wo 2015/050913 A1 [I 00O 0 R A

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

9 April 2015 (09.04.2015)

WIPOIPCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2015/050913 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

International Patent Classification:
GO6F 9/45 (2006.01) GO6F 9/54 (2006.01)

International Application Number:
PCT/US2014/058505

International Filing Date:
1 October 2014 (01.10.2014)

Filing Language: English
Publication Language: English
Priority Data:

14/046,826 4 October 2013 (04.10.2013) US

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, Washington 98052-6399
(US).

Inventors: CHEN, Wen-Ke; c/o Microsoft Corporation,
LCA - International Patents (8/1172), One Microsoft Way,
Redmond, Washington 98052-6399 (US). YU, Jinsong;
c/o Microsoft Corporation, LCA - International Patents
(8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US). RIEMANN, Alexander P.; c¢/o Mi-
crosoft Corporation, LCA - International Patents (8/1172),
One Microsoft Way, Redmond, Washington 98052-6399

(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: BUILD-TIME RESOLVING AND TYPE CHECKING REFERENCES

1+t Correlation
Code 517

Code
310 Code Generation

Tool 510

Code
320

2 Correlation
Code 512

508

FIG. 5

Compiler
520

ke Runtime

Code
513

(57) Abstract: Build-time resolution and type-enforcing of corresponding references in different code that references the same
value. In response to detecting a directive within the code itself that a first reference in first code is to be correlated with a second
reference in second code, and in response to detection that the types of the references are the same, a code generation tool generates
correlation code that is interpretable to a compiler as allowing a value of a type of the first reference of a compiled-form of the first
code to be passed as the same value of the same type of the second reference of a compiled-form of the second code. The first code,
the second code, and the generated correlation code may then be compiled. If compilation is successful, this means that the first and
second references are already properly resolved as referring to the same value and type-enforced.

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505

BUILD-TIME RESOLVING AND TYPE CHECKING REFERENCES

BACKGROUND

[0001] Computers and computing systems have affected nearly every aspect of
modern living. Computers are generally involved in work, recreation, healthcare,
transportation, entertainment, household management, and so forth. Computing systems
are providing ever more complex and sophisticated functionality. Such functionality is
often primarily driven by underlying software, which itself is becoming ever more
complex. Application developers have the task of developing such software, and to tune
performance to ensure efficient and secure operation.

[0002] Web applications are often designed and implemented following a client-server
computing model. This model usually provides that core application logic is executed on
remote servers, execution results are accessed through clients (e.g., web browsers), and
client code communicates with server code using an application-layer protocol (e.g.,
HTTP). Execution of a web application on a server is often driven by a component that
takes and parses inputs received from clients, dispatches requests with recognized input
parameters to respective business-logic components for processing, and then produces
outputs to be sent back to clients. The produced output also usually determines what
inputs an application is going to receive subsequently. Such components are generally
developed using a domain language which is different from the programming language
used to develop other components of the application. This discrepancy can oftentimes
lead to semantic gaps between code parsing inputs and code producing outputs, as well as
different identifiers being used to refer to the same object in different components.

[0003] The subject matter claimed herein is not limited to embodiments that solve any
disadvantages or that operate only in environments such as those described above. Rather,
this background is only provided to illustrate one exemplary technology areca where some
embodiments described herein may be practiced.

BRIEF SUMMARY

[0004] At least some embodiments described herein refer to a build-time mechanism
for resolving and type-enforcing of corresponding references in different code that
references the same value. The two code sections are analyzed and, as a result, a directive
is detected that the first reference in first code is to be correlated with a second reference
in second code so that they both refer to the same data. In response to that detected

directive, if the types of the first and second references are compatible, a code generation

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505
2

tool automatically generates correlation code that is interpretable to a compiler as allowing
a value of a type of the first reference of a compiled-form of the first code to be passed as
the same value of the same type of the second reference of a compiled-form of the second
code.

