
US010884867B2

(12) United States Patent
Gupta et al .

(10) Patent No .: US 10,884,867 B2
(45) Date of Patent : Jan. 5 , 2021

(56) References Cited (54) SYSTEMS AND METHODS PROVIDING
INCREMENTAL BACKUP FOR PERSISTENT
SERVICES U.S. PATENT DOCUMENTS

(71) Applicant : SAP SE , Walldorf (DE) 9,021,222 B1 * 4/2015 Sadhu G06F 11/1446
711/162

(72) Inventors : Gaurav Gupta , Karnataka (IN) ;
Shashank Mohan Jain , Karnataka (IN) * cited by examiner

(73) Assignee : SAP SE , Walldorf (DE)
(*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U.S.C. 154 (b) by 247 days .

Primary Examiner Aracelis Ruiz
(74) Attorney , Agent , or Firm Buckley , Maschoff &
Talwalkar LLC

(21) Appl . No .: 16 / 200,940 (57) ABSTRACT

(22) Filed : Nov. 27 , 2018

(65) Prior Publication Data
US 2020/0167236 A1 May 28 , 2020

(51)

Some embodiments may be associated with a cloud com
puting environment . A device layer may execute a kernel
and determine that a write to disk storage is requested by an
application executing in the cloud computing environment .
A kernel function at the device layer may mark buffers of a
page in a page cache that correspond to the requested write
as dirty . An event - driven mechanism may send an event to
an entry handler in user space , wherein the event has a block
number associated with the dirty buffer as a payload . the
block numbers received via events may be accumulated in
the user space until it is determined that a pre - determined
condition associated with the accumulated block numbers is
satisfied . At that point , blocks associated with the accumu
lated block numbers may be saved to a persistent data store
as an incremental backup .

Int . Cl .
G06F 11/14 (2006.01)
G06F 3/06 (2006.01)
U.S. CI .
CPC G06F 11/1451 (2013.01) ; G06F 37064

(2013.01) ; G06F 3/065 (2013.01) ; G06F
3/0619 (2013.01) ; G06F 3/0674 (2013.01) ;

G06F 2201/84 (2013.01)
Field of Classification Search
CPC GO6F 3/0619 ; GOOF 3/064 ; G06F 3/065 ;

GO6F 3/0674 ; G06F 11/1451 ; G06F
11/1461 ; G06F 11/1464

See application file for complete search history .

(52)

(58)

20 Claims , 9 Drawing Sheets

S310

Determine That Write To Disk Storage Is Requested By
Application Executing In A Cloud Computing Environment

S320

Mark , By Kernel Function At Device Layer , Buffers Of Page In
Page Cache That Correspond To The Requested Write As Dirty

S330

Send , By An Event - Driven Mechanism , An Event To An Entry Handler In
User Space , Wherein The Event Has A Block Number Associated With The

Dirty Buffer As A Payload
S340

Accumulate , In The User Space , The Block Numbers Received
Via Events

S350

Determine That Pre - Determined Condition Associated With The
Accumulated Block Numbers Is Satisfied

S360

Save Blocks Associated With The Accumulated Block Numbers
To Persistent Data Store As Incremental Backup

U.S. Patent

100

110

150

VIRTUAL MACHINE

Jan. 5 , 2021

FULL BACKUP

152

120

CLOUD COMPUTING PROVIDER API FOR SNAPSHOTS

Sheet 1 of 9

DISK

PRIOR ART

FIG . 1

US 10,884,867 B2

U.S. Patent

210

200

VIRTUAL MACHINE KERNEL

250

252

B2

B4

EVENT DRIVEN MECHANISM

ENTRY HANDLER

B8

READ CHANGED BLOCK NUMBERS AND UPLOAD THEIR DATA TO PERSISTENT STORAGE

Jan. 5 , 2021

CHANGED BLOCK NUMBERS

Sheet 2 of 9

220

290

DPERSISTENT STORAGE

B1

B2

B3

B4

B5

B6

B7

B8

FIG . 2

DISK

US 10,884,867 B2

U.S. Patent Jan. 5 , 2021 Sheet 3 of 9 US 10,884,867 B2

S310

Determine That Write To Disk Storage Is Requested By
Application Executing In A Cloud Computing Environment

