
US 20220366071A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0366071 A1

ANDERSON et al . (43) Pub . Date : Nov. 17 , 2022

Publication Classification (54) CLOUD - BASED WHITEBOX NODE
LOCKING

(71) Applicant : ARRIS Enterprises LLC , Suwanee ,
GA (US)

(72) Inventors : Lex Aaron ANDERSON , Auckland
(NZ) ; Rafie SHAMSAASEF , San
Diego , CA (US) ; Alexander
MEDVINSKY , San Diego , CA (US)

(51) Int . Ci .
G06F 21/62 (2006.01)
GO6F 21/60 (2006.01)
G06F 21/44 (2006.01)
H04L 9/08 (2006.01)

(52) U.S. CI .
CPC G06F 21/6227 (2013.01) ; G06F 21/602

(2013.01) ; G06F 21/44 (2013.01) ; H04L 9/085
(2013.01) ; H04L 2209/34 (2013.01) ; H04L

2209/16 (2013.01) (73) Assignee : ARRIS Enterprises LLC , Suwanee ,
GA (US)

(21) Appl . No .: 17 / 722,201

(22) Filed : Apr. 15 , 2022

(57) ABSTRACT

A secure cloud - based node - locking service with built - in
attack detection to eliminate fuzzing , cloning and other
attacks is disclosed . White - box base files are securely stored
on the cloud service and are not vulnerable to accidental
leakage . A secure cloud - based dynamic secret encoding
service reduces the risk of exposure of unprotected secrets
and other sensitive data .

Related U.S. Application Data
(60) Provisional application No. 63 / 181,670 , filed on Apr.

29 , 2021 .

BUILD - TIME 102 CLOUD 104 RUNTIME (NOT SECURE) 106

ENCRYPTED BUILD DATA
+ BASE FILE
* UNLOCKED LUTS
+ DEVELOPER CREDENTIALS

DEVELOPER PERMISSIONS
408

410 - 406
BUILD BUILD ID REGISTRATION

414B
FROM DEPLOYMENT 404

402
CLOUD

WHITE - BOX TOOLCHAIN
418

424
BUILD DATA

+ BUILD ID
+ BASE FILE
+ UNLOCKED LUTS

DEVICE

+ FINGERPRINT

412 422 416

NODE LOCKING LOCK REQUEST WHITE - BOX IMPLEMENTATION
BUILD ID

+ BLANK LUTS 3

414A -
TO DEPLOYMENT

426
NODE DATA

+ BUILD ID
+ FINGERPRINT

428
WHITE - BOX IMPLEMENTATION
+ BUILD ID
+ NODE - LOCKED LUTS

432 430
434 SECRET

ENCODING SECRET REQUEST
436

SECRETS
NODE ENCODED SECRETS

Patent Application Publication Nov. 17 , 2022 Sheet 1 of 16 US 2022/0366071 A1

100

104
108

CLOUD
SERVICE

DATA
PROVIDER

102 106

BUILD - TIME
DEVICE

RUN - TIME
DEVICE

FIG . 1

Patent Application Publication Nov. 17 , 2022 Sheet 2 of 16 US 2022/0366071 A1

ORIGINAL
ALGORITHM

INPUT

STATIC WHITE - BOX
IMPLEMENTATION

INPUT
S

fi f16 . , S)
T1

Y

-1

f2 T2 € 26. , S)
1

Y2
|

|
1 1

-1
n - 1

To
fn fnl . , S)

OUTPUT OUTPUT

STATIC WHITE - BOX
IMPLEMENTATION WITHOUT APPLICATION BINDING

FIG . 2A

Patent Application Publication Nov. 17 , 2022 Sheet 3 of 16 US 2022/0366071 A1

ORIGINAL
ALGORITHM

INPUT

DYNAMIC WHITE - BOX
IMPLEMENTATION

(INPUT) S A (S)

!
1

I

pi ?
1

fy f1

02
1

02 -1 s pa

f2 T2 f2

1 03
1 1

1
1
1 1 1

1

1
1
1
1
1

en sna 8 ot
fn fn

OUTPUT OUTPUT
DYNAMIC WHITE - BOX

IMPLEMENTATION WITHOUT APPLICATION BINDING

FIG . 2B

--
-

102 LL . BUILD - TIME

-

-
--
—

1

301 de SERVER
-

-
-
-

--
-
-

1

106 J RUNTIME (NOT SECURE)

--

-
--

T1

1 +

ce
1
1
1

-
--
1

1
-
1

I

302

308

Patent Application Publication

WHITE - BOX SOURCE

NODE

+ FINGERPRINT

304

310

WHITE - BOX TOOLCHAIN

NODE LOCKING

2

305

312

DEPLOYMENT

WHITE - BOX IMPLEMENTATION

WHITE - BOX IMPLEMENTATION

314

+ UNLOCKED LUTS

+ NODE - LOCKED LUTS

1

Nov. 17 , 2022 Sheet 4 of 16

NODE ID

+ NODE ID

306

316

320
1

WHITE - BOX BASE - FILE

SECRET ENCODING

NODE ENCODED SECRETS

3

319

SECRETS

US 2022/0366071 A1

FIG . 3

W

W

m

w

NIN

BUILD - TIME 102

CLOUD 104

RUNTIME (NOT SECURE) 106

ENCRYPTED BUILD DATA

DEVELOPER PERMISSIONS

|

408

+ BASE FILE + UNLOCKED LUTS + DEVELOPER CREDENTIALS

410

406

|

Patent Application Publication

BUILD ID

BUILD REGISTRATION

414B

404

FROM DEPLOYMENT

I

402

1

|

CLOUD WHITE - BOX TOOLCHAIN

418

424

BUILD DATA
+ BUILD ID + BASE FILE + UNLOCKED LUTS

DEVICE

1

+ FINGERPRINT

422

1 1 1

416

I

412
WHITE - BOX IMPLEMENTATION
+ BUILD ID + BLANK LUTS

NODE LOCKING

LOCK REQUEST

Nov. 17 , 2022 Sheet 5 of 16

1

3

2

428

WHITE - BOX IMPLEMENTATION

414A
TO DEPLOYMENT

426

NODE DATA
+ BUILD ID + FINGERPRINT

1 1

1

+ BUILD ID
+ NODE - LOCKED LUTS

1

432

430

434

SECRET ENCODING

SECRET REQUEST

4

436

SECRETS

NODE ENCODED SECRETS

1 L

US 2022/0366071 A1

.

