US 20240236210A9

19) United States
(12) Patent Application Publication

Deshmukh et al.

(10) Pub. No.: US 2024/0236210 A9

48) Pub. Date: Jul. 11, 2024
CORRECTED PUBLICATION

(54) METHOD FOR IDENTIFYING AND Publication Classification
MANAGING QUIC CONNECTIONS FOR (51) Int. CL
MIDDLEBOXES HO4L 69/16 (2006.01)
HO4L 9/40 (2006.01)
(71) Applicant: Cisco Technology, Inc., San Jose, CA HO4L 45/02 (2006.01)
(Us) (52) U.S.CL
CPC HO4L 69/16 (2013.01); HO4L 45/02
(72) Inventors: Rajvardhan Somraj Deshmukh, San (2013.01); HO4L 63/0236 (2013.01)
JCose, %}A (Uf),NTT aniy. Pz{;riciaCA (57) ABSTRACT
J;n i ¥ 'nge ,VV ﬁm amn IlJeW’ der. TX Techniques are described for managing QUIC connections.
(US); James W. Kasper, Leander, The techniques include identifying a first QUIC connection
Us) between a first and second device. Determining, from the
connection, a first IP address and port number of the first
device, a second IP address and port number of the second
(21) Appl. No.: 17/973,115 device, and a first CID. Storing an association between the
first and second IP addresses, port numbers and first CID.
Identifying a second QUIC connection between the first
(22) Filed: Oct. 25, 2022 device and another device. Identifying, from the second
connection, the first IP address and port number, a second
Prior Publication Data CID, and a third P address and port number. Determining if
two of the following are met: the second IP address corre-
(15) Correction of US 2024/0137428 Al Apr. 25, 2024 sponds to the third IP address, the second port number
See (22) Filed. corresponds to the third port number, the second CID
corresponds to the first CID, if two are met, the first and
(65) US 2024/0137428 Al Apr. 25, 2024 second QUIC connections are the same.
100 ~
QuiC
MIDDLEBOX PACKETS MIDDLEBOX
118 108 110
11 I
=] T T 1 —_ — | I — =
! <« N | N | = NETWORK(S) = | I .
1 < — |'|I|'| P E— 106 — lllllll 4——’_ :
= T T 1 = - I - — =
I I — = I I
j A A
-_
CLEENT A
DEVicES 102 v v PPLICATION
SERVERS
104
Quic Quic
CONNECTION TABLE DB CONNECTION TABLE DB
uz 112

L Old

4% it
gQ 378V NOILO3INNOD gQ 379V NOILO3ANNOD

US 2024/0236210 A9

Jul. 11,2024 Sheet 1 of 11

Patent Application Publication

aIN0 aIN0
vol
SRENTELS S
NOILYDITddY 20 w mw_wwmo
m N
Z HI'
-] # I = 1T 1 .

- - T T S 30} AI} u W e =l .

" > [T T 1 — T T 1 > =

" — .”_”_“ (s)»domLaN = _“_..”_ — = .

ot

KON

801
S13Movd

oIN0

XOodaGQ0HN

¢ 9Old

(V)ole
| 'ON 1d0d

(@)soc
{7 SS34AAY di

So) o4

€ 'ON L1dOd

(D)80C

€ $S3¥AAY d|

US 2024/0236210 A9

20¢
NOILOINNOD

JIN0

0/90¢ (@)eoe

= € 31dN]-dI v 3dnL-dl
s

o

g

@ @voc Wv0e

m dYIN 314N L-DIND ¥IAY3S dYIN 314N 1-91ND N3O
o

<

y—

=

J

(V)90¢

L 3dNl-dl

g)oie

¢ ON 1¥0d

(@)90e
¢ A1dN] -l

VI0re
l 'ON 1d0d

(V)80¢
l 883440V dI

(a)80¢

Z Ss3¥aay di

Patent Application Publication

US 2024/0236210 A9

Jul. 11,2024 Sheet 3 of 11

Patent Application Publication

31dNL 3INO
SUASANIVM

¢dVIN-L NYHL FHONW
0.1 SANOJS3HH0D

(N31-0 N3AT LON)
$103rd0 a0 ON JAVH T1IM
dVI (LdaNT gy 2) ¥3HLO FHL

¢1¥0d ‘dl ONY
1S17aI0 3HL NI AIO ANNO
ANV dvIN 31dNL 2IND
Sid33d 43H10
J3SH3IAVHL

02t (IMd anvA MOTTV)

d0 (AYL13Y HLIM Tv3Q)
Y0 (@10 S:¥33d g2

YNIT) ¥3HLI3 01 919017

-1 OMS=dviNy3ad |- <« -

€C€ NNOJ QIND ANV
SdVIN 37dN1L JIND
31v340 01 1001

d3alS IX3aN —»
ON --»
SN >

ON

01€ doya
‘1INOVd AIMVANI

A ON

2<ERVERNEEN
140d 'dI"1sa

L

90¢
¢dvVIN FTdNL
JINO-L NVHL FH0N
OL SANOJS3IHH0)
31dNL-dl

S3A

v0e
2<ElalLEl

N33S 140d

'dl ods

[70§ 13%0vd OIND TVILINI |

(=)}
: d¢ 9l
>
b d31S IXaN —»
o n* P
M = U ON - -»
m q S3A ---»
o
wn
= Z[% 153r90 a0 VT Did AIvA Z8¢ {<>=03I00NaNIL <13403S
NTT-0 3LY3ED VAHLO ANY WILINI>=13403S ‘QI00=QI00

~ Y ‘INd1433d=3LYLS NNOO}
= _ NNOD2IND
s 7ot 7y
- . . ‘
N £103rdo aio — V€ 'O14 33S ‘SdvW I1dILTNN OL
g L SYH dvW 31dNL a@w,\m%%%wfwﬁw%o ONIANOJSIHYOD
Z 9IND N334 IS odd S¢ IdnL mmsmmm N0 IN3MD
2 m

. 8/t dOM{ w
= . ‘1 3MOVd QNYANI wmm;
E @< | <TRMLTM== {TLVIS NNODT Sscmrsmmemmee e oS PSS N A

0S¢ L03rgo aid
N3T-0 31V

A
| ON

¢&dVIN F1dNL
JINO-1 NYHL JHON

ZANOQ MSANYH=2
{3LVLS™NNOD}
NNOQ2INY

75¢ do¥a
SNIT PUB dvi 3TdNL SE)\ SRRRUURURRR >
IO 1433d ¥ 3LYIHD onX . LLI%0Yd QIvANI LEN

.L%N.m I7dNL-dI DYS ILYIHD T,m.m. "

AERCLENEEN
L80d 'dI D4$

oog = (205 1390vd 0In WILIN]

Patent Application Publication

US 2024/0236210 A9

Jul. 11, 2024 Sheet 5 of 11

Patent Application Publication

o¢ Ol

» BV LINOVd IHL SSFD0YU |«
d3LS [XaN —» A)
ON --»
S3A > 89¢ {<>=Q314Ia0WANIL
‘IMdedd3d =31VLS NNOD} ~ 0% 103ra0
NOOJIND « A al0 31v¥340
AdIGON ANV OL 139 A
ON
OF dYW HIAY3S |~ YUY
__ OL QIDINIT oo WNFFS AI0S
%€ {<>=a31dIaoNanIL —
'<13403STVILINI>=13403S 77E Sdvi
‘Al0”1SA=AID WWNIDIHO [« Y33d HLOE INIT ANV
‘INdIY¥33d =31Y1S NNOO} NNODJDIND V 31Y3H0
NNOJIND A

0v€ L1 0L 37dNL-dl LSa
> INITANY dVIN I TdNL

9¢€ 103rdo

A

OIND ¢¥33d V 3Lv340

oog =

4
PEE dVIN INTTO
OL QIO)N

al0 31v340

US 2024/0236210 A9

Jul. 11,2024 Sheet 6 of 11

Patent Application Publication

S3A
157

S3A

d3ls LXaN —
ON --»
SIA >

¢dVIN
31dNL IINO-1
NYHL 340N OL

SANOJSIYH0D
IdNi-di

90F
¢ dYIN
31dN1 JIN0-L
NVHL JHOW OL

ON

97 LINIVd QITYANI ¥O
NOLLYHOIN 318N0d

0

ON

SANOJS3HYE0D
FdNL-dl

x EEN

ey

¢ IN3S3d ¢ IN3S3dd

¢ AdNL-G

F%wwwwm S3A mwmmw ON Hmm%wa
dI O4S ‘dI"1Sa

¢0v 1INOVd ¥3AV3H LHOHS

US 2024/0236210 A9

Jul. 11, 2024 Sheet 7 of 11

Patent Application Publication

0S¥ SdVIN 31dNL
OIND S ¥33d H10E OL
11 INIT ANV NNOD JIND
V 31V340 - IONVHO
S.d10 H109 8 NOILVHEOIN

d3ddd434d J3AH3S
*
8b 1S114ID
NOILYYOIN OLINI QIO 1Nd
L

oPF dVIN
37dNL OIND a3Lv3dd
ATMIN OL YNIT (LNIS3Hd
4V 37dN1 1SA/H0S
YIAIHOIHM) 04 dVIN
37dNL OIND V 3LVYIHD

- —~

%

ZS¥ SdVIN
31dN1 OINO A31Lv3add
ATM3IN OL NI (LNISaY
SI YIAAIHOIHM) 31dNL
180 HO D4S M3AN F1v3HO

daLs IXaN —» | '------- i
ON - >
S3A >

i
i
! ¢1SMan
257 " v =< HLNIAID
¢NNODDIND m ON L1 ONIaNno4
- NOWWOD m AN\ o
ON IAVH ATHL m vy P!
m ¢Sdvi Loy ON
m 37dNL OIND 1Sa o
L ONIONOASTHHOD ANV D'
g3 NNOJDIND FHL TV ' ASdvin31dNL

