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SUPERVISED LEARNING AND OCCLUSION
MASKING FOR OPTICAL FLOW
ESTIMATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. Provi-
sional Application No. 63/113,723, filed Nov. 13, 2020,
entitled “SUPERVISED LEARNING AND OCCLUSION
MASKING FOR OPTICAL FLOW ESTIMATION,” which
is hereby incorporated by reference in its entirety and for all
purposes.

TECHNICAL FIELD

The present disclosure generally relates to optical flow
estimation.

SUMMARY

Disclosed are systems, processes (also referred to as
methods), and computer-readable media for self-supervised
learning, semi-supervised learning, and mixed supervision
learning (e.g., a combination of self and semi-supervised
learning and/or aspects thereof) for optical flow. According
to at least one example, a method is provided for self-
supervised learning, semi-supervised learning, and mixed
supervision learning for optical flow. The method can
include obtaining an image associated with a sequence of
images; generating an occluded image; determining a
matching map based at least on matching areas of the image
and the occluded image; based on the matching map, deter-
mining a loss term associated with an optical flow loss
prediction associated with the image and the occluded
image, the loss term including a match loss term; and based
on the loss term, training a network configured to determine
an optical flow between images.

According to at least one example, an apparatus is pro-
vided for self-supervised learning, semi-supervised learning,
and mixed supervision learning for optical flow. In some
examples, the apparatus can include memory and one or
more processors coupled to the memory, the one or more
processors being configured to obtain an image associated
with a sequence of images; generate an occluded image;
determine a matching map based at least on matching areas
of'the image and the occluded image; based on the matching
map, determine a loss term associated with an optical flow
loss prediction associated with the image and the occluded
image, the loss term including a match loss term; and based
on the loss term, train a network configured to determine an
optical flow between images.

According to at least one example, a non-transitory com-
puter-readable medium is provided for self-supervised learn-
ing, semi-supervised learning, and mixed supervision learn-
ing for optical flow. The non-transitory computer-readable
medium can include instructions stored thereon which, when
executed by one or more processors, cause the one or more
processors to obtain an image associated with a sequence of
images; generate an occluded image; determine a matching
map based at least on matching areas of the image and the
occluded image; based on the matching map, determine a
loss term associated with an optical flow loss prediction
associated with the image and the occluded image, the loss
term including a match loss term; and based on the loss term,
train a network configured to determine an optical flow
between images.
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2

According to at least one example, an apparatus is pro-
vided for self-supervised learning, semi-supervised learning,
and mixed supervision learning for optical flow. The appa-
ratus can include means for obtaining an image associated
with a sequence of images; generating an occluded image;
determining a matching map based at least on matching
areas of the image and the occluded image; based on the
matching map, determining a loss term associated with an
optical flow loss prediction associated with the image and
the occluded image, the loss term including a match loss
term; and based on the loss term, training a network con-
figured to determine an optical flow between images.

In some aspects, the method, apparatus, and computer-
readable medium described above can apply one or more
horizontal flips to the image and/or the different image to
yield one or more flipped images; and calculate one or more
optical flow prediction losses based on the one or more
flipped images. In some examples, training the network is
further based on the one or more optical flow prediction
losses.

In some aspects, the method, apparatus, and computer-
readable medium described above can apply one or more
rotations to the image and/or the different image to yield one
or more rotated images; and calculating one or more optical
flow prediction losses based on the one or more rotated
images.

In some aspects, training the network can be further based
on one or more occlusion masks calculated for portions of
the image and the occluded image having no correspon-
dence.

In some examples, the sequence of images can include
labeled pairs of images. In some cases, each labeled pair of
images can include a set of consecutive images within the
sequence of images. In some cases, training the network can
be further based on labeled pairs of images from the
sequence of images.

In some aspects, the method, apparatus, and computer-
readable medium described above can generate additional
labeled pairs of images, each additional labeled pair of
images including a set of non-consecutive images within the
sequence of images. In some cases, training the network is
further based on the additional labeled pairs of images.

In some examples, the network can include a convolu-
tional neural network. In some cases, the network can
include a recurrent all-pairs field transform network.

In some examples, the matching map predicts which
pixels match between the image and the occluded image and
which pixels do not image between the image and the
occluded image.

In some aspects, the occluded image comprises at least
one of the image with an occlusion applied to the image and
a different image of the sequence of images with the
occlusion applied to the different image. In some cases, the
method, apparatus, and computer-readable medium
described above can include generate the occlusion; and
apply the occlusion to at least one of the image and the
different image. In some examples, the occlusion can
include a cow-mask occlusion.

In some aspects, each apparatus described above is or
includes a camera, a mobile device (e.g., a mobile telephone
or so-called “smart phone” or other mobile device), a smart
wearable device, an extended reality device (e.g., a virtual
reality (VR) device, an augmented reality (AR) device, or a
mixed reality (MR) device), a personal computer, a laptop
computer, a server computer, an autonomous vehicle, or
other device. In some aspects, the apparatus includes a
camera or multiple cameras for capturing one or more
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videos and/or images. In some aspects, the apparatus further
includes a display for displaying one or more videos and/or
images. In some aspects, the apparatuses described above
can include one or more sensors.

This summary is not intended to identify key or essential
features of the claimed subject matter, nor is it intended to
be used in isolation to determine the scope of the claimed
subject matter. The subject matter should be understood by
reference to appropriate portions of the entire specification
of this patent, any or all drawings, and each claim.

The foregoing, together with other features and embodi-
ments, will become more apparent upon referring to the
following specification, claims, and accompanying draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

Tlustrative embodiments of the present application are
described in detail below with reference to the following
drawing figures:

FIG. 1 is a simplified block diagram illustrating an
example image processing system, in accordance with some
examples of the present disclosure;

FIG. 2 is a diagram illustrating an example process of
estimating optical flow, in accordance with some examples
of the present disclosure;

FIG. 3A-FIG. 3D are diagrams illustrating example model
architectures for flow estimation, in accordance with some
examples of the present disclosure;

FIG. 4 is a diagram illustrating an example recurrent
all-pairs field transform network architecture for optical
flow, in accordance with some examples of the present
disclosure;

FIG. 5 is a diagram illustrating an example flow predic-
tion refinement, in accordance with some examples of the
present disclosure;

FIG. 6A is a diagram illustrating a minor occlusion
scenario, in accordance with some examples of the present
disclosure;

FIG. 6B is a diagram illustrating a major occlusion
scenario, in accordance with some examples of the present
disclosure;

FIG. 7 is a diagram illustrating example labeled and
unlabeled datasets for supervised learning, in accordance
with some examples of the present disclosure;

FIG. 8 is a diagram illustrating of an example model
trained with an image rotated to generate classification
predictions, in accordance with some examples of the pres-
ent disclosure;

FIG. 9A illustrates labeled and unlabeled pairs of frames
for supervised learning in optical flow, in accordance with
some examples of the present disclosure;

FIG. 9B is a diagram illustrating example zero-forcing
and random shifting implemented for supervised learning in
optical flow, in accordance with some examples of the
present disclosure;

FIG. 10 illustrates an example semi-supervised learning
using consistency regulation, in accordance with some
examples of the present disclosure;

FIG. 11 is a diagram illustrating an example process for
self-supervised learning, in accordance with some examples
of the present disclosure;

FIG. 12A-FIG. 12C are diagrams illustrating examples of
using segment information to train a model for flow esti-
mation by considering occlusions, in accordance with some
examples of the present disclosure;
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FIGS. 13A and 13B are diagrams showing examples of
semi-supervised learning for optical flow, in accordance
with some examples of the present disclosure;

FIG. 14 shows example cow-mask occlusions for super-
vised learning for flow estimation, in accordance with some
examples of the present disclosure;

FIG. 15 shows a diagram of an example self-supervised
learning process for optical flow; in accordance with some
examples of the present disclosure

FIG. 16 is a flowchart illustrating an example process for
supervised learning for optical flow estimation, in accor-
dance with some examples of the present disclosure; and

FIG. 17 illustrates an example computing device archi-
tecture, in accordance with some examples of the present
disclosure.

DETAILED DESCRIPTION

Certain aspects and embodiments of this disclosure are
provided below. Some of these aspects and embodiments
may be applied independently and some of them may be
applied in combination as would be apparent to those of skill
in the art. In the following description, for the purposes of
explanation, specific details are set forth in order to provide
a thorough understanding of embodiments of the applica-
tion. However, it will be apparent that various embodiments
may be practiced without these specific details. The figures
and description are not intended to be restrictive.

The ensuing description provides example embodiments
only, and is not intended to limit the scope, applicability, or
configuration of the disclosure. Rather, the ensuing descrip-
tion of the exemplary embodiments will provide those
skilled in the art with an enabling description for imple-
menting an exemplary embodiment. It should be understood
that various changes may be made in the function and
arrangement of elements without departing from the spirit
and scope of the application as set forth in the appended
claims.

Optical flow is an active area of research in computer
vision. Optical flow can represent the pixel-level (e.g.,
dense) correspondence between sequential images. By per-
forming optical flow techniques, a system can predict pixel-
level flow maps (V,) between two consecutive images (I,
1,,,)- Optical flow can be used for a variety of tasks such as,
for example and without limitation, video compression,
action recognition, object tracking, detection, visual track-
ing, and other video tasks. Improvements to optical flow can
help improve the performance of tasks and algorithms that
use optical flow. However, there are various problems or
challenges with optical flow. For example, occlusion of
certain objects in a scene can create significant challenges in
optical flow. Another example challenge is the lack of data,
such as for training machine-learning based optical flow
systems. For example, the available dataset for optical flow
is limited, as labeling pixel-level annotations can consume
significant costs and time.