S320

Mark , By Kernel Function At Device Layer , Buffers Of Page In
Page Cache That Correspond To The Requested Write As Dirty

S330

Send , By An Event - Driven Mechanism , An Event To An Entry Handler In
User Space , Wherein The Event Has A Block Number Associated With The

Dirty Buffer As A Payload
S340

Accumulate , In The User Space , The Block Numbers Received
Via Events

S350

Determine That Pre - Determined Condition Associated With The
Accumulated Block Numbers is Satisfied

S360

Save Blocks Associated With The Accumulated Block Numbers
To Persistent Data Store As Incremental Backup

FIG . 3

WRITE SYSCALL

410

U.S. Patent

400

FUNCTION 1

450

FUNCTION 2

A

452

B2

B4

mark_buffer_dirty

ENTRY HANDLER

Jan. 5 , 2021

B

READ CHANGED BLOCK NUMBERS AND UPLOAD THEIR DATA TO SIMPLE STORAGE SERVICE

B8

FUNCTION 4

V

CHANGED BLOCK NUMBERS

Sheet 4 of 9

420

490

C

SIMPLE STORAGE SERVICE

B1

B2

B3

B4

B5

B6

B7

B8

FIG . 4

US 10,884,867 B2

DISK

U.S. Patent Jan. 5 , 2021 Sheet 5 of 9 US 10,884,867 B2

S510

Determine That Restore Process Is To Be
Initiated

S520

Download Base Backup From Persistent Data
Store To Disk Storage

S530

Download Incremental Backup Blocks From
Persistent Data Store To Disk Storage In

Chronological Order

FIG . 5

U.S. Patent

600 BACKUP IDENTIFIER

VIRTUAL MACHINE IDENTIFIER

TYPE

DATE (TIME)

Jan. 5 , 2021

602

604

606

608

B_101

VM_123

BASIC

13 JULY 2002 (04:30:00)

B_101

VM_123

INCREMENTAL B1 , B7

14 JULY 2022 (11:15:00)

Sheet 6 of 9

B 101

VM_123

INCREMENTAL B3

15 JULY 2022 (13:00:00)

B_101

VM_123

INCREMENTAL B1 , B3

15 JULY 2022 (14:00:00)

FIG . 6

US 10,884,867 B2

700

U.S. Patent

PERSISTENT STORAGE
790

BASE BACKUP

B

INCREMENTAL BACKUP 1 INCREMENTAL BACKUP 2

A

?

Jan. 5 , 2021

760

DOWNLOAD INCREMENTAL BACKUPS FROM PERSISTENT STORAGE AND WRITE TO DISK

Sheet 7 of 9

V

V

720

DISK

FIG . 7

US 10,884,867 B2

U.S. Patent Jan. 5 , 2021 Sheet 8 of 9 US 10,884,867 B2

S810

Start

820

yes User
Trigger
Received

?

no

830

yes Time Since
Last Incremental Backup
Above Threshold ?

no

840

no Blocks Since
Last Incremental Backup
Above Threshold ?

yes
850

Initiate Incremental Backup Of
Changed Blocks To Persistent

Storage

FIG . 8

900

INCREMENTAL BACKUP

X

U.S. Patent

?

? / !

D

INCREMENTAL BACKUP USING EVENT - DRIVEN MECHANISM IN VIRTUAL MACHINE KERNEL

WRITE SYSCALL

INCREMENTAL BACKUP FOR CLOUD COMPUTING PROVIDER

Jan. 5 , 2021

FUNCTION 1 FUNCTION 2

B2

B4

mark_buffer_dirty
ENTRY HANDLER

READ CHANGED OCK NUMBERS AND UPLOAD THEIR DATA TO SIMPLE

B8

Sheet 9 of 9

FUNCTION 4

920

V

STORAGE SERVICE

CHANGED BLOCK NUMBERS

930

910

BACKUP

B1

B2

B3

B4

D

SIMPLE STORAGE SERVICE

B5

B6

B7

B8

940

RESTORE

US 10,884,867 B2

DISK

FIG . 9

5

US 10,884,867 B2
1 2

SYSTEMS AND METHODS PROVIDING executing in a cloud computing environment ; means for
INCREMENTAL BACKUP FOR PERSISTENT marking , by a kernel function at the device layer , buffers of

