wo 2011/068971 A1 I T A0FVO0 000 V0RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual Property Organization /5% =)
(19) ual Property Organization /i 11| 0NDEVO 0 0O O
International Bureau S,/ 0
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
9 June 2011 (09.06.2011) PCT WO 2011/068971 Al
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6N 7/00 (2006.01) kind of national protection available): AE, AG, AL, AM,
. o AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA. CH. CL. CN. CO. CR. CU. CZ. DE. DK. DM. DO
PCT/US2010/058736 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
2 December 2010 (02.12.2010) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
- . ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . o
61/266,818 4 December 2009 (04.12.2009) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): THE GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
MATHWORKS, INC. [US/US]; 3 Apple Hill Drive, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
Natick, MA 01760 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU
(72) Inventors; and i A > 2 g > g A > >
(75) Inventors/Applicants (for US only: OZYURT, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK,
Burhanettin. D TR/UST: 181 Hich . SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,
urhanettin, Derya [IR igh Street, Unit 2, GW, ML, MR, NE, SN, TD, TG)
Brookline, MA 02245 (US). KERR-DELWORTH, Paul ’ ’ ? T ’ ’
[GB/GB]; 133 High Street, Bottisham, Cambridge CB25 Published:
9BB (GB). LURIE, Roy [ZA/US]; 6 Alice Drive, Way- o .
land, MA 01778 (US). with international search report (Art. 21(3))
(74) Agents: CANNING, Kevin, J. ¢t al.; Nelson Mullins Ri-

ley Scarborough LLP, One Post Office Square, Boston,
MA 02109-2127 (US).

(54) Title: FRAMEWORK FOR FINDING ONE OR MORE SOLUTIONS TO A PROBLEM

~

300

META-SOLVER

GLOBAL SEARCH
320a

MULTI-START
320b

OTHER
320c

Y

SUB-SOLVER(S) PROBLEM(S)
330 340

FIG. 3

(57) Abstract: In an embodiment, information for use in identifying a plurality of sub-solvers may be acquired. The plurality of
sub- solvers may be used in a first attempt to find at least one solution to a problem that may be defined in the acquired informa-
tion. At least two of the sub-solvers in the plurality of sub-solvers may be of different sub-solver types. The sub-solvers may be
identified based on the acquired information. One or more starting points for the identified sub-solvers may be identified and
transferred to the identified sub-solvers. One or more outputs, that indicate one or more results associated with the first attempt to
find at least one solution to the problem, may be acquired from the identified sub-solvers. One or more sub-solvers may be identi-
fied, based on the acquired one or more outputs, for use in a second attempt to find at least one solution to the problem.

WO 2011/068971 PCT/US2010/058736

FRAMEWORK FOR FINDING ONE OR MORE
SOLUTIONS TO A PROBLEM

RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application
Number 61/266,818, titled GLOBAL SEARCH OPTIMIZER and filed on December 4,

2009.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The accompanying drawings, which are incorporated in and constitute a
part of this specification, illustrate one or more embodiments described herein and,
together with the description, explain these embodiments. In the drawings:

[0003] FIG. 1 illustrates a block diagram of an example of a computing device
that may implement one or more embodiments of the invention;

[0004] FIG. 2 illustrates a block diagram of an example of a technical computing
environment (TCE) that may implement one or more embodiments of the invention;
[0005] FIG. 3 illustrates a block diagram of an example of a solver framework
that may be used to attempt to find one or more solutions to a problem;

[0006] FIG. 4 illustrates a class diagram of example objects that may be included
in a solver framework;

[0007] FIG. 5 illustrates a flow chart of an example acts that may be performed
to attempt to find a solution to a problem using a meta-solver;

[0008] FIGs. 6A-C illustrate flow charts of example acts that may be performed
to attempt to find a solution to a problem using a meta-solver;