In the case of occlusion, a problem can occur when some
objects disappear or appear between two successive images.
In this case, the correlation between consecutive images (I,
1,,,) and pixel-level flow maps (V,) becomes unmatched (I,
x; y)=I,,, (x+V,(u), y+V,(v))). In one example approach for
addressing the occlusion problem, a system can ignore the
occlusion area and train the non-occlusion area using an
occlusion mask. However, excluding the occlusion area can
have disadvantages. For example, the flow for occlusion is
generally better computed in an evaluation phase of a
machine learning system. Another example approach for
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addressing the occlusion problem is to use segmentation
information. For instance, an example algorithm that can be
implemented is a recurrent all-pairs field transforms (RAFT)
algorithm, described in Zachary Teed and Jia Deng, RAFT:
Recurrent All-Pairs Field Transforms for Optical Flow,
arXiv preprint arXiv:2003.12039, 2020, which is expressly
incorporated herein in its entirety and for all purposes.
RAFT considers the segment information using a context
network. The pixels in one segment may have a similar flow
and, in consideration of this, the flow predicted incorrectly
in the occlusion area may be refined. However, as shown in
FIG. 5 and further discussed below, even a small portion of
a matched part in an image may be incorrectly refined when
most of the area in the image is occluded, resulting in poor
performance.

As previously noted, another example challenge in optical
flow relates to the distribution of data being limited, as
shown in FIG. 7. Because pixel-level annotations can be
very expensive, most datasets only provide a ground truth
between consecutive images I, and I, ,. Also, the image
frequency rate of the datasets is different for each dataset.
For example, the MPI Sintel Flow dataset includes of 24
frames-per-second (FPS), while the KITTI dataset from the
Karlsruhe Institute of Technology and Toyota Technological
Institute at Chicago (available at http://www.cvlibs.net/data-
sets/kitti) includes 10 FPS.

Systems, processes (or methods), and computer-readable
media (collectively referred to herein as “systems and tech-
niques”) for using supervised learning (e.g., self-supervised
learning, semi-supervised learning, and/or mixed supervi-
sion learning) for optical flow (e.g., to train a machine
learning system, such as a neural network, to perform optical
flow) are described herein. The unsupervised learning, semi-
supervised learning, and mixed supervision learning tech-
nologies described herein for optical flow can address the
occlusion and limited data problems described above, and
provide improved optical flow performance. In some
examples, a self-supervised learning process can be imple-
mented for solving occlusion problems. In some examples,
a semi-supervised learning process can be implemented for
using various data pairs (e.g., pairs of images). In some
examples, a mixed supervision learning process can be
implemented. The mixed supervision learning can include
self-supervised learning, semi-supervised learning, a com-
bination of self and semi-supervised learning (and/or aspects
thereof), and/or specific or mixed implementations of semi-
supervised learning and/or self-supervised learning.

In some self-supervised learning examples, a system can
generate an occlusion. The system can apply the occlusion
to consecutive images (e.g., images L, I,,, in FIGS. 5 and 7).
In some examples, an additional channel can be added,
which the system can use to predict a matching map. In some
examples, the system can predict a matching area between
sequential images using self-supervised learning. In some
cases, the system can generate a pseudo-occlusion ground
truth from a difference between the image I, and a warped
image (I(x; y), L,; x+V,(0), y+V,())). The system can set
an area where the difference between the two images is large
as the occlusion area. The system can exclude the occlusion
area from training to perform training on the better-mapped
or better-mapping area. In some cases, the difference
between the image I, and the warped image I,,;, may be a
very small value. However, errors may exist, such as due to
differences in light or changes in values in continuous space.
To address such a potential issue, an occlusion threshold can
be set in some implementations. In some cases, the occlu-
sion threshold can be heuristic. In some cases, the occlusion
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area can be trained directly. Using such techniques, the
system can create data by directly creating occlusions and
can use the occlusions in training of a machine learning
system.

In some examples, the system can utilize a consistency
regularization process for semi-supervised learning. The
consistency regularization process can be used in classifi-
cation, and can perform well in regression. In some
examples, the system can perform a rotation consistency-
based semi-supervised learning process for optical flow. For
example, a horizontal flip and random rotation can be used
for semi-supervised learning. After applying a horizontal flip
and/or random rotation to the rotated images (R(I,), R(1,,,)),
the output (R(V)) of the machine learning system (e.g., a
neural network) can be restored (R™! R(V)). In some
examples, the output can be the same or similar to the output
of the original values (V). In some examples, the rotation
and restored output can be applied to enable learning
between images (1,), (I,,.)

Further aspects of the present disclosure are described
herein with respect to the figures.

FIG. 1 is a diagram illustrating an example image pro-
cessing system 100, in accordance with some examples. The
image processing system 100 can perform various image
and video processing tasks and generate various image and
video processing results as described herein. For example,
the image processing system 100 can perform self-super-
vised learning, semi-supervised learning, and mixed super-
vision learning for optical flow, as further described herein.
In some examples, the image processing system 100 can
implement one or more models 122, such as one or more
neural networks, to perform self-supervised, semi-super-
vised learning, and mixed supervision learning for optical
flow. In some examples, the image processing system 100
can perform various video and/or image processing tasks
such as, for example, action recognition, object recognition,
video compression, visual tracking, generating chroma key-
ing effects, feature extraction, image recognition, machine
vision, and/or any other image/video processing tasks.

In the example shown in FIG. 1, the image processing
system 100 includes an image sensor 102, a storage 108,
compute components 110, an image processing engine 120,
one or more models 122, and a rendering engine 124. The
image processing system 100 can optionally include another
image sensor(s) 104 and/or one or more other sensors 106,
such as an inertial measurement unit (IMU), a radar, an
optical sensor, a light detection and ranging (LIDAR) sens-
ing device, a motion sensor, and/or any other type of sensor.
For example, in dual camera or image sensor applications,
the image processing system 100 can include front and rear
image sensors (e.g., image sensor 102 and/or image sensor
104).

The image processing system 100 can be part of a
computing device or multiple computing devices. In some
examples, the image processing system 100 can be part of an
electronic device (or devices) such as a camera system (e.g.,
a digital camera, an IP camera, a video camera, a security
camera, etc.), a telephone system (e.g., a smartphone, a
cellular telephone, a conferencing system, etc.), a desktop
computer, a laptop or notebook computer, a tablet computer,
a set-top box, a television, a display device, a digital media
player, a gaming console, a video streaming device, a smart
wearable device, an autonomous system, a computer in a car,
an loT (Internet-of-Things) device, or any other suitable
electronic device(s).

In some implementations, the image sensor 102, the
image sensor 104, the other sensor 106, the storage 108, the
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compute components 110, the image processing engine 120,
the one or more models 122 and/or the rendering engine 124
can be part of the same computing device. For example, in
some cases, the image sensor 102, the image sensor 104, the
other sensor 106, the storage 108, the compute components
110, the image processing engine 120, one or more models
122 and the rendering engine 124 can be integrated into a
smartphone, laptop, tablet computer, smart wearable device,
gaming system, camera system, and/or any other computing
device. However, in some implementations, the image sen-
sor 102, the image sensor 104, the other sensor 106, the
storage 108, the compute components 110, the image pro-
cessing engine 120, one or more models 122 and/or the
rendering engine 124 can be part of two or more separate
computing devices.

The image sensors 102 and 104 can be any image and/or
video sensors or capturing devices, such as a digital camera
sensor, a video camera sensor, a smartphone camera sensor,
an image/video capture device on an electronic apparatus
such as a television or computer, a camera, etc. In some
cases, the image sensors 102 and 104 can be part of a camera
or computing device such as a digital camera, a video
camera, an IP camera, a smartphone, a smart television, a
game system, etc. In some examples, the image sensor 102
can be a rear image capturing device (e.g., a camera, video,
and/or image sensor on a back or rear of a device) and the
image sensor 104 can be a front image capturing device
(e.g., a camera, image, and/or video sensor on a front of a
device). In some examples, the image sensors 102 and 104
can be part of a dual-camera assembly. The image sensors
102 and 104 can capture the image and/or video content
(e.g., raw image and/or video data), which can then be
processed by the compute components 110, the image pro-
cessing engine 120, the one or more models 122 and/or the
rendering engine 124 as described herein.

The other sensor 106 can be any sensor for detecting and
measuring information such as distance, motion, position,
depth, speed, light, sound, etc. Non-limiting examples of
sensors include LIDARs, gyroscopes, accelerometers, mag-
netometers, IMUs, etc. In one illustrative example, the
sensor 106 can be an IMU configured to sense or measure
motion. In some cases, the image processing system 100 can
include other sensors, such as a machine vision sensor, a
smart scene sensor, a speech recognition sensor, an impact
sensor, a position sensor, a tilt sensor, a light sensor, etc.

