
US 20230007138A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2023/0007138 A1

HARADA (43) Pub . Date : Jan. 5 , 2023

(54) IMAGE FORMING DEVICE AND PROGRAM

(71) Applicant : KONICA MINOLTA , INC . , Tokyo
(JP)

(72) Inventor : Kazuki HARADA , Kobe - shi (JP)

(73) Assignee : KONICA MINOLTA , INC . , Tokyo
(JP)

(21) Appl . No .: 17 / 824,127

(52) U.S. CI .
CPC H04N 1/00965 (2013.01) ; H04N 1/00127

(2013.01) ; H04N 1/00938 (2013.01) ; H04N
1/0097 (2013.01) ; H04N 1/00042 (2013.01) ;
H04N 1/00082 (2013.01) ; H04N 2201/0072

(2013.01)
(57) ABSTRACT
An image forming device to which an external device is
detachably attached , including an interface that is able to
attach to the external device , a storage that stores multi - tier
architecture software , and a computer that executes the
multi - tier architecture software . The multi - tier architecture
software includes a lower layer that includes an operating
system that manages the external device , an upper layer that
includes an application program that accesses the external
device via the lower layer , and an intervening abstraction
layer that hides implementation of the lower layer from the
upper layer . The upper layer includes an access control
program that is able to save path information to access the
external device to the storage , and relays access from the
application program to the external device by accessing the
lower layer without going through the abstraction layer and
accessing the external device using the path information .

(22) Filed : May 25 , 2022

(30) Foreign Application Priority Data

Jul . 1 , 2021 (JP) 2021-110183

Publication Classification

(51) Int . Ci .
H04N 1/00 (2006.01)

1

122

120 121
130

101

100 102
1

110 DOLU

Patent Application Publication Jan. 5 , 2023 Sheet 1 of 11 US 2023/0007138 A1

FIG . 1

1

122

120 121
130

100 102
1

WEMO WARU

Patent Application Publication Jan. 5 , 2023 Sheet 2 of 11 US 2023/0007138 A1

FIG . 2

-100

-102
I -211 -221

201
USB interface USB device

CPU

-202 -212 I
I

ROM Devices I
1 |

-203

RAM 231 -110 1

1 Sheet feeder Access path
storage area -120

204 Image reader
HDD -241 130

1

Operation panel Application log
DB

-242

Temporary
storage area

-205

NIC

1 206 1

Communication network

Patent Application Publication Jan. 5 , 2023 Sheet 3 of 11 US 2023/0007138 A1

FIG . 3

lo

310
1

Application layer
I
| -311 -300
1
1

Application program USB access control
program 1

1 -312

Application layer side
interlayer communication interface

-320
1

| Device control layer
-321 1

1
1
1
I Device control layer side

interlayer communication interface

322
Device control program group

330
1 OS layer 1 331

332
1
1
1

Operating system USB interface driver

1

Patent Application Publication Jan. 5 , 2023 Sheet 4 of 11 US 2023/0007138 A1

FIG . 4

USB access control program 300

1 -410
Access control unit

-411
-231 -420 1

1 Access path
acquisition unit

Access path
storage area

Temporary data storage
processing unit

1
1

I
1 -412
1

-242 I Monitoring unit
1

Temporary storage
area -430

Status monitoring
unit

-431
I -332 1

1
1
|

1

USB interface driver
Status notification

unit 311
Application program 1

-241
312

Application log DB Application layer side inter layer
communication interface 1

Patent Application Publication Jan. 5 , 2023 Sheet 5 of 11 US 2023/0007138 A1

FIG . 5

Start

-S501
NO Access request to USB memory received ?

YES
-S502

Check if access path to USB memory is stored

S503
YES Access path to USB memory stored ?

NO
S504

Acquire access path

-S505
Store access path

-S506
Use access path to access USB memory

S507
Start data transfer with USB memory

-S508
Start monitoring status of USB memory

-S509
NO Problem with USB memory access occurred ?

YES
S510

Access problem processing

-S511
NO Data transfer complete ?

YES

Patent Application Publication Jan. 5 , 2023 Sheet 6 of 11 US 2023/0007138 A1

FIG . 6

Access problem processing

-5601

Acquire problem information

5602
Notify of problem information

-S603
NO Currently transferring data to USB memory ?

YES
-S604

Temporarily store transferred data

-S605

Check status of USB memory

-S606
NO Is USB memory status " Ready " ?

YES
-S607

Restart data transfer to USB memory

Return

Patent Application Publication Jan. 5 , 2023 Sheet 7 of 11 US 2023/0007138 A1

FIG . 7

-710 & Large amount of data CLOUD
-310

1 1

Application layer
311 300

1
1
1
|

Application program USB access
control program

1
|
1
I
1 -312
1
1 Application layer side inter layer

communication interface -701 -702

320

Device control layer
321

Device control layer side inter layer
communication interface

11 -322 Large amount
of data

Device control program group

-330

OS layer -331 1
1

332
1
I
1
I
1
1 Operating system USB interface driver
1
1

Patent Application Publication Jan. 5 , 2023 Sheet 8 of 11 US 2023/0007138 A1

FIG . 8

Monitoring processing

-S801
NO Transfer data to USB memory ?

YES
S802

Acquire status information via device control layer

-S803
Notify of status information

YES
-5804

NO Data transfer to USB memory complete ?
YES

Patent Application Publication Jan. 5 , 2023 Sheet 9 of 11 US 2023/0007138 A1

FIG . 9

Start

-5901
NO ? Access request to USB memory received ?

YES
S902

Check if access path to USB memory is stored

S903
YES Access path to USB memory stored ?

NO S904
Acquire access path

S905
Store access path

S906
Use access path to access USB memory

-S907
Start data transfer with USB memory

S908

NO Risk of problem with USB memory
access occurring ?

YES
S909

Access problem processing

S910
NO Data transfer complete ?

YES

Patent Application Publication Jan. 5 , 2023 Sheet 10 of 11 US 2023/0007138 A1

FIG . 10

1
1 1

-1010
1

Application program
1
|
| 1020

Node Library -1021

fs_API

I -1030

Operating system -1031
USB interface driver

Patent Application Publication Jan. 5 , 2023 Sheet 11 of 11 US 2023/0007138 A1

FIG . 11

1110
1

Application layer
1111

1 Application program
1

-1112
Application layer side interlayer

communication interface
1

-1120

Device control layer -1121
Device control layer side interlayer

communication interface
I

-1122
Device control program group

1130
OS layer -1131

Operating system 1132
1 USB interface driver

US 2023/0007138 A1 Jan , 5 , 2023
1

IMAGE FORMING DEVICE AND PROGRAM

[0001] The entire disclosure of Japanese patent Applica
tion No. 2021-110183 , filed on Jul . 1 , 2021 , is incorporated
herein by reference in its entirety .

BACKGROUND

(1) Technical Field
[0002] The present disclosure relates to image forming
devices and programs , and more particularly to techniques
for improving access efficiency with respect to external
devices connected to image forming devices .