NV 31dN1L 1Sd

A dHLNINIO

EEN

m ._N mu _ .u._ 82V 1340Vd $$3004d | | ¥2F ¢aLVLS QITVANI!

i e " *

0T% 13%0OVd QITVANI 40 927 INOQ MSANVH L

NOILYHOIN 035H3434d HIAYTS u.ﬂ“ﬁwm_w_mz%& b

HO/ANY m_mz%o Q1) HLOd I 1S NNOO! 1 |

r— H (-

8I7 L3M0Vd m Y oan o

> JHL SS300¥d “ |
1 Wy g_%_ miw: 1443 L

oTE : JIND (S.a1D ¢ANOQ NSANYH |
SN Sel i | S.S00137dNL.Sa 4O Did g¥33d == >--' |
L MOTI04 ANV INIOd ozm EINEL {31V1S NNOO} " ON w
d¥IN 37dNL 2IND T !
S.1S03HL L0373 " -~ m
JONVHO .10 HL049 C1sman F oI m

Q3aXIvMm 2IND IHL TV

t4%%
¢ INJS3dd

31dNL O84S

(<2
21
>

S

US 2024/0236210 A9

Jul. 11,2024 Sheet 8 of 11

Patent Application Publication

Qv Ol

|72y L3Ovd JHL $SF00Nd |

A

0z INOQ MSANYH={3LVLS

"NNOO} :L)d " 2¥33d
=={3]1Y1S NNOD} I

YSANYH ¥HO
id gy33d ==
{31V1S™NNOD}
NNOD2IND

Y

85¥% dVIN I1dNL 2IND
1A (ONILSIX3) OL LI XMNIT 'F1dNL
~dl 41Vdd0 INISHdd LON 4l

RGETY
[*]3%
¢ 11010
IHL
NI Q1D

ON

€~~~ -

9y 13X0Vd AIMVANI
O ‘NOILYYHOIN

HINYIS HO/ANY|
JONVHO S.410 H104d

d34¥343dd _

d31s wan — | {5 Exomn_ $S300¥d | Y
-
SIA >
\ 087 Q1D YuYANN — /
QTOHSTUHL NIV.LYID 02y dVIN 31dMNL
NV ABLLVANS o 21N 0L mmg_E 180
Q1D ANY 1804 dI SIHL é%@_qm%wm%&
a3sn LYHL S1INOVd
30 ¥3GNNN INNOD _ 1
X 9% dvil 1dNL 2IND 40
= 1SITAIONOILYEOIN
A
Q1) XO¥ddV ¥04
31 S35 ﬂmm@z%; S3LAG 02 GvHD
S3A S31AE ANV 1
i SYHOLYN [« T8 Q0 ¥IHIONY
AN (L E VY J
9IpaaHOLVN | | WOYH LavIS | ! ' NI 043z
S3IAE leON _ | 38 LNVD 0S
#=N31-010 ! SFA L UNOILVHOIN
“
|
uuuuuuuuuu]
(¢QIONIT1) ON
(FHOWHOLYN OL !
3SYO-0I0-378vE0dd | @33N ¥O INFDIHANS | ;
/ HOLVIN 31AG)SI ! ! \

@-----»

dvYIN'S.LSG 0L 09

Patent Application Publication Jul. 11,2024 Sheet 9 of 11 US 2024/0236210 A9

500 ~

4 2

IDENTIFY, BY A NETWORK DEVICE, A FIRST QUIC CONNECTION BETWEEN A FIRST
DEVICE AND A SECOND DEVICE
502

4)

DETERMINE, FROM THE FIRST QUIC CONNECTION, A FIRST IP-TUPLE INCLUDING A
FIRST IP ADDRESS AND A FIRST PORT NUMBER ASSOCIATED WITH THE FIRST

DEVICE
504
_ l Y,
s ™\

DETERMINE, FROM THE FIRST QUIC CONNECTION, A SECOND IP-TUPLE
INCLUDING A SECOND |P ADDRESS AND A SECOND PORT NUMBER ASSOCIATED
WITH THE SECOND DEVICE
506

. J

r \

DETERMINE, FROM THE FIRST QUIC CONNECTION, A FIRST CID ASSOCIATED WITH
THE FIRST QUIC CONNECTION
508

4 N

STORE A FIRST ASSOCIATION BETWEEN THE FIRST IP-TUPLE, THE SECOND [P-
TUPLE, AND THE FIRST CID ASSOCIATED WITH THE FIRST QUIC CONNECTION
510

\. J/

|

- A

IDENTIFY, BY THE NETWORK DEVICE, A SECOND QUIC CONNECTION BETWEEN
THE FIRST DEVICE AND ANOTHER DEVICE
512

©
FIG. 5A

Patent Application Publication Jul. 11,2024 Sheet 10 of 11 US 2024/0236210 A9

500 ~

4 N
IDENTIFY, FROM THE SECOND QUIC CONNECTION, THE FIRST IP-TUPLE, A

SECOND CID, AND A THIRD IP-TULE INCLUDING A THIRD IP ADDRESS AND A
THIRD PORT NUMBER

514
_ l J
s ™

DETERMINE WHETHER AT LEAST TWO FOLLOWING CONNECTION CRITERIA ARE

MET

516
_ l J
4)

THE SECOND |IP ADDRESS CORRESPONDS TO THE THIRD IP ADDRESS

516A
\. l J
s ™

THE SECOND PORT NUMBER CORRESPONDS TO THE THIRD PORT NUMBER, OR

5168
\. l J
4 A

THE SECOND CID CORRESPONDS TO THE FIRST CID

516C
_ l J
4 N\

IN RESPONSE TO DETERMINING THAT AT LEAST Two CONNECTION CRITERIA ARE
MET, DETERMINE THAT THE SECOND QUIC CONNECTION CORRESPONDS TO THE
FirsT QUIC CONNECTION, AND UPDATE THE FIRST ASSOCIATION BASED AT
LEAST IN PART ON THE THIRD IPOTUPLE OR THE SECOND CID
518

FIG. 5B

Patent Application Publication Jul. 11,2024 Sheet 11 of 11 US 2024/0236210 A9

NETWORK(S)
624

¥

L Z
NETWORK
INPUT/QUTPUT
INTERFACE
CONTROLLER
CONTROLLER 616
812 —

v

CHIPSET 606

v v

v

¢

CPU(S) || RAM
604 608

ROM
610

STORAGE
CONTROLLER
614

COMPUTER-READABLE MEDIA

618

OPERATING SYSTEM
620

PROGRAMS
622

BASEBOARD (MOTHERBOARD)

602

COMPUTER
600

FIG. 6

US 2024/0236210 A9

METHOD FOR IDENTIFYING AND
MANAGING QUIC CONNECTIONS FOR
MIDDLEBOXES

TECHNICAL FIELD

[0001] The present disclosure relates generally to identi-
fying, tracking, and managing QUIC connections when their
1P addresses, ports numbers, or connection ID’s change.