[0009] FIG. 7 illustrates a block diagram of an example of a point framework

that may be used to identify one or more points for one or more solvers;

-1-

WO 2011/068971 PCT/US2010/058736

[0010] FIG. 8 illustrates a class diagram of example objects that may be included
in a point framework;
[0011] FIG. 9 illustrates a block diagram of an example of a point framework

that includes a point cache;

[0012] FIG. 10 illustrates an example of a data format that may be used to store a
point set;
[0013] FIG. 11 illustrates a class diagram of an example object that may be used

to implement a point cache;

[0014] FIG. 12 illustrates a class diagram of example objects that may be
included in a framework where a solver may generate an object that may implement a
point cache;

[0015] FIG. 13 illustrates a block diagram of an example of a point framework
that includes a communication layer between a point data source and one or more
workers that may utilize the communication layer to acquire one or more points from the
point source;

[0016] FIG. 14 illustrates a block diagram of an example of a worker accessing
one or more points in a point set;

[0017] FIGs. 15A-C illustrate block diagrams of example arrangements of a

framework that may be used to attempt to find one or more solutions to a problem;

[0018] FIG. 16 illustrates an example of a domain space that includes a solution
space;
[0019] FIG. 17 illustrates a class diagram of an example object that may be used

to record a solution to a problem found by a framework;
[0020] FIGs. 18A-B illustrate a flow chart of example acts that may be used in a

workflow that may involve attempting to find one or more solutions to a problem;

WO 2011/068971 PCT/US2010/058736

[0021] FIGs. 19A-B illustrate a flow chart of example acts that may be used to
attempt to find one or more solutions to a problem with a framework that employs a
meta-solver/sub-solver arrangement;

[0022] FIGs. 20A-B illustrate various presentations of one or more solutions that
may be found by a meta-solver/sub-solver arrangement; and

[0023] FIG. 21 illustrates a block diagram of an example of a communications

network that may implement one or more embodiments of the invention.

DETAILED DESCRIPTION

[0024] The following detailed description refers to the accompanying drawings.
The same reference numbers in different drawings may identify the same or similar
features illustrated in the drawings.

[0025] One or more embodiments of the invention may be implemented on one
or more computing devices. The one or more computing devices may be a system or
part of a system. The one or more computing devices may include, for example, a
desktop computer, laptop computer, client computer, server computer, mainframe
computer, personal digital assistant (PDA), netbook computer, tablet computer, web-
enabled cellular telephone, smart phone, or some other computing device.

[0026] FIG. 1 illustrates a block diagram of an example of a computing device
100 that may implement one or more embodiments of the invention. Referring to FIG.
1, the computing device 100 may include one or more components, such as processing
logic 120, primary storage 130, secondary storage 150, one or more input devices 160,
one or more output devices 170, and one or more communication interfaces 180,
coupled together by one or more buses, such as input-output (I/O) bus 110 and memory

bus 190. Note that computing device 100 is an example of a computing device that may

WO 2011/068971 PCT/US2010/058736

implement one or more embodiments of the invention. Other computing devices that
may be less complicated or more complicated than computing device 100 may
implement one or more embodiments of the invention.

[0027] The I/O bus 110 may be an interconnect bus that may enable
communication between various components in the computing device 100, such as
processing logic 120, secondary storage 150, input device 160, output device 170, and
communication interface 180. The communication may include, among other things,
transferring information (e.g., data, control information, executable instructions)
between the components.

[0028] The memory bus 190 may be an interconnect bus that may enable
information to be transferred between the processing logic 120 and the primary storage
130. The information may include instructions and/or data that may be executed,
manipulated, and/or otherwise processed by processing logic 120. The instructions
and/or data may include instructions and/or data that may implement one or more
embodiments of the invention.