2

(2) Description of Related Art
[0003] In recent years , there is demand that more functions
be added to multi - function peripherals (MP) that include
printer functions , scanner function , copy function , facsimile
functions , network functions , so - called box functions , and
the like . In response to such demands , additional functions
have come to be realized by installation of application
programs on multi - function peripherals .
[0004] A multi - function peripheral is composed of various
devices , and an application program for realizing an addi
tional function may also need access to at least one of the
various devices that make up the multi - function peripheral .
For example , when reading or writing data to or from a
universal serial bus (USB) memory mounted on a USB
interface of a multi - function peripheral , as illustrated in FIG .
10 , an application program 1010 uses a library (node library
in FIG . 10) 1020 installed on a multi - function peripheral 10 .
[0005] When an application program interface (API ;
fs_API in FIG . 10) 1021 for accessing a file system that
manages data stored in the USB memory or the like is
included in the library 1020 as a method , the application
program 1010 uses this method to request that a USB
interface driver 1031 built into an operating system (OS)
1030 reads and writes data to and from the USB memory .
[0006] In this way , reading and writing to and from the
USB memory is executed . The same applies to USB devices
other than USB memory , and to devices other than USB
devices .
[0007] Rather than re - developing such an application pro
gram every time a multi - function peripheral is upgraded ,
development costs can be reduced if an application program
can be used regardless of the version of the multi - function
peripheral . Similarly , common use between different models
of multi - function peripheral is desirable .
[0008] For this reason , software architecture (multitier
architecture) is adopted that provides a common interface
for application programs that are to be used across devices
that may differ depending on version and model of multi
function peripheral and different versions and models of
multi - function peripheral .
[0009] In multitier architecture , an interface between lay
ers is specified in advance , and therefore only required
layers need be developed or modified according to version
and model of a multi - function device and other layers do not
change and can be used as is .
[0010] As illustrated in FIG . 11 , the multitier architecture
of a multi - function peripheral is composed of three layers ,
an application layer 1110 , a device control layer 1120 , and
an operating system layer 1130 , for example . An application

program 1111 that can be shared between versions and
models of multi - function peripheral belongs to the applica
tion layer 1110 .
[0011] A program 1122 for controlling various devices that
make up a multi - function peripheral can be changed depend
ing on version and model of the multi - function peripheral ,
and therefore belongs to the device control layer 1120. The
operating system layer 1130 is an operating system (OS)
1131 itself , but changes such as the OS 1131 being upgraded
or replaced are possible . Further , device drivers included in
the OS 1131 may change as devices are added or changed
[0012] If the OS layer 1130 includes a hardware abstrac
tion layer (HAL) , a difference in hardware that occurs due to
version or model of a multi - function peripheral can be
hidden from a kernel of the OS 1131 by using the HAL .
[0013] Further , as described above , when accessing USB
memory , it is necessary to specify an access path . In a
multitier architecture , parameters such as an access path
required to access an external device mounted on a multi
function peripheral such as a USB memory are also hidden
so as to not affect the application program 1111. This allows
the application program 1111 to access the external device
without using access parameters .
[0014] When the device control layer 1120 and the OS
layer 1130 are responsible for basic functions of a multi
function peripheral and the application layer 1110 realizes
additional functions , the application layer 1110 can be
shared between versions and models of the multi - function
peripheral , and therefore the cost for realizing the additional
functions can be reduced .
[0015] In addition to simply defining interfaces between
layers , details of implementation of functions of other layers
can be hidden by providing an abstraction layer between the
application layer 1110 and the device control layer 1120 .
[0016] As an example of the application program 1111
belonging to the application layer 1110 as described above ,
the application program 1111 may perform image processing
of image data generated by using a scanner function of the
multi - function peripheral or image data acquired via a
communication network such as the Internet .
[0017] By using this example of the application program
1111 , a user of the multi - function peripheral can perform
desired image processing on desired image data , and image
formation can be performed using the processed image data .
Therefore , it is easy to see printed matter obtained by image
formation , confirm the result , and change image processing
applied to image data as needed .
[0018] Regarding image data that has undergone image
processing using the application program 1111 , a user can
temporarily attach a recording medium such as a USB
memory that is easy to carry to the multi - function peripheral ,
save the image data on the recording medium , and take it
home . In such a case , the following problems occur in a
multi - function peripheral adopting the multitier architecture
described above .
[0019] That is , the OS layer 1130 has a built - in device
driver for managing device access to the recording medium ,
while the device control layer 1120 has an interface with the
application layer 1110. Therefore , in order for the applica
tion program 1111 to store the image data on the recording
medium , the application program 1111 must first access the
device control layer 1120 using a defined interface and
request storage of the image data on the recording medium .

2

US 2023/0007138 A1 Jan. 5. 2023
2

[0020] The device control layer 1120 that has received a
request from the application layer 1110 performs interface
processing for hiding internal structure of the device control
layer 1120 from the application layer 1110 and the original
processing of the device control layer 1120 , then accesses
the OS layer 1130 to execute the request . Therefore it is
necessary to go through a large number of control API .
[0021] Under these circumstances , there is a technical
problem that when the application program 1111 saves
image data on a recording medium , performance deterio
rates due to various overheads , reducing convenience to the
user and causing resources of the multi - function peripheral
to be consumed unnecessarily .

a

[0029] FIG . 5 is a flowchart illustrating a main routine
executes by the USB control program 300 in order for an
application program 311 to access USB memory .
[0030] FIG . 6 is a flowchart illustrating access error pro
cessing , which is a subroutine executed by the USB access
control program 300 when an error occurs during access to
USB memory .
[0031] FIG . 7 is a diagram illustrating an operation when
a monitoring unit 412 acquires USB memory status infor
mation via a device control layer 320 in the image forming
device 1 according to a modified embodiment of the present
disclosure .
[0032] FIG . 8 is a flowchart illustrating an operation in
which the monitoring unit 412 according to a modified
embodiment of the present disclosure acquires USB memory
status information via the device control layer 320 .
[0033] FIG . 9 is a flowchart illustrating an operation of a
USB access control program 300 according to a modified
embodiment of the present disclosure , and in particular
processing of a status management unit 430 .
[0034] FIG . 10 is a diagram illustrating single - tier archi
tecture of software according to conventional art .
[0035] FIG . 11 is a diagram illustrating multitier architec
ture of software according to conventional art .

SUMMARY

a

a

a

DETAILED DESCRIPTION

[0022] This disclosure is made in view of the technical
problem described above , and an object of the present
disclosure is to provide an image forming device and a
program that can be used to suppress performance degra
dation when accessing a device from an upper layer in a
multitier architecture that hides substructure from the upper
layer .
[0023] In order to achieve at least the above object , an
image forming device reflecting an aspect of the present
disclosure is an image forming device to which an external
device is detachably attached , the image forming device
including an interface that is able to attach to the external
device ; a storage that stores multi - tier architecture software ;
and a computer that executes the multi - tier architecture
software . The multi - tier architecture software includes a
lower layer that includes an operating system (OS) that
manages the external device attached to the interface ; an
upper layer that includes an application program that
accesses the external device via the lower layer ; and an
abstraction layer that intervenes between the lower layer and
the upper layer and hides implementation of the lower layer
from the upper layer . The upper layer includes an access
control program that is able to save path information to
access the external device to the storage , and relays access
from the application program of the upper layer to the
external device by accessing the lower layer without going
through the abstraction layer and accessing the external
device using the path information .

[0036] With respect to an image reading device , image
reading program , image processing device , and image pro
cessing program according to the present disclosure , the
following describes a multi - function peripheral (MFP) hav
ing an image reading function as an example embodiment ,
with reference to the drawings .