BACKGROUND

[0002] QUIC is a transport on top of user datagram
protocol UDP and the only transport for HI'TP3 which is
rapidly gaining adoption. QUIC is gaining popularity by
becoming the default choice for streaming and data transfer
over the web because it can offer security while also working
incredibly fast. QUIC improves security of network traffic
packets significantly because the packets are tamper proof
and not easily visible by network equipment, even basic
sniffing on handshake packets are disabled by different
layers of protection. However, because QUIC is an encryp-
tion-based protocol, the ability to inspect metadata currently
used by visibility, network, and security solutions is
extremely prohibitive, thus, creating a new problem. Net-
work providers cannot use traditional traffic management
tools to identify, track, and manage QUIC connections
because only the end application (client) and application
host (server) can keep track of the “connection”. This poses
a problem for middlebox solutions, as the ability to track
distinct QUIC connections is extremely difficult to nearly
impossible using conventional techniques since in order to
affect control policies for all traffic, policies must be mapped
to connections. Thus, when an IP address, port number, or
connection identifier (CID) for a QUIC connection changes,
it is extremely difficult for a middlebox to determine that the
QUIC connection is the same connection.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The detailed description is set forth below with
reference to the accompanying figures. In the figures, the
left-most digit(s) of a reference number identifies the figure
in which the reference number first appears. The use of the
same reference numbers in different figures indicates similar
or identical items. The systems depicted in the accompany-
ing figures are not to scale and components within the
figures may be depicted not to scale with each other.
[0004] FIG. 1 is a partial system-architecture diagram of
an example environment for identifying, tracking, and man-
aging QUIC connections.

[0005] FIG. 2 is an example of QUIC connection mapping
that exemplifies a relational structure of known QUIC
connections.

[0006] FIG. 3A, FIG. 3B, and FIG. 3C is a flow diagram
of the process for creation, identification and update of an
initial QUIC packet with a long header that includes logic
for creating QUIC-tuple maps, processing QUIC packets
and dropping QUIC packets.

[0007] FIG. 4A, FIG. 4B, and FIG. 4C is a flow diagram
of the process for creation, identification and update of a
QUIC packet with a short header when an IP-tuple corre-
sponds to more than one QUIC map.

[0008] FIG. 5A and FIG. 5B is a flow diagram for a
method of determining a QUIC connection for a QUIC
packet.

Jul. 11, 2024

[0009] FIG. 6 is a computer architecture diagram showing
an illustrative computer hardware architecture for imple-
menting a computing device that can be utilized to imple-
ment aspects of the various technologies presented herein.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

[0010] This disclosure describes techniques for identify-
ing, tracking, and managing QUIC connections when an IP
address, port connection, or CID changes. A method to
perform techniques described herein includes identifying, by
a network device, a first QUIC connection between a first
device and a second device. The method may also include
determining, from the first QUIC connection, a first IP-tuple
including a first IP address and a first port number associated
with the first device. Additionally, the method may include,
determining, from the first QUIC connection, a second
IP-tuple including a second IP address and a second port
number associated with the second device. Also, the method
may include determining, from the first QUIC connection, a
first connection identifier (CID) associated with the first
QUIC connection. A first association between the first IP-
tuple, the second IP-tuple, and a first connection identifier
(CID) associated with the first QUIC connection may be
stored. Further, the method may include identifying, by the
network device, a second QUIC connection between the first
device and another device. The method may also include
identifying, from the second QUIC connection, the first
IP-tuple, a second CID, and a third IP-tuple including a third
IP address and a third port number. Also, the method may
include determining whether at least two of the following
connection criteria are met: 1) the second IP address corre-
sponds to the third IP address, 2) the second port number
corresponds to the third port number, or 3) the second CID
corresponds to the first CID. Finally, in response to deter-
mining that at least two of the connection criteria are met,
the method may include determining that the second QUIC
connection corresponds to the first QUIC connection and
updating the first association based at least in part on the
third IP-tuple or the second CID.

[0011] Additionally, the techniques described herein may
be performed by a system and/or device having non-transi-
tory computer-readable media storing computer-executable
instructions that, when executed by one or more processors,
performs the method described above.

Example Embodiments

[0012] Connection migration allows QUIC end points to
migrate connections to different IP addresses and network
paths. For instance, a mobile device can migrate QUIC
connections between a cellular network and Wi-Fi when a
known Wi-Fi network becomes available. Additionally, net-
work address translators (NAT) using UDP flows involve
timeouts that can affect long-running QUIC connections.
When a timeout occurs, a NAT rebinding happens and the
end point on the outside of the NAT perimeter will see
packets coming from a different source port than the one that
was established when the connection first occurred. Con-
nection migration and NAT rebinding are just some
examples of what makes tracking QUIC connections diffi-
cult and can result in packets being dropped or improperly
routed. QUIC attempts to addresses this issue by using a

US 2024/0236210 A9

connection ID (CID) that each peer uses to map a QUIC
session flow. However, CIDs may also change during the
lifetime of a connection, with the new CID being negotiated
via encrypted frames, thus, a middlebox cannot see that the
new CID does not necessarily indicate a new connection.
This poses a problem because in order for a middlebox to
affect control policies for all traffic, policies must be mapped
to connections and there needs to be a way to identify the
connection that a packet belongs to. This disclosure
describes techniques by which QUIC connections may be
efficiently created, traced, and updated as their IP addresses,
port numbers, and CIDs change over time without requiring
full QUIC packet decryption.

[0013] There are two forms of QUIC common headers,
long headers and short headers. Long form packets are used
for the initial exchange, packets that are sent prior to the
completion of version negotiation and until 1-RTT packet
protection can be started. Once both of these conditions are
met, packets switch to using the short header which is used
to carry the bulk of the data. QUIC encrypts all packets
inclusive of header information and introduces what is
referred to as key levels, whereby, even the TLS handshake
is fully encrypted with a key that can be statically generated
based on information (e.g., nonces, salts, etc.) predefined for
each QUIC version referred to as the initial key. To fully see
and track the QUIC sessions, there are five different keys
used to protect the different packets in the different states of
the QUIC state machine. The techniques described herein
detects when a new session is being established by the logic
described in detail with reference to the figures below and
effectively only need to decrypt the ClientHello packet to
obtain the initial negotiated CIDs. Optionally, if present, a
server name index (SNI) may be stored and leveraged.
Beyond the one specific long header packet type (e.g.,
ClientHello) no further decryption and no use of the other
five keys are required to be able to track and manage a QUIC
sessions. Packet logic (based on the QUIC state machine) is
used to determine when the CIDs, IP addresses, or port
numbers may have changed yet is still the same QUIC
session.

[0014] A database, referred to as the QUIC connection
table, is built and maintained to keep track of the relational
structure of known QUIC connections. To build and main-
tain the database, first the cleartext QUIC header informa-
tion is inspected. Depending on metadata present in a QUIC
packet header, different information based on the packet
type (e.g., long header or short header), is gathered.
[0015] A long header packet has all the meta data needed
available in the header. The IP address, port number, and
CID can be verified against the state of connection, as
described in the data structure, kept on the table of QUIC
connections and relevant states. The long header packet is
where most of the connection creation exists as these
packets are the ones focused on establishing new connec-
tions and states, such as the metadata encryption keys and
information pertaining to whether CIDs are to be used or
not.

[0016] A short header packet does not include the length
of the CID in the header, thus, the QUIC connection table
will retain the state of whether a QUIC connection uses a 0
or variable length CID. The use of CIDs is established at the
very first connection setup using long header packets. The
logic, described in detail with reference to the figures below,
also includes whether it is indeed a QUIC short header

Jul. 11, 2024

packet or a UDP packet. For connections that use CIDs, the
client and the server may negotiate a change of their CIDs
using encrypted packets. To avoid full man-in-the-middle
packet decryption, an attempt is made to match against
known CIDs relating to the corresponding IP-tuples (IP
address and port number of a connection endpoint) stored in
the QUIC connection table. An IP-tuple includes one IP
address and one port number of either the source or the
destination of the packet. If there is no match against the
CIDs, the packet may still be valid and use a new CID that
that was not able to be observed by a network middlebox. As
most implementations currently use a CID length of <20
bytes, the 20 bytes is stored as the potential CID. The
“learning” technique is to match against these potential
CIDs, first N bytes of that CID, if a match is found, the
length is corrected to be N and a counter of the number of
times this potential CID is observed is kept before promot-
ing it as a known CID. If the CID is used more than a
predetermined threshold limit, the CID is promoted to the
known CID list. There is a programmable limit on the
minimum length, of a CID. Such CIDs must be seen a
predetermined number of times before they are promoted to
the known CID list. This predetermined occurrence thresh-
old is also programmable.

[0017] For efficiency, a hash table is maintained with IP
addresses and port numbers as keys to access the IP-tuple,
which provides access to its multiple QUIC-tuple maps. The
QUIC-tuple mapping links the IP-tuples to CIDs and its
related QUIC connections. Because packets are not
decrypted, the process flow will not detect or see the signals
between the client and server when they are negotiating a
connection migration (e.g., a change in IP address, port
number, or CID) as those packets will be encrypted. Instead,
the observed similarities (e.g., unknown destination IP
address, but know source IP address and CID) will be used
to identify a packet to a known connection. To manage the
number of connections that are kept track of a timer queue
is used to provide a programmable limit on the number of
QUIC connections tracked. A timeout value is used to get rid
of QUIC connections that exceed the limit and additionally
connections are evicted in a least recently used fashion once
the limit for the number of tracked connections is reached.
The timeout value for a connection is updated every time a
valid packet corresponding to that connection is received.