[0029] The processing logic 120 may include logic that may interpret, execute,
and/or otherwise process information contained in, for example, the primary storage 130
and/or secondary storage 150. The information may include computer-executable
instructions and/or data that may implement one or more embodiments of the invention.
The processing logic 120 may comprise a variety of heterogeneous hardware. The
hardware may include, for example, some combination of one or more processors,
microprocessors, field programmable gate arrays (FPGAs), application specific
instruction set processors (ASIPs), application specific integrated circuits (ASICs),
complex programmable logic devices (CPLDs), graphics processing units (GPUs), or

other types of processing logic that may interpret, execute, manipulate, and/or otherwise

WO 2011/068971 PCT/US2010/058736

process the information. The processing logic 120 may comprise a single core or
multiple cores. Moreover, processing logic 120 may comprise a system-on-chip (SoC)
or system-in-package (SiP). An example of a processor that may be used to implement
processing logic 120 is the Intel® Xeon® processor available from Intel Corporation,
Santa Clara, California.

[0030] The secondary storage 150 may be a non-transient tangible computer-
readable media that is accessible to the processing logic 120 via I/O bus 110. The
secondary storage 150 may store information for the processing logic 120. The
information may be executed, interpreted, manipulated, and/or otherwise processed by
the processing logic 120. The secondary storage 150 may comprise, for example, a
storage device, such as a magnetic disk, optical disk, random-access memory (RAM)
disk, and/or flash drive. The information may be stored on one or more non-transient
tangible computer-readable media contained in the storage device. The media may
include, for example, magnetic discs, optical discs, and/or memory devices (e.g., flash
memory devices, static RAM (SRAM) devices, dynamic RAM (DRAM) devices, or
other memory devices). The information may include data and/or computer-executable
instructions that may implement one or more embodiments of the invention.

[0031] Input device(s) 160 may include one or more devices that may be used to
input information into computing device 100. Devices that may be used to input
information into computing device 100 may include, for example, a keyboard (e.g.,
hardware keyboard, software keyboard), computer mouse, microphone, camera,
trackball, gyroscopic device (e.g., gyroscope), mini-mouse, touch pad, stylus, graphics
tablet, touch screen, joystick (isotonic or isometric), pointing stick, accelerometer, palm
mouse, foot mouse, eyeball controlled device, finger mouse, light pen, light gun, neural

device, eye tracking device, gesture tracking device, steering wheel, yoke, jog dial,

WO 2011/068971 PCT/US2010/058736

space ball, directional pad, dance pad, soap mouse, haptic device, tactile device, neural
device, multipoint input device, discrete pointing device, or some other input device.
The information may include spatial (e.g., continuous, multi-dimensional) data that may
be input into computing device 100, for example, using a device such as, for example, a
computer mouse. The information may also include other forms of data, such as, for
example, text that may be input using a keyboard.

[0032] Output device(s) 170 may include one or more devices that may output
information from the computing device 100. Devices that may output information from
the computing device 100 may include, for example, a cathode ray tube (CRT), plasma
display device, light-emitting diode (LED) display device, liquid crystal display (LCD)
device, vacuum florescent display (VFD) device, surface-conduction electron-emitter
display (SED) device, field emission display (FED) device, haptic device, tactile device,
neural stimulation device, printer (e.g., a three-dimensional (3D) printer, laser printer),
speaker, video projector, volumetric display device, plotter, actuator (e.g., electrical
motor) or some other output device. Output device 170 may be directed by, for
example, the processing logic 120, to output the information from the computing device
100. The information may be presented (e.g., displayed, printed) by output device 170.
The information may include, for example, graphical user interface (GUI) elements
(e.g., windows, widgets, dialog boxes, or other GUI elements), graphical
representations, pictures, text, or other information that may be presented by output
device 170. Note that the information may be presented on one or more output devices
170 in a stereoscopic view to enable, for example, a perception of depth.