[0005] The first code, the second code, and the generated correlation code may then be
compiled. If compilation is successful, this means that the first and second references are
already properly resolved as referring to the same value, with proper type-enforcement
also occurring at build-time. Accordingly, when the compiled code is run, no further
computing resources need be used to correlate the two references, or ensure that their
types are compatible. Thus, a semantic gap between the two codes is bridged at build-
time, rather than at run-time.

[0006] This summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used as an aid in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] In order to describe the manner in which the above-recited and other
advantages and features of the invention can be obtained, a more particular description of
the invention briefly described above will be rendered by reference to specific
embodiments thereof which are illustrated in the appended drawings. Understanding that
these drawings depict only typical embodiments of the invention and are not therefore to
be considered to be limiting of its scope, the invention will be described and explained
with additional specificity and detail through the use of the accompanying drawings in
which:

[0008] Figure 1 illustrates an example computing system in which the principles
described herein may be employed;

[0009] Figure 2 illustrates programming time environment in accordance with the
principles described herein, in which a code authoring entity provides information
regarding name mappings into code;

[0010] Figure 3 illustrates an environment in which two different pieces of code
include references that are semantically different, but refer to the same, or substantially the
same, data;

[0011] Figure 4 illustrates a flowchart of a build-time method for resolving and type

enforcing of references; and

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505
3

[0012] Figure 5 illustrates a build-time environment in accordance with the principles

described herein.

DETAILED DESCRIPTION

[0013] At least some embodiments described herein refer to a build-time mechanism
for resolving and type-enforcing of corresponding references in different code that
references the same value. The two code sections are analyzed and, as a result, a directive
is detected that the first reference in first code is to be correlated with a second reference
in second code so that they both refer to the same data. In response to that detected
directive, if the types of the first and second references are compatible, a code generation
tool automatically generates correlation code that is interpretable to a compiler as allowing
a value of a type of the first reference of a compiled-form of the first code to be passed as
the same value of the same type of the second reference of a compiled-form of the second
code.

[0014] The first code, the second code, and the generated correlation code may then be
compiled. If compilation is successful, this means that the first and second references are
already properly resolved as referring to the same value, with proper type-enforcement
since the build occurs after checking the types of the corresponding references.
Accordingly, when the compiled code is run, no further computing resources need be used
to correlate the two references, or ensure that their types are compatible. Thus, a semantic
gap between the two codes is bridged at build-time, rather than at run-time.

[0015] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the described features or acts
described above, or the order of the acts described above. Rather, the described features
and acts are disclosed as example forms of implementing the claims.

[0016] Computing systems are now increasingly taking a wide variety of forms.
Computing systems may, for example, be handheld devices, appliances, laptop computers,
desktop computers, mainframes, distributed computing systems, or even devices that have
not conventionally been considered a computing system. In this description and in the
claims, the term “computing system” is defined broadly as including any device or system
(or combination thereof) that includes at least one physical and tangible processor, and a
physical and tangible memory capable of having thereon computer-executable instructions
that may be executed by the processor. A computing system may be distributed over a

network environment and may include multiple constituent computing systems.

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505
4

[0017] As illustrated in Figure 1, in its most basic configuration, a computing system
100 typically includes at least one processing unit 102 and memory 104. The memory 104
may be physical system memory, which may be volatile, non-volatile, or some
combination of the two. The term “memory” may also be used herein to refer to non-
volatile mass storage such as physical storage media. If the computing system is
distributed, the processing, memory and/or storage capability may be distributed as well.
[0018] As used herein, the term “executable module” or “executable component” can
refer to software objects, routings, or methods that may be executed on the computing
system. The different components, modules, engines, and services described herein may
be implemented as objects or processes that execute on the computing system (e.g., as
separate threads).