[0018] FIG. 1 illustrates an example environment 100 of a
partial system architecture that uses QUIC protocol for
communication. Environment 100 includes one or more
client devices 102. The client devices 102 may be used for
purposes that require high speed online services. For
example, the client devices 102 may belong to end users in
a network organization that routinely rely on VoIP. In
another example the client devices 102 may be used for
online gaming or streaming. FIG. 1 also includes multiple
application servers 104. An example application server 104
may be a gaming or video streaming server. The client
devices 102 communication with the application servers 104
over a network or networks 106 such as the internet.
Environment 100 includes the client devices 102 commu-
nicating with the application servers 104 over a network 106
using QUIC packets 108. Additionally, environment 100
also includes two firewalls 110. The firewalls 110 are
examples of middleboxes in a network architecture that a
QUIC packet 108 may be routed through when transmitted
from one end point to another. Although FIG. 1 illustrates a

US 2024/0236210 A9

firewall as an example middlebox 110, the techniques
described herein are not limited to firewalls and may be any
appropriate type of middlebox in a network, such as a load
balancer, content delivery network (CDN), a WAN opti-
mizer, NATs, a cloud based gateway, a cloud based firewall,
a secure router, etc. Finally, environment 100 also includes
QUIC connection table databases 112. A QUIC connection
table database 112 contains all the QUIC connection map-
pings between end points. QUIC connection mappings are
described in more detail below with reference to FIG. 2.

[0019] In an environment such as environment 100, for a
middlebox, in this case the firewalls 110, to affect control
policies for the QUIC packets 108, the policies must be
mapped to connections and there needs to be a way to
identify the connections that a QUIC packet 108 belongs to.
The QUIC connections are identified, tracked, and updated
in the QUIC connection table database 112 as their IP
addresses, port numbers, and CIDs change over time. To
build and maintain the QUIC connection table database 112
a QUIC packet header is inspected, and depending on the
metadata present in the QUIC packet header, different infor-
mation is gathered, and a determination made as to the
QUIC connection the packet belongs to. The specific logic
used to determine the QUIC connection a packet belongs to
is described in more detail below and illustrated in FIGS.
3-6B. The firewalls 110 use the QUIC connections mappings
stored in the QUIC connection table database 112 to deter-
mine the QUIC connection a QUIC packet 108 belongs to.
Once the QUIC connection is determined, the middlebox
110 can apply policy and determine whether to process the
QUIC packet 108 or drop the QUIC packet 108.

[0020] The above-noted example is merely illustrative,
and various changes can be made to achieve similar or the
same results. For instance, rather than a firewall as a
middlebox is such an environment, the techniques can
similarly be performed using other middleboxes such as load
balancers or NAT, for example.

[0021] FIG. 2 illustrates an example data structure 200 of
a QUIC connection map for a QUIC connection between a
client and a server. The data structures are based on relations
and observations based on the use of CIDs and rules as
defined in IETF RFC’s 8999, 9000, 9001, and 9002. The
QUIC connection map illustrated in FIG. 2 has an estab-
lished QUIC connection 202 between a client and a server.
The known client data structures are depicted with client
QUIC-tuple map 204(A) and the known server data struc-
tures are depicted in server QUIC-tuple map 204(B). Each
QUIC-tuple map 204 consists of one or more IP-tuples 206
and one or more CIDs 212. Each IP-tuple 206 consists of one
1P address 208 and one port number 210. In some instances,
a server QUIC-tuple map may also include a server name
index (SNI) as shown in the example in FIG. 2 where SNI
214 is connected to server QUIC-tuple map 204(B).
[0022] Client QUIC-tuple map 204(A) is shown with three
known IP-tuples associated with QUIC connection 202,
IP-tuple 1 206(A), IP-tuple 2 206(B), and IP-tuple 4 204(D).
Even though the three IP-tuples may have different IP
addresses 208 and/or port number 210, they are associated
with the same client device that is described by client
QUIC-tuple map 204(A). IP-tuple 1 206(A) and IP-tuple 4
206(D) have the same port number, port no. 1 210(A) but
different IP addresses. IP-tuple 2 206(B) has a different IP
address, IP address 2 208(B), and different port number, port
no. 2 210(B), than either IP-tuple 1 206(A) or IP-tuple 4

Jul. 11, 2024

206(D). The multiple IP-tuples 206 associated with client
QUIC-tuple map 204(A), may be the result of the client
device, such a mobile phone, associated with client QUIC-
tuple map 204(A) having migrated from a cellular network
to a Wi-Fi network. Alternately or in addition, the multiple
IP-tuples 206 associated with client QUIC-tuple map 204(A)
may be a result of NAT rebinding whereby a different IP
address 208 and/or port no. 210 are assigned due to a
timeout. In such an instance, when a mobile device migrates
from one network to another, or a timeout occurs, a new IP
address and/or a new port number will be assigned, even
though the source device is the same device and the con-
nection to the sever is the same QUIC connection, in this
case QUIC connection 202.

[0023] Alternately or in addition, a CID 212 for QUIC
connection 202 may also change and still be the same QUIC
connection 202. A client and a server may negotiate a change
of their CIDs using encrypted packets. In which case, the
firewall does not see the CID change negotiation, and will
not know that the QUIC connection is the same connection
even though the CID has changed. For example, the QUIC
connection map shown in FIG. 2 illustrates three CIDs that
are associated with the QUIC connection 202, CID 1 212
(A), CID 2 212(B), and CID 3 212(C). The initial CID may
be CID 2 212(B) when the QUIC connection 202 is initiated.
Later, the client and server may negotiate a change to using
CID 3 212(C) for packets belonging to QUIC connection
202. However, the negotiation to chance the CID may be
encrypted, thus a middlebox will not see the negotiation and
may determine that a packet with CID 3 212(C) does not
belong to QUIC connection 202. However, using technique
described herein for tracking and managing QUIC connec-
tions, a middlebox will be able to determine that packets
with the new CID 3 212(C) do belong to QUIC connection
202, and the middlebox will apply appropriate policy and
route the packets correctly.

[0024] FIGS. 3A-3C illustrates flow diagram 300 that
details the logic process for creating, tracking, and managing
QUIC connections for an initial long header QUIC packet.
Aspects of the operations may be performed at least partly
by the devices in the system architecture as described in
FIG. 1 and with respect to the QUIC-tuple mapping
described with reference to FIG. 2. The logical operations
described herein with respect to FIGS. 3A-3C may be
implemented (1) as a sequence of computer-implemented
acts or program modules running on a computing system
and/or (2) as interconnected machine logic circuits or circuit
modules within the computing system.

[0025] The QUIC connection relational data structure
maps, examples of which are illustrated in FIG. 2, can be
walked to effectively create, identify, and update QUIC
connections in the QUIC connection table database 112 of
FIG. 1. Long initial QUIC packets use the following process
for a packet from which a source IP address, source port
number and source CID have been extracted from the QUIC
packet header.

[0026] At operation 302, a QUIC packet is determined to
be an initial QUIC packet with a long header. The initial

QUIC packet is received by a middlebox. For example, a
middlebox 110 of FIG. 1.

[0027] At operation 304, a determination is made whether
the source IP-tuple has been seen before in the hash table or
not.

US 2024/0236210 A9

[0028] At operation 306, if the source IP-tuple has been
seen before in the hash table, then traverse (in order of least
recently created) QUIC-tuple maps (e.g., QUIC-tuple maps
as shown in FIG. 2) that contain the source IP-tuple.
[0029] At operation 308, the QUIC tuple maps that con-
tain the source IP-tuple are found and a determination made
whether the destination IP-tuple has been seen earlier is
made.

[0030] At operation 310, if the destination IP-tuple has not
been seen before, the QUIC packet is invalid and the
middlebox will drop it.

[0031] At operation 312, if the destination IP-tuple has
been seen before a determination is made whether there are
multiple QUIC maps that have the source IP-tuple and the
destination IP-tuple.

[0032] At operation 314, if the source and destination
IP-tuple does correspond to more than one QUIC tuple map,
each QUIC tuple map is traversed until there are no more
QUIC tuple maps having matching source and destination
IP-tuples.

[0033] At operation 316, as each QUIC tuple map is
traversed, the CID is checked against a known CID list. If
the CID is not in the known list, the next QUIC tuple map
is traversed.

[0034] At operation 318, if a matching CID is found, then
the current QUIC-tuple map is a part of the QUIC connec-
tion to traverse. The other peer in the QUIC tuple map is
traversed and the CID and IP-tuple of the other peer are
checked to see if they are found.

[0035] If the CID and IP-tuple are found, the peer map is
the source and the other (second endpoint) map will have no
CID objects, not even 0-length. Thus, proceed to operation
320, to either link the second peer’s CID or allow a valid
packet, details of which are described with reference to FIG.
3B and FIG. 3C.