BRIEF DESCRIPTION OF THE DRAWINGS
a [0024] The advantages and features provided by one or

more embodiments of the invention will become more fully
understood from the detailed description given hereinbelow
and the appended drawings which are given by way of
illustration only , and thus are not intended as a definition of
the limits of the invention . In the drawings :
[0025] FIG . 1 is an external perspective view diagram
illustrating main structure of an image forming device 1
according to at least one embodiment of the present disclo

[1] Structure of Image Forming Device 1
[0037] The image forming device 1 according to the
present embodiment is an MFP , and has functions including
a printer function , a scanner function , a copy function , a
facsimile function , a network function , and a box function .
As illustrated in FIG . 1 , the MFP includes an image former
100 , a sheet feeder 110 , an image reader 120 , and an
operation panel 130 .
[0038] The image reader 120 includes a scanner 121 and
an automatic document feeder (ADF) 122. When the image
scanner 120 scans an image from a document by a sheet
through method , a stack of sheets on a document tray of the
ADF 122 is fed out one by one and conveyed to a scanning
position for scanning by the scanner 121 .
[0039] The scanner 121 illuminates a scanning surface of
a document passing through the scanning position , scans
reflected light by using a line sensor , and generates image
data line by line . Scanned documents are sequentially
ejected to an ejection tray .
[0040] When scanning an image from a document by a
platen set method , the document is placed on scanning glass
(not shown) of the scanner 121 with a scanning surface
facing the scanning glass . A lower surface of the ADF 122
is a white plate , and by pressing a back surface of the
document towards the scanning glass , the scanning surface
of the document is pressed against the scanning glass .
[0041] In this state , when a user of the image forming
device 1 operates the operation panel 130 to issue an
instruction to start scanning the document , the scanner 121
scans the document line by line to generate image data .

sure .

[0026] FIG . 2 is a block diagram illustrating configuration
of a controller 102 included in an image former 100 of the
image forming device 1 .
[0027] FIG . 3 is a diagram illustrating a multitier archi
tecture 3 of software installed in the controller 102 .
[0028] FIG . 4 illustrates a configuration of a USB access
control program 300 .

US 2023/0007138 A1 Jan. 5. 2023
3

9

[0042] The image former 100 executes image forming
processing by an electrophotographic method using image
data generated by the image reader 120 reading an image
from a document , image data received from a personal
computer (PC) or other device via a local area network
(LAN) or communication network such as the Internet , or
image data stored by using a box function , or the like .
[0043] That is , a uniformly charged photoconductor sur
face (not shown) is irradiated with a laser beam modulated
according to image data to form an electrostatic latent
image , toner is supplied to the electrostatic latent image for
development , then a resulting toner image is transferred to
a sheet . Further , after the toner image carried on the sheet is
heat - fixed , image forming processing is completed by eject
ing the sheet on which the toner image is fixed to a sheet
ejection tray 101 .
[0044] The sheet feeder 110 includes sheet feed trays , and
can accommodate different types of sheets for each sheet
feed tray . The sheet feeder 112 supplies the image former
111 with a sheet of a type specified by a user via an image
forming job or an instruction input using the operation panel
130. The image former 111 executes image forming pro
cessing as described above , using a sheet supplied by the
sheet feeder 110 .
[0045] The operation panel 130 includes a touch panel , a
hard key , a speaker , a light emitting diode (LED) , and the
like . The operation panel 130 presents information to a user
of the image forming device 1 on a screen of the touch panel ,
or the like . Further , the operation panel 130 accepts instruc
tions input by user operation of the touch panel , the hard key ,
or the like . User - instructed input is , for example , input
instructing reading of a document .
[0046] A user of the image forming device 1 can also use
an additional function realized by an application program by
operating the operation panel 130. Further , such an addi
tional function may include processing of image data pro
cessed by an application program and saved on a recording
medium (for example , a universal serial bus (USB) flash
drive) .
[0047] A controller 102 of the image former 100 is a
computer that executes software for monitoring and con
trolling operations of elements of the image forming device
1. Software installed in the image forming device 1 has a
multitier architecture , and as described later , software that
may differ depending on version or model of image forming
device and software (application program) that is common
to different versions or models of image forming device
belong to different layers .

the CPU 201 can access the sheet feeder 110 , the image
reader 120 , and the operation panel 130 via the internal bus
206 .
[0051] When a reset signal is input , such as when power
is turned on to the image forming device 1 , the CPU 201
reads out a boot program stored in the ROM 202 , boots , and
using the RAM 203 as working storage , reads out and
executes an operating system (OS) , device control program ,
application program , and the like from the HDD 204 .
[0052] As described later , the RAM 203 is provided with
an access path storage area 231 storing an access path , which
is path information for accessing a USB device 221 mounted
to the USB interface 211 , in particular a USB memory .
Instead of the RAM 203 , the access path storage area 231
may be provided in the HDD 204 .
[0053] Further , the HDD 204 is provided with an app log
database (DB) 241 for storing information about problems
that occurred when accessing USB memory , and a tempo
rary storage 242 for temporarily storing data to be trans
ferred to USB memory . The temporary storage 242 may be
provided in the RAM 203 instead of the HDD 204 .
[0054] The MC 205 executes processing for communicat
ing with other devices via a communication network such as
a LAN or the Internet .
[0055] The following describes an example where USB
memory is attached to the USB interface 211 as the USB
device 221 , but the same applies to a case where the USB
device 221 is something other than USB memory and is
attached to the USB interface 211 .
[0056] F1 ner , in the present disc ure , the ROM
the RAM 203 , and the HDD 204 may be collectively
referred to as “ a storage ” .

a

[3] Software Structure of Controller 102
[0057] The following describes software structure of the
controller 102 .
[0058) Software installed in the controller 102 adopts a
multitier architecture so that additional functions can be
realized by using a common application program even if
version or model of the image forming device 1 are different .
[0059] As illustrated in FIG . 3 , the multitier architecture 3
has a three layer structure consisting of an application layer
310 , a device control layer 320 , and an OS layer 330 .

a

[2] Hardware Structure of Controller 102

(3-1) Application Layer 310
[0060] The application layer 310 includes an application
program 311 and the like , and corresponds to an upper layer
in the multitier architecture .
[0061] As described above , the application layer 310
includes the application program 311 for realizing an addi
tional function for the image forming device 1 .
[0062] The application layer 310 is provided with an
interlayer communication interface 312 so the application
program 311 can access various devices constituting the
image forming device 1 .
[0063] According to the present embodiment , the inter
layer communication interface 312 on the application layer
310 side operates as a Web server . When the interlayer
communication interface 312 on the application layer 310
side receives a request from the application program 311 as
a Web client in accordance with the Hypertext Transfer
Protocol (HTTP) , the request is sent on to an interlayer

[0048] The following describes hardware structure of the
controller 102
[0049] The controller 102 , as illustrated in FIG . 2 ,
includes a central processing unit (CPU) 201 , a read only
memory (ROM) 202 , a random access memory (RAM) 203 ,
a hard disk drive (HDD) 204 , and a network interface card
(NIC) 206 , which are connected to enable communication
with each other using an internal bus 206 .
[0050] A USB interface unit 211 and various devices 212
included in the image former 100 are connected to the
internal bus 206. The USB interface 211 is an interface for
connecting a USB device such as a USB memory . Further ,