The storage 108 can be any storage device(s) for storing
data, such as image or video data for example. Moreover, the
storage 108 can store data from any of the components of the
image processing system 100. For example, the storage 108
can store data or measurements from any of the sensors 102,
104, 106, data from the compute components 110 (e.g.,
processing parameters, output images, calculation results,
etc.), and/or data from any of the image processing engine
120, the one or more models 122 and the rendering engine
124 (e.g., output images, processing results, etc.). In some
examples, the storage 108 can include a buffer for storing
data (e.g., image/video data) for processing by the compute
components 110.

In some implementations, the compute components 110
can include a central processing unit (CPU) 112, a graphics
processing unit (GPU) 114, a digital signal processor (DSP)
116, and/or an image signal processor (ISP) 118. The com-
pute components 110 can perform various operations such as
image recognition, optical flow estimation, supervised train-
ing (e.g., self-supervised training, semi-supervised training,
mixed supervision training, etc.), video segmentation, image
enhancement, object or image segmentation, computer
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vision, graphics rendering, augmented reality, image/video
processing, compression, sensor processing, recognition
(e.g., text recognition, object recognition, feature recogni-
tion, tracking, pattern recognition, action recognition, scene
change recognition, etc.), disparity detection, video coding,
machine learning, filtering, depth-of-field effect calculations
or renderings, and/or any of the various operations described
herein. In some examples, the compute components 110 can
implement the image processing engine 120, the one or more
models 122 and the rendering engine 124. In other
examples, the compute components 110 can also implement
one or more other processing engines.

Moreover, the operations for the image processing engine
120, the one or more models 122 and the rendering engine
124 can be implemented by one or more of the compute
components 110. In one illustrative example, the image
processing engine 120 and the one or more models 122 can
be implemented by the CPU 112, the DSP 116, and/or the
ISP 118, and the rendering engine 124 can be implemented
by the GPU 114. In some cases, the compute components
110 can include other electronic circuits or hardware, com-
puter software, firmware, or any combination thereof, to
perform any of the various operations described herein.

In some cases, the compute components 110 can receive
data (e.g., image data, video data, etc.) captured by the
image sensor 102 and/or the image sensor 104, and process
the data to generate output images or frames. In some
examples, the compute components 110 can receive video
data (e.g., one or more frames, etc.) captured by the image
sensor 102, perform optical flow estimation, semi-super-
vised learning, self-supervised learning, mixed supervision
learning, and/or any other video tasks. An image or frame
can be a red-green-blue (RGB) image or frame having red,
green, and blue color components per pixel; a luma, chroma-
red, chroma-blue (YCbCr) image or frame having a luma
component and two chroma (color) components (chroma-
red and chroma-blue) per pixel; or any other suitable type of
color or monochrome picture.

The compute components 110 can implement the image
processing engine 120 and the one or more models 122 to
perform various image/video processing operations. For
example, the compute components 110 can implement the
image processing engine 120 and the one or more models
122 to perform video tasks such as, for example, optical flow
estimation, semi-supervised learning, self-supervised learn-
ing, mixed supervision learning, feature extraction, com-
pression, recognition, computer vision tasks, detection tasks
(e.g., object, action, gesture, face, human, scene, etc.),
among others. The compute components 110 can process
data (e.g., images, frames, videos, etc.) captured by the
image sensors 102 and/or 104, data in storage 108, data
received from a remote source (e.g., a remote camera, a
server or a content provider), data obtained from a combi-
nation of sources, any combination thereof, and/or other
data.

In some examples, the compute components 110 can
perform semi-supervised learning, self-supervised learning,
mixed supervision learning and optical flow estimation as
described herein. In some cases, the compute components
110 can implement the one or more models 122 to perform
semi-supervised learning, self-supervised learning, mixed
supervision learning and optical flow estimation as
described herein. In some examples, the one or more models
122 can include one or more neural networks. The one or
more neural networks can include any network architecture
such as, for example and without limitation, a convolutional
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neural network (CNN), a FlowNet network, a recurrent
all-pairs field transforms (RAFT) network, among others.

While the image processing system 100 is shown to
include certain components, one of ordinary skill will appre-
ciate that the image processing system 100 can include more
or fewer components than those shown in FIG. 1. For
example, the image processing system 100 can include, in
some instances, one or more memory devices (e.g., RAM,
ROM, cache, and/or the like), one or more networking
interfaces (e.g., wired and/or wireless communications inter-
faces and the like), one or more display devices, and/or other
hardware or processing devices that are not shown in FIG.
1. An illustrative example of a computing device and hard-
ware components that can be implemented with the image
processing system 100 is described below with respect to
FIG. 17.

Optical flow is a dense (pixel-level) field carrying insights
of motions over a sequence of frames. In some examples,
optical flow can include a pattern of motion of objects,
surfaces, edges, etc., in a visual scene. The motion can be
caused by, for example, the relative motion between the
observers and the scene. Optical flow can be used in a wide
range of computer vision tasks, including autonomous driv-
ing, action recognition, object tracking, video segmentation,
video compression, among others. In some cases, optical
flow can assist with frame-to-frame motion insights to help
in computer vision tasks on various devices such as, for
example, handheld devices, mobile phones, personal com-
puters, camera systems, etc.

FIG. 2 is a diagram illustrating an example process of
estimating optical flow. As shown, given image (I,) 202 and

image (1,,,) 204 R#73 the flow field V.ER#¥*2 can be
estimated as follows: V,=f~(1,, I, ). In some examples, flow
estimation maps 210, 212 can be generated. A flow grid 203
for image (I,) 202 shows movement (as arrows) of a point
from a first position to a second position. A flow grid 205 for
image (1, ;) 204 shows the point at the second position. Flow
estimation maps 210, 212 can include flow estimation data
corresponding to direction and magnitude. For example, the
flow estimation map 210 indicates that the point has moved
two units (e.g., pixels or other unit) in a vertical (u) direction
and the flow estimation map 212 indicates that the point has
moved two units (e.g., pixels or other unit) in a horizontal (v)
direction.

Various models can be implemented for flow estimation.
FIG. 3A and FIG. 3B are diagrams illustrating example
model architectures for flow estimation. Model 302 from
FIG. 3Arepresents a FlowNetSimple model based on a CNN
architecture, and model 304 from FIG. 3A represents a
FlowNetCorr model based on a CNN architecture. The
models 302 and 304 include a refinement portion 306, as
further described herein. In some cases, the models 302 and
304 can be trained end-to-end. Model 302 is shown pro-
cessing an image 320 and model 304 is shown processing an
image 320 and an image 322.

As shown in FIG. 3B, model 310 includes a stacked
architecture that includes warping of image 322 with inter-
mediate optical flow. To compute large displacement optical
flow, multiple FlowNets are combined in the model 310. In
this example, braces indicate concatenation of inputs.
Brightness error can be a difference between the image 320
and the image 322 warped with the previously-estimated
flow. To deal with small displacements, smaller strides (e.g.,
an amount by which a filter is moved or iterated in a
convolutional operation) are introduced in the beginning and
convolutions  between  upconvolutions into  the

30

40

45

55

10

FlowNetSimple architecture (e.g., model 302). A fusion
network is then applied to provide a final estimate.

FIG. 3C and FIG. 3D are diagrams illustrating additional
example model architectures for flow estimation. Model 330
of FIG. 3C is a 3-level pyramid network. A pyramid network
(SpyNet) can combine coarse-to-fine pyramid methods with
deep learning. In small image scales, the network can
compute large displacements. Model 330 is shown perform-
ing inference (as compared to when the model 330 is being
trained). A network G, of the model 330 can compute
residual flow Do at the highest level of the pyramid (corre-
sponding to a smallest image) using the flow resolution
images {I,", I,}. At each pyramid level, a network G, of the
model 330 can compute residual flow v,, which propagates
to each of the next lower levels of the pyramid to obtain a
flow V, at the highest resolution.

Models 350 of FIG. 3D are convolutional neural networks
(CNNs) for optical flow that uses pyramid, warping, and
cost volume (e.g., a PWC-Net, with P corresponding to
pyramid, W corresponding to warping, and C corresponding
to cost volume). Models 350 include a model 352 that can
implement a coarse-to-fine approach. Models 350 also
include a model 354, which is a PWC-Net. In model 352,
image pyramid and refinement is done at one pyramid level
by performing energy minimization. In model 354, feature
pyramid and refinement is done at one pyramid level by
PWC-Net. PWC-Net warps features of a second image using
the upsampled flow, computes a cost volume, and processes
the cost volume using CNNs. Post-processing and the con-
text network are optional. The arrows illustrated in FIG. 3D
indicate the direction of flow estimation. Pyramids are
constructed in the opposite direction of the arrows. In some
examples, model 354 can implement the refinement portion
306 in models 302 or 304 shown in FIG. 3A.

FIG. 4 is a diagram illustrating an example recurrent
all-pairs field transforms (RAFT) deep network architecture
400 for optical flow. As shown, a frame 402, a frame 404,
and a frame 406 are processed by the network architecture
400 to generate an optical flow output 408. In some
examples, the architecture 400 can perform feature extrac-
tion, compute visual similarities, and perform iterative
updates. The visual similarities can include a correlation
pyramid and a correlation lookup.