[0036] If at operation 318, a QUIC map does not have an
entry in the CID list, proceed to operation 322 where then
the CID could be the CID that the server assigned itself.
Check the destination CID of the connection. If the desti-
nation CID matches and the destination IP-tuple match then
it is the same connection, add the source CID to the empty
CID list.

[0037] If at operation 312, the destination IP-tuple does
not correspond to more than one QUIC tuple map, proceed
to operation 318.

[0038] If at operation 304, the source IP-tuple (source IP
address and source port number) has not been seen before,
proceed to operation 322 to create a new QUIC tuple map
and QUIC connection. For example, If the QUIC packet
contains a ClientHello message, then create a QUIC-tuple
map, add the CID to the map and create a new QUIC
connection. If the QUIC packet does not contain a Clien-
tHello message, drop the packet as there is no QUIC
connection.

[0039] For detail of operation 322, see FIG. 3B FIG. 3C
beginning with the source IP-tuple not being seen before at
operation 304.

[0040] At operation 324, a determination is made whether
a policy exists that allows the 5-tuple in the packet.
[0041] If the policy does allow the 5-tuple, at operation
326 a source IP-tuple is created for the source IP address and
source port number.

[0042] At operation 328, a peerl QUIC tuple map is
created, and the source IP-tuple is linked to it.

Jul. 11, 2024

[0043] At operation 330, a determination is made whether
the source CID is O-length.

[0044] If the source CID is O-length, at operation 332, a
determination is made whether the source CID has been seen
earlier.

[0045] If the source CID has, at operation 334 the CID is
linked to the client IP-tuple map.

[0046] If the source CID has not been seen before, at
operation 336 a CID object is created and then linked to the
client IP-tuple map at operation 334.

[0047] At operation 338 a determination is made whether
the destination IP address and port number have been seen
earlier.

[0048] If the destination IP address and port number have
been seen earlier, at operation 340 a peer2 QUIC tuple map
is created and linked to the destination IP-tuple.

[0049] If the destination IP address and port number have
not been seen earlier, a new destination IP-tuple is created at
342 and then a peer2 QUIC tuple map created, and the new
destination IP-tuple linked to it at 340.

[0050] Once the peer2 QUIC tuple map has been created
and the destination IP-tuple linked to it, at operation 344 a
QUIC connection is created and the peerl QUIC tuple map
and peer2 QUIC tuple map linked to the QUIC connection.
[0051] At operation 346, the connection details are
checked to make sure that the QUIC connection state
machine is adhered to.

[0052] At operation 348, the QUIC packet is processed.
[0053] If at operation 330 the source CID length is not
O-length, a O-length CID object is created at operation 350
and the process is continued at operation 334 as described
above.

[0054] Returning to operation 324, if the policy does not
allow the 5-tuple, the QUIC packet is invalid and is dropped
at operation 352.

[0055] Returning to operation 306, if the IP-tuple does not
correspond to more than one QUIC tuple map, the peer is the
source at 354.

[0056] At operation 356, the QUIC connection state
machine is checked to see if the handshake is complete.
[0057] If the handshake is complete, the QUIC packet is
invalid, and the packet is dropped at 356.

[0058] If the handshake is not complete, at operation 358
a determination is made whether the connection state is a
retry.

[0059] Ifitis not aretry at operation 358, at operation 360

a determination is made whether the peer QUIC tuple map
has one CID object.

[0060] Ifthe peer QUIC tuple map does not have one CID
object, at operation 362 a determination is made whether the
source CID is a O-length CID.

[0061] If the source CID is O-length, at operation 364 a
determination is made whether the server CID has been seen
earlier.

[0062] Ifthe source CID has been seen earlier, at operation
366 link the CID to the server QUIC tuple map.

[0063] At operation 368, the connection state of the QUIC
connection is a peer2 packet.

[0064] At operation 348, the QUIC packet is processed.

[0065] If at operation 364, the source CID has not been
seen earlier, at operation 370 a new CID object is created
and then linked to the server map at operation 366 and the
process continues as described above.

US 2024/0236210 A9

[0066] If at operation 362 the source CID length is not
O-length, at operation 372 a 0-length CID object is created
and linked to the server map at operation 366 and the process
continues as described above.

[0067] If at operation 360, the peer QUIC tuple map does
have a CID object, at operation 374 the packet is valid and
is processed at operation 348.

[0068] If at operation 358 the QUIC connection state is a
retry, at operation 376 a determination is made whether the
token length is correct.

[0069] If the token length is not correct, at operation 378
the QUIC packet is invalid and will be dropped.

[0070] If at operation 376, the token length is correct, at
operation 380 the QUIC packet is a client to server packet.
The CID is removed from the server QUIC tuple map and
the new CID is added.

[0071] At operation 382, the QUIC connection state is a
peerl packet where the original CID is the destination CID,
and the secret is the initial secret.

[0072] The process continues at operation 348 where the
packet is processed.

[0073] FIGS. 4A-4C is flow diagram 400 that collectively
illustrate the logic process for creating, tracking, and man-
aging QUIC connections for short header QUIC packets.
Aspects of the operations may be performed at least partly
by the devices in the system architecture as described in
FIG. 1 and with respect to the QUIC-tuple mapping
described in FIG. 2. The logical operations described herein
with respect to FIGS. 4A-4C may be implemented (1) as a
sequence of computer-implemented acts or program mod-
ules running on a computing system and/or (2) as intercon-
nected machine logic circuits or circuit modules within the
computing system.

[0074] At operation 402, a QUIC packet is determined to
be a short header packet. When a QUIC packet is not an
initial QUIC packet with a long header, and the QUIC packet
has a short header, the following process will be used to
determine which, if any, QUIC connection a packet with a
destination IP address, destination port number, and desti-
nation CID belongs to.

[0075] At operation 404, a determination is made whether
a destination IP address and a destination port number are
present the hash table. For example, does the IP-tuple appear
in the hash table in the QUIC connection database 112 as
shown in FIG. 1.

[0076] If the destination IP-tuple (destination IP address
and destination port number) are present in the hash table, at
operation 406 a determination is made whether the destina-
tion IP-tuple corresponds to more than one QUIC tuple map.
For example, a QUIC tuple map as illustrated in FIG. 2.
[0077] At operation 408 if the destination IP-tuple has
been seen before in the hash table, then traverse all QUIC
tuple maps associated with the destination IP-tuple and look
for a known CID.

[0078] Once all the QUIC tuple maps having the destina-
tion IP-tuple have been traversed and no known CID has
been found, at operation 410 one of the following conditions
has occurred, either both CIDs (destination CID and source
CID) have changed, and/or server preferred migration has
occurred, or the QUIC packet is an invalid packet.

[0079] At operation 412, a determination is made whether
the destination IP-tuple and source IP-tuple are present.

Jul. 11, 2024

[0080] At operation 414, if both the destination IP-tuple
and source IP-tuple are present, a determination is made
whether they have a common QUIC connection or not.
[0081] At operation 416, if the destination [P-tuple and the
source IP-tuple are present and have a common QUIC
connection, both CIDs have changed. Select the destination
QUIC tuple map and follow the steps for a probable CID
case, the logic details of which are shown on FIG. 4C. If the
probable CID has been seen a predetermined number of
time, it is promoted to a known CID and added to the known
CID list in the QUIC connection table database.

[0082] At operation 418, the QUIC connection has been
found, process the QUIC packet.

[0083] If at operation 408, not all the QUIC tuple maps
have been traversed, continue to walk all the QUIC tuple
maps with the destination [P-tuple until a known CID is
found.

[0084] At operation 420 a determination is made whether
the CID is present in a known CID list in the QUIC
connection table database.

[0085] At operation 422, a determination is made whether
the QUIC connection state is a peer2 packet and QUIC
connection handshake is complete.

[0086] At operation 424, if the QUIC connection state is
not a peer2 packet and the handshake is not done, the QUIC
packet may be invalid and will be dropped.

[0087] If at operation 422, the connection state is a peer2
packet and the QUIC connection handshake is complete at
operation 426 the packet is valid.

[0088] At operation 428 the QUIC packet is processed.
[0089] If at operation 404, the destination [P address and
destination port number are not present in the hash table, at
operation 430 a determination is made whether a policy
allows the S-tuple.

[0090] At operation 432, if the 5-tuple is not allowed by
the policy the QUIC packet will be dropped.

[0091] If the at operation 430 the policy does allow the
S-tuple, at operation 434 a determination whether the source
IP address and source port number are present in the hash
table.

[0092] Ifthe source IP-tuple is not present in the hash table
at operation 436 either double migration has occurred, or the
QUIC packet is invalid.

[0093] If at operation 434 the source [P-tuple is present in
the hash table, at operation 438 a determination will be made
whether the source IP-tuple corresponds to more than one
QUIC tuple map.

