blocks to the total number of block stripes (e.g., bad
blocks+block stripes) as explained below. In some embodi-
ments, the threshold number may be the next integer value
less than the value of the ratio. For example, where there are
88 bad blocks in a memory system and 30 block stripes, the
ratio may have a value of approximately 2.93 (e.g.,
88+30=2.933). In such an example, the threshold number is
two (e.g., the next integer value less than 2.93). In some
embodiments, the threshold number may be the next integer
value greater than the value of the ratio. In an example where
there are 88 bad blocks and 30 block stripes, the ratio has a
value of approximately 2.93. The threshold number can be
three (e.g., the next integer value greater than 2.93). More
details regarding the determination of the threshold number
are explained below with reference to operation 710 of FIG.
7

[0064] At operation 610, processing logic classifies a first
group of block stripes. The first group may be made up of
block stripes that each have more than the threshold number
of'blocks associated with an error condition (e.g., Group A).
For example, based on the scanning performed at operation
605, the processing logic classifies block stripes having
more than the threshold number of bad blocks into a first
group of block stripes. In the latter example laid out with

US 2024/0192875 Al

reference to operation 605, the processing logic classifies
block stripes having more than three bad blocks to a first
group (e.g., Group A). In some embodiments, the block
stripes of the first group (e.g., Group A) have varying
amounts of bad blocks in excess of the threshold number.
Continuing with the above example, each block stripe of the
first group may include more than three bad blocks.

[0065] At operation 615, processing logic classifies a
second group of block stripes. The second group may be
made up of block stripes that each have fewer than the
threshold number of blocks associated with the error con-
dition (e.g., Group B). For example, based on the scanning
performed at operation 605, the processing logic classifies
block stripes having less than the threshold number of bad
blocks into a second group of block stripes. Continuing with
the latter example laid out with reference to operation 605
and described further with reference to operation 610, the
processing logic classifies block stripes having less than
three bad blocks to a second group (e.g., Group B). In some
embodiments, the block stripes of the second group (e.g.,
group B) have varying amounts of bad blocks less than the
threshold number. Some block stripes classified in the sec-
ond group may have zero bad blocks. Continuing with the
above example, each block stripe of the second group may
have fewer than three bad blocks. In some embodiments, a
third group of block stripes is classified by the processing
logic. The third group (e.g., Group C) may include block
stripes having the threshold number of bad blocks.

[0066] At operation 620, processing logic maps blocks
associated with the error condition from block stripes in the
first group to block stripes in the second group. For example,
the processing logic may remap (e.g., reassign) bad blocks
from block stripes in Group A to block stripes in Group B.
In some embodiments, the processing logic quantifies the
number of bad blocks each block stripe in Group A has in
excess of the threshold number. Similarly, the processing
logic may quantify the number of bad blocks each block
stripe in Group B has in deficit of the threshold number. The
processing logic may generate remapping parameters to
store in a remapping table (e.g., bad block remapping table
256 of FIGS. 2 and 4) to remap the bad blocks. In some
embodiments, bad blocks are remapped from each of the
block stripes in Group A to block stripes in Group B such
that each block stripe of the memory device (e.g., of one or
more [LUNs) has the threshold number of bad blocks. In
implementations where the number of bad blocks is not
evenly divisible by the number of block stripes, the bad
blocks may be remapped from Group A block stripes to
Group B block stripes such that each block stripe has the
threshold number of bad blocks plus or minus one (e.g., the
threshold number, one greater than the threshold number, or
one less than the threshold number, etc.). For example,
where the threshold number is three and there are ten bad
blocks across four block stripes, the bad blocks may be
remapped between Group A and Group B such that two
block stripes have three bad blocks and two block stripes
have two bad blocks.