2

US 2023/0007138 A1 Jan. 5. 2023
4

group 322 , the interlayer communication interface 321
returns the response to the interlayer communication inter
face 312 on the application layer 310 side .
[0076] The interlayer communication interface 321 on the
device control layer 320 side has the same interface speci
fications as the interlayer communication interface 312 on
the application layer 310 side , regardless of version or model
of the image forming device 1 .
[0077] Accordingly , a difference in hardware , a difference
in the device control program group 322 , and a difference in
the OS 331 (described later) due to version or model of the
image forming device 1 are concealed from the application
program 311 .

communication interface 321 on the device control layer
side 320 , which will be described later .
[0064] When the interlayer communication interface 312
on the application layer 310 side receives a response to the
request from the interlayer communication interface 321 on
the device control layer 310 side , the interlayer communi
cation interface 312 notifies the application program 311 ,
which was the request source , of the response .
[0065] As a result , the application program 311 can
acquire , for example , image data from the HDD 204 for
which a user has instructed image processing .
[0066] The USB access control program 300 also belongs
to the application layer 310. The USB access control pro
gram 300 is a program for relaying access of the application
program 311 to the USB device .
[0067] Therefore , the USB access control program 300
accesses the USB device from the application layer 310
without going through the device control layer 320. Accord
ing to the present embodiment , the USB access control
program 300 is particularly used to relay access of the
application program 311 to the USB device 221 mounted on
the USB interface 211 .
[0068] As will be described later , similarly to the appli
cation program 311 , the USB access control program 300
can also use the interlayer communication interface 312 on
the application layer 310 side to request processing by a
device control program group 322 , via the interlayer com
munication interface 321 on the device control layer 320
side .

[0078] Therefore , the application program 311 can be used
even if the version and model of the image forming device
1 are different .
[0079] On the other hand , the interlayer communication
interface 321 on the device control layer 320 side and the
device control program group 322 that exchanges requests
and responses to requests can be changed if the version or
model of the image forming device 1 is different .
[0080] When the device control program group 322 is
changed , the interlayer communication interface 321 on the
device control layer 320 side changes the way of exchanging
requests and responses to the device control program group
322 according to the change .
[0081] By changing the interlayer communication inter
face 321 on the device control layer 320 side in this way , the
application program 311 can be used even if the version and
model of the image forming device 1 are different .

(3-3) OS Layer 330
(3-2) Device Control Layer 320
[0069] The device control layer 320 intervenes between
the application layer 310 and the OS layer 330. That is , the
device control layer 320 corresponds to an abstraction layer
in the multitier architecture , and provides the application
layer 310 with an interface that hides the implementation of
the OS layer 330 and the device control layer 320 itself
[0070] The device control program group 322 belongs to
the device control layer 320. The device control program
group 322 is a program that monitors states and controls
operations of various devices constituting the image forming
device 1 .
[0071] The device control program group 322 monitors
states and controls operations of devices such as those of the
image former 100 : a motor for rotationally driving a pho
toconductor drum , a charger device for uniformly charging
an outer circumferential surface (photoconductor surface) of
the photoconductor drum , an exposure device such as a laser
light used to form an electrostatic latent image , and the like .
[0072] The same applies to devices constituting the sheet
feeder 110 , the image reader 120 , and the operation panel
130 .
[0073] As described above , the device control layer 320
includes the interlayer communication interface 321 in order
to receive a request from the application layer 310 .
[0074] The interlayer communication interface 321 on the
device control layer 320 side receives a request from the
interlayer communication interface 312 on the application
layer 310 side as a Web application program interface (API)
and transfers the request to the device control program group
322 .
[0075] Further , when the interlayer communication inter
face 321 on the device control layer 320 side receives a
response to the request from the device control program

[0082] The OS layer 330 includes the OS 331 that man
ages various devices constituting the imager forming device
1 and external devices connected to the image forming
device 1 such as USB memory , and corresponds to a lower
layer in the multitier architecture .
[0083] The OS 331 incorporates device drivers corre
sponding to each of the various devices constituting the
image forming device 1 .
[0084] The device control program group 322 can access
a desired device via operation of a device driver correspond
ing to the device by using a system call of the OS 331 .
[0085] The device drivers operate as part of the OS 331
kernel code .
[0086] The device drivers built into the OS 331 include a
USB interface driver 332 for accessing the USB interface
211 .
[0087] The device control program group 322 can access
the USB interface 211 by operation of the USB interface
driver 332 using a system call of the OS 331 , similarly to
other devices .
[0088] According to the present embodiment , the OS layer
330 may include a hardware abstraction layer (HAL) (not
shown) . If the OS layer 330 includes an HAL , a difference
in hardware that occurs due to version or model of a
multi - function peripheral can be hidden from a kernel of the
OS 331 by using the HAL .
[0089] However , as described above , when the application
program 311 accesses a device via the device control layer
320 and the OS layer 330 , many API calls or function calls
in the device control layer 320 and the OS layer 330 , or
processing for abstraction or the like becomes necessary .

a 2

US 2023/0007138 A1 Jan , 5 , 2023
5

[0090] Therefore , by using the USB access control pro
gram 300 , performance of device access by the application
program 311 is improved .

[4] USB Access Control Program 300
[0091] The USB access control program 300 is described
here in more detail .
[0092] As illustrated in FIG . 4 , the USB access control
program 300 includes an access control unit 410 , a tempo
rary data storage processing unit 420 , and a status manage
ment unit 430. The access control unit 410 includes an
access path acquisition unit 411 and a monitoring unit 412 .
The status management unit 430 includes a status notifica
tion unit 431 .

unit 420 temporarily waits for access to the USB memory ,
and is a temporary storage program that temporarily stores
data that has not been transferred to the USB memory in the
temporary storage area 242 of the HDD 204 .
[0101] After the problem is resolved , and the status
becomes a status where data can be transferred , the access
control unit 410 releases a standby state of USB memory
access , reads out data temporarily stored in the temporary
storage area 242 , and transfers the data to the USB memory .

a

(4-3) Status Management Unit 430
[0102] The status management unit 430 is a status man
agement program that acquires the USB memory status from
the monitoring unit 412 of the access control unit 410 and
controls USB memory access according to an acquired
status . For example , if the USB memory status is “ interrupt ” ,
access to the USB memory requested by the application
program 311 is temporarily suspended .
[0103] Further , for example , if the USB memory status is
“ memory full ” , “ failure ” , “ unknown cause ” , or the like , and
data transfer cannot be continued , data transfer to the USB
memory requested by the application program 311 may be
interrupted or stopped .
[0104] The status notification unit 431 of the status man
agement unit 430 notifies the application program 311 of the
USB memory status .
[0105] Further , the status management unit 430 records
status information of USB memory in an application log
database (DB) 241 .