SERVICES a page in a page cache that correspond to the requested write
as dirty ; means for sending , by an event - driven mechanism ,

BACKGROUND an event to an entry handler in user space , wherein the event
has a block number associated with the dirty buffer as a

In many cases , an enterprise may want to periodically payload ; means for accumulating , in the user space , the
backup data . For example , information on a cloud comput- block numbers received via events ; means for determining
ing environment disk (e.g. , associated with sales data , that a pre - determined condition associated with the accu
employees , purchase orders , etc.) might be backed up sev- 10 mulated block numbers is satisfied ; and means for saving
eral times a day so that it could be restored in the event of blocks associated with the accumulated block numbers to a
a failure . FIG . 1 is a high - level block diagram of a cloud persistent data store as an incremental backup .
computing system 100 where a virtual machine 110 stores Some technical advantages of some embodiments dis
information to disk 120 (e.g. , associated with a database) . In closed herein are improved systems and methods to provide
some cases , a full backup 150 of the disk 120 could be taken 15 for incremental backups in a cloud computing environment
each time to capture the information . Such an approach , in a fast , automatic , and accurate manner .
however , is not scalable because as the size of the disk 120
grows (along with the number of full backups that are BRIEF DESCRIPTION OF THE DRAWINGS
performed) , the amount of data that needs to be saved and
the time / performance problems associated with the process 20 FIG . 1 is a high - level block diagram of a cloud computing
can become impractical . system .

In other cases , the cloud computing provider might imple- FIG . 2 is a high - level block diagram of a system in
ment Application Programming Interface (“ API ”) abilities accordance with some embodiments .
152 to create incremental “ snapshots ” of the disk 120 (e.g. , FIG . 3 is a method according to some embodiments .
incremental backups of stateful services and applications) . 25 FIG . 4 is a more detailed block diagram of a system in
Such an approach , however , can be costly if the provider accordance with some embodiments .
charges for the feature . For example , if an enterprise needs FIG . 5 is a restore process method according to some
to provide a payment to a cloud computing provider each embodiments .
and every time a “ snapshot ” is taken , the total expense FIG . 6 is portion of a tabular backup data store in
associated with backups can become impractical . Moreover , 30 accordance with some embodiments .
some providers might limit how often the feature 152 can be FIG . 7 is a data flow associated with a restore process in
used and / or not offer the feature 152 at all . In addition , according with some embodiments .
moving from one provider to another can be a time - con- FIG . 8 is a method of determining when a restore process
suming and error prone process as different commands and should be initiated according to some embodiments .
procedures to support the feature 152 may need to be 35 FIG.9 is a human machine interface display according to
implemented . That is , because backups are not performed at some embodiments .
the virtual machine layer , they may be very dependent on the
particular Infrastructure - as - a - Service (“ IaaS) provider . DETAILED DESCRIPTION

In another approach , an incremental backup process could
be implemented via a kernel module , but this technique can 40 In the following detailed description , numerous specific
raise security concerns . For example , the kernel module has details are set forth in order to provide a thorough under
complete access to the system and there is a risk that the standing of embodiments . However , it will be understood by
process could harm system performance (e.g. , if there was a those of ordinary skill in the art that the embodiments may
bug in the backup instructions) . be practiced without these specific details . In other

It would therefore be desirable to provide for incremental 45 instances , well - known methods , procedures , components
backups in a cloud computing environment in a fast , auto- and circuits have not been described in detail so as not to
matic , and accurate manner . obscure the embodiments .