[0067] FIG. 7 is aflow diagram of an example method 700
to remap bad blocks in a memory sub-system, in accordance
with some embodiments of the present disclosure. The
method 700 can be performed by processing logic that can
include hardware (e.g., processing device, circuitry, dedi-
cated logic, programmable logic, microcode, hardware of a
device, integrated circuit, etc.), software (e.g., instructions

Jun. 13, 2024

run or executed on a processing device), or a combination
thereof. In some embodiments, the method 700 is performed
by the program manager 134 of FIGS. 1A and 1B. Although
shown in a particular sequence or order, unless otherwise
specified, the order of the processes can be modified. Thus,
the illustrated embodiments should be understood only as
examples, and the illustrated processes can be performed in
a different order, and some processes can be performed in
parallel. Additionally, one or more processes can be omitted
in various embodiments. Thus, not all processes are required
in every embodiment. Other process flows are possible. In
some embodiments, method 700 (excluding operation 735)
can occur during the low level formatting of the memory
device (e.g., memory device 130 of FIGS. 1A, 1B, and 2).
[0068] At operation 705, the processing logic identifies a
plurality of block stripes of a memory device including a
plurality of memory planes (e.g., memory device 130). The
plurality of block stripes can be identified by identifying
multiple blocks across the memory planes and treating the
blocks as a single unit. Each block can reside on a plane of
the plurality of memory planes.

[0069] At operation 710, the processing logic determines
a threshold number of blocks per block stripe associated
with an error condition (e.g., a threshold number of bad
blocks). In some embodiments, the threshold number of
blocks is determined using a ratio of a total number of blocks
associated with the error condition across the plurality of
memory planes to a total number of block stripes (e.g., bad
blocks:block stripes).

[0070] At operation 715, processing logic identifies a first
block stripe from the plurality of block stripes having more
than the threshold number of blocks associated with the
error condition. For example, the processing logic may
identify a first block stripe having more than the threshold
number of bad blocks. In some embodiments, multiple block
stripes are identified as having more than the threshold
number of bad blocks. Such identified block stripes may be
classified into a first group. In some embodiments, the
processing logic determines an excess margin corresponding
to the first block stripe. In some embodiments, the excess
margin corresponds to how many bad blocks the first block
stripe has greater than the threshold number of blocks. For
example, if the threshold number of blocks is four and the
first block stripe has five bad blocks, the excess margin is
one (e.g., 5-4=1).

[0071] At operation 720, the processing logic identifies a
second block stripe from the plurality of block stripes having
fewer than the threshold number of blocks associated with
the error condition. For example, the processing logic may
identify a second block stripe having fewer than the thresh-
old number of bad blocks. In some embodiments, multiple
block stripes are identified as having fewer than the thresh-
old number of bad blocks. Such identified block stripes may
be classified into a second group. In some embodiments, the
processing logic determines a deficit margin corresponding
to the second block stripe. In some embodiments, the deficit
margin corresponds to how many bad blocks the second
block stripe has less than the threshold number of blocks.
For example, if the threshold number of blocks is 2 and the
second block stripe has zero bad blocks, the deficit margin
is 2 (e.g., 2-0=2).

[0072] At operation 725, processing logic determines one
or more parameters associated with a first block of the first
block stripe to map the first block to the second block stripe.

US 2024/0192875 Al

The one or more parameters may include location param-
eters, source parameter, destination parameters, physical
address parameters, and/or other identifying metadata, etc.
The first block may be associated with the error condition
(e.g., the first block may be a bad block). In some embodi-
ments, the one or more parameters include a block stripe
index parameter, an origination parameter, and/or a location
parameter as described herein above.