In some examples, RAFT considers the segment infor-
mation using a context network 410. The pixels in one
segment may have a similar flow. In consideration of this,
the flow predicted incorrectly in the occlusion area is
refined. However, in some cases, as shown in FIG. 5, even
a small portion of a matched part in an image may be
incorrectly refined when most of the area is occluded,
resulting in poor performance. For example, referring to
FIG. 5, the predicted optical flow 508 generated by a
machine learning model 506 (e.g., a RAFT neural network,
such as that shown in FIG. 4) may have inaccuracies
resulting from incorrect refinement of matched parts
between images 502 and 504 when a large part of image 504
is occluded as shown in FIG. 5.

Moreover, in some cases, while the optical flow in a minor
area of an image (e.g., less than 50% of the image) can be
changed to the optical flow in a major area of an image (e.g.,
greater than 50% of the image), there may not be consid-
eration regarding whether the major area is occluded. For
example, FIG. 6A is a diagram showing a minor occlusion
scenario 600. FIG. 6B is a diagram showing a major
occlusion scenario 610. In the minor occlusion scenario 600,
an image 604 (1., ,) includes a smaller occlusion 608 relative
to image 602 (I,). As shown in image 606, most of the pixels
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(corresponding to unoccluded pixels, shown in FIG. 6 A with
hatched lines) in a segment are determined correctly. How-
ever, a number of pixels (corresponding to occluded pixels,
shown in FIG. 6A with horizontal lines) in a segment are
determined incorrectly. With reference to FIG. 5, in some
cases, the ground truth 510 and the machine learning model
506 (e.g., a RAFT network) can help refine the minor area
in the smaller occlusion (e.g., smaller occlusion 608 shown
in FIG. 6A).

In the major occlusion scenario 610 shown in FIG. 6B, the
image 604 includes a larger occlusion 612 relative to image
602. As shown, most of the pixels in image 606 are incorrect
(corresponding to occluded pixels, shown in FIG. 6B with
horizontal lines), and the correctly predicted area (corre-
sponding to unoccluded pixels, shown in FIG. 6B with
hatched lines) would be changed according to the incorrectly
predicted area. The self-supervised learning approaches
described herein can address these and other issues.

Moreover, with reference to FIG. 5, a ground truth 510 of
the optical flow may include or be based on the sequence of
images 502 and 504. However, in some examples, there can
be additional sequences of images, and the additional
sequences of images can be used to train the machine
learning model 506 (e.g., a RAFT network). The additional
sequences of images can train a machine learning model 506
for a larger displacement. The additional sequences of
images can also take advantage of semi-supervised learning.

As previously noted, another challenge in optical flow
relates to the availability of data (e.g., for training) being
limited. Since pixel-level annotations can be very expensive,
most datasets only provide a ground truth between consecu-
tive images I, and I, |. For example, in FIG. 7, datasets may
only provide a ground truth 720 between images 702 and
704, 704 and 706, 706 and 708, and 708 and 710. Also, the
image frequency rate of the datasets may be different for
each dataset. For example, as noted above the MPI Sintel
Flow dataset includes of 24 FPS, while the KITTI dataset
includes 10 FPS.

However, as shown in FIG. 7, there are other possible data
pairs of various images. For example, in addition to data
pairs of images 702 and 704, there can be data pairs of
images 702 and 706, images 702 and 708, image 702 and
710, among others. Using additional data pairs accordingly
can provide advantages of semi-supervised learning and
enable data learning of various frequency rates.

The systems and techniques described herein can imple-
ment self-supervised learning, semi-supervised learning,
mixed supervision learning and occlusion masking for more
accurate and higher quality optical flow estimation. As
previously explained, flow estimation can suffer perfor-
mance issues caused by occlusions and/or limited datasets.
Optical flow data annotation can include per-pixel values
(e.g., for floating-point displacements in X and Y dimen-
sions) and can be expensive and difficult. Datasets can
include real-world image data and/or synthetic image data
(e.g., computer generated such as animations). Real-world
datasets have very limited number of training samples due to
the difficulty in data annotation. Synthetic datasets are
generally animation-based and can have exaggerated and
unrealistic object and scene movements. The synthetic data-
sets can cause poor performance when used for training. For
example, due to issues such as domain shifts, reliance on
synthetic datasets for trainings can yield sub-optimal results.

In some examples, a self-supervised learning process can
be implemented for solving occlusion problems. In some
cases, a semi-supervised learning process can be imple-
mented using various data pairs. In some self-supervised
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learning examples, an occlusion can be generated and
applied to an image in consecutive images (I, I,,;). An
additional channel can be added to predict a matching map.
In some examples, a matching area between sequential
images can be predicted using self-supervised learning. In
some cases, a pseudo-occlusion ground truth can be gener-
ated from the difference between the image I, and a warped
image (I(x; ), I,,; x+V,(0), y+V, (v))). The area where the
difference between the two images is large (e.g., greater than
a threshold difference, such as 10%, 20%, etc.) can be set as
the occlusion area and excluded from training to perform
training on the better-mapped or better-mapping area. The
difference between the image I, and the warped image 1, ,
may be a very small value in some cases. However, errors
may exist because of differences in light or changes in values
in continuous space. A occlusion threshold can be set. The
occlusion threshold can be heuristic, can be trained directly,
and/or otherwise determined. Data can be created by directly
creating occlusions and using the occlusions in training.
For example, self-supervised learning can be used to set
pretext tasks for unlabeled data and can use the pretext tasks
to train the neural network. The trained network can help
enable higher-level scene understanding. For example, a
network f() can predict y class from input data x as follows:
y<—1(x). In some cases, the image can be rotated randomly
(z), and this rotation prediction (%) can be computed simul-
taneously with the classification prediction (¥) as follows:

o ){ ¥ < )
X X .
"N ze row

If the network is not only trained using classification but
also using the image rotated by various amounts, the net-
work can be trained to better understand the image at a high
level. For example, FIG. 8 shows a diagram illustrating of an
example model 810 trained with an image 802 rotated at 0
degrees (rotated image 803), 90 degrees (rotated image 805),
180 degrees (rotated image 807), and 270 degrees (rotated
image 809) to generate classification predictions.

In a semi-supervised learning example, a consistency
regularization process can be used for semi-supervised
learning. The consistency regularization process can be used
in classification. The consistency regularization process can
perform well in regression. In some examples, a rotation
consistency-based semi-supervised learning process can be
implemented for computing optical flow. For example, a
horizontal flip and random rotation can be used for the
semi-supervised learning. After applying a horizontal flip
and/or random rotation to the rotated images (R(I,), R(1,,,)),
the output (R(V)) of the neural network can be restored (R~
R(V)). In some examples, the output can be the same or
similar to the output of the original values (V). In some
examples, the rotation and restored output can be applied to
enable learning between images (1,), (I,,,)-

In some examples, semi-supervised learning can be used
to reduce large annotation costs. As shown in FIG. 9A, in
some cases, an example semi-supervised learning process
900 can improve performance by using both labeled data
902 and unlabeled data 904. In some cases, semi-supervised
learning can be used in classification.

In one illustrative example, semi-supervised learning can
implement a consistency regularization algorithm. The con-
sistency regularization method can be simple and can pro-
vide good performance. Consistency regularization can pro-
vide various perturbations to the same data(x) and make
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each output the same, e.g., x=(xx'), L ,~d(f(x), {(x')).
Applying the consistency regularization can help improve
the performance by smoothing the manifold. In some
examples, the decision boundary can traverse the low-
density area. L, can to help traverse the low-density area in
the unlabeled data distribution, and not the low-density area
in the labeled data distribution. The total loss can be applied
with the consistency regularization loss is as follows:
LtotaZ:LS+W(t)*LU'

Semi-supervised learning can be applied to classification
as well as other fields, such as object detection. For example,
consistency-based semi-supervised learning for object
detection can allow consistency regularization loss to per-
form well not only for classification but also for localization.
FIG. 10 illustrates an example of performing semi-super-
vised learning using consistency regulation. As shown,
using consistency regularization, model 1010 can identify a
loss 1012 for images 1002 and 1004. In some examples, the
consistency loss L, can equal Lcls+L,,,, and the total loss
Lo can equal L, +y*Leon. In some cases, unlabeled data
with consistency regularization can push the decision
boundary to low density regions. The consistency regulation
can help with classification as well as regression.

With self-supervised learning, semi-supervised learning,
and/or mixed supervision learning, an optical flow (V,) can
be predicted between images (I, 1,,,). The images can

include three channels (IER>**#) such as red, green, and
blue (RGB) channels. Optical flow can include u, v channels

(VER 2y that move along the x and y axes, respectively.
In an example self-supervised learning scenario, an occlu-
sion and random shift method can be used to train more
diverse pairs of images. The occluded images and occlusion
masks are denoted as O(I) and m(O), respectively. The
random shift can be denoted as RS("). In the self-supervised
learning scenario, a horizontal flip and random rotation of
one orm ore images can be implemented. A horizontally
flipped image can be denoted as H(I) and a randomly rotated
image can be denoted as R(I). The restoration of the hori-
zontally flipped and randomly rotated image can be repre-
sented as H(-)™", R(~)"~1. Also, each of the predictions can be
represented by tilde (-).

In some self-supervised learning scenarios, a ground truth
of' a matching map can be generated using the same image.
For example, if the optical flow of the same image (I, I,) is
determined, the optical flow (V,) should be zero. Even if
occlusion is added to one image, the optical flow should be
zero, such as based on the following: RAFT (I,, 1,)=V ~0;
and RAFT (I,, O(1,)=V =0.