(4-1) Access Control Unit 410
[0093] When the access control unit 410 receives an
access request from the application program 311 to the USB
device 221 , the access control unit 410 uses a system call of
the OS 331 of the OS layer 330 to cause operation of the
USB interface driver 332 to access the USB interface 211 .
[0094] When USB memory is connected to the USB
interface 211 , the application program 311 may write data to
the USB memory or read data from the USB memory via the
USB access control program 300 .
[0095] When the access control unit 410 accesses USB
memory by using a system call of the OS 331 , specifying an
access path is necessary . When an access path is not stored
in the access path storage area 231 , the access path acqui
sition unit 411 uses the interlayer communication layer
interface 312 on the application layer 310 side to obtain USB
memory access from the OS 331. That is , the access path
acquisition unit 411 is a path information acquisition pro
gram .
[0096] When the access path acquisition unit 411 acquires
a USB memory access path , the access path acquisition unit
411 stores the access path in the access path storage area 231
of the RAM 203. In this way , the access control unit 410 can
use the access path read from the access path storage area
231 in all future access to the USB memory .
[0097] The monitoring unit 412 monitors status of a USB
memory by acquiring information on USB memory status
(hereinafter , also referred to simply as “ status ”) using a
system call of the OS 331. The monitoring unit 412 may
acquire the status from the hardware abstraction layer of the
OS 331. When the monitoring unit 412 detects a problem
(failure) related to the USB memory access , the monitoring
unit 412 notifies the temporary data storage processing unit
420 and the status management unit 430 .
[0098] The monitoring unit 412 may monitor a problem
related to the USB memory access by repeatedly using a
system call of the OS 331 , or may receive a notification from
the OS 331 that a problem related to USB memory access
has occurred , as well as checking what kind of problem has
occurred at the same timing
[0099] In this way , the monitoring unit 412 is a monitoring
program that monitors the status of a USB memory , which
is an external device .

a

[5] USB Access Control Program 300 Operation
[0106] The following describes operation of the USB
access control program 300 , taking a case of transferring
data to and from a USB memory as an example . Of course ,
when writing data to the USB memory , data is transferred
from the image forming device 1 to the USB memory .
Further , when reading data from the USB memory , data is
transferred from the USB memory to the image forming
device 1 .
[0107] The application program 311 requests access to the
USB access control program 300 when transferring data to
and from the USB memory mounted on the USB interface
211 .

[0108] In this case , the USB access control program 300
may provide an API having the same specifications as the
interlayer communication interface 312 on the application
layer side as an API provided to the application program
311 .
[0109] This API receives the access path to the USB
memory and receives requests such as data transfer to and
from the USB memory .
[0110] This makes it possible to write data to the USB
memory and read data from the USB memory . Further , this
API may return a list of files stored in the USB memory , or
may return a list of files belonging to a directory or folder in
the USB memory specified by the access path . Further , files
stored in the USB memory may be deleted in units of files ,
directories , or the like .
[0111] As illustrated in FIG . 5 , when the access control
unit 410 of the USB access control program 300 receives an
access request to the USB memory from the application

a

(4-2) Temporary Data Storage Processing Unit 420
[0100] When the monitoring unit 412 detects a problem
that data transfer cannot continue while transferring data to
USB memory , and the temporary data storage processing

US 2023/0007138 A1 Jan , 5 , 2023
6

program 311 (“ YES ” in S501) , the access path acquisition
unit 411 checks whether an access path to the USB memory
is stored (S502) .
[0112] The access path is a list of directory names sepa
rated by delimiters such as slashes and backslashes accord
ing to a directory structure managed by the OS 331 file
system . The access path may include a file name at the end .
[0113] The access path for accessing the USB memory
may be an absolute path representing a path from the root .
If a current directory is specified , the access path may be a
relative path representing a path from the current directory .
[0114] The USB access control program 300 may receive
specification of the current directory from the application
program 311. Further , if the current directory is stored in the
RAM 203 or the HDD 204 , the stored current directory may
be used .
[0115] As described above , the access path acquisition
unit 411 can store the access path in the access path storage
area 231. In step 5502 , the access path acquisition unit 411
checks whether the access path is stored in the access path
storage area 231 .
[0116] If the access path is not stored (“ NO ” in S503) , the
access path is obtained from the device control layer 320
(5504) . In this case , the access path is requested from the
device control program group 322 via the interlayer com
munication interface 321 on the device control layer 320
side by using the interlayer communication interface 312 on
the application layer 310 side , as described above .
[0117] The device control program group 322 acquires the
access path by using a system call of the OS 331. When the
device control program group 322 acquires the access path ,
the device control program group 322 notifies the access
path acquisitions unit 411 of the access path via the inter
layer communication interface 312 on the application layer
310 side by using the interlayer communication interface
321 on the device control layer 320 side .
[0118] When the access path acquisition unit 411 requests
the access path using the interlayer communication interface
312 on the application layer 310 side , the following three
request methods can be considered . That is , when the API
for acquiring the access path is prepared in the interlayer
communication interface 312 on the application layer 310
side , the access path can be acquired using the API .
[0119] Further , an API may be prepared by the interlayer
communication interface 312 on the application layer 310
side that can transfer data to USB memory without speci
fying an access path (path information - free interface) , for
example an API for acquiring an access path by specifying
a data size for requesting data transfer as a minimum data
size .
[0120] In this case , the access path can be acquired by
analyzing a return value and operation log of the API of the
interlayer communication interface 312 on the application
layer 310 side when data transfer is requested .
[0121] The operation log is managed by the device control
program group 322. The device control program group 322
sends the operation log to the access path acquisition unit
411 of the USB access control program 300 via the interlayer
communication interface 321 on the device control layer 320
side and the interlayer communication interface 312 on the
application layer 310 side .
[0122] In particular , when zero can be specified as the data
size for which transfer is requested , the access path may be
acquired by specifying zero as the data size and requesting

data transfer . The smaller the data size of data requested to
be transferred , the more the processing load on the device
control layer 320 and the OS layer 330 to acquire the access
path can be reduced .
[0123] In this case also , the access path acquisition unit
411 can acquire the access path by analyzing the return value
and the operation log of the system call of the OS 331 when
the data transfer is requested . Further , specification of which
of these acquisition methods is used to acquire the access
path may be received .
[0124] The access path acquisition unit 411 may accept
specification of the access path acquisition method from the
application program 311. Alternatively , specification of the
access path acquisition method may be stored in a pre
defined storage area of the ROM 202 or the HDD 204 , and
the stored specification may be referred to .
[0125] If there are advantages and disadvantages to each
access path acquisition method , the access path acquisition
unit 411 can acquire the access path by receiving specifica
tion and using the desired acquisition method .
[0126] After acquiring the access path , the access path
acquisition unit 411 stores the acquired access path in the
access path storage area 231 (S505) .
[0127] In this way , although it is necessary to use the
interlayer communication interface 312 on the application
layer 310 side in order to acquire the access path for a first
access of the USB memory , second and subsequent accesses
can be performed by acquiring the access path by referring
to the access path storage area 231 .
[0128] Therefore , it is not necessary to use the interlayer
communication interface 312 on the application layer 310
side , and processing overhead for the access path acquisition
unit 411 to acquire the access path is reduced , and therefore
access speed to the USB memory can be improved .
[0129] After storing the USB memory access path in the
access path storage area 231 in 5505 , the access control unit
410 accesses the USB memory using the newly acquired
access path (S506) . If the access path is stored in the access
path storage area 231 (“ YES ” in S503) , the access control
unit 410 accesses the USB memory using the access path
stored in the access path storage area 231 (S506) .
[0130] In this way , the access control unit 410 starts data
transfer to and from the USB memory by directly using a
system call of the OS 331 without going through the device
control layer 320. Further , USB memory status monitoring
starts (S508) . That is , the monitoring unit 412 acquires USB
memory status , and the status management unit 430
executes processing according to the USB memory status .
[0131] Subsequently , if it is detected that a problem related
to access to the USB memory has occurred (“ YES ” in S509) ,
access problem processing (described later) is executed
(S510) . Regarding whether or not a problem has occurred in
accessing USB memory , as described above , the status
management unit 430 may make a judgment according to a
status acquired by the monitoring unit 412 referring to a
return value of a system call of the OS 331 .
[0132] If there is no problem in accessing the USB
memory (“ NO ” in S509) , or if data transfer with the USB
memory is not yet complete after access problem processing
(“ NO ” in S511) , processing proceeds to step 5509 while
continuing data transfer with the USB memory . If data
transfer with the USB memory is complete (“ YES ” in S511) ,

US 2023/0007138 A1 Jan , 5 , 2023
7

processing proceeds to step 5501 and waits for a next request
for access to the USB memory from the application program
311 .
[0133] By doing so , it is possible to directly request the OS
331 for access to the USB memory without going through
the device control layer 320 , and therefore processing load
and processing time for accessing the USB memory can be
reduced .