One or more specific embodiments of the present inven
SUMMARY tion will be described below . In an effort to provide a concise

50 description of these embodiments , all features of an actual
Methods and systems may be associated with a cloud implementation may not be described in the specification . It

computing environment . A device layer may execute a should be appreciated that in the development of any such
kernel and determine that a write to disk storage is requested actual implementation , as in any engineering or design
by an application executing in the cloud computing envi- project , numerous implementation - specific decisions must
ronment . A kernel function at the device layer may mark 55 be made to achieve the developers ' specific goals , such as
buffers of a page in a page cache that correspond to the compliance with system - related and business - related con
requested write as dirty . An event - driven mechanism may straints , which may vary from one implementation to
send an event to an entry handler in user space , wherein the another . Moreover , it should be appreciated that such a
event has a block number associated with the dirty buffer as development effort might be complex and time consuming ,
a payload . the block numbers received via events may be 60 but would nevertheless be a routine undertaking of design ,
accumulated in the user space until it is determined that a fabrication , and manufacture for those of ordinary skill
pre - determined condition associated with the accumulated having the benefit of this disclosure .
block numbers is satisfied . At that point , blocks associated FIG . 2 is a high - level block diagram of a system 200 in
with the accumulated block numbers may be saved to a accordance with some embodiments . The system 200
persistent data store as an incremental backup . 65 includes a virtual machine 210 that writes information to a
Some embodiments comprise : means for determining that disk 220 (e.g. , to blocks of information B1 through B8 as

a write to disk storage is requested by an application illustrated in FIG . 2) . An event driven mechanism may

US 10,884,867 B2
3 4

indicate to an entry handler (in user space) which blocks a Platform - as - a - Service (“ PaaS ”) data center that provides a
have been changed . These changed blocks can be accumu- platform allowing user to develop , run , and manage appli
lated 250 (as illustrated by the bold blocks B2 , B4 and B8 cations without the complexity of building and maintaining
in FIG . 2) . When desired , the system 200 can read the the infrastructure typically associated with developing and
changed block numbers 252 and upload their data to per- 5 launching applications .
sistent storage 290 as an incremental backup . The process At S320 , a kernel function at the device layer may mark
might be performed automatically or be initiated via a buffers of a page in a page cache that correspond to the
simple command from a remote operator interface device . requested write as dirty . As described with respect to FIG . 4 ,
As used herein , the term “ automatically ” may refer to , for the kernel function might be implemented as a mark_buffer_
example , actions that can be performed with little or no 10 dirty function . At S330 , an event - driven mechanism may
human intervention . send an event to an entry handler in user space , wherein the
As used herein , devices , including those associated with event has a block number associated with the dirty buffer as

the system 200 and any other device described herein , may a payload . As described with respect to FIG . 4 , the kernel
exchange information via any communication network function might be implemented as a kprobe function
which may be one or more of a Local Area Network 15 attached to the kernel function using an enhanced Berkeley
(" LAN ") , a Metropolitan Area Network (" MAN ') , a Wide Packet Filter (" eBPF ”) .
Area Network (“ WAN ”) , a proprietary network , a Public At S340 , the system may accumulate , in the user space ,
Switched Telephone Network (“ PSTN ") , a Wireless Appli- the block numbers received via events . At S350 , it may be
cation Protocol (“ WAP ") network , a Bluetooth network , a determined that a pre - determined condition associated with
wireless LAN network , and / or an Internet Protocol (" IP ") 20 the accumulated block numbers is satisfied . The pre - deter
network such as the Internet , an intranet , or an extranet . Note mined condition might be associated with , for example ,
that any devices described herein may communicate via one some or all of the following parameters : a user trigger
or more such communication networks . (manually selected by the user as described in connection

The virtual machine kernel 210 may store information with FIG.9) , an amount of time (e.g. , every hour , once - per
into and / or retrieve information from various data stores , 25 day , etc.) , a total number of blocks accumulated in the user
which may be locally stored or reside remote from the space (e.g. , after 1 Gb of data has been changed) , etc. At
virtual machine kernel 250. Although a single virtual S360 , the system may save blocks associated with the
machine kernel 250 is shown in FIG . 2 , any number of such accumulated block numbers to a persistent data store as an
devices may be included . Moreover , various devices incremental backup . The persistent data store might be
described herein might be combined according to embodi- 30 associated with , for example , the AMAZON® Web Service
ments of the present invention . For example , in some (" AWS® ”) Simple Storage Service (“ S3 ”) . Note that the
embodiments , the virtual machine kernel 210 and disk 210 saved blocks might be associated with , according to some
might comprise a single apparatus . The system 200 func- embodiments , block workloads and / or file workloads .
tions may be performed by a constellation of networked FIG . 4 is a more detailed block diagram of a system in
apparatuses , such as in a distributed processing or cloud- 35 accordance with some embodiments . The system 400
based architecture . includes a write syscall 410 that writes information to a disk
A user may access the system 200 via a remote device 420 (e.g. , to blocks of information B1 through B8 as