By applying the generated occlusion to an image, a
ground truth of a matching map (m(O)) and an occluded
image can be created. The output of the network can be

changed from two channels (VER?**#) 1o three channels
(VER®™) and an occlusion can be predicted in an

additional channel (VER **") By training these matching
areas, a network can be trained with a higher level of scene
understanding regarding which parts are matched and
unmatched. In addition, by calculating the predicted match-
ing map (e.g., in a gated recurrent unit (GRU)), refinement
of the occlusion area can be continuously possible. The
matching loss can be calculated by the generated pseudo
ground truth and the prediction, and the total loss can
include the sum of the RAFT loss and matching loss as
follows: Lmatch:CE(m(O)S (m(o))s LtotaZ:LRAFT"'OCl.Lmatch'

FIG. 11 illustrates an example process for self-supervised
learning. In this example, the model 1110 can process an
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image 1100 (denoted in FIG. 11 as image 1,), an occluded
image 1102 (denoted in FIG. 11 as occluded image O(I,)),
and a randomly-shifted occluded image 1104 (denoted in
FIG. 11 as randomly-shifted occluded image RS(O(1,)). The
model 1110 can include stages 1112, 1114, 1116, and 1118.
The stages 1112, 1114, 1116, and 1118 can generate an
optical flow map (V) and a matching map (m(O) using the
occluded image 1102 and the random shifted occluded
image 1104 as input.

In some examples, as shown in FIG. 12A, segment
information can be used to train the model by considering
occlusion rather than ignoring the occlusion. An occluded
area 1206 in an image 1204 can be refined using segment
information. An optical flow 1208 can be generated based on
an image 1202 and an occluded image 1204. If the occluded
area 1206 in the image 1204 occupies a large portion of the
image 1204, the well-fitting area may be incorrectly
changed, as shown in FIG. 12B. However, as shown in FIG.
12C, a learnable matched map (M,) can be used to predict
which pixels are matched and which are not.

In semi-supervised learning, the labeled data can include
continuous frame data. However, as described herein, semi-
supervised learning can be used to train more diverse pairs
of images, such as based on the following:

labeled pair, if k=1

unlabeled pair, otherwise

(s Ir) = {

When there are image pairs 1, and 1, ,, labeling may exist
only when k is 1. In some examples, a proposed loss can
enable training even in image pairs with k exceeding 1. A
consistency regularization of semi-supervised learning can
be implemented and can have applied horizontal flip and
random rotation to give perturbation.

FIG. 13A and FIG. 13B 13B are diagrams showing
examples of semi-supervised learning for optical flow. In the
examples of FIG. 13A and FIG. 13B, horizontal flip (e.g., 0
degrees, 90 degrees, 180 degrees, 270 degrees, etc.) and/or
random rotations can be applied to image 1302 (I,) and
image 1304 (I, ,). In some examples, a horizontal flip and/or
random rotations can be applied to images 1302 (I,) and
1304 (1,,,), such as based on the following:

Ll HU B i RO R L.

After the image 1302 and/or 1304 are flipped and/or
rotated, the output of I, and I,,, and the output of H(I,) and
H(It+k) (or R(I,) and R(It+k)) can be calculated from the
same model 1310, such as based on the following: V=RAFT
(@, L.): HOV)-RAFT(H(), H (,,,)); ROV)-RAFT(R(,L),
R, 1.0 o

In some cases, an inverse to the output H(V) or R(V) can
be applied. In such cases, restoration can be applied. H™*
(H(V)) can be the same as V (e.g., it is the same rotation),
and a loss to reduce the difference between two predictions
can be defined as follows: L=V -1\, LAV-R™
RV,

If there is a large difference in value (1,,), the loss would
diverge. Therefore, in some examples, the following con-
straint can be added to prevent such divergence:

1,if I, <e
m= L.
0, otherwise
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In some cases, the expectation is taken only for the
positive mask. An unsupervised loss term L, can be defined

as L,~E {m=1}(L,,). Therefore, supervised loss (L) can be
applied for labeled data. The unsupervised loss (L,,) can be
applied for unlabeled data. The overall loss can be as
follows: Ltotal=[ ¢+ox,-L,. The overall loss can also be
represented as Total Loss=RAFT Loss+y*Consistency Loss
(where the consistency loss can be an unsupervised loss), as
shown in FIG. 13A and FIG. 13B.

FIG. 14 shows example cow-mask occlusions 1402, 1404,
1406, 1408, 1410, and 1412 that can be applied. In some
examples, cow-masks occlusions 1402-1412 can be used to
implemented occluded images for supervised learning for
optical flow as previously explained. The cow-mask occlu-
sions 1402-1412 can include different sizes, shapes, and/or
configurations. In some examples, a performance and
robustness can be enhanced using parametric random occlu-
sions with arbitrary shapes and/or sizes.

FIG. 15 shows a diagram of an example self-supervised
learning process for optical flow. An image 1520 and an
occluded image 1522 can be processed at each stage (of
multiple stages 1502, 1504, 1506, and 1508) of example
model 1510. The occluded image 1522 can include a
matched area (shown in FIG. 15 with backward hatched
lines) and an unmatched area or occlusion (shown in FIG. 15
with forward hatched lines). In some examples, the example
model 1510 can include a RAFT model, as previously
described. At each stage 1502-1508, the model 1510 can
generate an optical flow estimate and a matching map 1512
based on the image 1520 and the occluded image 1522.
Moreover, in some examples, the model 1510 can calculate
a match loss and in some cases an unmatch loss (also
referred to as a self-supervised loss) at each stage 1502-
1508.

In some cases, the model 1510 can calculate a total loss
as follows: conventional/non-specific/non-discriminant
loss+A*matched loss. In some examples, A can be a scalar or
hyperparameter implemented in the total loss equation to
penalize and/or scale losses. In some examples, the conven-
tional/non-specific/non-discriminant loss term can be
optional. For example, in some cases, the model 1510 can
calculate the total loss as A*matched loss. As another
example, the model 1510 can calculate the total loss as
(a*conventional/non-specific/non-discriminant loss)+
A*matched loss, where a can be a scalar term which could
be set to O to turn off or negate the conventional/non-
specific/non-discriminant loss term.

In some examples, the self-supervised learning process
can implement occlusion masking and occlusion zeroing for
image regions where no correspondence is present. Joint
optimization can be performed with a match loss and in
some cases an unmatch loss term with additional mask (e.g.,
error) for loss term.

In some cases, self-supervised learning, semi-supervised
learning, and/or mixed supervision learning can implement
generalizable transform functions and frame pairing. For
example, with reference to FIG. 9A, frames 910 and 912 can
form a labeled pair, frames 912 and 914 can form another
labeled, pair, and frames 914 and 916 can form another
labeled pair. Additional frame pairings can be generated for
frames 910-916. For example, an additional frame pairing
can be formed with frames 910 and 914, frames 910 and
916, frames 912 and 916, etc. With reference to FIG. 9B,
zero-forcing 920 and random shifting 930 can be imple-
mented for supervised learning.
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FIG. 16 is a flow diagram illustrating an example of a
process 1600 for performing supervised learning for optical
flow using the techniques described herein. In some
examples, the supervised learning can include semi-super-
vised learning, self-supervised learning, and/or mixed-su-
pervision learning. The operations outlined herein are non-
limiting examples provided for illustration purposes, and
can be implemented in any combination thereof, including
combinations that exclude, add, or modify certain steps.

At block 1602, the process 1600 can include obtaining an
image associated with a sequence of images. In some
examples, the sequence of images can include labeled pairs
of images. In some cases, each labeled pair of images can
include a set of consecutive images within the sequence of
images.

At block 1604, the process 1600 can include generating an
occluded image. In some aspects, the occluded image
includes the image with an occlusion applied to the image
and/or a different image of the sequence of images with the
occlusion applied to the different image. In some cases, the
process 1600 can include generating the occlusion. The
process 1600 can include applying the occlusion to at least
one of the image and the different image. In some examples,
the occlusion can include a cow-mask occlusion.

At block 1606, the process 1600 can include determining
a matching map based on matching (and in some cases
unmatching areas) of the image and the occluded image. As
described herein, in some cases, the matching map predicts
which pixels match between the image and the occluded
image and which pixels do not image between the image and
the occluded image. At block 1608, the process 1600 can
include determining, based on the matching map, a loss term
associated with an optical flow loss prediction associated
with the image and the occluded image. The loss term
includes at least a match loss term. In some cases, the loss
term also includes an unmatch loss term. In one example as
described above, an overall loss can be determined as
follows: Ltotal=[ ;+x,-L.,. The overall loss can also be
represented as Total Loss=RAFT Loss+A*Consistency Loss
(where the consistency loss can be an unsupervised loss), as
shown in FIG. 13A and FIG. 13B.

At block 1610, the process 1600 can include training,
based on loss term, a network configured to determine an
optical flow between images. For instance, the process 1600
can train the network (based on the loss term) using the
semi-supervised learning, self-supervised learning, and/or
mixed-supervision learning techniques described herein.
The network can include any type of neural network. In
some examples, the network can include a CNN. In some
examples, the network can include a RAFT network. In
some examples, training the network can be further based on
one or more occlusion masks calculated for portions of the
image and the occluded image having no correspondence. In
some cases, training the network can be further based on
labeled pairs of images from the sequence of images.