[0033] Communication interface(s) 180 may include one or more devices that
may include logic for (1) interfacing the computing device 100 with, for example, one or

more communication networks and (2) enabling the computing device 100 to

WO 2011/068971 PCT/US2010/058736

communicate with one or more devices connected to the communication networks. An
example of a communication network that may be used with computing device 100 will
be described further below with respect to FIG. 21.

[0034] A communication interface 180 may include one or more transceiver-like
mechanisms that may enable the computing device 100 to communicate with devices
connected to the communication networks. Examples of a communication interface 180
may include a built-in network adapter, network interface card (NIC), Personal
Computer Memory Card International Association (PCMCIA) network card, card bus
network adapter, wireless network adapter, Universal Serial Bus (USB) network adapter,
modem, or other device suitable for interfacing the computing device 100 to the
communication networks.

[0035] The primary storage 130 is accessible to the processing logic 120 via bus
190. The primary storage 130 may be a non-transient tangible computer-readable media
that may store information for processing logic 120. The information may include
computer-executable instructions and/or data that may implement operating system (OS)
132, windows manager (WM) 134, an application 136 (APP), and a technical computing
environment (TCE) 200. The instructions may be executed, interpreted, and/or
otherwise processed by processing logic 120.

[0036] The primary storage 130 may comprise a RAM that may include RAM
devices that may store the information. The RAM devices may be volatile or non-
volatile and may include, for example, one or more DRAM devices, flash memory
devices, SRAM devices, zero-capacitor RAM (ZRAM) devices, twin transistor RAM
(TTRAM) devices, read-only memory (ROM) devices, ferroelectric RAM (FeRAM)
devices, magneto-resistive RAM (MRAM) devices, phase change memory RAM

(PRAM) devices, or other types of RAM devices.

WO 2011/068971 PCT/US2010/058736

[0037] OS 132 may be a conventional operating system that may implement
various conventional operating system functions. These functions may include, for
example, scheduling one or more portions of APP 136 and/or TCE 200 to run on the
processing logic 120, managing the primary storage 130, controlling access to various
components associated with the computing device 100 (e.g., secondary storage 150,
input device 160, output device 170, communication interface 180), and controlling
access to data received and/or transmitted by these components.

[0038] Examples of operating systems that may be used to implement OS 132
may include, but are not limited to, the Linux operating system, Microsoft Windows
operating system, the Symbian operating system, Mac OS, Chrome OS, and the Android
operating system. A version of the Linux operating system that may be used is Red Hat
Linux available from Red Hat Corporation, Raleigh, North Carolina. Versions of the
Microsoft Windows operating system that may be used include Microsoft Windows 7,
Microsoft Windows Vista, and Microsoft Windows XP operating systems available from
Microsoft Inc., Redmond, Washington. The Chrome OS and Android operating systems
are available from Google, Inc., Mountain View, California. The Mac OS operating
system is available from Apple Inc., Cupertino, California. The Symbian operating
system is available from the Symbian Foundation, London, United Kingdom.

[0039] WM 134 may be a conventional window manager that may manage GUI
elements, such as widgets, dialog boxes, and windows, that may be part of the OS 132,
TCE 200, and/or APP 136. The GUI elements may be displayed on an output device
170. The WM 134 may also be configured to (1) capture one or more positions of
interactions with input device 160 and/or other data associated with the input device
160, and (2) provide the positions and/or data to, for example, OS 132, APP 136, and/or

TCE 200. The positions and/or data may be provided in messages that may be sent to

WO 2011/068971 PCT/US2010/058736

the OS 132, APP 136, and/or TCE 200. Examples of window managers that may be
used to implement WM 134 may include, but are not limited to, X windows, GNOME,
and KDE, which are often used with the Linux operating system, and window managers
used with the Microsoft Windows XP, Microsoft Windows Vista, and Microsoft
Windows 7 operating systems. It should be noted that other window managers or
components that implement various functions associated with window managers may be
used to implement WM 134.