(e.g. , a Personal Computer (“ PC ”) , tablet , or smartphone) to illustrated in FIG . 4) . At (A) , a mark_buffer_dirty function
view information about and / or manage operational informa- may indicate to an entry handler (in user space) which
tion in accordance with any of the embodiments described 40 blocks have been changed . These changed blocks can be
herein . In some cases , an interactive graphical user interface accumulated 450 (as illustrated by the bold blocks B2 , B4
display may let an operator or administrator define and / or and B8 in FIG . 4) . When desired , the system 400 can read
adjust certain parameters (e.g. , to direct or initiate restora- the changed block numbers 452 at (B) and upload their data
tion of a backup) and / or provide or receive automatically to simple storage service 490 at (C) as an incremental
generated recommendations or results from the system 200. 45 backup .
FIG . 3 is a method that might performed by some or all According to some embodiments , a native Linux feature

of the elements of the system 200 described with respect to called eBPF may be used to take the incremental backups by
FIG . 2. The flow charts described herein do not imply a fixed recording changes at the block level of the disk 420. The
order to the steps , and embodiments of the present invention original BPF was designed to capture and filter network
may be practiced in any order that is practicable . Note that 50 packets that matched specific rules . Filters may be imple
any of the methods described herein may be performed by mented as programs to be run on a register - based virtual
hardware , software , an automated script of commands , or machine . The introduction of eBPF allows parameters to be
any combination of these approaches . For example , a com- passed to functions in eBPF virtual machine registers , just
puter - readable storage medium may store thereon instruc- like on native hardware . An eBPF program is “ attached ” to
tions that when executed by a machine result in performance 55 a designated code path in the kernel . When the code path is
according to any of the embodiments described herein . traversed , any attached eBPF programs are executed . Thus ,
At S310 , the system may determine that a write to disk eBPF provides an ability to attach user - provided functions to

storage is requested by an application executing in a cloud arbitrary kernel functions . These user - provided functions get
computing environment (e.g. , an application might be called when the flow of the kernel is passed to the function
executing on a virtual machine) . According to some embodi- 60 it is attached to . Some embodiments described herein use the
ments , the cloud computing environment is associated with Linux kernel function “ mark_buffer_dirty ” as the hook . The
IaaS data center that provides high - level Application Pro- format may comprise mark_buffer_dirty (struct
gramming Interfaces (“ APIs ”) to de - reference various low- buffer_head * bh) to mark a buffer_head as needing writeout .
level details of an underlying network infrastructure like The parameters associated with mark_buffer_dirty may
physical computing resources , location , data partitioning , 65 include struct buffer_head * bh (the buffer_head to mark
scaling , security , backup , etc. According to some embodi- dirty) . The atomic function will set the dirty bit against the
ments , the cloud computing environment is associated with buffer , set its backing page dirty , tag the page as dirty in its

US 10,884,867 B2
5 6

address_space's radix tree , and then attach the tion is " basic " (e.g. , a full backup taken once - per - week) or
address_space's inode to its superblock's dirty inode list . an incremental backup (e.g. , a backup taken every hour that
When a “ write ” is requested by any application , the includes identifiers that indicate which block numbers are