In some aspects, the process 1600 can include generating
additional labeled pairs of images. For example, each addi-
tional labeled pair of images can include a set of non-
consecutive images (images that are not consecutive or
adjacent) within the sequence of images. In some cases,
training the network is further based on the additional
labeled pairs of images.

In some cases, the process 1600 can include applying one
or more horizontal flips to the image and/or the different
image to yield one or more flipped images. The process 1600
can include calculating one or more optical flow prediction
losses based on the one or more flipped images. In some
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cases, the process 1600 can include applying one or more
rotations to the image and/or the different image to yield one
or more rotated images. The process 1600 can include
calculating one or more optical flow prediction losses based
on the one or more rotated images. In some examples,
training the network is further based on the one or more
optical flow prediction losses.

In some examples, the process 1600 may be performed by
one or more computing devices or apparatuses. In one
illustrative example, the process 1600 can be performed by
the image processing system 100 shown in FIG. 1 and/or one
or more computing devices with the computing device
architecture 1700 shown in FIG. 1700. In some cases, such
a computing device or apparatus may include a processor,
microprocessor, microcomputer, or other component of a
device that is configured to carry out the steps of the process
1600. In some examples, such computing device or appa-
ratus may include one or more sensors configured to capture
image data. For example, the computing device can include
a smartphone, a camera, a head-mounted display, a mobile
device, or other suitable device. In some examples, such
computing device or apparatus may include a camera con-
figured to capture one or more images or videos. In some
cases, such computing device may include a display for
displaying images. In some examples, the one or more
sensors and/or camera are separate from the computing
device, in which case the computing device receives the
sensed data. Such computing device may further include a
network interface configured to communicate data.

The components of the computing device can be imple-
mented in circuitry. For example, the components can
include and/or can be implemented using electronic circuits
or other electronic hardware, which can include one or more
programmable electronic circuits (e.g., microprocessors,
graphics processing units (GPUs), digital signal processors
(DSPs), central processing units (CPUs), and/or other suit-
able electronic circuits), and/or can include and/or be imple-
mented using computer software, firmware, or any combi-
nation thereof, to perform the various operations described
herein. The computing device may further include a display
(as an example of the output device or in addition to the
output device), a network interface configured to commu-
nicate and/or receive the data, any combination thereof,
and/or other component(s). The network interface may be
configured to communicate and/or receive Internet Protocol
(IP) based data or other type of data.

The process 1600 is illustrated as a logical flow diagram,
the operations of which represent a sequence of operations
that can be implemented in hardware, computer instructions,
or a combination thereof. In the context of computer instruc-
tions, the operations represent computer-executable instruc-
tions stored on one or more computer-readable storage
media that, when executed by one or more processors,
perform the recited operations. Generally, computer-execut-
able instructions include routines, programs, objects, com-
ponents, data structures, and the like that perform particular
functions or implement particular data types. The order in
which the operations are described is not intended to be
construed as a limitation, and any number of the described
operations can be combined in any order and/or in parallel
to implement the processes.

Additionally, the process 1600 may be performed under
the control of one or more computer systems configured
with executable instructions and may be implemented as
code (e.g., executable instructions, one or more computer
programs, or one or more applications) executing collec-
tively on one or more processors, by hardware, or combi-

10

15

20

25

30

35

40

45

50

55

60

18

nations thereof. As noted above, the code may be stored on
a computer-readable or machine-readable storage medium,
for example, in the form of a computer program comprising
a plurality of instructions executable by one or more pro-
cessors. The computer-readable or machine-readable storage
medium may be non-transitory.

FIG. 17 illustrates an example computing device archi-
tecture 1700 of an example computing device which can
implement various techniques described herein. For
example, the computing device architecture 1700 can imple-
ment at least some portions of the image processing system
100 shown in FIG. 1. The components of the computing
device architecture 1700 are shown in electrical communi-
cation with each other using a connection 1705, such as a
bus. The example computing device architecture 1700
includes a processing unit (CPU or processor) 1710 and a
computing device connection 1705 that couples various
computing device components including the computing
device memory 1715, such as read only memory (ROM)
1720 and random access memory (RAM) 1725, to the
processor 1710.

The computing device architecture 1700 can include a
cache 1712 of high-speed memory connected directly with,
in close proximity to, or integrated as part of the processor
1710. The computing device architecture 1700 can copy data
from the memory 1715 and/or the storage device 1730 to the
cache 1712 for quick access by the processor 1710. In this
way, the cache can provide a performance boost that avoids
processor 1710 delays while waiting for data. These and
other modules can control or be configured to control the
processor 1710 to perform various actions. Other computing
device memory 1715 may be available for use as well. The
memory 1715 can include multiple different types of
memory with different performance characteristics. In some
cases, the processor 1710 can include any general purpose
processor and a hardware or software service (e.g., services
1732, 1734, and 1736) stored in storage device 1730 and
configured to control the processor 1710. In some cases, the
processor 1710 can include a special-purpose processor
where software instructions are incorporated into the pro-
cessor design. The processor 1710 may be a self-contained
system, containing multiple cores or processors, a bus,
memory controller, cache, etc. A multi-core processor may
be symmetric or asymmetric.

To enable user interaction with the computing device
architecture 1700, an input device 1745 can represent any
number of input mechanisms, such as a microphone for
speech, a touch-sensitive screen for gesture or graphical
input, keyboard, mouse, motion input, speech and so forth.
An output device 1735 can also be one or more of a number
of output mechanisms known to those of skill in the art, such
as a display, projector, television, speaker device. In some
instances, multimodal computing devices can enable a user
to provide multiple types of input to communicate with the
computing device architecture 1700. The communication
interface 1740 can generally govern and manage the user
input and computing device output. There is no restriction
on operating on any particular hardware arrangement and
therefore the basic features here may easily be substituted
for improved hardware or firmware arrangements as they are
developed.

Storage device 1730 is a non-volatile memory and can be
a hard disk or other types of computer readable media which
can store data that are accessible by a computer, such as
magnetic cassettes, flash memory cards, solid state memory
devices, digital versatile disks, cartridges, random access
memories (RAMs) 1175, read only memory (ROM) 1720,
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and hybrids thereof. The storage device 1730 can include
software, code, firmware, etc., for controlling the processor
1710. Other hardware or software modules are contem-
plated. The storage device 1730 can be connected to the
computing device connection 1705. In one aspect, a hard-
ware module that performs a particular function can include
the software component stored in a computer-readable
medium in connection with the necessary hardware compo-
nents, such as the processor 1710, connection 1705, output
device 1735, and so forth, to carry out the function.

The term “computer-readable medium” includes, but is
not limited to, portable or non-portable storage devices,
optical storage devices, and various other mediums capable
of storing, containing, or carrying instruction(s) and/or data.
A computer-readable medium may include a non-transitory
medium in which data can be stored and that does not
include carrier waves and/or transitory electronic signals
propagating wirelessly or over wired connections. Examples
of a non-transitory medium may include, but are not limited
to, a magnetic disk or tape, optical storage media such as
compact disk (CD) or digital versatile disk (DVD), flash
memory, memory or memory devices. A computer-readable
medium may have stored thereon code and/or machine-
executable instructions that may represent a procedure, a
function, a subprogram, a program, a routine, a subroutine,
a module, a software package, a class, or any combination
of instructions, data structures, or program statements. A
code segment may be coupled to another code segment or a
hardware circuit by passing and/or receiving information,
data, arguments, parameters, or memory contents. Informa-
tion, arguments, parameters, data, etc. may be passed, for-
warded, or transmitted via any suitable means including
memory sharing, message passing, token passing, network
transmission, or the like.

In some embodiments the computer-readable storage
devices, mediums, and memories can include a cable or
wireless signal containing a bit stream and the like. How-
ever, when mentioned, non-transitory computer-readable
storage media expressly exclude media such as energy,
carrier signals, electromagnetic waves, and signals per se.

Specific details are provided in the description above to
provide a thorough understanding of the embodiments and
examples provided herein. However, it will be understood
by one of ordinary skill in the art that the embodiments may
be practiced without these specific details. For clarity of
explanation, in some instances the present technology may
be presented as including individual functional blocks com-
prising devices, device components, steps or routines in a
method embodied in software, or combinations of hardware
and software. Additional components may be used other
than those shown in the figures and/or described herein. For
example, circuits, systems, networks, processes, and other
components may be shown as components in block diagram
form in order not to obscure the embodiments in unneces-
sary detail. In other instances, well-known circuits, pro-
cesses, algorithms, structures, and techniques may be shown
without unnecessary detail in order to avoid obscuring the
embodiments.

Individual embodiments may be described above as a
process or method which is depicted as a flowchart, a flow
diagram, a data flow diagram, a structure diagram, or a block
diagram. Although a flowchart may describe the operations
as a sequential process, many of the operations can be
performed in parallel or concurrently. In addition, the order
of the operations may be re-arranged. A process is termi-
nated when its operations are completed, but could have
additional steps not included in a figure. A process may
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correspond to a method, a function, a procedure, a subrou-
tine, a subprogram, etc. When a process corresponds to a
function, its termination can correspond to a return of the
function to the calling function or the main function.