FIG . 4

BUILD - TIME
DEVICE ~ 102

CLOUD SERVICE 104

RUN - TIME
DEVICE 106

502

1 1

GENERATE WHITEBOX IMPLEMENTATION

Patent Application Publication

504

506

XMIT REGISTRATION REQUEST

RCV REGISTRATION REQUEST
BASE FILE UNLOCKED LUTS CREDENTIALS 1 1

508

REGISTER BASE FILE AND UNLOCKED LUTS

5127

Nov. 17 , 2022 Sheet 6 of 16

510

RETURN SURROGATE WHITEBOX IMPLEMENTATION

RCV SURROGATE WHITEBOX IMPLEMENTATION
BUILD ID BLANK LUTS

516

1 1

514

DEPLOY SURROGATE WHITEBOX IMPLEMENTATION

RCV SURROGATE WHITEBOX IMPLEMENTATION
A

BUILD ID BLANK LUTS

US 2022/0366071 A1

FIG . 5A

BUILD - TIME
DEVICE 102

CLOUD SERVICE 104

RUN - TIME
DEVICE- 106

520

A

GENERATE RUNTIME DEVICE FINGERPRINT

Patent Application Publication

524

522

RCV LOCK REQUEST

XMIT LOCK REQUEST
BUILD ID FINGERPRINT

526

GEN LOCKED WHITEBOX IMPLEMENTATION

B

528

530

Nov. 17 , 2022 Sheet 7 of 16

XMIT LOCKED WHITEBOX IMPLEMENTATION

RCV LOCKED WHITEBOX IMPLEMENTATION
BUILD ID NODE LOCKED LUTS

534

1

532

C

ENCODE SECRET

1 BUILD ID

REQUEST SECRET

US 2022/0366071 A1

FIG . 5B

BUILD - TIME
DEVICE - 102

CLOUD SERVICE104

RUN - TIME
DEVICE 106

C

Patent Application Publication

538

540
9

1

XMIT NODE ENCODED SECRET

RCV NODE ENCODED SECRET
1

1 1 | 1

INPUT
C (FINGERPRINT)

542

Nov. 17 , 2022 Sheet 8 of 16

1

GEN OUTPUT OUTPUT

1 1

1 |

US 2022/0366071 A1

FIG . 5C

Patent Application Publication Nov. 17 , 2022 Sheet 9 of 16 US 2022/0366071 A1

PACKAGE WHITE - BOXINODE - LOOKING (STATIC MODEL)]
WHITE - BOX

LOOKUP TABLES ? INSTALLATION
OR FIRST - RUN

NODE TABLE
ENCODING

1

I

1

DEVICE - DEPENDENT
LOOKUP TABLES DEVICE

WHITE - BOX
IMPLEMENTATION

Å EXECUTION
FIG . 6A

PACKAGE WHITE - BOXI (NODE - LOOKUP PROTOCOL (DYNAMIC MODEL)]
WHITE - BOX

LOOKUP TABLES

INSTALLATION
OR FIRST - RUN

NODE ID 11 NODE TABLE
ENCODING

1

1
SECRET NODE
ENCODING

DEVICE - DEPENDENT
LOOKUP TABLES DEVICE

SECRET DYNAMIC WHITE - BOX
IMPLEMENTATION

1

ANODE - ENCODED
SECRET

SERVER CLIENT EXECUTION

FIG . 6B

Patent Application Publication Nov. 17 , 2022 Sheet 10 of 16 US 2022/0366071 A1

STATIC WHITE - BOX
IMPLEMENTATION

INPUT

NODE - ENCODED
STATIC WHITE - BOX
IMPLEMENTATION

INPUT

0762,64)
1

1

u1
f16 . , S)

TH TI
Y1

1 T2

1
1
1

021. , C2)
1

1

?? U2

T2 € 21. ,) ? T2 1 2

22 113 T3

V 1
1
L onl..on

1

27 n - 1 un

Th
fol . , S) Tn I

OUTPUT OUTPUT

FIG . 7A

Patent Application Publication Nov. 17 , 2022 Sheet 11 of 16 US 2022/0366071 A1

Of (INPUT) A (S) Ty (Of (INPUT) 260 (S))

(C)
1
1
!
1 1 1 si P1 41 ri

f1 TH

82 T2
t
1

O2l . , C2)
1
1

-1 -1 82 ? U2 ?

72 ? T2 2

83 T3

1

Onl..on
!

-1 -1 ? pina un

TO in Th Tn

On + 1 Tinti

1 - 1 -1 OUTPUT = on +7 (9) OUTPUT = 8 + 7 (8nt7 () Tn + .

FIG . 7B

Patent Application Publication

In
? (O

ALGORITHM 1 UNIFORM PPT STATIC WHITE - BOX NODE - LOCKING ALGORITHM WITHOUT APPLICATION BINDING .

REQUIRE : { Ty , ... , Tn) , m , n

1 : An + 14e

SET OUTPUT NODE - ENCODING TO IDENTITY PERMUTATION · 802

2 : FOR EACH n 2j2 1 DO

3 :

CitN

GET AN ARBITRARY CONFIGURATION SAMPLE 804

4 : IF j = 1 THEN

5 :

SET TO IDENTITY PERMUTATION

My

e

806

6 ELSE
7 :

ST

GET RANDOM PERMUTATION

Mi

808

8 : END IF

9 :

?

E

SELECT A RANDOM 0 ; €

??? - 810

10 :

n't -4,099

COMPUTE 7 ; BY COMPOSITION — 812

11 : FOR EACH 1 sism DO

12 : T

APPLY HAND T6j + 1TO T ; - 814

'

13 : END FOR 14 : END FOR

-1

Nov. 17 , 2022 Sheet 12 of 16

1,34j + 1 (T ; 140

, Cp ily

15 : RETURN { TA ... , Th } , { Oq ... , On } , C = { 4 ... cm } , 717 , Ant1

FIG . 8A - 1

US 2022/0366071 A1

Patent Application Publication Nov. 17 , 2022 Sheet 13 of 16 US 2022/0366071 A1

SET OUTPUT NODE - ENCODING
TO IDENTITY PERMUTATION 802

GET AN ARBITRARY
CONFIGURATION SAMPLE 804

SET TO IDENTITY PERMUTATION ? 806
GET RANDOM PERMUTATION 808

SELECT A RANDOM ? ; ?? 810

COMPUTE ; BY COMPOSITION " j 812

APPLY M ; AND Tj + 1 TO T ; 814

FIG . 8A - 2

1 : tt n + 1

Patent Application Publication

.

-ST

ALGORITHM 2 UNIFORM PPT DYNAMIC WHITE - BOX NODE - LOCKING ALGORITHM WITHOUT APPLICATION BINDING .

} , m n

REQUIRE : { T1 , ...

, Tn) , m , n

e

-

SET OUTPUT NODE - ENCODING TO IDENTITY PERMUTATION 852

2 : FOR EACH n 2 12 1 DO

3 : 2 ; ST

GENERATE RANDOM SECRET NODE - ENCODING 853

4 :

-N

??

GET AN ARBITRARY CONFIGURATION SAMPLE 854

5 : IF j = 1 THEN

6

SET TO IDENTITY PERMUTATION - 856

Mj

7 ELSE
8

GET RANDOM PERMUTATION - 858

" j

9 : END IF
10 :

?

860

SELECT A RANDOM 0 ; €

? ; ?? -

Oj 1

11 :

TE ;

862

4 ; 0 0 ; (C ;)

Tj COMPUTE T ; BY COMPOSITION

12 : FOR EACH 1 < h3 m DO

13

FOR EACH 1 sism DO

14 :

APPLY M ; AND Tj + 1 TO T ; – 864

15 : END FOR

16 :

END FOR
17 : END FOR

18 : RETURN { TI ... , Th } , { 07 ... on } , Ty , anty , C = { C7f ... , Cn }

a = { 24 , ...

, an }

Nov. 17 , 2022 Sheet 14 of 16

[

=

IT I , i = 7j +1 (17 ;] 44 ; () , aj " ()

7

US 2022/0366071 A1

FIG . 8B - 1

Patent Application Publication Nov. 17 , 2022 Sheet 15 of 16 US 2022/0366071 A1

GENERATE RANDOM
EXTERNAL OUTPUT NODE - ENCODING 852

GET AN ARBITRARY
CONFIGURATION SAMPLE 854

GET A RANDOM PERMUTATION 858

SELECT A RANDOM ? ; ?? 860

COMPUTE 1 : BY COMPOSITION j 862

APPLY # 4 AND 7j + 7 TOT M ; J 864

FIG . 8B - 2

Patent Application Publication Nov. 17 , 2022 Sheet 16 of 16 US 2022/0366071 A1

900
902

MEMORY

904A 904B

GENERAL
PURPOSE

PROCESSOR

SPECIAL
PURPOSE

PROCESSOR

906 930
MEMORY

908 910
920

OS COMPUTER
PROGRAM

924
918A 912

STORAGE
GUI

MODULE COMPILER
928

PRINTER

922 916 914

DOG 918B GUI POINT
DEV . KEYBRD

FIG . 9

US 2022/0366071 Al Nov. 17 , 2022
1

CLOUD - BASED WHITEBOX NODE
LOCKING

communicatively coupled to a memory storing processor
instructions for performing the foregoing steps .