corresponding page in the page cache has its buffers (rep- associated with the increment) . The date and time 608 might
resented by a list of buffer_head structures) marked as 5 indicate when the backup information was captured (and
" dirty " by the kernel function mark_buffer_dirty . The may be used , for example , to re - apply the information in
buffer_head structure may be passed as an argument to the chronological order when appropriate) .
function , which contains the corresponding block number in FIG . 7 is a data flow 700 associated with a restore process
the blocknr field . Using eBPF , from user space , the system in according with some embodiments . When it is determined
400 may attach a kernel probe (also referred to as a 10 760 that a system is to be restored , a base backup is
“ kprobe ”) to the above function . A kprobe may dynamically downloaded at (A) from persistent storage 790 and written
break into almost any kernel routine and collect debugging to a disk 720. The system then downloads the oldest
and performance information non - disruptively (e.g. , associ- incremental backup from persistent storage 790 at (B) and
ated with a trap at almost any kernel code address and writes it to the disk 720. The next - oldest incremental backup
specifying a handler routine to be invoked when the break- 15 is then downloaded at (C) from persistent storage 790 and
point is hit) . A kprobe can be inserted on virtually any written to the disk 720. This process continues , in chrono
instruction in the kernel , and a return probe fires when a logical order , until the restore process in complete .
specified function returns . In the typical case , kprobe - based FIG . 8 is a method of determining when a backup process
instrumentation is packaged as a kernel module . The mod- should be initiated according to some embodiments . After
ule’s init function installs (“ registers ”) one or more probes , 20 beginning at S810 , the system checks to see if a user trigger
and the exit function unregisters them . A kprobe is a user has been received at S820 (e.g. , did the user select a
provided function which is called from the kernel , in the “ backup " option on a graphical user interface as described in
kernel mode , whenever the function it is attached to is connection with FIG . 9 ?) . If a user trigger was received at
called . This kprobe function reads the block number (from S810 , the system initiates the incremental backup of
the buffer_head structure passed to mark_dirty_buffer) and 25 changed blocks to persistent storage at 850 and the process
sends a perf_event to the user space with the block number continues (to determine when the next backup should be
as the data payload . captured) .
The user space component may accumulate these block If a user trigger was not received at S810 , the system

numbers for which the buffers are marked dirty in the kernel . checks whether the time since the last backup exceeds a
When the incremental backup is triggered by a user (or after 30 threshold value at S820 (e.g. , was the last backup captured
a fixed amount time interval) , these blocks may be directly more than one hour ago ?) . If the time exceeds the threshold
read from the disk 420 using utilities such as data duplicator value at S830 , the system initiates the incremental backup of
(" dd ”) and saved in a persistent data store (e.g. , an S3 changed blocks persistent storage at 850 and the process
bucket) . According to some embodiments , to capture the continues (to determine when the next backup should be
changes during the backup process another eBPF program or 35 captured) .
a kernel module may be used to track the changing blocks If the time did not exceed the threshold value at S830 , the
and their data . system checks whether the number of blocks changed since
When the user needs to restore the system 400 to a the last incremental backup was captured exceeds a thresh

previous point in time , he or she can apply the block - level old value at S840 . If the number of blocks exceeds the
base backup , pull the above incremental backups from 40 threshold value at S840 , the system initiates the incremental
persistent storage , and apply them to the disk in chronologi- backup of changed blocks to persistent storage at 850 and
cal order . FIG . 5 is a restore process method according to the process continues (to determine when the next backup
some embodiments . At S510 , the system may determine that should be captured) . If the number of blocks did not exceed
a restore process is to be initiated (e.g. , as described in the threshold value at S840 , the process continues at S820 .
connection with FIG.9) . At S520 , the system may download 45 Note that the embodiment of FIG . 8 is constructed such that
a base backup from persistent data store to disk storage . At a backup is captured if any of the three conditions 820 , 830 ,
$ 530 , the system may download incremental backup blocks 840 are captured . Embodiments may be implemented , how
from the persistent data store to the disk storage in chrono- ever , in any number of ways (including , for example , fewer
logical order . conditions , more conditions , requirement multiple condi