[0019] In the description that follows, embodiments are described with reference to
acts that are performed by one or more computing systems. If such acts are implemented
in software, one or more processors of the associated computing system that performs the
act direct the operation of the computing system in response to having executed computer-
executable instructions. For example, such computer-executable instructions may be
embodied on one or more computer-readable media that form a computer program
product. An example of such an operation involves the manipulation of data. The
computer-executable instructions (and the manipulated data) may be stored in the memory
104 of the computing system 100. Computing system 100 may also contain
communication channels 108 that allow the computing system 100 to communicate with
other message processors over, for example, network 110.

[0020] Embodiments described herein may comprise or utilize a special-purpose or
general-purpose computer system that includes computer hardware, such as, for example,
one or more processors and system memory, as discussed in greater detail below. The
system memory may be included within the overall memory 104. The system memory
may also be referred to as “main memory”, and includes memory locations that are
addressable by the at least one processing unit 102 over a memory bus in which case the
address location is asserted on the memory bus itself. System memory has been traditional
volatile, but the principles described herein also apply in circumstances in which the
system memory is partially, or even fully, non-volatile.

[0021] Embodiments within the scope of the present invention also include physical
and other computer-readable media for carrying or storing computer-executable

instructions and/or data structures. Such computer-readable media can be any available

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505
5

media that can be accessed by a general-purpose or special-purpose computer system.
Computer-readable media that store computer-executable instructions and/or data
structures are computer storage media. Computer-readable media that carry computer-
executable instructions and/or data structures are transmission media. Thus, by way of
example, and not limitation, embodiments of the invention can comprise at least two
distinctly different kinds of computer-readable media: computer storage media and
transmission media.

[0022] Computer storage media are physical hardware storage media that store
computer-executable instructions and/or data structures. Physical hardware storage media
include computer hardware, such as RAM, ROM, EEPROM, solid state drives (“SSDs”),
flash memory, phase-change memory (“PCM”), optical disk storage, magnetic disk
storage or other magnetic storage devices, or any other hardware storage device(s) which
can be used to store program code in the form of computer-executable instructions or data
structures, which can be accessed and executed by a general-purpose or special-purpose
computer system to implement the disclosed functionality of the invention.

[0023] Transmission media can include a network and/or data links which can be used
to carry program code in the form of computer-executable instructions or data structures,
and which can be accessed by a general-purpose or special-purpose computer system. A
“network” is defined as one or more data links that enable the transport of electronic data
between computer systems and/or modules and/or other electronic devices. When
information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer system, the computer system may view the connection as transmission media.
Combinations of the above should also be included within the scope of computer-readable
media.

[0024] Further, upon reaching various computer system components, program code in
the form of computer-executable instructions or data structures can be transferred
automatically from transmission media to computer storage media (or vice versa). For
example, computer-executable instructions or data structures received over a network or
data link can be buffered in RAM within a network interface module (e.g., a “NIC”), and
then eventually transferred to computer system RAM and/or to less volatile computer
storage media at a computer system. Thus, it should be understood that computer storage
media can be included in computer system components that also (or even primarily) utilize

transmission media.

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505
6

[0025] Computer-executable instructions comprise, for example, instructions and data
which, when executed at one or more processors, cause a general-purpose computer
system, special-purpose computer system, or special-purpose processing device to perform
a certain function or group of functions. Computer-executable instructions may be, for
example, binaries, intermediate format instructions such as assembly language, or even
source code.

[0026] Those skilled in the art will appreciate that the principles described herein may
be practiced in network computing environments with many types of computer system
configurations, including, personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs, minicomputers, mainframe computers,
mobile telephones, PDAs, tablets, pagers, routers, switches, and the like. The invention
may also be practiced in distributed system environments where local and remote
computer systems, which are linked (either by hardwired data links, wireless data links, or
by a combination of hardwired and wireless data links) through a network, both perform
tasks. As such, in a distributed system environment, a computer system may include a
plurality of constituent computer systems. In a distributed system environment, program
modules may be located in both local and remote memory storage devices.