BACKGROUND OF THE INVENTION BRIEF DESCRIPTION OF THE DRAWINGS

1. Field of the Invention

[0001] The present invention relates to systems and meth
ods for receiving and processing data , and in particular to a
system and method for enabling devices to securely process
received data .

2. Description of the Related Art a

[0002] The core idea of white - box cryptography is to
mathematically alter a program so that the program directly
operates on encrypted and encoded secrets without these
ever being present in cleartext form . Since these secrets are
never present in cleartext form , the attacker can have com
plete visibility and control of the application and still not be
able to make use of or gain any value from them .
[0003] White - box node - locking restricts the operation of a
white - box implementation to a specific node to mitigate
code - lifting attacks , which is where the implementation is
moved from an authorized node to an unauthorized one .
However , conventional node - locking does not eliminate all
possible attacks . For example , node locking carried out on
insecure nodes is vulnerable to cloning , fuzzing and other
attacks such as side - channel attacks , tampering and reverse
engineering . Further , white - box base - files (private keys)
may be inadvertently leaked from the build environment ,
allowing an attacker to circumvent the white - box protection
altogether . Also , secret encoding for specific node - locked
nodes requires additional server infrastructure that develop
ers may not be able to implement securely .

[0005] Referring now to the drawings in which like ref
erence numbers represent corresponding parts throughout :
[0006] FIG . 1 is a diagram depicting a secure data distri
bution system ;
[0007] FIG . 2A is a block diagram showing the functional
representation of an original algorithm , and a static white
box implementation ;
[0008] FIG . 2B is a block diagram showing the functional
representation of an original algorithm , and a dynamic
white - box implementation of the original ;
[0009] FIG . 3 is a diagram presenting a top level flow of
the process of locking a whitebox implementation to a node
algorithm ;
[0010] FIG . 4 is a diagram presenting an overview of one
embodiment of how cloud - based white - box node - locking
can be performed ;
[0011] FIG . 5A - 5C are diagrams presenting exemplary
process steps for performing node locking a whitebox imple
mentation to enable secure generation of an output of the
run - time device ;
[0012] FIG . 6A is a diagram showing the structure of the
node - locking for a static white - box implementation of an
original program ;
[0013] FIG . 6B is a diagram showing the structure of the
node locking for a dynamic whitebox implementation of an
original program ;
[0014] FIG . 7A is a diagram showing a block - level func
tional form of the static white - box implementation of the
original program implementing the original algorithm and in
block - level functional form the resulting node - locked ver
sion of the white - box implementation of the original pro
gram / algorithm ;
[0015] FIG . 8A - 1 is a diagram illustrating representative
pseudocode for carrying out the function as represented in
FIG . 7A ;
[0016] FIG . 8A - 2 shows a flow diagram of the general
steps carried out by the pseudo code , and these steps are
shown in the pseudo code ;
[0017] FIG . 8B - 1 is a diagram illustrating representative
pseudocode for carrying out the function as represented in
FIG . 7B ;
[0018] FIG . 8B - 2 is a flow diagram of the general steps
carried out by the pseudo code , and these steps are shown in
the pseudo code ; and
[0019] FIG . 9 is a diagram illustrating an exemplary
computer system that could be used to implement elements
of the present invention .

SUMMARY OF THE INVENTION

a

a

[0004] To address the requirements described above , the
present invention discloses a method and apparatus for
enabling secure generation of an output in a run - time device .
In one embodiment , the method comprises receiving a
request to register a whitebox implementation for generating
the output in a cloud service from a build - time device , the
request comprising a base file and a list of unlocked white
box look up tables (LUTs) ; registering the base file and the
list of unlocked whitebox LUTs in the cloud service ; return
ing a surrogate whitebox implementation having a build
identifier (ID) and a plurality of blank LUTs to the build
time device ; receiving lock request from the run - time device
upon execution of the surrogate whitebox implementation ,
the lock request comprising a fingerprint of the run - time
device determined by the run - time device upon first execu
tion of the surrogate whitebox implementation and the build
identifier ; generating a locked whitebox implementation
according to the received fingerprint of the first device and
the build identifier , the locked whitebox implementation
having a plurality of run - time device specific locked white
box LUTs ; transmitting the run - time device specific locked
whitebox LUTs from the cloud service to the run - time
device ; receiving a request for a secret from the run - time
device , the request including the build ID ; and transmitting
an encoded secret , the encoded secret generated by applying
the run - time device specific node locking transformations to
the secret . Another embodiment is evidenced by a processor

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0020] In the following description , reference is made to
the accompanying drawings which form a part hereof , and
which is shown , by way of illustration , several embodiments
of the present invention . It is understood that other embodi
ments may be utilized and structural changes may be made
without departing from the scope of the present invention .

US 2022/0366071 A1 Nov. 17 , 2022
2

Overview
71

erated instead . In this process , the original program has
functions / operations f1 , 2 , ... , f , in an original algorithm , f2
each of which is encoded as a lookup - table T1 , T2 , ... , Tn
in the dynamic white - box implementation of that algorithm
(original program) . The encodings are generated a sequence
of random bijections , 91 , 9 , , on that are applied to the
inputs and output of each operation , where @ (S) represents
an encoded secret (e.g. a secret kg) , which is provided
dynamically to the white - box implementation . The bijec
tions d , and 87 , are referred to as external encodings and
relate the application .

2 , ... ,

n + 1

[0021] A secure cloud - based node - locking service with
built - in attack detection to eliminate fuzzing , cloning and
other attacks is disclosed below . White - box base files are
securely stored on the cloud service and are not vulnerable
to accidental leakage . A secure cloud - based dynamic secret
encoding service reduces the risk of exposure of unprotected
secrets and other sensitive data .
[0022] FIG . 1 is a diagram depicting a secure data distri
bution system 100. The system comprises a build - time
device 102 that generates data and instructions for distribu
tion to one or more communicatively coupled run - time
devices 106. The run - time device (s) 106 use the instructions
to convert data provided from a communicatively coupled
data provider 108 to generate output that can be used , for
example , to decode or decrypt other data . Data may be
provided from / to the devices 102 , 106 and the data provider
108 via cloud service 104 , described more fully below . In
one embodiment , the run - time device 106 is a set top box
(STB) or similar device for decrypting encrypted media
content using one or more keys generated from an encrypted
keys obtained from the data provider 108 using the data and
instructions provided to the run - time device 106 by the
build - time device 102 .