[6] Access Problem Processing (S510)
[0134] The following describes access problem processing
(S510) executed by the USB access control program 300 .
[0135] In the access problem processing (S510) , the moni
toring unit 412 acquires the status of the USB memory as
problem information (S601) , as illustrated in FIG . 6. For
example , when a system call of the OS 331 used by the
access control unit 410 to transfer data with the USB
memory returns a value according to a problem type , the
monitoring unit 412 can acquire problem information from
the return value .
[0136] Further , if the OS 331 has a system call that can
acquire status information of a USB memory or the USB
interface unit 211 from the USB interface driver 332 , the
monitoring unit 412 may use the system call , acquire status
information of the USB memory and / or the USB interface
unit 211 , and the status management unit 430 may determine
a problem type from the acquired status information .
[0137] The following are example problems that may
occur when transferring data with a USB memory :
[0138] (a) memory size of the USB memory is full ,
[0139] (b) data transfer with the USB is interrupted due an
access interrupt ,
[0140] (c) data cannot be transferred to or from the USB
memory because another task is using the USB memory ,
[0141] (d) the USB memory was removed from the USB
interface 211 during data transfer with the USB memory ,
[0142] (e) the USB memory malfunctioned and therefore
data transfer cannot continue , and
[0143] (f) when there are multiple USB ports , and the
number of the USB devices 221 attached to the USB rts
is too large and power reduction occurs , data transfer with
the USB memory cannot be executed .
[0144] The monitoring unit 412 directly uses a system call
of the OS 331 , and therefore can acquire problem informa
tion even if an API for acquiring information about a
problem that occurred during data transfer with the USB
memory is not prepared in the interlayer communication
interface 312 on the application layer 310 side .
[0145] In this sense , it is not necessary to prepare an API
for acquiring the problem information in the interlayer
communication interface 312 on the application layer 310
side or the interlayer communication interface 321 on the
device control layer 320 side .
[0146] Therefore , the interlayer communication interface
312 on the application layer 310 side and the interlayer
communication interface 321 on the device control layer 320
side can be simplified , and therefore processing loads and
processing times of the interfaces 312 , 321 can be reduced .
[0147] Further , even if an API is provided to the interlayer
communication interface 312 on the application layer 310
side , as long as problem information is acquired using a
system call of the OS 331 , processing load and processing
time for acquisition can be reduced , and therefore problem
information can be acquired promptly .

[0148] When the monitoring unit 412 acquires problem
information , the status management unit 430 notifies the
application program requesting data transfer with the USB
memory of the acquired problem information (S602) . As a
result , the application program 311 may notify a user of the
image forming device 1 of the problem information , or may
redo data transfer to ensure data transfer with the USB
memory .
[0149] As described above , the status management unit
430 records a problem information log in the application log
DB 241. Alternatively or additionally , the application pro
gram 311 may record the problem information received from
the status management unit 430 .
[0150] When both the application program 311 and the
USB access control program 300 record log data , software
operation can be analyzed in more detail than when only one
records the log data . Recording log data in this way is useful
as it helps infer causes of problems by analyzing log data .
[0151] Next , when the access control unit 410 is transfer
ring data to the USB memory (“ YES ” in S603) , the tempo
rary data storage processing unit 420 temporarily stores data
to be transferred to the USB memory in the temporary
storage area 242 (S604) . Subsequently , the monitoring unit
412 uses a system call of the OS 331 to check the USB
memory status (S605) .
[0152] If the acquired USB memory status is not “ ready ” ,
that is , if the status is not one where data transfer to the USB
memory can be accepted (“ NO ” in S606) , processing pro
ceeds to step 5605 , and the monitoring unit 412 again
references the USB memory status (S605) .
[0153] If the USB memory status acquired by the moni
toring unit 412 is “ ready ” , that is , if the status is such that
data transfer to the USB memory can be accepted (“ YES ” in
S606) , the status management unit 430 determines that data
can be transferred to the USB memory , and the access
control unit 410 resumes data transfer to the USB memory
(S607) .
[0154] In this case , the USB access control program 300
first transfers data temporarily stored in the temporary
storage area 242 to the USB memory . Subsequently , the
USB access control program 300 transfers data newly
requested to be transferred to the USB memory by the
application program 311 .
[0155] When data transfer to the USB memory resumes ,
processing returns to the main routine .
[0156] In this way , information such as USB memory
status can be acquired directly from the USB interface driver
of the OS 331 , and therefore operation when a problem
occurs can be controlled similarly to an operation of single
layer architecture . That is , fail - safe control can be performed
in the same way as in a case of single - layer architecture .
[0157] Further , the monitoring unit 412 can acquire the
USB memory status and the status management unit 430 can
be notified of the USB memory status , and therefore the
application layer 310 can use USB access in consideration of
the USB memory status .
[0158] Further , in a case where the application program
311 receives data from a cloud system and transfers the data
to USB memory , and in particular when an amount of data
to be transferred to the USB memory is large , then even
when the USB becomes unable to continue the data transfer ,
the temporary data storage processing unit 420 temporarily
stores data in the temporary storage area 242 , and therefore

US 2023/0007138 A1 Jan. 5. 2023
8

[0170] Further , a conventional technique has been pro
posed for accelerating file exchange and sharing by
exchanging information in a common format between com
puters having difference types of operating system (for
example , see JP 2001-084168) .
(0171] While this conventional technique can share data
location information between computers , it cannot reduce
overhead in abstraction layers of individual computers .
[0172] In contrast , the image forming device 1 according
to the present embodiment relays access from the applica
tion program 311 to an external device by using the access
control program 300 that accesses a lower layer from an
upper layer without passing through an abstraction layer ,
which is a structure different from that of the conventional
techniques described above .
[0173] With such a structure , overhead of an abstraction
layer in software of multi - tier architecture can be avoided
when the application program 311 accesses an external
device .
[0174] Accordingly , efficiency of access to USB memory
from the application program 311 can be improved .
[0175] Further , the access control program 300 can store
path information for accessing the external device , and
therefore overhead for acquiring path information can be
reduced by accessing the external device using stored path
information .
[0176] In this sense as well , efficiency of access to USB
memory from the application program 311 can be improved .