[0073] In some embodiments, the one or more parameters
mapping the first block to the second block stripe are
generated using an iterative process. The processing logic
may iteratively map bad blocks from block stripes of the first
group to the block stripes of the second group. For example,
beginning with the first block stripe of the first group, the
processing logic may map one or more bad blocks (e.g.,
corresponding to the excess margin determined at operation
715) to one or more block stripes of the second group (e.g.,
having fewer than the threshold number of bad blocks). The
processing logic may verify that a second block stripe of the
second group has fewer than the threshold number of bad
blocks before mapping the first block to the second block
stripe. Bad blocks can be mapped to the second block stripe
until the second block stripe has the threshold number of bad
blocks (e.g., until the deficit margin number of bad blocks
determined at operation 720 have been mapped to the
second block stripe). Once the second block stripe has the
threshold number of bad blocks (e.g., once enough bad
blocks have been mapped to the second block stripe so that
the second block stripe has the threshold number of bad
blocks), the processing logic may map bad blocks to the next
block stripe of the second group. After each of the bad
blocks in excess of the threshold number have been mapped
from the first block stripe, processing logic may map one or
more bad blocks from the next block stripe in the first group
to one or more block stripes of the second group. This
process of mapping bad blocks from block stripes of the first
group to block stripes of the second group may continue
until all block stripes have the threshold number of bad
blocks, plus or minus one. The one or more parameters
described above may be generated to map the bad blocks of
first group block stripes to the second group block stripes.
[0074] At operation 730, processing logic stores the one or
more parameters in a data structure (e.g., bad block remap-
ping table 256). The data structure may be stored on the
memory device in some embodiments.

[0075] At operation 735, processing logic uses the data
structure to perform a write operation to the first block
stripe. For example, the processing logic utilizes the remap-
ping parameters stored in the data structure for writing data
to the first block stripe. The remapping parameters may
indicate to the processing logic which blocks have been
remapped from one block stripe to another. The remapping
parameters can indicate to the processing logic that a spe-
cific block is not to be treated as a part of a particular block
stripe, instead that the specific block is to be treated as a part
of another block stripe. In some embodiments, the write
operation is performed with respect to the first block stripe
and/or to the second block stripe, etc.

[0076] FIG. 8 illustrates an example machine of a com-
puter system 800 within which a set of instructions, for
causing the machine to perform any one or more of the
methodologies discussed herein, can be executed. In some
embodiments, the computer system 800 can correspond to a
host system (e.g., the host system 120 of FIG. 1A) that

Jun. 13, 2024

includes, is coupled to, or utilizes a memory sub-system
(e.g., the memory sub-system 110 of FIG. 1A) or can be used
to perform the operations of a controller (e.g., to execute an
operating system to perform operations corresponding to
program manager 134 of FIG. 1A). In alternative embodi-
ments, the machine can be connected (e.g., networked) to
other machines in a LAN, an intranet, an extranet, and/or the
Internet. The machine can operate in the capacity of a server
or a client machine in client-server network environment, as
a peer machine in a peer-to-peer (or distributed) network
environment, or as a server or a client machine in a cloud
computing infrastructure or environment.

[0077] The machine can be a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, a switch or bridge, or any machine capable
of executing a set of instructions (sequential or otherwise)
that specify actions to be taken by that machine. Further,
while a single machine is illustrated, the term “machine”
shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodolo-
gies discussed herein.

[0078] The example computer system 800 includes a
processing device 802, a main memory 804 (e.g., read-only
memory (ROM), flash memory, dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM)
or RDRAM, etc.), a static memory 806 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data
storage system 818, which communicate with each other via
a bus 830.

[0079] Processing device 802 represents one or more
general-purpose processing devices such as a microproces-
sor, a central processing unit, or the like. More particularly,
the processing device can be a complex instruction set
computing (CISC) microprocessor, reduced instruction set
computing (RISC) microprocessor, very long instruction
word (VLIW) microprocessor, or a processor implementing
other instruction sets, or processors implementing a combi-
nation of instruction sets. Processing device 802 can also be
one or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
802 is configured to execute instructions 826 for performing
the operations and steps discussed herein. The computer
system 800 can further include a network interface device
808 to communicate over the network 820.

[0080] The data storage system 818 can include a non-
transitory machine-readable storage medium 824 (also
known as a non-transitory computer-readable storage
medium) on which is stored one or more sets of instructions
826 or software embodying any one or more of the meth-
odologies or functions described herein. The instructions
826 can also reside, completely or at least partially, within
the main memory 804 and/or within the processing device
802 during execution thereof by the computer system 800,
the main memory 804 and the processing device 802 also
constituting machine-readable storage media. The machine-
readable storage medium 824, data storage system 818,
and/or main memory 804 can correspond to the memory
sub-system 110 of FIG. 1A.