Node Locking

Whitebox Cryptography
[0023] The core idea of white - box cryptography is to
mathematically alter a program so that the program directly
operates on encrypted and encoded secrets without these
ever being present in cleartext form . Since these secrets are
never present in cleartext form , the attacker can have com
plete visibility and control of the application and still not be
able to make use of or gain any value from them . White
boxes can be static or dynamic . Table - based white - box
transformations compose random bijections with an appli
cation's functions . These compositions are emitted as
lookup tables (LUTS) so as to conceal the underlying secrets
and other state values in the white - box implementation .
[0024] FIG . 2A is a block diagram showing the functional
representation of an original algorithm , and a static white
box implementation . Static whiteboxes have fixed secrets
that are hard coded at build - time (e.g. when the whitebox is
built) . Original program comprises functions / operations fi ,
f2 , ... , · , Sn in an original algorithm (left hand side of FIG .
2A) along with a fixed secret S (such as a key) . The program
takes (encrypted) input data flows and secret key S and uses
those inputs to generates (decrypted) output data flows . The
(static) white - box implementation of the original program is
generated by taking the functions f1 , f2 , ... , fn and the
secret key S and encoding them as a lookup - tables (LUTS)
T1 , T2 , ... , T , in the static white - box implementation of that
algorithm (defined by the original program code) (right hand
side of FIG . 2A) . The encodings are generated as a sequence
of random bijections , Y? , Y2 , ... , Yn - 1 . This provides some
degree of protection but is still vulnerable to code - lifting
attacks .
[0025] FIG . 2B is a block diagram showing the functional
representation of an original algorithm , and a dynamic
white - box implementation of the original algorithm .
Dynamic whiteboxes can receive encoded secrets at run
time . The alternative whitebox implementation illustrated in
FIG . 2B is a dynamic white - box implementation (without
application binding) of the original program could be gen

[0026] White - box node - locking restricts the operation of a
white - box implementation to a specific node to mitigate
code - lifting attacks , which is where the implementation is
moved from an authorized node to an unauthorized one .
[0027] A node can refer to a hardware device , container
ized environment , virtual machine instance or any combi
nation thereof along with any combination of application ,
customer , and end - user identifiers .
[0028] The definition of a node is configured by the
developer based on the data elements that comprise a node's
fingerprint , which is the unique identifier of that node . Node
locking is disclosed , for example , in U.S. Patent Publication
2018/0167197 , which is hereby incorporated by reference
herein .
[0029] FIG . 3 is a diagram presenting a top level flow of
the process of locking a dynamic whitebox implementation
to a node . Referring first to process (1) , a build - time device
102 uses a whitebox toolchain 304 (instructions for convert
ing whitebox source code 302 into a whitebox implemen
tation 312) to operate on the whitebox source 302 to convert
the whitebox source code 302 into a whitebox implemen
tation . The white - box toolchain 304 generates a base file and
a white - box implementation at build - time . A base - file is
essentially a white - box private key that is used to build the
white - box and encode secrets for its use . The whitebox
implementation 305 has a series of unlocked lookup - tables
(LUTs) . These LUTs are unable to operate until they are
locked to a specific node . The whitebox implementation is
then deployed to the run - time device 106. During node
locking every LUT in a white - box implementation is
encoded for a specific node fingerprint . This may be carried
out at installation or first - time operation .
[0030] Since every part of the white - box implementation
is dependent on a specific (independently sampled) node
fingerprint there is no single point of failure , a common
weakness with traditional node - locking and licensing sys
tems .
[0031] Referring to step (2) , the run - time device performs
a node - locking process 310 , in which the fingerprint of the
run - time device 106 is generated , along with a Node ID ,
which is a unique identifier representing a specific white - box
implementation locked to a particular node fingerprint . The
Node ID and fingerprint is transmitted to the server 301 ,
which generates node - locked LUTs and transmits them to
the run - time device 106 , where they are stored . Referring to
step (3) , when the run - time device 106 needs a dynamic
secret (for example , a key needed to decrypt encrypted
content) , the whitebox implementation 312 executing on the
run - time device 106 requests the dynamic secret by sending
its Node ID to a server 301. If the request is valid , the server

:

US 2022/0366071 A1 Nov. 17 , 2022
3

301 selects or generates the appropriate secret 319 , then
encodes the secret using the appropriate transformation ,
based on the Node ID . The node encoded secret 320 is then
provided to the whitebox implementation 312 , which uses
the encoded secret to decode or decrypt the desired infor
mation .
[0032] The foregoing node locking process carried out on
insecure nodes such as server 301 is vulnerable to cloning ,
fuzzing and other attacks . Cloning attacks are attacks in
which the node configuration is duplicated to appear iden
tical to a legitimate node in order to replicate a valid node
fingerprint . Fuzzing attacks are when a number of locking
requests originate from the same node , indicating attempts
to analyze or circumvent the node - locking mechanism .
[0033] Other attacks may include side - channel attacks ,
tampering and reverse - engineering . White - box base - files
(private keys) may be inadvertently leaked from the build
environment , allowing an attacker to circumvent the white
box protection altogether . Further , secret encoding for spe
cific node - locked nodes requires additional server infra
structure that developers may not be able to implement
securely .
[0034] To resolve these issues , a secure cloud - based node
locking service with built - in attack detection to eliminate
fuzzing , cloning and other attacks is described below .
White - box base files are securely stored on the cloud service
and are not vulnerable to accidental leakage , and a secure
cloud - based dynamic secret encoding service reduces the
risk of exposure of unprotected secrets and other sensitive
data .

Cloud - Based Whitebox Node Locking

node data 426 to apply node (e.g. run - time device) specific
locking transformations to the unlocked LUTs received from
the build - time device 102 during registration and stored in
its database according to the to generate the whitebox
implementation 428. The whitebox implementation 428
having the resulting node - locked LUTs and the build ID is
then returned to the run - time device 106. This enables
normal operation of the white - box implementation 428 on
that specific run - time device 106. Cloning attacks can be
identified when a threshold number of locking requests for
the same fingerprint originate from different IP addresses .
Further , fuzzing attacks can be identified when a single IP
address generates a threshold number of locking requests .
[0038] Finally , in step (4) the run - time device 106 issues
a request for the secret 430 to the cloud service 104. The
cloud service retrieves the requested secret 434 , and encodes
432 the secrets according to the base file to generate node
encoded secrets 436 , which are provided to the node - locked
whitebox implementation 428. These node - encoded secrets
are only able to be used by that specific white - box imple
mentation 428 on that specific node . or run - time device 106 .
The request for the secret can occur during node - locking or
subsequently when the run - time device 106 invokes an
operation requiring processing of a secret by the node locked
whitebox implementation 428. The encoded secret is then
provided to the whitebox implementation 428 , and used to
generate the desired value (s) , for example , a key usable to
decrypt at least a portion of a media program .
[0039] FIGS . 5A - 5C are diagrams presenting exemplary
process steps for performing node locking a whitebox imple
mentation to enable secure generation of an output of the
run - time device 106 in further detail . In block 502 , the
build - time device generates a whitebox implementation 412 .
This is accomplished , for example , as described in FIGS . 2A
and 2B and the text appurtenant thereto . The whitebox
implementation 412 includes a base file and a plurality of
unlocked LUTs . In block 504 , the build - time device 102
transmits a registration request to the cloud service 104. The
registration request comprises build data comprising the
base file and the plurality of unlocked LUTs (or a list of
unlocked LUTs) . In block 506 , the registration request is
received . In block 508 , the base file and the unlocked LUTS
are registered in the cloud service 104. In block 510 , the
cloud service 104 returns a surrogate whitebox implemen
tation comprising blank LUTs and a build ID that identifies
the surrogate whitebox implementation . The build ID is later
used to associate lock requests with the surrogate whitebox
implementation when generating the locked whitebox
implementation .
[0040] In block 512 , the build - time device 102 receives
the surrogate whitebox implementation and deploys it to the
run - time device 106 , as shown in block 514. This deploy
ment may occur before the run - time device 106 device is
distributed to the ultimate user (e.g. downloaded as a part of
the manufacturing process) or deployed after the run - time
device 106 is distributed to the user (e.g. by a download) . In
block 516 , the run - time device accepts the deployed white
box implementation .
[0041] Turning to FIG . 5B , the run - time device generates
and transmits a lock request . This can happen in response to
a start or restart of the run - time device 106 , or in response
to invoking an application that requires use of the whitebox
implementation , for example to securely generate an output .
In block 520 , the run - time device generates a fingerprint .