Processes and methods according to the above-described
examples can be implemented using computer-executable
instructions that are stored or otherwise available from
computer-readable media. Such instructions can include, for
example, instructions and data which cause or otherwise
configure a general purpose computer, special purpose com-
puter, or a processing device to perform a certain function or
group of functions. Portions of computer resources used can
be accessible over a network. The computer executable
instructions may be, for example, binaries, intermediate
format instructions such as assembly language, firmware,
source code. Examples of computer-readable media that
may be used to store instructions, information used, and/or
information created during methods according to described
examples include magnetic or optical disks, flash memory,
USB devices provided with non-volatile memory, net-
worked storage devices, and so on.

Devices implementing processes and methods according
to these disclosures can include hardware, software, firm-
ware, middleware, microcode, hardware description lan-
guages, or any combination thereof, and can take any of a
variety of form factors. When implemented in software,
firmware, middleware, or microcode, the program code or
code segments to perform the necessary tasks (e.g., a com-
puter-program product) may be stored in a computer-read-
able or machine-readable medium. A processor(s) may per-
form the necessary tasks. Typical examples of form factors
include laptops, smart phones, mobile phones, tablet devices
or other small form factor personal computers, personal
digital assistants, rackmount devices, standalone devices,
and so on. Functionality described herein also can be
embodied in peripherals or add-in cards. Such functionality
can also be implemented on a circuit board among different
chips or different processes executing in a single device, by
way of further example.

The instructions, media for conveying such instructions,
computing resources for executing them, and other struc-
tures for supporting such computing resources are example
means for providing the functions described in the disclo-
sure.

In the foregoing description, aspects of the application are
described with reference to specific embodiments thereof,
but those skilled in the art will recognize that the application
is not limited thereto. Thus, while illustrative embodiments
of the application have been described in detail herein, it is
to be understood that the inventive concepts may be other-
wise variously embodied and employed, and that the
appended claims are intended to be construed to include
such variations, except as limited by the prior art. Various
features and aspects of the above-described application may
be used individually or jointly. Further, embodiments can be
utilized in any number of environments and applications
beyond those described herein without departing from the
broader spirit and scope of the specification. The specifica-
tion and drawings are, accordingly, to be regarded as illus-
trative rather than restrictive. For the purposes of illustra-
tion, methods were described in a particular order. It should
be appreciated that in alternate embodiments, the methods
may be performed in a different order than that described.

One of ordinary skill will appreciate that the less than
(“<) and greater than (“>") symbols or terminology used
herein can be replaced with less than or equal to (“<”) and
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greater than or equal to (“2”) symbols, respectively, without
departing from the scope of this description.

Where components are described as being “configured to”
perform certain operations, such configuration can be
accomplished, for example, by designing electronic circuits
or other hardware to perform the operation, by programming
programmable electronic circuits (e.g., microprocessors, or
other suitable electronic circuits) to perform the operation,
or any combination thereof.

The phrase “coupled to” refers to any component that is
physically connected to another component either directly or
indirectly, and/or any component that is in communication
with another component (e.g., connected to the other com-
ponent over a wired or wireless connection, and/or other
suitable communication interface) either directly or indi-
rectly.

Claim language or other language reciting “at least one
of” a set and/or “one or more” of a set indicates that one
member of the set or multiple members of the set (in any
combination) satisfy the claim. For example, claim language
reciting “at least one of A and B” or “at least one of A or B”
means A, B, or A and B. In another example, claim language
reciting “at least one of A, B, and C” or “at least one of A,
B, or C’ means A, B, C, or A and B, or A and C, or B and
C, or A and B and C. The language “at least one of” a set
and/or “one or more” of a set does not limit the set to the
items listed in the set. For example, claim language reciting
“at least one of A and B” or “at least one of A or B” can mean
A, B, or A and B, and can additionally include items not
listed in the set of A and B.

The various illustrative logical blocks, modules, circuits,
and algorithm steps described in connection with the
examples disclosed herein may be implemented as elec-
tronic hardware, computer software, firmware, or combina-
tions thereof. To clearly illustrate this interchangeability of
hardware and software, various illustrative components,
blocks, modules, circuits, and steps have been described
above generally in terms of their functionality. Whether such
functionality is implemented as hardware or software
depends upon the particular application and design con-
straints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for
each particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the scope of the present application.

The techniques described herein may also be imple-
mented in electronic hardware, computer software, firm-
ware, or any combination thereof. Such techniques may be
implemented in any of a variety of devices such as general
purposes computers, wireless communication device hand-
sets, or integrated circuit devices having multiple uses
including application in wireless communication device
handsets and other devices. Any features described as mod-
ules or components may be implemented together in an
integrated logic device or separately as discrete but interop-
erable logic devices. If implemented in software, the tech-
niques may be realized at least in part by a computer-
readable data storage medium comprising program code
including instructions that, when executed, performs one or
more of the methods, algorithms, and/or operations
described above. The computer-readable data storage
medium may form part of a computer program product,
which may include packaging materials. The computer-
readable medium may comprise memory or data storage
media, such as random access memory (RAM) such as
synchronous dynamic random access memory (SDRAM),
read-only memory (ROM), non-volatile random access
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memory (NVRAM), electrically erasable programmable
read-only memory (EEPROM), FLASH memory, magnetic
or optical data storage media, and the like. The techniques
additionally, or alternatively, may be realized at least in part
by a computer-readable communication medium that carries
or communicates program code in the form of instructions or
data structures and that can be accessed, read, and/or
executed by a computer, such as propagated signals or
waves.

The program code may be executed by a processor, which
may include one or more processors, such as one or more
digital signal processors (DSPs), general purpose micropro-
cessors, an application specific integrated circuits (ASICs),
field programmable logic arrays (FPGAs), or other equiva-
lent integrated or discrete logic circuitry. Such a processor
may be configured to perform any of the techniques
described in this disclosure. A general purpose processor
may be a microprocessor; but in the alternative, the proces-
sor may be any conventional processor, controller, micro-
controller, or state machine. A processor may also be imple-
mented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
microprocessors, one or more mMicroprocessors in conjunc-
tion with a DSP core, or any other such configuration.
Accordingly, the term “processor,” as used herein may refer
to any of the foregoing structure, any combination of the
foregoing structure, or any other structure or apparatus
suitable for implementation of the techniques described
herein.

Iustrative examples of the disclosure include:

Aspect 1: A method of performing supervised learning for
optical flow estimation, the method comprising: obtain-
ing an image associated with a sequence of images;
generating an occluded image; determining a matching
map based at least on matching areas of the image and
the occluded image; based on the matching map, deter-
mining a loss term associated with an optical flow loss
prediction associated with the image and the occluded
image, the loss term comprising a match loss term; and
based on the loss term, training a network configured to
determine an optical flow between images.

Aspect 2: The method of Aspect 1, wherein training the
network is further based on one or more occlusion
masks calculated for portions of the image and the
occluded image having no correspondence.

Aspect 3: The method of any of Aspect 1 or Aspect 2,
wherein the sequence of images comprises labeled
pairs of images, each labeled pair comprising a set of
consecutive images within the sequence of images,
wherein training the network is further based on the
labeled pairs of images.

Aspect 4: The method of Aspect 3, further comprising:
generating additional labeled pairs of images, each
additional labeled pair comprising a set of non-con-
secutive images within the sequence of images,
wherein training the network is further based on the
additional labeled pairs of images.

Aspect 5: The method of any of Aspects 1 to 4, further
comprising: applying one or more horizontal flips to the
image to yield one or more flipped images; and calcu-
lating one or more optical flow prediction losses based
on the one or more flipped images.

Aspect 6: The method of Aspect 5, wherein training the
network is further based on the one or more optical flow
prediction losses.

Aspect 7: The method of any of Aspects 1 to 6, further
comprising: applying one or more rotations to the
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image to yield one or more rotated images; and calcu-
lating one or more optical flow prediction losses based
on the one or more rotated images.

Aspect 8: The method of any of Aspects 1 to 7, wherein
the network comprises a convolutional neural network.

Aspect 9: The method of any of Aspects 1 to 8, wherein
the supervised learning comprises at least one of semi-
supervised learning, self-supervised learning, and
mixed-supervision learning.

Aspect 10: The method of any of Aspects 1 to 9, wherein
the matching map predicts which pixels match between
the image and the occluded image and which pixels do
not image between the image and the occluded image.

Aspect 11: The method of any of Aspects 1 to 10, wherein
the occluded image comprises at least one of the image
with an occlusion applied to the image and a different
image of the sequence of images with the occlusion
applied to the different image.

Aspect 12: The method of Aspect 11, further comprising:
generating the occlusion; and applying the occlusion to
at least one of the image and the different image.

Aspect 13: The method Aspect 11, wherein the occlusion
comprises a cow-mask occlusion.

Aspect 14: An apparatus for performing supervised learn-
ing for optical flow estimation. The apparatus includes
a memory (e.g., implemented in circuitry) and one or
more processors (one processor or multiple processors)
communicatively coupled to the memory. The one or
more processors are configured to: obtain an image
associated with a sequence of images; generate an
occluded image; determine a matching map based at
least on matching areas of the image and the occluded
image; based on the matching map, determine a loss
term associated with an optical flow loss prediction
associated with the image and the occluded image, the
loss term comprising a match loss term; based on the
loss term, train a network configured to determine an
optical flow between images.

Aspect 15: The apparatus of Aspect 14, wherein training
the network is further based on one or more occlusion
masks calculated for portions of the image and the
occluded image having no correspondence.