a

the application program 311 can continue data transfer
without being aware of the USB memory status .
[0159] In this way , as long as the status management unit
430 executes fail - safe control when the USB memory cannot
continue data transfer , executing fail - safe control is not
necessary for the application program 311 , and therefore
processing load , development cost , and program size of the
application program 311 can be reduced .
[7] Comparison with Conventional Art
[0160] The following compares the present embodiment
with conventional art .
[0161] Improving access efficiency from the application
program 311 to USB memory in the image forming device
1 is , in other words , improving data writing efficiency in an
information processing device .
[0162] In order to achieve such an object , for example , a
conventional technique has been proposed according to
which , when an access request to a storage device is
generated in an information processing device , access is
processed by selecting either a direct I / O or a buffered I / O
access method , depending on at least one of an attribute of
the application program that requested access and write data
size associated with the access request (for example , see JP
2011-258027) .
[0163] However , if the access method is switched as per
the conventional technique mentioned above , access to a
lower layer in multi - tier architecture has to go through an
abstraction layer , and the overhead due to many interface
calls in the abstraction layer cannot be reduced .
[0164] Further , a conventional technique has been pro
posed that switches data transfer paths between nodes that
constitute a parallel computer , in order to prevent data
transfer by an application program from being hindered or
reduced in performance by data transfer by an operating
system (for example , see JP 2007-156851) .
[0165] According to this conventional technique , paths for
transferring data between nodes can be switched , but when
each node is provided with multi - tier architecture software ,
overhead of abstraction layers when processing application
program data transfer cannot be reduced .
[0166] Further , a conventional technique has been pro
posed that eliminates contention been data and commands at
a time of transfer , by sending data and commands for
controlling data transfer between a file server and network
storage by separate paths that are not between nodes that
make up a parallel computer (for example , see JP 2004
220216) .
[0167] According to this conventional technique , applica
tion programs can transfer data and commands between file
storage and network storage via separate routes , but when
the file server is provided with multi - tier architecture soft
ware , overhead of abstraction layers when transferring data
cannot be reduced .
[0168] Further , a conventional technique has been pro
posed to execute 1/0 processing efficiently by directly
exchanging data between 1/0 devices such as network
adapters and disk controllers , thereby minimizing use of a
processor , main storage , and system bus resources of a
server computer (for example , see JP 2000-047952) .
[0169] According to this conventional technique , I / O pro
cessing can be made more efficient , but software processing
in an abstraction layer up to I / O processing cannot be made
more efficient .

[8] Modifications
[0177] Although the present disclosure has provided
description of the embodiments above , the present disclo
sure is of course not limited to the embodiments described
above , and the following modifications can be implemented .
[0178] (8-1) According to at least one embodiment , access
problem processing (S510) is executed when a USB
memory problem is detected , but the present disclosure is of
course not limited to this , and the following modifications
are possible .
[0179] For example , as illustrated by a double - headed
arrow 701 in FIG . 7 , the monitoring unit 412 of the USB
access control program 300 may acquire USB memory
status using the interlayer communication interface 312 on
the application layer 310 side , and notify the status man
agement unit 430 .
[0180] That is , as illustrated in FIG . 8 , when transferring
data from the application program 311 to the USB memory
(“ YES ” in S801) , USB memory status is acquired via the
device control layer 320 by using the interlayer communi
cation interface 312 on the application layer 310 side (S802) .
[0181] When using the interlayer communication interface
312 on the application layer 310 side , the access control unit
410 may acquire the USB memory status in parallel with
data transfer to or from the USB memory using a system call
of the OS 331 .
[0182] USB memory status that can be acquired this
way is , for example , USB memory storage capacity , an
amount of data stored in USB memory , information on
management and control of USB memory , USB memory
state information , and the like .
[0183] By doing so , for example as illustrated by the
double arrow 702 in FIG . 7 , when writing a large amount of
data to USB memory , the USB memory storage capacity and
an amount of data stored in the USB memory are referenced ,

9

US 2023/0007138 A1 Jan , 5 , 2023
9

a

and therefore it is possible to detect when the USB memory
is approaching full capacity before the USB memory
becomes full .
[0184] Subsequently , the monitoring unit 412 notifies the
status management unit 430 of the acquired status (S803) .
Subsequently , if data transfer to the USB memory is not
complete (“ NO ” in S804) , processing proceeds to step 5802
and the above processing is repeated . If data transfer to the
USB memory is completed (“ YES ” in S804) , processing
proceeds to step 5801 and waits for a next transfer .
[0185] In this way , the monitoring unit 412 can acquire
USB memory status and notify the status management unit
430 before a USB memory problem occurs .
[0186] Accordingly , in the main routine of the USB access
control program 300 , as illustrated in FIG . 9 , the status
management unit 430 determines whether or not there is a
possibility that a problem may occur in USB memory
access , and when there is a possibility (“ YES ” in S908) ,
access problem processing (1909) can be executed even if a
problem has not yet actually occurred .
[0187] For example , when an instruction to transfer large
amount of data from a high capacity storage such as a cloud
storage 710 to a USB memory is received , then even if no
problem has occurred with the USB memory , the monitoring
unit 412 can acquire the USB memory status so that the
status management unit 430 can acquire free capacity of the
USB memory .
[0188] As a result , if it is determined that free capacity of
the USB is smaller than an amount of data the instruction
indicates is to be transferred , the status management unit 430
can warn the source of the instruction . By receiving a
warning , a user could replace the USB memory that has
insufficient free space with a USB memory that has sufficient

9

full memory state occurs can , for example , be executed as
described according to at least one embodiment above .
[0194] (8-2) According to at least one embodiment , access
from the application program 311 to USB memory con
nected to the image forming device 1 is made efficient , but
the present disclosure is of course not limited to this .
[0195] A USB storage other than a USB memory , such as
a USB hard disk , may be connected to the USB interface 211
and accessed from the application program 311 .
[0196] Further , an external authentication device such as a
card reader or biometric authentication device , or an image
capture device (camera) for capturing still or moving images
may be connected to the USB interface unit 211 and
accessed from the application program 311 .
[0197] Such external devices other than a USB memory
may be connected to the USB interface 211 and accessed
from the application problem 311 .
[0198] Further , the image forming device 1 may be pro
vided with an interface conforming to a standard other than
USB , and the present disclosure is also applicable to a case
where an external device connected to an interface conform
ing to a standard other than USB is accessed from the
application program 311 , and improves access efficiency in
such a case .
[0199] In this case , a dedicated access control program
may be used instead of the USB access control program 300 .
[0200] Examples of external devices connected to an
interface conforming to a standard other than USB include
Secure Digital (SD) memory cards and multimedia cards , for
example .
[0201] (8-3) According to at least one embodiment , access
from the application program 311 to an external device
connected to the image forming device 1 is made efficient ,
but the present disclosure is of course not limited to this .
[0202] For example , when wanting to control access to
resources and devices at timing from an application , or
when wanting to perform an image adjustment at level not
normally used , from an application , or the like , if the
interlayer communication interface 312 on the application
layer 310 side or the interlayer communication interface 321
on the device control layer 320 side is modified to add
functions , the advantage of using the device control layer
320 as an abstraction layer is impaired .
[0203] In this case as well , by using the access control
program 300 that directly uses a system call of the OS 331
to control access to resources and devices at a timing from
an application , and to perform image adjustment at a level
not normally used from an application , access efficiency can
be improved without compromising the advantages of using
the device control layer 320 as an abstraction layer be not
going through the device control layer 320 .
[0204] Therefore , for example , even if the interlayer com
munication interface 312 on the application layer 310 side is
not provided with an interface for notifying of a problem
related to the image forming device 1 or an external device ,
the application program 311 can execute a control for a
fail - safe .
[0205] (8-4) According to at least one embodiment , the
control unit 410 is a control board that has a single CPU , but
the present disclosure is of course not limited to this , and
may be a control board that has multiple CPU , for
Further , the control unit 410 may be divided into multiple
circuit boards .