[0081] In one embodiment, the instructions 826 include
instructions to implement functionality corresponding to a

US 2024/0192875 Al

program manager component (e.g., the program manager
134 of FIG. 1A). While the machine-readable storage
medium 824 is shown in an example embodiment to be a
single medium, the term “machine-readable storage
medium” should be taken to include a single medium or
multiple media that store the one or more sets of instruc-
tions. The term “machine-readable storage medium” shall
also be taken to include any medium that is capable of
storing or encoding a set of instructions for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the present disclosure. The
term “machine-readable storage medium” shall accordingly
be taken to include, but not be limited to, solid-state memo-
ries, optical media, and magnetic media.

[0082] Some portions of the preceding detailed descrip-
tions have been presented in terms of algorithms and sym-
bolic representations of operations on data bits within a
computer memory. These algorithmic descriptions and rep-
resentations are the ways used by those skilled in the data
processing arts to most effectively convey the substance of
their work to others skilled in the art. An algorithm is here,
and generally, conceived to be a self-consistent sequence of
operations leading to a desired result. The operations are
those requiring physical manipulations of physical quanti-
ties. Usually, though not necessarily, these quantities take
the form of electrical or magnetic signals capable of being
stored, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.

[0083] It should be borne in mind, however, that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities. The present disclosure can refer
to the action and processes of a computer system, or similar
electronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage systems.

[0084] The present disclosure also relates to an apparatus
for performing the operations herein. This apparatus can be
specially constructed for the intended purposes, or it can
include a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program can be stored in a computer
readable storage medium, such as any type of disk including
floppy disks, optical disks, CD-ROMs, and magnetic-optical
disks, read-only memories (ROMs), random access memo-
ries (RAMs), EPROMs, EEPROMs, magnetic or optical
cards, or any type of media suitable for storing electronic
instructions, each coupled to a computer system bus.

[0085] The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems can be used with
programs in accordance with the teachings herein, or it can
prove convenient to construct a more specialized apparatus
to perform the method. The structure for a variety of these
systems will appear as set forth in the description below. In
addition, the present disclosure is not described with refer-
ence to any particular programming language. It will be

Jun. 13, 2024

appreciated that a variety of programming languages can be
used to implement the teachings of the disclosure as
described herein.

[0086] The present disclosure can be provided as a com-
puter program product, or software, that can include a
machine-readable medium having stored thereon instruc-
tions, which can be used to program a computer system (or
other electronic devices) to perform a process according to
the present disclosure. A machine-readable medium includes
any mechanism for storing information in a form readable
by a machine (e.g., a computer). In some embodiments, a
machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium such as a read only memory (“ROM”), random
access memory (“RAM”), magnetic disk storage media,
optical storage media, flash memory components, etc.
[0087] In the foregoing specification, embodiments of the
disclosure have been described with reference to specific
example embodiments thereof. It will be evident that various
modifications can be made thereto without departing from
the broader spirit and scope of embodiments of the disclo-
sure as set forth in the following claims. The specification
and drawings are, accordingly, to be regarded in an illus-
trative sense rather than a restrictive sense.

What is claimed is:

1. A system comprising:

a memory device comprising a plurality of memory

planes; and

a processing device, operatively coupled with the memory

device, to perform operations comprising:

identifying a first block stripe of the memory device,
wherein the first block stripe comprises a first plu-
rality of blocks arranged across the plurality of
memory planes;

determining that the first plurality of blocks of the first
block stripe has greater than a threshold number of
blocks associated with an error condition; and

responsive to determining that the first plurality of
blocks has greater than the threshold number of
blocks associated with the error condition, mapping
a first block of the first plurality of blocks associated
with the error condition to a second block stripe
comprising a second plurality of blocks having fewer
than the threshold number of blocks associated with
the error condition.

2. The system of claim 1, wherein mapping the first block
of the first plurality of blocks of the first block stripe to the
second block stripe comprises:

determining the threshold number of blocks associated

with the error condition, wherein the determining is
based on a ratio of a total number of blocks associated
with the error condition across the plurality of memory
planes to a total number of block stripes across the
plurality of memory planes;

identifying the second block stripe having fewer than the

threshold number of blocks associated with the error
condition; and

determining one or more parameters associated with the

first block that map the first block to the second block
stripe.