[0094] At operation 440 if the source [P-tuple has been
seen before in the hash table, then traverse all QUIC tuple
maps corresponding to the source IP-tuple and look for a
known CID.

[0095] Once all the QUIC tuple maps having the source
IP-tuple have been traversed and no known CID has been
found, the process continues at operation 410 as described
above.

[0096] At operation 442, if a known CID is found in the
hash table while traversing the QUIC connection and cor-
responding destination QUIC tuple maps in operation 440,
a destination IP-tuple is created that points to the destination
CID QUIC tuple map at operation 444. The logical process
then continues at operation 442 as described above.

[0097] If at operation 414, the destination IP-tuple and the
source [P-tuple do not have a common QUIC connection, at
operation 446 a new QUIC tuple map is created for which-

US 2024/0236210 A9

ever is present, source [P-tuple or destination IP-tuple, and
link it to the newly created QUIC tuple map.

[0098] At operation 448, the CID is added to a list of
migration CIDs.

[0099] At operation 450, server preferred migration has
occurred, and both the destination CID and source CID have
changed, so a new QUIC connection is created and linked to
both the peer’s QUIC tuple maps. Then the QUIC packet is
processed at operation 418.

[0100] If at operation 412, the destination IP-tuple or
source IP-tuple are not present in the hash table, at operation
452 a new source or destination IP-tuple is created and
linked to the newly created QUIC tuple maps. The process
then continue at operation 446 as described above.

[0101] Ifatoperation 406 the IP-tuple does not correspond
to more than one QUIC tuple map, at operation 454 a
determination is made whether the CID is 0-length or not.
[0102] If the CID is O-length, the process proceeds to
operation 422 as described above.

[0103] If the CID is not O-length, at operation 456 a
determination is made whether the CID is found in a list of
known CIDs in the hash table in the QUIC connection table
database.

[0104] At operation 458, if the CID is found in the list of
known CIDs, an IP-tuple is created (if not present) and
linked to the existing destination QUIC tuple map. The
logical process then continues at operation 422 as described
above.

[0105] If at operation 456 the CID is not found in the list
of known CIDs, at operation 460 both CIDs have changed
and/or server preferred migration has occurred, or the QUIC
packet is an invalid packet. The process now continues for
a probable CID case.

[0106] At operation 462, the migration CID list is tra-
versed.
[0107] At operation 464, if the CID is found in the

probable CID list with a satistactory CID length (it cannot
be O-length) the CID could be another CID.

[0108] At operation 468, 20 bytes are grabbed for approxi-
mation of a CID and added to the migration CID list of the
QUIC tuple map.

[0109] At operation 470, if a destination IP-tuple is not
present, it is created and linked to the QUIC tuple map. The
packet is then processed at operation 428.

[0110] If at operation 462, a probable CID is not found, at
operation 470, start form a first byte and matching as many
bytes as necessary until the CID byte length is reached.
[0111] At operation 472, a determination is made whether
at least one byte is matched, if not, the process proceeds at
operation 462.

[0112] If a at least one byte is matched at operation 472,
at operation 474 a determination whether the bytes matched
is the same as the CID length is made.

[0113] At operation 476 if the bytes matched is not the
CID length, the process proceed to operation 462 as
described above.

[0114] If at operation 474 the bytes matched equals the
CID length, at operation 478, it may be a probable CID.
[0115] At operation 480, the number of packets that used
the IP address, port number, and CID are counted and if the
number is greater than a predetermined threshold number,
the CID is determined to be a probable CID and the packet
is processed at operation 428.

Jul. 11, 2024

[0116] FIGS. 5A and 5B collectively illustrate a flow
diagram 500 of a method for determining whether a first
QUIC session is the same as a second QUIC session.
Aspects of the operations may be performed at least partly
by the devices in the system architecture as described in
FIG. 1 and with respect to the QUIC-tuple mapping
described in FIG. 2. The logical operations described herein
with respect to FIGS. 5A and 5B may be implemented (1) as
a sequence of computer-implemented acts or program mod-
ules running on a computing system and/or (2) as intercon-
nected machine logic circuits or circuit modules within the
computing system.

[0117] The implementation of the various components
described herein is a matter of choice dependent on the
performance and other requirements of the computing sys-
tem. Accordingly, the logical operations described herein are
referred to variously as operations, structural devices, acts,
or modules. These operations, structural devices, acts, and
modules can be implemented in software, in firmware, in
special purpose digital logic, and any combination thereof.
It should also be appreciated that more or fewer operations
might be performed than shown in the FIGS. 5A and 5B and
described herein. These operations can also be performed in
parallel, or in a different order than those described herein.
Some or all of these operations can also be performed by
components other than those specifically identified.
Although the techniques described in this disclosure is with
reference to specific components, in other examples, the
techniques may be implemented by less components, more
components, different components, or any configuration of
components.

[0118] At operation 502, a first QUIC connection between
a first device and a second device is identified by a network
device. For example, referring to FIG. 1, a QUIC connection
between a client device 102 and an application server 104 is
established and identified by a middlebox 110. Additionally,
the QUIC connection may be QUIC connection 202 as
illustrated in FIG. 2.

[0119] At operation 504, a first [P-tuple including a first IP
address and a first port number associated with the first
device is determined from the first QUIC connection. Refer-
ring to FIG. 2, IP-tuple 3 206(C) with IP address 3 208(C)
and port number 3 210(C) may be the first IP-tuple associ-
ated with the first device. The first device being a server with
server QUIC-tuple map 204(B). With reference to FIG. 1, an
application server 104 may be the first device that is asso-
ciated with the first IP-tuple.

[0120] At operation 506, a second IP-tuple including a
second IP address and a second port number associated with
the second device is determined from the first QUIC con-
nection. Referring again to FIG. 2, IP-tuple 1 206(A) having
IP address 1 208(A) and port number 1 210(A), may be
associated with the second device in the QUIC connection
202. With reference to FIG. 1, a client device 102 may be the
second device that is associated with the second IP-tuple.
[0121] At operation 508, a first CID associated with the
first QUIC connection is determined from the first QUIC
connection. For example, with reference to FIG. 2, CID 2
212(B) may be associated with the QUIC connection 202.
[0122] Operations 504, 506, and 508 may be implemented
by the middlebox 110 when inspecting an initial QUIC
packet 108 as depicted in FIG. 1. Because the QUIC packet
108 is on top of UDP/IP, the middlebox 110 can determine
a source and destination IP address and a source and

US 2024/0236210 A9

destination port number. Additionally, the QUIC packet 108
header can be inspected to determine the CID associated
with the initial QUIC connection. Referring to FIG. 2, the
initial QUIC connection may be QUIC connection 202. The
middlebox 110 may observe QUIC packet 108 (that is on top
of UDP/IP) and determined that IP-tuple 3 206(C), IP-tuple
1 206(A), and CID 2 212(B) are all associated with QUIC
connection 202.

[0123] At operation 510 a first association between the
first IP-tuple, the second IP-tuple, and the first CID associ-
ated with the first QUC connection is stored. Continuing
with the example above, an association between IP-tuple 3
206(C), IP-tuple 1 208(A), and CID 2 212(B) is stored in the
QUIC connection table DB 112 of FIG. 1 as being associated
with the first QUIC connection.

[0124] At operation 512, a second QUIC connection
between the first device and another device is identified by
the network device. For example, the middlebox 110 of FIG.
1 may observe another QUIC packet 108 that appears to
belong to a QUIC connection between the first device, the
application server 104 having IP-tuple 3 206(C), and another
device, because either the CID and/or the IP-tuple are
different than those observed when identifying the first
QUIC connection.

[0125] At operation 514, the first IP-tuple, a second CID,
and a third IP-tuple including a third IP address and a third
port number are identified from the second QUIC connec-
tion. For example, middlebox 110 may inspect a QUIC
packet 108 and determine that first IP-tuple, IP-tuple 3
206(C), a third IP-tuple, for example IP-tuple 4 206(D)
having IP address 4 208(D) and port number 1 210(A), and
CID 2 212(B) are associated with the second QUIC con-
nection.

[0126] At operation 516, a determination is made whether
at least two of the following connection criteria are met. For
example, in FIG. 1 the middlebox 110 can identify from a
QUIC packet 108 whether two or the following connection
criteria are met.

[0127] A first connection criteria 516A is the second IP
address corresponds to the third IP address. The second IP
address, IP address 1 208(A) in the continuing example,
does not correspond to the third IP address, IP address 4
208(D).

[0128] A second connection criteria 516B is the second
port number corresponds to the third port number. The
second port number, port no. 1 210(A) of IP-tuple 1 206(A)
does correspond to the third port number, port no. 1 210(A)
of IP-tuple 4 206(D).