[0027] Those skilled in the art will also appreciate that the invention may be practiced
in a cloud computing environment. Cloud computing environments may be distributed,
although this is not required. When distributed, cloud computing environments may be
distributed internationally within an organization and/or have components possessed
across multiple organizations. In this description and the following claims, “cloud
computing” is defined as a model for enabling on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and
services). The definition of “cloud computing” is not limited to any of the other numerous
advantages that can be obtained from such a model when properly deployed.

[0028] Figure 2 illustrates programming time environment 200 in accordance with the
principles described herein. At program time, a code authoring entity 201 authors code
210 (as represented by arrow 202) that includes a name mapping 211 between one or more
references in the first code and one or more references in second code that represent the
same data. In this description and in the claims, two pieces of data are the same if they are
identical or substantially the same in that one piece of data represents the material

substance of the other piece of data. For instance, one piece of data might represent pi to

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505
7

three thousand significant digits. The other piece of data might represent pi to three
significant digits. The data are substantially the same in that they both are reasonable
representations of the irrational number pi.

[0029] The code 210 may be, for example, source code that is amenable to authoring
by human beings. In that case, the code authoring entity 201 might be a human
programmer. However, code generation may also be done in an automated fashion by a
computing entity, such as, for example, other executable code, such as a program,
component, procedure, object, function, method, or the like.

[0030] In one embodiment, the name mapping 211 may be provided in the form of
attributes, headers, keywords, documentation, or the like, so long as the name mapping
211 remains available at build-time, when the code is rendered into intermediate format or
binary format so as to be recognizable and interpretable to a build-time tool, such as a
compiler.

[0031] As mentioned above, the name mapping 211 serves to provide a correlation
between references in semantically different code portions such that they may be
understood by a compiler , at build time, to refer to the same data. For instance, Figure 3
illustrates an environment 300 that includes first code 310 and second code 320 and data
330. The first code 310 includes a reference 311 to the data 330. The second code 320
includes another reference 321 to the data 330. However, because the two codes 310 and
320 use different semantics when referring to the same data 330, the references 311 and
321 are themselves different from each other.

[0032] Figure 3 illustrates just a single reference 311 or 321 corresponding to each
code 310 and 320 that references the same piece of the data. However, the ellipses 312
represent that there may be two or more references in the first code 310 that when viewed
together refer to the same data 330 as the reference 321 in the second code 311. Likewise,
the ellipses 322 represent that there may be two or more references in the second code 320
that when viewed together refer to the same data 330 as the reference 311 in the first code.
Finally, the ellipses 312 and 322 may be collectively viewed to represent that there may be
two or more references in the first code 310 that when viewed together refer to the same
data 330 as two or more references in the second code 320 when viewed together.

[0033] Although not required, a transformation may be used when referring to one of
the references 311 as compared to the other reference 312. For instance, the transform

might be a simple transform to convert the value expressed in metric units (e.g., a

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505
8

kilometer) that are referred to in the first code 310 to the value expressed in other British
units (e.g., a mile).

[0034] There are a variety of circumstances in which semantically different code may
have different references to refer to the same data. For instance, the first code 310 and the
second code 320 may be drafted using different programming languages. The first code
310 may thus be drafted using a first programming language, whereas the second code 320
may thus be drafted using a second different programming language. This is done in
certain environments in which the characteristics of the different programming languages
are best suited to the function accomplished by the code, and/or the environment in which
the code runs.

[0035] As an example, the first code 310 might be for performing input / output
processing (often referred to as “1/O processing” or “front end”), whereas the second code
320 might be for performing response generation (often referred to as “business logic” or
“back end”). The second code 320 might sometimes be rendered in more declarative
form, declaring how the output should be presented, rather than the exact procedure for
accomplishing the result. An example of declarative languages is markup language. The
first code 310 might sometimes be rendered in more imperative form, in which commands
are given with respect to specific operation on data. The two types of languages are often
semantically different, and may thus refer to the same, or substantially the same, data
using different references.