2
2

a

[0035] FIG . 4 is a diagram presenting an overview of one
embodiment of how cloud - based white - box node - locking
can be performed . In step (1) , a white - box cloud - enabled
toolchain 402 generates build data 404 including a base file
along with a list of unlocked white - box lookup - tables
(LUTs) , and securely registers that build data 404 with the
cloud service 104. In one embodiment , this registration is
performed securely by encrypting the build data 404 before
transmission to the cloud service 104. The build data may
also include developer build - time device credentials , which
are compared to developer permissions 408 , and registration
will fail if a comparison between the developer credentials
and the developer permissions 408 indicates that the devel
oper credentials are invalid or insufficient . The cloud service
104 performs the build registration 406 , and returns a build
ID 410 the toolchain 402 , which is embedded into the
white - box implementation 412 along with the sequence of
blank LUTs . This is an initial implementation that cannot
operate unless it is node - locked . This white - box implemen
tation is deployed from the build - time device 102 to the
run - time device 106 , as shown in blocks 414A and 414B .
[0036] In step (2) , a lock request is initiated at run - time by
the run - time device 106. This securely sends the node's
fingerprint 418 and the white - box build ID 410 to a cloud
service 104 node - locking endpoint .
[0037] In step (3) , the cloud service 104 node - locking
endpoint validates the lock request . Invalid requests or
attempted cloning or fuzzing attacks can be detected at this
point . If the lock request is successfully authenticated , a
whitebox implementation 428 having the resulting node
locked LUTs and the build ID is generated as shown in block
422. The cloud service 104 node - locking endpoint uses the

a

US 2022/0366071 A1 Nov. 17 , 2022
4

!
=

a

T

device on which the node - locked program will be executed .
This results in device dependent tables , which are used as
the tables in the node locked whitebox implementation of
the original program .
[0046] Referring to FIG . 7A , the node - locked program as
described above is constructed as follows . (Note , FIG . 7A
shows in block - level functional form the static white - box
implementation of the original program implementing the
original algorithm (left hand side) from FIG . 2A and in
block - level functional form the resulting node - locked ver
sion of the white - box implementation of the original pro
gram / algorithm (right hand side)) .
[0047] Referring to the left hand side of FIG . 7A , let iEI
be a white - box implementation instance with encoded
lookup - tables T1 , ... , Tn , each with symbols in a non - empty ,
finite alphabet T = { 0 , 1 , ... , m- -1 } and let N = { 1 , ... , r } for
some ram ! then let C = C1 , C2 , ... , Cn) EN ” be a configuration
vector that uniquely identifies a device instance (e.g. media
player or other device the node - locked program will execute
on) . The configuration vector can be generated from the
fingerprint , for example . Let be the set of all surjective
functions from N to Sy , where S , denotes the set of permu
tations of T.
[0048] For example , for a white - box implementation with
n lookup - tables , each device stores n indices c ;
1scism ! sr . For m = 256 , suppose the implementation has
n = 123 lookup - tables , then the lower - bound storage for Con
each device is 123xlog2 (256 !) = 123x210 bytes , or 26 Kb .
[0049] The right hand side of FIG . 7A shows the node
encoded (that is , node - locked) static white - box implemen
tation . random bijections ui , U2 , Un , I1 , I2 ,
In + 1 EST and functions 01 , 02 , . ? , ?? are generated s0
that for each coordinate c ; of C and all inputs x , it holds that
W ; (0 , (T ; (x) , c ;)) = x , where the external encodings u , and

are introduced to bind the white - box implementation
to the calling application , and each table T1 , . . . , T , is
replaced (as illustrated on the right - hand - side) with node
encoded tables T ' , • , T ' , to bind the white - box imple
mentation to the device instance , identified by C.
[0050] FIG . 8A - 1 is a diagram illustrating representative
pseudocode for carrying out the function as represented in
FIG . 7A . This pseudocode represents program code in the
controller that is configured to carry out the process , includ
ing instructions 802-814 .
[0051] FIG . 8A - 2 shows a flow diagram of the general
steps carried out by the pseudo code , and these steps are
shown in the pseudo code , including steps 802-814 .

a

The fingerprint is a value that at least somewhat uniquely
identifies the run - time device . Exemplary fingerprints can
include the MAC or IP address of the run - time device 106 ,
a serial number of the run - time device 106 , serial or iden
tification numbers of modules within the run - time device
106. If it is desired to limit execution of the whitebox to only
a class of run - time devices , the fingerprint may include an
identifier common to that class of run - time devices 106 , for
example , a model number . The fingerprint may also com
prise a combination of any or all of these values .
[0042] In block 522 , the run - time device transmits the lock
request which comprises the build ID and the fingerprint of
the run - time device 106. In block 524 , the cloud service 104
receives the lock request . The cloud service 104 then deter
mines whether and how to respond to the lock request from
the run - time device . In one embodiment , the lock request is
transmitted from an address of the run - time device (and may
optionally be automatically transmitted upon startup of the
run - time device or upon a first request to execute the
surrogate whitebox implementation deployed to the run
time device 106. The cloud service 104 can then check to
determine if a preceding node locking request having the
same build ID was earlier received from a different run - time
device 106 (for example , as determined by the lock request
having the same build ID being received from a different
address) . Since this would indicate a cloning attack , the lock
request may be denied by transmitting a message back to the
run - time device 106 and / or the build - time device 102 asso
ciated with the build ID . The cloud service may also check
to determine if a preceding node locking request having a
different build identifier was received from the first address .
While a small number of node locking requests having
different build identifiers may be expected in some circum
stances (e.g. several run - time devices 106 deployed at in the
same home or location) , a large number of requests having
different build IDs received from the same address would be
an indication of a fuzzing attack . Such attacks , where there
are a large number of locking request originating from the
same node , indicates an attempt to analyze or circumvent the
node locking security mechanism , and when identified , such
node locking requests can be denied , again by a message
sent to the run - time device and / or the build - time device 102 .
Advantageously , placing these operations in a cloud service
provides secret encoding for specific node - locked nodes
without requiring additional server infrastructure that devel
opers may be unable to implement securely .
[0043] If no attacks are detected , the cloud service 104
generates a node - locked version of the whitebox implemen
tation according to the received fingerprint of the run - time
device 106 and the build ID , as shown in block 526. This
creates the node - locked program (being a whitebox ,
node locked implementation of the original program) .

in the range

T -1 n + 1

19

Node Locking a Static Whitebox Implementation of
the Original Program

[0044] Referring to FIGS . 6A and 7A , the node - locking of
static white - box implementation of the original program will
be described . This generates a node - locked program (that is ,
a (static) white - box implemented , node - locked program) .
[0045] FIG . 6A shows in diagrammatic form the structure
of the node - locking for a static white - box implementation of
an original program . A node - table encoding process takes
the tables Ti to Tn generated as part of the white - box
implementation and encodes them with parameters from the