[0129] A third connection criteria 516C is the second CID
corresponds to the first CID. The second CID, CID 212(B),
does correspond to the first CID, CID 212(B).

[0130] At operation 518, determine that the second QUIC
connection corresponds to the first QUIC connection in
response to determining that at least two of the connection
criteria are met, and update the first association based at least
in part on the third IP-tuple or the second CID. Continuing
with the above example, two of the three connection criteria
are met, connection criteria 516B and connection criteria
516C. Thus, the QUIC connection 202 of FIG. 2 is updated
in the QUIC connection table database 112 of FIG. 1, to
include not only IP-tuple 3 206(C), IP-tuple 1 206(A), and
CID 212(B), but also IP-tuple 4 206(D) as a known IP-tuple
associated with QUIC connection 202.

Jul. 11, 2024

[0131] FIG. 6 is a computer architecture diagram showing
an illustrative computer hardware architecture for imple-
menting a computing device that can be utilized to imple-
ment aspects of the various technologies presented herein.
The computer architecture shown in FIG. 6 illustrates a
conventional server computer, controller, computing
resource, switch, router, workstation, desktop computer,
laptop, tablet, network appliance, e-reader, smartphone, or
other computing device, and can be utilized to execute any
of the software components presented herein.

[0132] The computer 600 includes a baseboard 602, or
“motherboard,” which is a printed circuit board to which a
multitude of components or devices can be connected by
way of a system bus or other electrical communication
paths. In one illustrative configuration, one or more central
processing units (“CPUs”) 604 operate in conjunction with
a chipset 606. The CPUs 604 can be standard programmable
processors that perform arithmetic and logical operations
necessary for the operation of the computer 600.

[0133] The CPUs 604 perform operations by transitioning
from one discrete, physical state to the next through the
manipulation of switching elements that differentiate
between and change these states. Switching elements gen-
erally include electronic circuits that maintain one of two
binary states, such as flip-flops, and electronic circuits that
provide an output state based on the logical combination of
the states of one or more other switching elements, such as
logic gates. These basic switching elements can be com-
bined to create more complex logic circuits, including
registers, adders-subtractors, arithmetic logic units, floating-
point units, and the like.

[0134] The chipset 606 provides an interface between the
CPUs 604 and the remainder of the components and devices
on the baseboard 602. The chipset 606 can provide an
interface to a RAM 608, used as the main memory in the
computer 600. The chipset 606 can further provide an
interface to a computer-readable storage medium such as a
read-only memory (“ROM”) 610 or non-volatile RAM
(“NVRAM?”) for storing basic routines that help to startup
the computer 600 and to transfer information between the
various components and devices. The ROM 610 or NVRAM
can also store other software components necessary for the
operation of the computer 600 in accordance with the
configurations described herein.

[0135] The computer 600 can operate in a networked
environment using logical connections to remote computing
devices and computer systems through a network, such as
the networks 106. The chipset 606 can include functionality
for providing network connectivity through a NIC 612, such
as a gigabit Ethernet adapter. The NIC 612 is capable of
connecting the computer 600 to other computing devices
over the network 624 and networks 106. It should be
appreciated that multiple NICs 612 can be present in the
computer 600, connecting the computer to other types of
networks and remote computer systems. In some examples,
the NIC 612 may be configured to perform at least some of
the techniques described herein.

[0136] The computer 600 can be connected to a storage
device 618 that provides non-volatile storage for the com-
puter. The storage device 618 can store an operating system
620, programs 622, and data, which have been described in
greater detail herein. The storage device 618 can be con-
nected to the computer 600 through a storage controller 614
connected to the chipset 606. The storage device 618 can

US 2024/0236210 A9

consist of one or more physical storage units. The storage
controller 614 can interface with the physical storage units
through a serial attached SCSI (“SAS”) interface, a serial
advanced technology attachment (“SATA”) interface, a fiber
channel (“FC”) interface, or other type of interface for
physically connecting and transferring data between com-
puters and physical storage units.

[0137] The computer 600 can store data on the storage
device 618 by transforming the physical state of the physical
storage units to reflect the information being stored. The
specific transformation of physical state can depend on
various factors, in different embodiments of this description.
Examples of such factors can include, but are not limited to,
the technology used to implement the physical storage units,
whether the storage device 618 is characterized as primary
or secondary storage, and the like.

[0138] For example, the computer 600 can store informa-
tion to the storage device 618 by issuing instructions through
the storage controller 614 to alter the magnetic characteris-
tics of a particular location within a magnetic disk drive unit,
the reflective or refractive characteristics of a particular
location in an optical storage unit, or the electrical charac-
teristics of a particular capacitor, transistor, or other discrete
component in a solid-state storage unit. Other transforma-
tions of physical media are possible without departing from
the scope and spirit of the present description, with the
foregoing examples provided only to facilitate this descrip-
tion. The computer 600 can further read information from
the storage device 618 by detecting the physical states or
characteristics of one or more particular locations within the
physical storage units.

[0139] In addition to the mass storage device 618
described above, the computer 600 can have access to other
computer-readable storage media to store and retrieve infor-
mation, such as program modules, data structures, or other
data. It should be appreciated by those skilled in the art that
computer-readable storage media is any available media that
provides for the non-transitory storage of data and that can
be accessed by the computer 600. In some examples, QUIC
connection table database 112 and or any components
included therein, may be supported by one or more devices
similar to computer 600. Stated otherwise, some or all of the
operations performed by the QUIC connection table data-
base 112, and or any components included therein, may be
performed by one or more computer devices 600 operating
in a scalable arrangement.

[0140] By way of example, and not limitation, computer-
readable storage media can include volatile and non-volatile,
removable and non-removable media implemented in any
method or technology. Computer-readable storage media
includes, but is not limited to, RAM, ROM, erasable pro-
grammable ROM (“EPROM”), electrically-erasable pro-
grammable ROM (“EEPROM”), flash memory or other
solid-state memory technology, compact disc ROM (“CD-
ROM”), digital versatile disk (“DVD”), high definition
DVD (“HD-DVD”), BLU-RAY, or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium that
can be used to store the desired information in a non-
transitory fashion.

[0141] As mentioned briefly above, the storage device 618
can store an operating system 620 utilized to control the
operation of the computer 600. According to one embodi-
ment, the operating system comprises the LINUX operating

Jul. 11, 2024

system. According to another embodiment, the operating
system comprises the WINDOWS® SERVER operating
system from MICROSOFT Corporation of Redmond, Wash-
ington. According to further embodiments, the operating
system can comprise the UNIX operating system or one of
its variants. It should be appreciated that other operating
systems can also be utilized. The storage device 618 can
store other system or application programs and data utilized
by the computer 600.

[0142] Inone embodiment, the storage device 618 or other
computer-readable storage media is encoded with computer-
executable instructions which, when loaded into the com-
puter 600, transform the computer from a general-purpose
computing system into a special-purpose computer capable
of implementing the embodiments described herein. These
computer-executable instructions transform the computer
600 by specifying how the CPUs 604 transition between
states, as described above. According to one embodiment,
the computer 600 has access to computer-readable storage
media storing computer-executable instructions which,
when executed by the computer 600, perform the various
processes described above with regard to FIGS. 1-6B. The
computer 600 can also include computer-readable storage
media having instructions stored thereupon for performing
any of the other computer-implemented operations
described herein.

[0143] The computer 600 can also include one or more
input/output controllers 616 for receiving and processing
input from a number of input devices, such as a keyboard,
a mouse, a touchpad, a touch screen, an electronic stylus, or
other type of input device. Similarly, an input/output con-
troller 616 can provide output to a display, such as a
computer monitor, a flat-panel display, a digital projector, a
printer, or other type of output device. It will be appreciated
that the computer 600 might not include all of the compo-
nents shown in FIG. 6, can include other components that
are not explicitly shown in FIG. 6, or might utilize an
architecture completely different than that shown in FIG. 6.
[0144] The computer 600 may include one or more hard-
ware processors 604 (processors) configured to execute one
or more stored instructions. The processor(s) 604 may
comprise one or more cores. Further, the computer 600 may
include one or more network interfaces configured to pro-
vide communications between the computer 600 and other
devices. The network interfaces may include devices con-
figured to couple to personal area networks (PANs), wired
and wireless local area networks (LANs), wired and wireless
wide area networks (WANs), and so forth. For example, the
network interfaces may include devices compatible with
Ethernet, Wi-Fi™, and so forth.

[0145] The programs 622 may comprise any type of
programs or processes to perform the techniques described
in this disclosure for identifying, tracking, and managing
QUIC connections. The programs 622 may enable the
middlebox 110 (or various other middleboxes) and the
QUIC connection table database 112 to perform various
applications.