[0036] The code 210 may include other logic 212. For instance, although not
required, the logic 212 might be either the first code 310 or the second code 320 perhaps
in uncompiled form. Thus, the code authoring entity 201 may have a sematic
understanding of the meaning of the name in the first code, and have a semantic
understanding of the second code at least to the point of being able to semantically equate
the two names in the different codes.

[0037] Figure 4 illustrates a flowchart of a method 400 for performing build-time
resolving and type enforcing of references in accordance with the principles described
herein. In this description and within the claims, “build-time” refers to the time that code
is compiled into binary machine-executable code and the steps leading up to the
preparation of the code for compiling. Accordingly, “build-time” may also refer to times
prior to compilation when the code is being prepared for compilation. That said,
compilation itself often involves multiple passes, and each of those passes occur during

“build-time” as the term is defined herein. In one embodiment, the method 400 may be

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505
9

performed by a code generation tool that automatically generates additional code based on
input code, so that the input code and the generated code may be compiled together. For
instance, Figure 5 illustrates a build environment 500 that includes a code generation tool
510. As the method 400 may be performed by the code generation tool 510, the method
400 will now be described with reference to the environment 500 of Figure 5.

[0038] The code generation tool analyzes input code (act 401) to identify references
that are to be correlated. For instance, the code generation tool 510 is illustrated as
receiving the first code 310 (as represented by arrow 501) and the second code 320 (as
represented by arrow 502) of Figure 3. Recall again that the first code 310 includes a first
reference 311 and the second code 320 includes a second reference 321.

[0039] As a result of this analysis (act 401), the code generation tool then detects an
instruction (act 402) that the first reference is to be correlated with the second reference
such that they both refer to the same data. For instance, if the code 310 (and/or the code
320) were an example of the code 210 of Figure 2, the name mapping 211 may be
interpreted to the instruction as the code generation tool is analyzing the code 310 (and/or
the code 320).

[0040] A specific concrete example of the code 310 and the code 320 will now be
provided for illustrative purposes only, and not to limit the principles described herein.
For instance, the following represents code for input/output code, which is an example of
the code 310 (line numbering is added for clarity).

1. Template code (front end code):

2. (@init(int id, string name)

3. Welcome @name, your id number is @id

Line 1 merely identifies that this code is template code, which is code used for interfacing
with the client. Line 2 indicates that when the constructor is invoked that is created
through compilation of the template code, the constructor is to create an instance of the
input/output code with the input value called “id” of type “int”, and with the input value
called “name” of type “string”. Line 3 indicates that when that instance of the
input/output code is run, the user will be presented with a welcome message that includes
both the name and the corresponding id.

[0041] The following represents example corresponding back-end code, which is an
example of the code 320 (line numbering is added for clarity).

4. Back End Code:

5. internal void DisplayUserld(string username)

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505

10
6 {
7. int userld;
8 /I ... Looks up the userld
9 Views.DisplayUserld(userld, username);
10. }
Line 4 introduces the back-end code. Line 5 declares the name of the action

DisplayUserld, which receives a string called “username” as an input parameter. The
imperative code associated with the action DisplayUserld is listed from lines 6 through 10.
At line 7, a variable called “userld” is declared of type int. At line 9 (as described in the
commentary of line 8), a method called View.DisplayUserld is called, which receives the
two parameters including userld previously declared of type int in line 7, and including
“username” of type string passed into the DisplayUserld action in line 5.

[0042] As part of the analysis (act 401), the code generation tool 500 looks for
keywords, metadata, and/or any other information within the code 310 and/or 320 in order
to identify the directive (act 402) to correlate references. The directive includes all of the
information necessary to bridge the semantic gaps and type-check references at build-time.
For instance, in the above example from lines 1 through 10, the code generation tool 500
determines that the references in the code 310 and the references in the code 320 need to
be correlated via implicit or explicit directives included within the code 310 and/or 320.
For instance, the code generation tool 500 might look at an implicit directive such as the
name “DisplayUserld.cshtml”, or may evaluate an explicit directive. For instance, that
explicit directive might be “@init” in code 310 that includes information about
“Views.DisplayUserld” wused somewhere else or some attribute attached to
“Views.DisplayUserld” in the code 320. This will provide information about where to
find the relevant template code like the file name. From this, the code generation tool
may realize that there are two pairs of parameters that are to be correlated, and which may
be done by defining a View class. First, the parameters “id” and “userld” are to be
correlated to refer to the same data of type “int”, and the parameters “name” and
“username” are to be correlated to the same data of type “string”.