Node Locking Dynamic Whitebox Implementation
[0052] Alternatively , a dynamic white - box implementa
tion is used . In addition to the security of static white - box
node - locking , dynamic white - box node - locking also binds
the encoded secret to a distinct node - locked device instance :
[0053] 1. Code - lifting of a node - locked instance will
necessitate the interception and injection of the node - en
coded secret s'i , thus adding a layer of resilience against
key - transfer attacks . This applies to all designs , including
those with low implementation diversity or those without a
key - ladder .
[0054] 2. The secret s'i is customized to a particular
device , thus allowing traceability back to the compromised
implementation .
[0055] Referring to FIGS . 6B , 7B , 8B - 1 and 8B - 2 , the
node - locking of dynamic white - box program (without appli

US 2022/0366071 A1 Nov. 17 , 2022
5

1

a

1 '

T

cation binding) will be described . This generates a protected
program (that is , a (dynamic) white - box , node - locked pro
gram)
[0056] FIG . 6B shows in diagrammatic form the structure
of the node locking for a dynamic whitebox implementation
of an original program . A node table encoding process takes
the tables Ti to Tn generated as part of the whitebox
implementation and encoded them with parameters from the
device on which the node - locked program will be executed .
This results in device dependent tables , which are used as
the tables in the node locked whitebox implementation of
the original program .
[0057] Referring to FIG . 7B , the node - locked program as
described above is constructed as follows . (Note , FIG . 7B
shows in block - level functional form the dynamic white - box
implementation of the original program / original algorithm
(left hand side) from FIG . 4B and in block - level functional
form the resulting node - locked version of the white - box
implementation of the original program / original algorithm
(right hand side)) .
[0058] Random bijections ui , Une à 1 , ... , a no h2 , .

I , ES , and functions 01 , 02 , ? , ?? are generated
to bind the white - box implementation to the device instance
and the dynamic secret s , " = (° (S)) .
[0059] FIG . 8B - 1 is a diagram illustrating representative
pseudocode for carrying out the function as represented in
FIG . 7B . This pseudocode represents program code in the
controller that is configured to carry out the process , includ
ing process steps 852-864 .
[0060] FIG . 8B - 2 shows a flow diagram of the general
steps carried out by the pseudo code , and these steps are
shown in the pseudo code , including steps 852-864 .
[0061] Returning to FIG . 5B , the build ID and the node
locked whitebox implementation is transmitted to the run
time device 106 , as illustrated in block 528. The run - time
device receives the locked whitebox implementation in
block 530 and can now use the whitebox to generate output .
[0062] In the case of a static node - locked whitebox , the
run - time device 106 applies the input to the whitebox (and
the fingerprint C) to the node locked whitebox to generate
the output , as shown in block 532 .
[0063] In the case of a dynamic node - locked whitebox , the
run - time device 106 invokes the node - locked whitebox to
generate the output . This requires that the run - time device
106 obtain a secret for use with the whitebox . Since the
whitebox invoked by the run - time device is the node - locked
whitebox generated using the build ID and the fingerprint of
the run - time device , the secret must be encoded for use in the
node - locked whitebox . Accordingly , the run - time device
106 transmits a request to the cloud service 104 to request
the secret , as shown in block 532. The request comprises the
build ID , thus identifying the node - locked whitebox for
which the encoded secret is requested . The cloud service 104
then looks up the secret and encodes the secret , as shown in
block 538 , and transmits the encoded secret to the run - time
device 106. In block 540 , the run - time device 106 receives
the encoded secret and in block 542 , the run - time device
generates the output from the input and the fingerprint .

and / or decoding functionality used in media streaming
delivery systems . Atypical existing media streaming deliv
ery system includes a media server implemented at the data
provider 108 , a media player as the run - time device , gen
erating an output provided to an audio - visual system (dis
play) . The media server takes media content and executes
algorithms to generate a media stream (becoming input data
stream) embodying the media content in an encrypted and
compressed form , and a server (such as a web server ,
broadcasting transmitter or the like) transmits the stream
over a suitable transmission channel , such as an internet
channel , telecommunications channel , or a television broad
cast transmission . The encrypted media stream is received at
a media player at the end user / subscriber's location for
consumption .
[0065] The media player 82 is the data flow receiver
hardware and software instructions to execute a decryption
and codec algorithm and an output interface . The media
player is one example of a data flow receiver computer
system 900 such as that more generally described in FIG . 9 .
The processor receives the input media stream either directly
or from the data provider and executes instructions imple
menting algorithms to decrypt and decompress the media
stream . This results in an output media stream with the
media content that is then passed through the output inter
face to the output device , which might be an audio - visual
system such as a television .
[0066] If an unauthorized party intercepts the media
stream in the transmission channel 116 , they cannot easily
retrieve the media content 114 and us it unless they know the
decryption algorithm . However , an adversary could use code
lifting and / or key recovery attacks as described previously
on this type of arrangement .
[0067] Instead of the processor in the media player execut
ing the original program embodying the decryption and
codec algorithms A with functionality F , the processor
executes the protected program , which is generated from the
original program as described previously . The program is
node - locked to the media player as described herein , and can
only execute on that device as its execution relies on
interacting with parameters specific to the media player . The
media server operates in the usual manner . It retrieves the
media content , generates a media stream , encrypts , and
compresses the media stream and then transmits the com
pressed and encrypted media stream over the transmission
channel using a server , broadcast , or other suitable trans
mission . The encrypted and compressed media stream is
received at the media player in the usual manner . The media
player executes the protected program to implement decryp
tion and codec inctionalities F to decrypt and decompress
the media stream , and extract the media content .
[0068] The media content output stream is passed to the
output device for display of the media content . A white box
implementation of original program prevents , or at least
slows down , an adversary from making a key recovery
attack . This is because the key is formed as part of the white
box implementation of the program , or an encoded static or
dynamic key is used . A white box implementation of a
program can still be vulnerable to a code lifting attack .
Node - locking the WBI program to a particular device pre
vents , or at least slows down adversary , from carrying out a
code - lifting attack . In such a situation , it might still be
possible for an adversary to code - lift the WBI program and
the application it executes on . In this case , the option of also

9

Use Cases

[0064] One possible example , a node - locked program
generated as described above could be used in place of the
original program that provides decryption , decompression

US 2022/0366071 A1 Nov. 17 , 2022
6

a

carrying out application binding of the WBI program to the
application executes on prevents , or at least slows down , an
adversary from code - lifting the WBI program with the
application .
[0069] As noted , the above examples are one embodiment
only , and there other end uses for node - locking as described .
In addition to streaming media applications , the node
locking could also be used for (1) document management
systems , where documents are shared between authorized
parties , (2) media or software license management , where
verification of licenses is required , (3) media players in a
web browser or other untrusted platform , or (4) More
generally , a data flow receiver that receives a stream of
encrypted data and contains a program to decrypt that stream
to provide unencrypted output , or any system on an
untrusted platform where the program needs to protection
from untrusted parties .