3. The system of claim 2, wherein the one or more
parameters comprise one or more of:

a block stripe index parameter identifying the first block

as having been mapped to the second block stripe;

US 2024/0192875 Al

an origination parameter identifying the first block as

initially belonging to the first block stripe; or

a location parameter identifying a location of the first

block in the plurality of memory planes.
4. The system of claim 1, wherein determining that the
first plurality of blocks of the first block stripe has greater
than the threshold number of blocks associated with the
error condition comprises:
scanning a plurality of block stripes of the memory
device, wherein the plurality of block stripes comprises
the first block stripe and the second block stripe;

classifying a first group of block stripes of the plurality of
block stripes, wherein each block stripe of the first
group of block stripes comprises more than the thresh-
old number of blocks associated with the error condi-
tion, and wherein the first group further comprises the
first block stripe; and
classifying a second group of block stripes of the plurality
of block stripes, wherein each block stripe of the
second group of block stripes comprises less than the
threshold number of blocks associated with the error
condition, and wherein the second group further com-
prises the second block stripe.
5. The system of claim 1, wherein the processing device
is to perform further operations comprising:
determining an excess margin corresponding to the first
block stripe, wherein the excess margin corresponds to
a first number of blocks greater than the threshold
number of blocks, and wherein the first number of
blocks are associated with the error condition; and

determining a deficit margin corresponding to the second
block stripe, wherein the deficit margin corresponds to
a second number of blocks less than the threshold
number of blocks, and wherein the second number of
blocks are associated with the error condition.

6. The system of claim 1, wherein the processing device
is to perform further operations comprising:

storing, in a data structure, one or more parameters

associated with mapping the first block to the second
block stripe; and

performing a write operation to the first block stripe based

on the one or more parameters stored in the data
structure.

7. The system of claim 1, wherein identifying the first
block stripe of the memory device comprises:

performing a scan of the plurality of memory planes of the

memory device;

selecting a skew offset for the first block stripe based on

the scan; and

mapping the first plurality of blocks across the plurality of

memory planes to the first block stripe based on the
skew offset.

8. The system of claim 1, wherein the processing device
is to perform further operations comprising:

mapping a second block of the first plurality of blocks

associated with the error condition to a third block
stripe comprising a third plurality of blocks having
fewer than the threshold number of blocks associated
with the error condition.

9. A method comprising:

identifying a first block stripe of a memory device,

wherein the first block stripe comprises a first plurality
of'blocks arranged across a plurality of memory planes
of the memory device;

Jun. 13, 2024

determining that the first plurality of blocks of the first
block stripe has greater than a threshold number of
blocks associated with an error condition; and

responsive to determining that the first plurality of blocks
has greater than the threshold number of blocks asso-
ciated with the error condition, mapping a first block of
the first plurality of blocks associated with the error
condition to a second block stripe comprising a second
plurality of blocks having fewer than the threshold
number of blocks associated with the error condition.

10. The method of claim 9, wherein mapping the first
block of the first plurality of blocks of the first block stripe
to the second block stripe comprises:

determining the threshold number of blocks associated

with the error condition, wherein the determining is
based on a ratio of a total number of blocks associated
with the error condition across the plurality of memory
planes to a total number of block stripes across the
plurality of memory planes;

identifying the second block stripe having fewer than the

threshold number of blocks associated with the error
condition; and

determining one or more parameters associated with the

first block that map the first block to the second block
stripe.
11. The method of claim 9, wherein determining that the
first plurality of blocks of the first block stripe has greater
than the threshold number of blocks associated with the
error condition comprises:
scanning a plurality of block stripes of the memory
device, wherein the plurality of block stripes comprises
the first block stripe and the second block stripe;