[0043] Thus, the directive to perform this mapping is automatically identified based on
analysis of the code 310 and the code 320. Without this automated process, the
programmer might have to write the following in the template code 310:

@{ int id = (int) ViewData[“userld”];}

@/{ string name = (string)ViewData[“userName™]; }

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505
11

and the following in place of “View.DisplayUserld(userld, username) somewhere else:
ViewData[“userld”’] = userld,;

ViewData[“userName”] = username;

Views.DisplayUserld();

This disadvantage of having to use such additional code is that it can be less efficient to
execute, and hard to debug and maintain.

[0044] In response to the detection of the directive to correlate references to refer to
the same data (act 402), the code generation tool automatically attempts to generate
correlating code that is interpretable to a compiler as allowing a value of a type of the first
reference of a compiled-form of the first code to be passed as the same value of the same
type of the second reference of a compiled-form of the second code (act 403). The act
(403) is an “attempt” because the generation of the correlating code fails (act 405) if a type
of the two references are not the same or at least are not compatible (“No” in decision
block 404). Alternatively, the correlation code is generated, but in a manner that is not
acceptable to a compiler. This failure is actually quite useful as it ensures that if the
correlation code is generated and/or compiled, that the two references that are correlated
are of the same type or at least of a compatible type. Thus, type checking is performed at
build-time or prior to build-time, and need not be performed at run-time.

[0045] If the two references are of the same type or at least are of a compatible type
(“Yes” in decision block 404), then the code generation tool does generate the correlating
code (act 406). For instance, in Figure 5, the code generation tool 510 is illustrated as
generated first correlation code 511 as represented by arrow 503.

[0046] In the example of lines 1 through 10 outlined above, the code generation tool
500 might, for instance, generate the following code (with line numbering added):

11. static class Views

12. {

13. static public void DisplayUserld(int id, string name)

14. {

15. var template = new DisplayUserld cshtml(id, name);

16. template.Execute();

17. %

18. }

[0047] The generated code may be thought of as “glue” code, which connects the

template code of lines 1 through 3, with the back-end code of line 9, in such a way that

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505
12

there the two pieces of code work smoothly together, and such that the two pairs of
parameters are resolved at or before build-time to refer to their distinct data. Otherwise,
code generation and/or compiling fails. In this example, line 16 represent that invoking of
the template code and represents the interface with the template code. Line 11 through 13
may be considered to define the Views. DisplayUserld class that is referenced in line 9.
Note that even though the parameter in line 9 is provided as “userld”, the same parameter
is referenced as “id” within the DisplayUserld object itself (see line 13). Furthermore,
even though the parameter in line 13 is provided as “username”, the same parameter is
referenced as “name” in the DisplayUserld object itself (see line 13). Thus, the correlating
code allows the two different references to be used to refer to the same data, and further
serves to allow the template code to interface properly with the back-end code.

[0048] If code 310 and 320 are written in different languages, then the code generation
tool also automatically generates a version of the code in the other language (act 407).
Referring to Figure 5, the code generation tool 510 generates (as represented by arrow
504) the second correlation code 512. For instance, lines 16 through 23 represent the
correlating code written in declarative language (cshtml specifically). The following
represents corresponding imperative code with line numbering added:

19. class DisplayUserld cshtml : AServerPage {

20. readonly int id;

21. readonly string name;

22. public DisplayUserld_cshtml(int _id, string name) {

23. id=_id;

24. name = _name;

25. %

26. void Execute() {

27. HttpResponse. Write(“Welcome “);

28. HttpResponse. Write(name);

29. HttpResponse. Write(*, your id number is”);
30. HttpResponse. Write(id);

3.}

32. %

The DisplayUserld Cshtml class (from lines 19 through 32) is the result of the conversion

of the correlating code to imperative language (C# specifically in this example).