a

Hardware Environment

instructions may be implemented in a special purpose pro
cessor 904B . In this embodiment , some , or all of the
computer program 910 instructions may be implemented via
firmware instructions stored in a read only memory (ROM) ,
a programmable read only memory (PROM) or flash
memory within the special purpose processor 904B or in
memory 906. The special purpose processor 904B may also
be hardwired through circuit design to perform some or all
of the operations to implement the present invention . Fur
ther , the special purpose processor 904B may be a hybrid
processor , which includes dedicated circuitry for performing
a subset of functions , and other circuits for performing more
general functions such as responding to computer program
instructions . In one embodiment , the special purpose pro
cessor is an application specific integrated circuit (ASIC) .
[0075] The computer 902 may also implement a compiler
912 which allows an application program 910 written in a
programming language such as COBOL , C ++ , FORTRAN ,
or other language to be translated into processor 904 read
able code . After completion , the application or computer
program 910 accesses and manipulates data accepted from
I / O devices and stored in the memory 906 of the computer
902 using the relationships and logic that was generated
using the compiler 912 .
[0076] The computer 902 also optionally comprises an
external communication device such as a modem , satellite
link , Ethernet card , or other device for accepting input from
and providing output to other computers .
[0077] In one embodiment , instructions implementing the
operating system 908 , the computer program 910 , and / or the
compiler 912 are tangibly embodied in a computer - readable
medium , e.g. , data storage device 920 , which could include
one or more fixed or removable data storage devices , such
as a zip drive , floppy disc drive 924 , hard drive , CD - ROM
drive , tape drive , or a flash drive . Further , the operating
system 908 and the computer program 910 are comprised of
computer program instructions which , when accessed , read ,
and executed by the computer 902 , causes the computer 902
to perform the steps necessary to implement and / or use the
present invention or to load the program of instructions into
a memory , thus creating a special purpose data structure
causing the computer to operate as a specially programmed
computer executing the method steps described herein .
Computer program 910 and / or operating instructions may
also be tangibly embodied in memory 906 and / or data
communications devices 930 , thereby making a computer
program product or article of manufacture according to the
invention . As such , the terms " article of manufacture , "
“ program storage device ” and “ computer program product "
or " computer readable storage device ” as used herein are
intended to encompass a computer program accessible from
any computer readable device or media .
[0078] Of course , those skilled in the art will recognize
that any combination of the above components , or any
number of different components , peripherals , and other
devices , may be used with the computer 902 .
[0079] Although the term “ computer ” is referred to herein ,
it is understood that the computer may include portable
devices such as cellphones , portable MP3 players , video
game consoles , notebook computers , pocket computers , or
any other device with suitable processing , communication ,
and input / output capability .

[0070] FIG . 9 is a diagram illustrating an exemplary
computer system 900 that could be used to implement
elements of the present invention , including the build - time
device 102 , a server or other device implementing the cloud
service 104 , the run - time device 106 , and servers or other
devices used by the data provider 108 .
[0071] The computer 902 comprises a general purpose
hardware processor 904A and / or a special purpose hardware
processor 904B (hereinafter alternatively collectively
referred to as processor 904) and a memory 906 , such as
random access memory (RAM) . The computer 902 may be
coupled to other devices , including input / output (1/0)
devices such as a keyboard 914 , a mouse device 916 and a
printer 928 .
[0072] In one embodiment , the computer 902 operates by
the general purpose hardware processor 904A performing
instructions defined by the computer program 910 under
control of an operating system 908. The computer program
910 and / or the operating system 908 may be stored in the
memory 906 and may interface with the user and / or other
devices to accept input and commands and , based on such
input and commands and the instructions defined by the
computer program 910 and operating system 908 to provide
output and results .
[0073] Output / results may be presented on the display 922
or provided to another device for presentation or further
processing or action . In one embodiment , the display 922
comprises a liquid crystal display (LCD) having a plurality
of separately addressable pixels formed by liquid crystals .
Each pixel of the display 922 changes to an opaque or
translucent state to form a part of the image on the display
in response to the data or information generated by the
processor 904 from the application of the instructions of the
computer program 910 and / or operating system 908 to the
input and commands . Other display 922 types also include
picture elements that change state in order to create the
image presented on the display 922. The image may be
provided through a graphical user interface (GUI) module
918A . Although the GUI module 918A is depicted as a
separate module , the instructions performing the GUI func
tions can be resident or distributed in the operating system
908 , the computer program 910 , or implemented with spe
cial purpose memory and processors .
[0074] Some or all of the operations performed by the
computer 902 according to the computer program 910

9

US 2022/0366071 A1 Nov. 17 , 2022
7

CONCLUSION

a

a a

[0080] This concludes the description of the preferred
embodiments of the present invention . The foregoing
description of the preferred embodiment of the invention has
been presented for the purposes of illustration and descrip
tion . It is not intended to be exhaustive or to limit the
invention to the precise form disclosed . Many modifications
and variations are possible in light of the above teaching .
[0081] The foregoing discloses an apparatus , method , and
system for enabling secure generation of an output in a
run - time device . In one embodiment , the method comprises receiving a request to register a whitebox implementation
for generating the output in a cloud service from a build - time
device , the request comprising a base file and a list of
unlocked whitebox look up tables (LUTs) ; registering the
base file and the list of unlocked whitebox LUTs in the cloud
service ; returning a surrogate whitebox implementation hav
ing a build identifier (ID) and a plurality of blank LUTs to
the build - time device ; receiving lock request from the run
time device upon execution of the surrogate whitebox imple
mentation , the lock request comprising a fingerprint of the
run - time device determined by the run - time device upon first
execution of the surrogate whitebox implementation and the
build identifier ; generating a locked whitebox implementa
tion according to the received fingerprint of the first device
and the build identifier , the locked whitebox implementation
having a plurality of run - time device specific locked white
box LUTs ; transmitting the run - time device specific locked
whitebox LUTs from the cloud service to the run - time
device ; receiving a request for a secret from the run - time
device , the request including the build ID ; and transmitting
an encoded secret , the encoded secret generated by applying
the run - time device specific node locking transformations to
the secret .
[0082] Implementations may include one or more of the
following features :
[0083] Any of the methods described above , wherein :
generating a locked whitebox implementation according to
the fingerprint of the run - time device and the build identifier
includes : encoding the unlocked whitebox LUTs by apply
ing run - time device specific locking transformations to the
unlocked whitebox LUTs according to the fingerprint .
[0084] Any of the methods described above that further
include : generating the encoded secret by applying the
run - time device specific locking transformations to the
secret .
[0085] Any of the methods described above , wherein the
encoded secret is generated in response to the request for the
secret .
[0086] Any of the methods described above , wherein the
encoded secret is before the request for the secret . The
method wherein the base file and list of unlocked whitebox
LUTs generated by a second device executing a toolchain
executing in the cloud service .
[0087] Any of the methods described above , wherein : the
request to register the whitebox implementation includes
build - time device credentials and which methods further
include : determining if the build - time device credentials are
valid ; and if the build - time device credentials are not valid ,
refusing registration of the whitebox implementation .
[0088] Any of the methods described above , wherein : the
lock request is automatically transmitted from a first
address ; and the method further includes : determining if a
preceding node locking request having the same build

identifier was received from a second address ; and rejecting
the lock request if the preceding node locking request the
build identifier was received from the second address .
[0089] Any of the methods described above , wherein : the
lock request is automatically transmitted from a first address
and ; the methods further include : determining if a preceding
node locking request having a different build identifier was
received from the first address ; and rejecting the lock request
if the preceding node locking request having the different
build identifier was received from the first address .
[0090] Another embodiment is evidenced by a an appa
ratus for enabling secure generation of an output in a
run - time device , including : a processor ; a memory , commu
nicatively coupled to the processor , the memory storing
processor instructions including processor instructions for
performing the above - described methods .
[0091] It is intended that the scope of the invention be
limited not by this detailed description , but rather by the
claims appended hereto . The above specification , examples
and data provide a complete description of the manufacture
and use of the apparatus and method of the invention . Since
many embodiments of the invention can be made without
departing from the scope of the invention , the invention
resides in the claims hereinafter appended .