free space .
[0189] Further , even if the instruction to transfer data is
maintained without replacing the USB memory , despite the
warning , the status management unit 430 can acquire free
capacity of the USB memory due to the monitoring unit 412
acquiring the USB memory status even if no problem has
occurred with the USB memory .
[0190] As a result , when the status management unit 430
detects that the USB memory is approaching a full memory
state , then before the USB memory is actually full , the status
management unit 430 can warn the source of the instruction
to transfer data that the USB memory attached to the image
forming device 1 has insufficient capacity , and that data
transfer cannot be continued .
[0191] On receiving this warning , a user could remove the
USB memory that is approaching a full memory state from
the image forming device 1 , and install a USB memory with
sufficient free space , such that untransferred data can be
transferred to the new USB memory . Accordingly , the state
of the USB memory becoming full can be avoided .
[0192] Further , in this case , if data transfer to the USB
memory is temporarily suspended and data to be transferred
to the USB memory is stored in the temporary storage area
242 , then data transfer from the cloud storage to the appli
cation program 311 can continue regardless of the status of
the USB memory .
[0193] If the source of the instruction to transfer data
instructs that data transfer should continue without replacing
the USB , despite the warning that the USB memory is
approaching a full memory state , then a full memory state
occurs , which a USB memory problem . Processing when a

a

example .

US 2023/0007138 A1 Jan. 5. 2023
10

9

2

2

[0206] Regardless of hardware structure of the control unit
410 , effects can be achieved by application of the present
disclosure .
[0207] (8-5) According to at least one embodiment , the
image forming device 1 is a multi - function peripheral , but
the present disclosure is of course not limited to this . Instead ,
the image forming device 1 may be a single function device
such as a printer , a scanner , a photocopier , a facsimile
machine , or the like .
[0208] Similar effects can be achieved by applying the
present disclosure , regardless of the type of the image
forming device 1 .
[0209] (8-6) According to at least one embodiment , an
image forming device is described , but the present disclo
sure is not limited to this . For example , the present disclo
sure is applicable to a processing method executed by an
image forming device . Further , the present disclosure is
applicable to a program that causes a computer to execute
such a processing method .
[0210] Further , a program according to the present disclo
sure can be recorded on various computer - readable record
ing media , such as magnetic tape , magnetic disks such as
flexible disks , optical recording media such as DVD - ROM ,
DVD - RAM , CD - ROM , CD - R , MO , PD , flash memory
recording media , and the like , produced or transferred in the
form of such recording media , and may be transmitted and
supplied via various wired and wireless networks including
the Internet , broadcasting , telecommunication lines , satellite
communications , and the like .
[0211] (8-7) The present disclosure may be realized as any
combination of the embodiments and modifications
described above .
[0212] Although embodiments of the present invention
have been described and illustrated in detail , the disclosed
embodiments are made for purposes of illustration and
example only and not limitation . The scope of the present
invention should be interpreted by terms of the appended
claims
What is claimed is :
1. An image forming vice to which an external device

is detachably attached , the image forming device compris
ing :

an interface that is able to attach to the external device ;
a storage that stores multi - tier architecture software ; and
a computer that executes the multi - tier architecture soft

ware ,
the multi - tier architecture software comprising :
a lower layer that includes an operating system (OS) that
manages the external device attached to the interface ;

an upper layer that includes an application program that
accesses the external device via the lower layer ; and

an abstraction layer that intervenes between the lower
layer and the upper layer and hides implementation of
the lower layer from the upper layer , wherein

the upper layer includes an access control program ,
the access control program :

is able to save path information to access the external
device to the storage , and

relays access from the application program of the upper
layer to the external device by accessing the lower
layer without going through the abstraction layer and
accessing the external device using the path infor
mation .

2. The image forming device of claim 1 , wherein the
abstraction layer includes a device control program .

3. The image forming device of claim 1 , wherein the
access control program includes a path information acqui
sition program that is executed by the computer to acquire
path information via the abstraction layer .

4. The image forming device of claim 3 , wherein the path
information acquisition program is executed by the com
puter to acquire the path information when the access
control program makes the application program access the
external device and the path information is not already
stored .

5. The image forming device of claim 3 , wherein the
abstraction layer provides the upper layer with a path
information - free interface for accessing the external device
from the upper layer without receiving specification of path
information from the upper layer .

6. The image forming device of claim 5 , wherein
the path information - free interface provides path infor

nation to the upper layer accessing the external
device from the upper layer , and

the path information acquisition program is executed by
the computer to acquire path information provided by
accessing the external device using the path informa
tion - free interface .

7. The image forming device of claim 6 , wherein the path
information acquisition program is executed by the com
puter to acquire path information by transferring a minimum
amount of data required for the path information - free inter
faces to provide path information to the external device .

8. The image forming device of claim 7 , wherein the
minimum amount of data is empty data .

9. The image forming device of claim 1 , wherein the
upper layer includes a monitoring program that is executed
by the computer to acquire a status of the external device .

10. The image forming device of claim 9 , wherein the
monitoring program is executed by the computer to access
the lower layer to acquire the status of the external device
without going through the abstraction layer .

11. The image forming device of claim 10 , wherein the
monitoring program is executed by the computer to acquire
the status of the external device when a failure occurs while
accessing the external device .

12. The image forming device of claim 10 , wherein the
monitoring program is executed by the computer to acquire
the status of the external device from a hardware abstraction
layer of the OS .

13. The image forming device of claim 9 , wherein the
monitoring program is executed by the computer to access
the lower layer via the abstraction layer to acquire the status
of the external device .

14. The image forming device of claim 13 , wherein the
monitoring program is executed by the computer to acquire
the status of the external device while accessing the external
device .

15. The image forming device of claim 9 , wherein the
upper layer includes a status management program that is
executed by the computer to control access to the external
device according to the status of the external device acquired by the monitoring program .

16. The image forming device of claim 15 , wherein if the
status indicates that access to the external device has been

a

US 2023/0007138 A1 Jan. 5 , 2023
11

a

interrupted , the status management program is executed by
the computer to temporarily put access to the external device
into a standby state .

17. The image forming device of claim 16 , wherein
the upper layer includes a temporary storage program that
when executed by the computer , when the status man
agement program temporarily puts access to the exter
nal device into the standby state and the access is for
data transfer to the external device , causes the data to
be transferred to be temporarily stored , and

transfers the temporarily stored data to the external device
when the status management program ends the standby
state .

18. The image forming device of claim 15 , wherein the
status management program is executed by the computer to
interrupt or stop access to the external device if the status
indicates that the external device has a full memory , is faulty ,
or has a problem of unknown cause .

19. A program executed by a computer in an image
forming device to which a device is detachably attached , the
image forming device including a storage , the program
having multi - tier architecture comprising :

a lower layer that includes an operating system (OS) that
manages the external device when attached ;

an upper layer that includes an application program that
accesses the external device via the lower layer ; and

an abstraction layer that intervenes between the lower
layer and the upper layer and hides implementation of
the lower layer from the upper layer , wherein

the upper layer causes the computer to execute :
a saving step of saving path information to access the

external device to the storage ; and
an access control step of relaying access from the

application program of the upper layer to the external
device by accessing the lower layer without going
through the abstraction layer and accessing the exter
nal device using the path information .