Referring to FIG . 6 , a table is shown that represents the 50 tions to be true , etc.) .
backup data store 600 that may be provided according to FIG . 9 is a human machine interface display 900 in
some embodiments . The table may include , for example , accordance with some embodiments . The display 900
entries identifying backup information that has been cap- includes a graphical representation 910 of elements of an
tured by the system . The table may also define fields 602 , incremental backup system for a cloud computing environ
604 , 606 , 608 for each of the entries . The fields 602 , 604 , 55 ment (e.g. , PaaS , IaaS , etc.) . Selection of an element (e.g. ,
606 , 608 may , according to some embodiments , specify : a via a touch - screen or computer pointer 920) may result in
backup identifier 602 , a virtual machine identifier 604 , a display of a pop - up window containing various options (e.g. ,
type 606 , and a date and time 608. The backup data store 600 to view a backup status , an in - progress restore operation ,
may be created and updated , for example , when new virtual etc.) . The display 900 may also include a user - selectable
machines are initiated , when writes are performed to a disk , 60 “ backup ” icon 930 (e.g. , to capture an incremental backup
etc. by moving changed blocks to persistent storage) and

The backup identifier 602 might be a unique alphanu- “ restore ” icon 940 (e.g. , to initiate an automated restoration
meric label or link that is associated with particular backup process as described with respect to FIGS . 5 through 7) .
information that has been captured in connection with disk Thus , embodiments may provide for incremental backups
or device represented by the virtual machine identifier 604 65 in a cloud computing environment in a fast , automatic , and
(e.g. , a virtual machine executing in a cloud computing accurate manner . Moreover , overhead associated with the
environment) . The type 606 might indicate if the informa- process may be very minimal because everything happens in

5

US 10,884,867 B2
7 8

kernel space . Also , since the system doesn't copy the data (v) determine that a pre - determined condition associ
itself (only the block identifiers or numbers) , space is saved ated with the accumulated block numbers is satisfied ,
at least while accumulating the changed blocks . During the and
time of backup capture , all of the data may be taken and (vi) save blocks associated with the accumulated block
stored in a relatively inexpensive storage element such as numbers to a persistent data store as an incremental
S3 . In addition , no payments to a cloud service provider are backup .
required on a snapshot - by - snapshot basis (thus saving 2. The system of claim 1 , wherein the cloud computing
money) . Moreover , the solution is completely independent environment is associated with at least one of : (i) an Infra
of the applications that are being executed as well as the structure - as - a - Service (“ IaaS ”) data center , and (ii) a Plat
particular cloud provider (because they are performed at the 10 form - as - a - Service (“ PaaS ”) data center .
virtual machine layer) . As a result , various cloud computing 3. The system of claim 1 , wherein the event - driven
providers can be utilized without making changes for mechanism is a kprobe function attached to the kernel
AWS® , Azure® from MICROSOFT® , etc. to support incre- function using an enhanced Berkeley Packet Filter .
mental backups . In addition , embodiments may not involve 4. The system of claim 1 , wherein the kernel function
any kernel module related security implications (so it is 15 comprises a mark_buffer_dirty function and the event com
relatively safe to use) . For example , complete security may prises a perf_event .
be provided as compared to installing a kernel module to 5. The system of claim 1 , wherein the pre - determined
achieve the same result (which can result in any bug in the condition is associated with at least one of : (i) a user trigger ,
kernel module crashing the entire Operating System (ii) an amount of time , and (iii) a total number of blocks
(“ SOS ”)) . The eBPF - based incremental backup solution may 20 accumulated in the user space .
work for both block workloads and file workloads . Because 6. The system of claim 5 , wherein the persistent data store
the system captures the block layout of the device , some comprises simple storage service .
embodiments may also be used to migrate from one cloud 7. The system of claim 5 , further comprising :
provider to another (e.g. , from AWS® to Azure®) . determining that a restore process is to be initiated ;

The following illustrates various additional embodiments 25 downloading a base backup from the persistent data store
of the invention . These do not constitute a definition of all to the disk storage ; and
possible embodiments , and those skilled in the art will downloading incremental backup blocks from the persis
understand that the present invention is applicable to many tent data store to the disk storage in chronological
other embodiments . Further , although the following embodi order .
ments are briefly described for clarity , those skilled in the art 30 8. The system of claim 1 , wherein the saved blocks are
will understand how to make any changes , if necessary , to associated with at least one of : (i) block workloads , and (ii)
the above - described apparatus and methods to accommodate file workloads .
these and other embodiments and applications . 9. A computer - implemented method associated with a