10

15

20

25

30

WO 2015/050913 PCT/US2014/058505
13

[0049] Once the correlating code is generated, the correlating code is compiled with
the first code 310, and the second code 320 (act 408). Referring to Figure 5, the compiler
520 receives (as represented by the arrow 507) the first code 310, receives (as represented
by arrow 508) the second code 320, receives (as represented by the arrow 505) the first
correlation code 511, and receives (as represented by the arrow 506) the second
correlation code 512. The compiler 520 compiles all of this code together to thereby
generate (as represented by arrow 509), the runtime code 513. For instance, the runtime
code 513 might be binary code, or perhaps intermediate code, which requires one further
step of compilation in the runtime environment.

[0050] This results in runtime code that is directly executable at runtime, and in
which cross-referencing and lookups are not required for the runtime to understand that
the two references refer to the same data, and in which type checking of the two references
is also not required. Accordingly, runtime efficiency is improved for code portions that
have semantic gaps that include different references to the same data, and in which types
are enforced also at build time.

[0051] In the particular example, there were actually two pairs of parameters that were
correlated and type-checked at build-time, resulting in the same correlation code.
Alternatively or in addition, depending on where the pairs are found, different correlation
code may be generated for each found pair. Also in the above example, two pieces of
semantically different code that have different references to the same data. However, the
principles described herein can be applied to situations in which there are three or more
pieces of semantically different code that each includes different references to the same
data. Accordingly, the principles described herein provide an effective mechanism for
bringing the semantic gap between two different pieces of code that follow different
semantics when referring to data.

[0052] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments are to be
considered in all respects only as illustrative and not restrictive. The scope of the invention
is, therefore, indicated by the appended claims rather than by the foregoing description.
All changes which come within the meaning and range of equivalency of the claims are to

be embraced within their scope.

WO 2015/050913 PCT/US2014/058505
14

CLAIMS

1. A computer program product comprising one or more computer-readable
storage media having thereon computer-executable instructions that are structured such
that, when interpreted by one or more processors of a computing system, cause the
computing system to perform a method of performing build-time resolving and type
checking of references, the method comprising:

an act of analyzing first code that contains a first reference, and second code that
contains a second reference;

as a result of the act of analyzing, an act of detecting a directive that the first
reference is to be correlated with the second reference so that they both refer to the same
data; and

in response to the directive, an act of automatically attempting to gencrate
correlating code that is interpretable to a compiler as allowing the first reference to be

resolved with type-checking as referring to the same data as the second reference.

2. The computer program product in accordance with Claim 1, wherein the act
of automatically attempting to generate correlating code fails if a type of the first reference

is not the same as the type of the second reference.

3. The computer program product in accordance with Claim 1, wherein the act
of automatically attempting to generate correlating code comprises:
if a type of the first reference and a type of the second reference are the same type,

an act of generating the correlating code.

4. The computer program product in accordance with Claim 3, the method
further comprising;:

an act of compiling the first code, the second code, and the correlating code.

5. The computer program product in accordance with Claim 3, wherein a first

language of the first code is different than a second language of the second code.

6. The computer program product in accordance with Claim 1, wherein the
directive is associated with an attribute or keyword within either the first code or the

second code.

WO 2015/050913 PCT/US2014/058505
15

7. A method of performing build-time resolving and type checking of
references, the method comprising:

an act of analyzing first code that contains a first reference, and second code that
contains a second reference;

as a result of the act of analyzing, an act of detecting a directive that the first
reference is to be correlated with the second reference so that they both refer to the same
data, and that the first reference is of a compatible type as the second reference; and

in response to the directive, an act of automatically generating correlating code that
is interpretable to a compiler as allowing the first reference to be resolved with type-

checking as referring to the same data as the second reference.