[0146] While the invention is described with respect to the
specific examples, it is to be understood that the scope of the
invention is not limited to these specific examples. Since
other modifications and changes varied to fit particular
operating requirements and environments will be apparent to
those skilled in the art, the invention is not considered
limited to the example chosen for purposes of disclosure,

US 2024/0236210 A9

and covers all changes and modifications which do not
constitute departures from the true spirit and scope of this
invention.
[0147] Although the application describes embodiments
having specific structural features and/or methodological
acts, it is to be understood that the claims are not necessarily
limited to the specific features or acts described. Rather, the
specific features and acts are merely illustrative some
embodiments that fall within the scope of the claims of the
application.
What is claimed is:
1. A method comprising:
identifying, by a network device, a first QUIC connection
between a first device and a second device;
determining, from the first QUIC connection, a first
IP-tuple including a first IP address and a first port
number associated with the first device;
determining, from the first QUIC connection, a second
IP-tuple including a second IP address and a second
port number associated with the second device;
determining, from the first QUIC connection, a first
connection identifier (CID) associated with the first
QUIC connection;
storing a first association between the first IP-tuple, the
second IP-tuple, and the first CID associated with the
first QUIC connection;
identifying, by the network device, a second QUIC con-
nection between the first device and another device;
identifying, from the second QUIC connection, the first
IP-tuple, a second CID, and a third IP-tuple including
a third 1P address and a third port number;
determining whether at least two following connection
criteria are met:
the second IP address corresponds to the third IP
address;
the second port number corresponds to the third port
number; or
the second CID corresponds to the first CID; and
in response to determining that at least two connection
criteria are met, determining that the second QUIC
connection corresponds to the first QUIC connection,
and updating the first association based at least in part
on the third IP-tuple or the second CID.
2. The method of claim 1, further comprising:
in response to determining that at least two connection
criteria are not met, determining that the second QUIC
connection does not correspond to the first QUIC
connection; and
storing a second association between the first [P-tuple, the
third IP-tuple, and the second CID associated with the
second QUIC connection.
3. The method of claim 1, further comprising:
determining that the second IP address corresponds to the
third IP address;
determining that the second port number corresponds to
the third port number;
determining that the second CID does not correspond to
the first CID; and
storing the second CID in a list of probable CIDs.
4. The method of claim 1, further comprising:
determining that the second IP-tuple is associated with a
server name index (SNI) and wherein storing the first
association includes storing an association with the
SNI.

Jul. 11, 2024

5. The method of claim 1, wherein the network device is
a middlebox and is one of a firewall, a Network Address
Translator (NAT), a content delivery network (CDN), a load
balancer, a WAN optimizer, a cloud based gateway, a cloud
based firewall, or a secure router.

6. The method of claim 1, further comprising:

receiving, by the network device, a QUIC packet;

determining, by the network device, a source IP-tuple, a

destination IP-tuple, and a CID from the QUIC packet;
determining, by the network device, that the source IP-
tuple, the destination IP-tuple, and the CID from the
QUIC packet correspond to the first association asso-
ciated with the first QUIC connection; and
transmitting the QUIC packet to a destination device
associated with the destination IP-tuple.

7. The method of claim 1, further comprising:

receiving, by the network device, a QUIC packet;

determining, by the network device, a source IP-tuple, a

destination IP-tuple, and a CID from the QUIC packet;
determining, by the network device, that the source IP-

tuple, the destination IP-tuple, and the CID from the

QUIC packet do not correspond to the first association

associated with the first QUIC connection; and
dropping the QUIC packet.

8. A system comprising:

one or more processors; and

one or more non-transitory computer-readable media stor-

ing computer-executable instructions that, when

executed by the one or more processors, cause the one

or more processors to perform operations comprising:

identifying, by a network device, a first QUIC connec-
tion between a first device and a second device;

determining, from the first QUIC connection, a first
IP-tuple including a first IP address and a first port
number associated with the first device;

determining, from the first QUIC connection, a second
IP-tuple including a second IP address and a second
port number associated with the second device;

determining, from the first QUIC connection, a first
connection identifier (CID) associated with the first
QUIC connection;

storing a first association between the first I[P-tuple, the
second IP-tuple, and the first CID associated with the
first QUIC connection;

identifying, by the network device, a second QUIC
connection between the first device and another
device;

identifying, from the second QUIC connection, the first
IP-tuple, a second CID, and a third IP-tuple includ-
ing a third IP address and a third port number;

determining whether at least two following connection
criteria are met:
the second IP address corresponds to the third IP

address;
the second port number corresponds to the third port
number; or

the second CID corresponds to the first CID; and

in response to determining that at least two of the
connection criteria are met, determining that the
second QUIC connection corresponds to the first
QUIC connection, and updating the first association
based at least in part on the third IP-tuple or the
second CID.

US 2024/0236210 A9

9. The system of claim 8, further comprising:

in response to determining that at least two of the con-
nection criteria are not met, determining that the second
QUIC connection does not correspond to the first QUIC
connection; and

storing a second association between the first [P-tuple, the

third IP-tuple, and the second CID associated with the
second QUIC connection.

10. The system of claim 8, further comprising:

determining that the second IP address corresponds to the

third IP address;

determining that the second port number corresponds to

the third port number;

determining that the second CID does not correspond to

the first CID; and

storing the second CID in a list of probable CIDs.

11. The system of claim 8, further comprising:

determining that the second IP-tuple is associated with a

server name index (SNI) and wherein storing the first
association includes storing an association with the
SNI.
12. The system of claim 11, further comprising:
determining that the third IP-tuple is associated with the
SNT;

determining that the third IP-tuple corresponds to the

second IP-tuple;

determining that the second QUIC connection corre-

sponds to the first QUIC connection; and

updating the first association with the second CID.

13. The system of claim 8, wherein the network device a
middlebox and is one of a firewall, a Network Address
Translator (NAT), a content delivery network (CDN), a load
balancer, or a WAN optimizer.

14. The system of claim 8, further comprising:

receiving, by the network device, a QUIC packet;

determining, by the network device, a source IP-tuple, a

destination IP-tuple, and a CID from the QUIC packet;
determining, by the network device, that the source IP-
tuple, the destination IP-tuple, and the CID from the
QUIC packet correspond to the first association asso-
ciated with the first QUIC connection; and
transmitting the QUIC packet to a destination device
associated with the destination IP-tuple.

15. The system of claim 8, further comprising:

receiving, by the network device, a QUIC packet;

determining, by the network device, a source IP-tuple, a

destination IP-tuple, and a CID from the QUIC packet;
determining, by the network device, that the source IP-

tuple, the destination IP-tuple, and the CID from the

QUIC packet do not correspond to the first association

associated with the first QUIC connection; and
dropping the QUIC packet.

16. A method comprising:

receiving, by a network device, a QUIC packet;

determining, from the QUIC packet, a first connection

identifier (CID), a first source device having a first
source [P-tuple including a first source IP address and
a first source port number, and a first destination device

10

Jul. 11, 2024

having a first destination IP-tuple including a first
destination IP address and a first destination port num-
ber;

receiving, by the network device and from a QUIC
connection table database, an identification of a QUIC
connection associated with a second CID between a
second source device having a second source IP-tuple
including a second source IP address and a second
source port number and a second destination device
having a second destination [P-tuple including a second
destination IP address and a second destination port
number;

determining, by the network device, whether at least two
following connection criteria are met:

the first source IP-tuple corresponds to the second source
IP-tuple;

the first destination IP-tuple corresponds to the second
destination IP-tuple; or

the first CID corresponds to the second CID;

in response to determining that at least two of the con-
nection criteria are met, determining that the QUIC
packet belongs to the QUIC connection; and

transmitting, by the network device, the QUIC packet to
the first destination device.

17. The method of claim 16 further comprising:

receiving, by the network device, a second QUIC packet;

determining from the second QUIC packet the second
source IP-tuple and the second destination IP-tuple;

determining from the second QUIC packet a 0-length
CID;

determining that a QUIC handshake has been completed
for the QUIC connection; and

processing the QUIC packet.

18. The method of claim 16, further comprising:

in response to determining that at least two of the con-
nection criteria are not met, determining that the QUIC
packet does not belong to the QUIC connection; and

dropping, by the network device, the QUIC packet.

19. The method of claim 16, further comprising:

determining, by the network device, that the first source
IP-tuple, the first destination IP-tuple, and the first CID
are unknown;

transmitting, by the network device and to the QUIC
connection table database, an indication of a new QUIC
connection including the first source IP-tuple, the first
destination IP-tuple, and the first CID; and

storing, by the QUIC connection table database, the
indication of the new QUIC connection.

20. The method of claim 16, further comprising:

determining that the first CID is in a list of probable CIDs;

determining the first CID has been observed a predeter-
mined threshold number of times;

storing, by the QUIC connection table database, the first
CID to a list of known CIDs; and

transmitting, by the network device, the QUIC packet to
the first destination device.

#* #* #* #* #*