Aspect 16: The apparatus of any of Aspect 14 or Aspect
15, wherein the sequence of images comprises labeled
pairs of images, each labeled pair comprising a set of
consecutive images within the sequence of images and
the sequence of images comprises labeled pairs of
images, each labeled pair comprising a set of consecu-
tive images within the sequence of images.

Aspect 17: The apparatus of Aspect 16, wherein the one
or more processors are configured to: generate addi-
tional labeled pairs of images, each additional labeled
pair comprising a set of non-consecutive images within
the sequence of images, wherein training the network is
further based on the additional labeled pairs of images.

Aspect 18: The apparatus of any of Aspects 14 to 17,
wherein the one or more processors are configured to:
apply one or more horizontal flips to the image to yield
one or more flipped images; calculate one or more
optical flow prediction losses based on the one or more
flipped images.

Aspect 19: The apparatus of Aspect 18, wherein training
the network is further based on the one or more optical
flow prediction losses.

Aspect 20: The apparatus of any of Aspects 14 to 19,
wherein the one or more processors are configured to:
apply one or more rotations to the image to yield one
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or more rotated images; calculate one or more optical
flow prediction losses based on the one or more rotated
images.

Aspect 21: The apparatus of any of Aspects 14 to 20,
wherein the network comprises a convolutional neural
network.

Aspect 22: The apparatus of any of Aspects 14 to 21,
wherein training the network is further based on super-
vised learning, and wherein the supervised learning
comprises at least one of semi-supervised learning,
self-supervised learning, and mixed-supervision learn-
ing.

Aspect 23: The apparatus of any of Aspects 14 to 22,
wherein the matching map predicts which pixels match
between the image and the occluded image and which
pixels do not image between the image and the
occluded image.

Aspect 24: The apparatus of any of Aspects 14 to 23,
wherein the occluded image comprises at least one of
the image with an occlusion applied to the image and
a different image of the sequence of images with the
occlusion applied to the different image.

Aspect 25: The apparatus of Aspect 24, wherein the one
or more processors are configured to: apply the occlu-
sion to at least one of the image and the different image.

Aspect 26: The apparatus of Aspect 24, wherein the
occlusion comprises a cow-mask occlusion.

Aspect 27: The apparatus of any one of Aspects 14 to 26,
wherein the one or more processors include a neural
processing unit (NPU).

Aspect 28: The apparatus of any one of Aspects 14 to 27,
wherein the apparatus is a mobile device.

Aspect 29: The apparatus of any one of Aspects 14 to 28,
further comprising a camera configured to capture one
or more frames.

Aspect 30: The apparatus of any one of Aspects 14 to 29,
further comprising a display configured to display one
or more images.

Aspect 31: A computer-readable storage medium storing
instructions that, when executed, cause one or more
processors to perform any of the operations of Aspects
1 to 30.

Aspect 32: An apparatus comprising means for perform-
ing any of the operations of Aspects 1 to 30.

What is claimed is:
1. A method of performing supervised learning for optical

flow estimation, the method comprising:

obtaining an image associated with a sequence of images;

generating an occluded image by applying occlusion to
the obtained image;

determining a matching map based at least on matching
areas of the image and the occluded image;

based on the matching map, determining a loss term
associated with an optical flow loss prediction associ-
ated with the image and the occluded image, the loss
term comprising a match loss term and an unmatch loss
term; and

based on the loss term, training a network configured to
determine an optical flow between images.

2. The method of claim 1, wherein training the network is

further based on one or more occlusion masks calculated for
portions of the image and the occluded image having no

65 correspondence.

3. The method of claim 1, wherein the sequence of images

comprises labeled pairs of images, each labeled pair com-
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prising a set of consecutive images within the sequence of
images, wherein training the network is further based on the
labeled pairs of images.

4. The method of claim 3, further comprising:

generating additional labeled pairs of images, each addi-

tional labeled pair comprising a set of non-consecutive
images within the sequence of images, wherein training
the network is further based on the additional labeled
pairs of images.

5. The method of claim 1, further comprising:

applying one or more horizontal flips to the image to yield

one or more flipped images; and

calculating one or more optical flow prediction losses

based on the one or more flipped images.

6. The method of claim 5, wherein training the network is
further based on the one or more optical flow prediction
losses.

7. The method of claim 1, further comprising:

applying one or more rotations to the image to yield one

or more rotated images; and

calculating one or more optical flow prediction losses

based on the one or more rotated images.

8. The method of claim 1, wherein the network comprises
a convolutional neural network.

9. The method of claim 1, wherein training the network is
further based on supervised learning, and wherein the super-
vised learning comprises at least one of semi-supervised
learning, self-supervised learning, and mixed-supervision
learning.

10. The method of claim 1, wherein the matching map
predicts which pixels match between the image and the
occluded image and which pixels do not match between the
image and the occluded image.

11. The method of claim 1, wherein the occluded image
comprises at least one of the image with an occlusion
applied to the image and a different image of the sequence
of images with the occlusion applied to the different image.

12. The method of claim 11, further comprising:

generating the occlusion; and

applying the occlusion to at least one of the image and the

different image.

13. The method of claim 11, wherein the occlusion
comprises a cow-mask occlusion.

14. An apparatus for performing supervised learning for
optical flow estimation, comprising:

a memory; and

one or more processors communicatively coupled to the

memory, the one or more processors being configured

to:

obtain an image associated with a sequence of images;

generate an occluded image by applying occlusion to
the obtained image;

determine a matching map based at least on matching
areas of the image and the occluded image;

based on the matching map, determine a loss term
associated with an optical flow loss prediction asso-
ciated with the image and the occluded image, the
loss term comprising a match loss term and an
unmatch loss term; and

based on the loss term, train a network configured to
determine an optical flow between images.

15. The apparatus of claim 14, wherein the one or more
processors are configured to train the network further based
on one or more occlusion masks calculated for portions of
the image and the occluded image having no correspon-
dence.
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16. The apparatus of claim 14, wherein the sequence of
images comprises labeled pairs of images, each labeled pair
comprising a set of consecutive images within the sequence
of images, wherein training the network is further based on
the labeled pairs of images.

17. The apparatus of claim 16, wherein the one or more
processors are configured to:

generate additional labeled pairs of images, each addi-

tional labeled pair comprising a set of non-consecutive
images within the sequence of images, wherein training
the network is further based on the additional labeled
pairs of images.

18. The apparatus of claim 14, wherein the one or more
processors are configured to:

apply one or more horizontal flips to the image to yield

one or more flipped images; and

calculate one or more optical flow prediction losses based

on the one or more flipped images.

19. The apparatus of claim 18, wherein the one or more
processors are configured to train the network further based
on the one or more optical flow prediction losses.

20. The apparatus of claim 14, wherein the one or more
processors are configured to:

apply one or more rotations to the image to yield one or

more rotated images; and

calculate one or more optical flow prediction losses based

on the one or more rotated images.

21. The apparatus of claim 14, wherein the network
comprises a convolutional neural network.

22. The apparatus of claim 14, wherein the one or more
processors are configured to train the network using super-
vised learning, the supervised learning comprising at least
one of semi-supervised learning, self-supervised learning,
and mixed-supervision learning.

23. The apparatus of claim 14, wherein the matching map
predicts which pixels match between the image and the
occluded image and which pixels do not match between the
image and the occluded image.

24. The apparatus of claim 14, wherein the occluded
image comprises at least one of the image with an occlusion
applied to the image and a different image of the sequence
of images with the occlusion applied to the different image.

25. The apparatus of claim 24, further comprising:

generating the occlusion; and

applying the occlusion to at least one of the image and the

different image.

26. The apparatus of claim 24, wherein the occlusion
comprises a cow-mask occlusion.

27. A non-transitory computer-readable storage medium
having stored thereon instructions which, when executed by
one or more processors, cause the one or more processors to:

obtain an image associated with a sequence of images;

generate an occluded image by applying occlusion to the
obtained image;

determine a matching map based on matching areas of the

image and the occluded image;

based on the matching map, determine a loss term asso-

ciated with an optical flow loss prediction associated
with the image and the occluded image, the loss term
comprising a match loss term and an unmatch loss
term; and

based on the loss term, train a network configured to

determine an optical flow between images.

28. The non-transitory computer-readable storage
medium of claim 27, wherein training the network is further
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based on one or more occlusion masks calculated for por-
tions of the image and the occluded image having no
correspondence.

29. The non-transitory computer-readable storage
medium of claim 27, wherein the sequence of images
comprises labeled pairs of images, each labeled pair com-
prising a set of consecutive images within the sequence of
images, wherein training the network is further based on the
labeled pairs of images.

30. The non-transitory computer-readable storage
medium of claim 27, wherein the occluded image comprises
at least one of the image with an occlusion applied to the
image and a different image of the sequence of images with
the occlusion applied to the different image.

31. A method of performing supervised learning for
optical flow estimation, the method comprising:

obtaining an image associated with a sequence of images;

generating an occluded image by applying occlusion to

the obtained image, the occluded image comprising a
matched area and an unmatched area;

determining a matching map based at least on matching

areas of the obtained image and the generated occluded
image;

based on the matching map, determining a loss term

associated with an optical flow loss prediction associ-
ated with the obtained image and the occluded image,
the loss term comprising a match loss and an unmatch
loss;

performing optimization of the loss term using the match

loss and the unmatch loss, the optimized loss term
being used to train a network configured to determine
an optical flow between images.
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