8. The method in accordance with Claim 7, further comprising:

an act of compiling the first code, the second code, and the correlating code.

9. The method in accordance with Claim 7, wherein the first language is a

declarative language, and the second language is an imperative language.

10. The method in accordance with Claim 7, the directive being a first
directive, the first code further containing a third reference, and other code containing a
fourth reference, the method further comprising:

as a result of the act of analyzing, an act of detecting a second directive that the
third reference is to be correlated with the fourth reference so that they both refer to the

same data, and that the third reference is of a compatible type as the fourth reference.

PCT/US2014/058505

WO 2015/050913

1/4

I OI4

9[eI0A-UON

801
sjuuBy)
UONBOIUNWWOY)

S|lejoA

v0b
Kowapy

00}
wa)sAg Bunndwon

cor

($)1085800.d

WO 2015/050913 PCT/US2014/058505

2/4
200
-~ Code
201 210
B Name
Code Ma2p1p1|ng
Authoring I;{> -
Entity 202
Logic
212
300
First Code 310 Second Code 320
311 321
312+ — 322
330

FIG. 3

WO 2015/050913

(7]
~
SN

s
S

Fail
Generation

— 401
Analyze Input Code
Detect Correlation - 402
Directive

Attempt Correlation - 403

Code Generation

405
9 404
No
Yes

Generate First — 406

Correlation Code
Generate Second — 407

Correlation Code
— 408

Compile

FIG. 4

PCT/US2014/058505

PCT/US2014/058505

WO 2015/050913

4/4

gis
°p0d
awnuny

609

0cs
Jadwo)

908

Gos

S O

805

ZJG 9po)
UONB[8IIOD) pi

v0S

116 9po)
UONB[BII0D) 5

€08

Ol
=
LO)|

208

0IG |00}
UONBIBUSL) 8p0D

¢0s

108

0c¢
9p0)

0i¢
9p09

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/058505
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F9/45 GO6F9/54
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, IBM-TDB, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2008/005727 Al (MORRIS ROBERT PAUL 1-10
[US]) 3 January 2008 (2008-01-03)
abstract; figures 1,3-5

page 1, paragraph 2

page 1, paragraph 7 - page 1, paragraph 9
page 3, paragraph 30 - page 7, paragraph

57
page 7, paragraph 59 - page 8, paragraph
60
page 9, paragraph 67 - page 10, paragraph
71
A US 7 797 688 B1 (DUBAGUNTA SAIKUMAR V 1-10
[US]) 14 September 2010 (2010-09-14)
abstract

column 1, Tine 25 - column 4, line 57

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

°ited.t°| establish the pul_r;_licdation date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
12 December 2014 23/12/2014
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, . }
éx%mq&smsme Lelait, Sylvain

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/058505

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 5 889 992 A (KOERBER PAUL DONALD [US])
30 March 1999 (1999-03-30)

abstract; figure 2

column 1, line 15 - column 2, line 62
column 4, line 35 - column 16, line 33
GUPTA G ET AL: "Developing web services
for C and C++",

IEEE INTERNET COMPUTING, IEEE SERVICE
CENTER, NEW YORK, NY.- INSTITUTE OF
ELECTRICAL AND ELECTRONICS ENGINEERS, US,
vol. 7, no. 2, 1 March 2003 (2003-03-01),
pages 53-61, XP011095971,

ISSN: 1089-7801, DOI:
10.1109/M1C.2003.1189189

page 53, right-hand column, paragraph 1 -
page 56, right-hand column, paragraph 3;
figures 2,3

page 57, left-hand column, last paragraph
- page 60, left-hand column, paragraph 2

1-10

1-10

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2014/058505
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2008005727 Al 03-01-2008 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - wo-search-report
	Page 22 - wo-search-report
	Page 23 - wo-search-report