Although specific hardware and data configurations have cloud computing environment , comprising :
been described herein , note that any number of other con- 35 determining that a write to disk storage is requested by an
figurations may be provided in accordance with some application executing in the cloud computing environ
embodiments of the present invention (e.g. , some of the ment ;
information associated with the databases described herein marking , by a kernel function at a device layer , buffers of
may be combined or stored in external systems) . Moreover , a page in a page cache that correspond to the requested
although some embodiments are focused on particular types 40 write as dirty ;
of disks , databases , and cloud computing environments , any sending , by an event - driven mechanism , an event to an
of the embodiments described herein could be applied to entry handler in user space , wherein the event has a
other types of storage devices or data center providers . block number associated with the dirty buffer as a

The present invention has been described in terms of payload ;
several embodiments solely for the purpose of illustration . 45 accumulating , in the user space , the block numbers
Persons skilled in the art will recognize from this description received via events ;
that the invention is not limited to the embodiments determining that a pre - determined condition associated
described , but may be practiced with modifications and with the accumulated block numbers is satisfied ; and
alterations limited only by the spirit and scope of the saving blocks associated with the accumulated block
appended claims . numbers to a persistent data store as an incremental

The invention claimed is : backup .
1. A system associated with cloud computing environ- 10. The method of claim 9 , wherein the event - driven

ment , comprising : mechanism is a kprobe function attached to the kernel
a device layer executing a kernel to : function using an enhanced Berkeley Packet Filter .

(i) determine that a write to disk storage is requested by 55 11. The method of claim 9 , wherein the kernel function
an application executing in the cloud computing comprises a mark_buffer_dirty function and the event com
environment , prises a perf_event .

(ii) mark , by a kernel function at the device layer , 12. The method of claim 9 , wherein the pre - determined
buffers of a page in a page cache that correspond to condition is associated with at least one of : (i) a user trigger ,
the requested write as dirty , and 60 (ii) an amount of time , and (iii) a total number of blocks

(iii) send , by an event - driven mechanism , an event to accumulated in the user space .
an entry handler in user space , wherein the event has 13. The method of claim 12 , wherein the persistent data
a block number associated with the dirty buffer as a store comprises simple storage service .
payload ; and 14. The method of claim 12 , further comprising :

a user space computer component to : determining that a restore process is to be initiated ;
(iv) accumulate , in the user space , the block numbers downloading a base backup from the persistent data store

received via events ; to the disk storage ; and

50

65

10

US 10,884,867 B2
9 10

downloading incremental backup blocks from the persis- instructions to save blocks associated with the accumu
tent data store to the disk storage in chronological lated block numbers to a persistent data store as an
order . incremental backup .

15. The method of claim 9 , wherein the saved blocks are 17. The medium of claim 16 , wherein the event - driven
associated with at least one of : (i) block workloads , and (ii) 5 mechanism is a kprobe function attached to the kernel file workloads . function using an enhanced Berkeley Packet Filter . 16. A non - transitory , computer readable medium having
executable instructions stored therein , the medium compris 18. The medium of claim 16 , wherein the kernel function
ing : comprises a mark_buffer_dirty function and the event com

instruction to determine that a write to disk storage is prises a perf_event .
requested by an application executing in a cloud com- 19. The medium of claim 16 , wherein the pre - determined
puting environment ; condition is associated with at least one of : (i) a user trigger ,

instructions to mark , by a kernel function at a device layer , (ii) an amount of time , and (iii) a total number of blocks
buffers of a page in a page cache that correspond to the accumulated in the user space .
requested write as dirty ; 20. The medium of claim 19 , further comprising :

instructions to send , by an event - driven mechanism , an instruction to determine that a restore process is to be event to an entry handler in user space , wherein the initiated ; event has a block number associated with the dirty instruction to download a base backup from the persistent buffer as a payload ; data store to the disk storage ; and instructions to accumulate , in the user space , the block
numbers received via events ; instruction to download incremental backup blocks from

the persistent data store to the disk storage in chrono instructions to determine that a pre - determined condition logical order . associated with the accumulated block numbers is
satisfied ; and

15

20