classifying a first group of block stripes of the plurality of
block stripes, wherein each block stripe of the first
group of block stripes comprises more than the thresh-
old number of blocks associated with the error condi-
tion, and wherein the first group further comprises the
first block stripe; and
classifying a second group of block stripes of the plurality
of block stripes, wherein each block stripe of the
second group of block stripes comprises less than the
threshold number of blocks associated with the error
condition, and wherein the second group further com-
prises the second block stripe.
12. The method of claim 9, further comprising:
determining an excess margin corresponding to the first
block stripe, wherein the excess margin corresponds to
a first number of blocks greater than the threshold
number of blocks, and wherein the first number of
blocks are associated with the error condition; and

determining a deficit margin corresponding to the second
block stripe, wherein the deficit margin corresponds to
a second number of blocks less than the threshold
number of blocks, and wherein the second number of
blocks are associated with the error condition.

13. The method of claim 9, further comprising:

storing, in a data structure, one or more parameters

associated with mapping the first block to the second
block stripe; and

performing a write operation to the first block stripe based

on the one or more parameters stored in the data
structure.

14. The method of claim 9, wherein identifying the first
block stripe of the memory device comprises:

US 2024/0192875 Al

performing a scan of the plurality of memory planes of the

memory device;

selecting a skew offset for the first block stripe based on

the scan; and

mapping the first plurality of blocks across the plurality of

memory planes to the first block stripe based on the
skew offset.

15. The method of claim 9, further comprising:

mapping a second block of the first plurality of blocks

associated with the error condition to a third block
stripe comprising a third plurality of blocks having
fewer than the threshold number of blocks associated
with the error condition.

16. A non-transitory computer-readable storage medium
comprising instructions that, when executed by a processing
device, cause the processing device to perform operations
comprising:

identifying a first block stripe of a memory device,

wherein the first block stripe comprises a first plurality
of'blocks arranged across a plurality of memory planes
of the memory device;

determining that the first plurality of blocks of the first

block stripe has greater than a threshold number of
blocks associated with an error condition; and
responsive to determining that the first plurality of blocks
has greater than the threshold number of blocks asso-
ciated with the error condition, mapping a first block of
the first plurality of blocks associated with the error
condition to a second block stripe comprising a second
plurality of blocks having fewer than the threshold
number of blocks associated with the error condition.

17. The non-transitory computer-readable storage
medium of claim 16, wherein mapping the first block of the
first plurality of blocks of the first block stripe to the second
block stripe comprises:

determining the threshold number of blocks associated

with the error condition, wherein the determining is
based on a ratio of a total number of blocks associated
with the error condition across the plurality of memory
planes to a total number of block stripes across the
plurality of memory planes;

identifying the second block stripe having fewer than the

threshold number of blocks associated with the error
condition; and

Jun. 13, 2024

determining one or more parameters associated with the
first block that map the first block to the second block
stripe.

18. The non-transitory computer-readable storage
medium of claim 16, wherein determining that the first
plurality of blocks of the first block stripe has greater than
the threshold number of blocks associated with the error
condition comprises:

scanning a plurality of block stripes of the memory
device, wherein the plurality of block stripes comprises
the first block stripe and the second block stripe;

classifying a first group of block stripes of the plurality of
block stripes, wherein each block stripe of the first
group of block stripes comprises more than the thresh-
old number of blocks associated with the error condi-
tion, and wherein the first group further comprises the
first block stripe; and

classifying a second group of block stripes of the plurality
of block stripes, wherein each block stripe of the
second group of block stripes comprises less than the
threshold number of blocks associated with the error
condition, and wherein the second group further com-
prises the second block stripe.

19. The non-transitory computer-readable storage
medium of claim 16, wherein the processing device is to
perform further operations comprising:

storing, in a data structure, one or more parameters
associated with mapping the first block to the second
block stripe; and

performing a write operation to the first block stripe based
on the one or more parameters stored in the data
structure.

20. The non-transitory computer-readable storage
medium of claim 16, wherein the processing device is to
perform further operations comprising:

mapping a second block of the first plurality of blocks
associated with the error condition to a third block
stripe comprising a third plurality of blocks having
fewer than the threshold number of blocks associated
with the error condition.

#* #* #* #* #*