1. A method of enabling secure generation of an output in
a run - time device , comprising :

receiving a request to register a whitebox implementation
for generating the output in a cloud service from a
build - time device , the request comprising :

a base file ; and
a list of unlocked whitebox look up tables (LUTS) ;
registering the base file and the list of unlocked whitebox
LUTs in the cloud service ;

returning a surrogate whitebox implementation having a
build identifier (ID) and a plurality of blank LUTs to the
build - time device ;

receiving lock request from the run - time device upon
execution of the surrogate whitebox implementation ,
the lock request comprising a fingerprint of the run
time device determined by the run - time device upon
first execution of the surrogate whitebox implementa
tion and the build identifier ;

generating a locked whitebox implementation according
to the received fingerprint of the run - time device and
the build identifier , the locked whitebox implementa
tion having a plurality of run - time device specific
locked whitebox LUTs ;

transmitting the run - time device specific locked whitebox
LUTs from the cloud service to the run - time device ;

receiving a request for a secret from the run - time device ,
the request including the build ID ; and

transmitting an encoded secret ;
wherein :
the lock request is automatically transmitted from a first

address ; and
the method further comprises :
determining if a preceding node locking request having

the same build identifier was received from a second
address ; and

rejecting the lock request if the preceding node locking
request the build identifier was received from the
second address .

US 2022/0366071 A1 Nov. 17 , 2022
8

2. The method of claim 1 , wherein :
generating a locked whitebox implementation according

to the fingerprint of the run - time device and the build
identifier comprises :

encoding the unlocked whitebox LUTs by applying run
time device specific locking transformations to the
unlocked whitebox LUTs according to the fingerprint .

3. The method of claim 2 , further comprising :
generating the encoded secret by applying the run - time

device specific locking transformations to the secret .
4. The method of claim 3 , wherein the encoded secret is

generated in response to the request for the secret .
5. The method of claim 3 , wherein the encoded secret is

before the request for the secret .
6. The method of claim 1 , wherein the base file and list of

unlocked whitebox LUTs generated by a second device
executing a toolchain executing in the cloud service .

7. The method of claim 1 , wherein :
the request to register the whitebox implementation com

prises build - time device credentials ;
the method further comprises :
determining if the build - time device credentials are valid ;

and
if the build - time device credentials are not valid , refusing

registration of the whitebox implementation .
8. (canceled)
9. A method of enabling secure generation of an output in

a run - time device , comprising :
receiving a request to register a whitebox implementation

for generating the output in a cloud service from a
build - time device , the request comprising :

a base file ; and
a list of unlocked whitebox look up tables (LUTs) ;
registering the base file and the list of unlocked whitebox
LUTs in the cloud service ;

returning a surrogate whitebox implementation having a
build identifier (ID) and a plurality of blank LUTs to the
build - time device ;

receiving lock request from the run - time device upon
execution of the surrogate whitebox implementation ,
the lock request comprising a fingerprint of the run
time device determined by the run - time device upon
first execution of the surrogate whitebox implementa
tion and the build identifier ;

generating a locked whitebox implementation according
to the received fingerprint of the run - time device and
the build identifier , the locked whitebox implementa
tion having a plurality of run - time device specific
locked whitebox LUTs ;

transmitting the run - time device specific locked whitebox
LUTs from the cloud service to the run - time device ;

receiving a request for a secret from the run - time device ,
the request including the build ID ; and

transmitting an encoded secret ;
the lock request is automatically transmitted from a first

address and ;
the method further comprises :
determining if a preceding node locking request having a

different build identifier was received from the first
address ; and

rejecting the lock request if the preceding node locking
request having the different build identifier was
received from the first address .

10. An apparatus for enabling secure generation of an
output in a run - time device , comprising :

a processor ;
a memory , communicatively coupled to the processor , the
memory storing processor instructions comprising pro
cessor instructions for :

receiving a request to register a whitebox implementation
for generating the output in a cloud service from a
build - time device , the request comprising :

a base file ; and
a list of unlocked whitebox look up tables (LUTS) ;
registering the base file and the list of unlocked whitebox
LUTs in the cloud service ;

returning a surrogate whitebox implementation having a
build identifier (ID) and a plurality of blank LUTs to the
build - time device ;

receiving lock request from the run - time device upon
execution of the surrogate whitebox implementation ,
the lock request comprising a fingerprint of the run
time device determined by the run - time device upon
first execution of the surrogate whitebox implementa
tion and the build identifier ;

generating a locked whitebox implementation according
to the received fingerprint of the run - time device and
the build identifier , the locked whitebox implementa
tion having a plurality of run - time device specific
locked whitebox LUTs ;

transmitting the run - time device specific locked whitebox
LUTs from the cloud service to the run - time device ;

receiving a request for a secret from the run - time device ,
the request including the build ID ; and

transmitting an encoded secret ;
wherein :
the lock request is automatically transmitted from a first

address ; and
the processor instructions further comprise processor

instructions for :
determining if a preceding node locking request having

the same build identifier was received from a second
address ; and

rejecting the lock request if the preceding node locking
request the build identifier was received from the
second address .

11. The apparatus of claim 10 , wherein :
the processor instructions for generating a locked white

box implementation according to the fingerprint of the
run - time device and the build identifier comprises
processor instructions for :

encoding the unlocked whitebox LUTs by applying run
time device specific locking transformations to the
unlocked whitebox LUTs according to the fingerprint .

12. The apparatus of claim 11 , wherein the processor
instructions further comprise processor instructions for :

generating the encoded secret by applying the run - time
device specific locking transformations to the secret .

13. The apparatus of claim 12 , wherein the encoded secret
is generated in response to the request for the secret .

14. The apparatus of claim 12 , wherein the encoded secret
is before the request for the secret .

15. The apparatus of claim 10 , wherein the base file and
list of unlocked whitebox LUTs generated by a second
device executing a toolchain executing in the cloud service .

2

US 2022/0366071 A1 Nov. 17 , 2022
9

16. The apparatus of claim 10 , wherein :
the request to register the whitebox implementation com

prises build - time device credentials ;
the processor instructions further comprise processor

instructions for ;
determining if the build - time device credentials are valid ;

and
if the build - time device credentials are not valid , refusing

registration of the whitebox implementation .
17. (canceled)
18. An apparatus for enabling secure generation of an

output in a run - time device , comprising :
a processor ;
a memory , communicatively coupled to the processor , the
memory storing processor instructions comprising pro
cessor instructions for :

receiving a request to register a whitebox implementation
for generating the output in a cloud service from a
build - time device , the request comprising :

a base file ; and
a list of unlocked whitebox look up tables (LUTs) ;
registering the base file and the list of unlocked whitebox
LUTs in the cloud service ; returning a surrogate whitebox implementation having a
build identifier (ID) and a plurality of blank LUTs to the
build - time device ;

receiving lock request from the run - time device upon
execution of the surrogate whitebox implementation ,

the lock request comprising a fingerprint of the run
time device determined by the run - time device upon
first execution of the surrogate whitebox implementa
tion and the build identifier ;

generating a locked whitebox implementation according
to the received fingerprint of the run - time device and
the build identifier , the locked whitebox implementa
tion having a plurality of run - time device specific
locked whitebox LUTs ;

transmitting the run - time device specific locked whitebox
LUTs from the cloud service to the run - time device ;

receiving a request for a secret from the run - time device ,
the request including the build ID ; and

transmitting an encoded secret ;
wherein :
the lock request is automatically transmitted from a first

address ;
the processor instructions further comprise processor

instructions for :
determining if a preceding node locking request having a

different build identifier was received from the first
address ; and

rejecting the lock request if the preceding node locking
request having the different build identifier was
received from the first address .

19. (canceled)
20. (canceled)

*