[0040] APP 136 may be designed to perform a particular task or tasks. APP 136
may be an executable and/or interpretable version of a software application that may be
written in a programming language, such as C, C4++, Java, or some other programming
language. Some or all of APP 136 may be, for example, written by a user of computing
device 100, supplied by a vendor, and/or generated by TCE 200. Some or all of APP
136 may operate under the control of OS 132. APP 136 may include computer-
executable instructions and/or data that may implement one or more embodiments of the
invention.

[0041] TCE 200 may be a technical computing environment that may contain
provisions for solving one or more problems. As will be described further below, TCE
200 may include a framework that may be used to solve one or more problems. The
framework may contain a meta-solver and one or more sub-solvers. Some or all of TCE
200 may operate under the control of OS 132. TCE 200 may include computer-
executable instructions and/or data that may implement one or more embodiments of the
invention.

[0042] FIG. 2 illustrates an example embodiment of TCE 200. Referring to FIG.
2, TCE 200 may include an interface 240 and a framework 250. The interface may be

used to input/output information to/from the TCE 200. The information may be (1)

WO 2011/068971 PCT/US2010/058736

input into TCE 200 via an input device, such as input device 160 and (2) output from
TCE 200 via an output device, such as output device 170. Note that other embodiments
of TCE 200 may contain, for example, more components or fewer components than the
components illustrated in FIG. 2. Moreover, functions performed by the various
components contained in TCE 200 may be distributed among the components differently
than described below.

[0043] The TCE 200 may include hardware-based and/or software-based logic,
which may provide a computing environment that may allow various tasks, related to
various disciplines, such as mathematics, science, engineering, mechanics, physics,
medicine, business, biology, and/or finance, to be performed. The TCE 200 may include
a dynamically-typed programming language (e.g., the MATLAB® language), where a
data type of data may be determined at runtime.

[0044] The dynamically typed programming language may use an array as a
basic data element where the array may not require dimensioning. The array may be
used to support array-based programming where an operation may apply to an entire set
of values included in the array. Array-based programming may allow array-based
operations to be treated as a high-level programming technique that may allow, for
example, operations to be performed on entire aggregations of data without having to
resort to explicit loops of individual non-array operations.

[0045] In addition, the TCE 200 may perform matrix and/or vector formulations
that may be used for data analysis, data visualization, application development,
simulation, modeling, and/or algorithm development. These matrix and/or vector
formulations may be used in many areas, such as mathematics, science, engineering,
mechanics, physics, medicine, business, biology, and/or finance.

[0046] The TCE 200 may further provide functions and/or tools for generating,

- 10-

WO 2011/068971 PCT/US2010/058736

for example, plots, surfaces, images, volumetric representations, or other
representations. The TCE 200 may provide these functions and/or tools using toolboxes
(e.g., toolboxes for signal processing, image processing, data plotting, and/or parallel
processing). In addition, the TCE 200 may provide these functions as block sets. The
TCE 200 may also provide these functions in other ways, such as via a library or a
database.

[0047] Examples of TCEs that may be adapted to implement one or more
embodiments of the invention may include, but are not limited to, MATLAB®,
Simulink®, Stateflow®, Simscape™, SimMechanics™, and SimEvents®, which are
available from MathWorks, Inc.; Unified Modeling Language (UML); profiles
associated with UML (e.g., Modeling Analysis and Real-Time Embedded Systems
(MARTE), Systems Modeling Language (SysML), Avionics Architecture Description
Language (AADL)); GNU Octave from the GNU Project; MATRIXx and LabView®
from National Instruments; Mathematica from Wolfram Research, Inc.; Mathcad from
Mathsoft Engineering & Education Inc.; Maple from Maplesoft; Extend from Imagine
That, Inc.; Scilab and Scicos from The French Institution for Research in Computer
Science and Control (INRIA); Modelica or Dymola from Dynasim AB; VisSim from
Visual Solutions; SoftWIRE from Measurement Computing Corporation; WiT from
DALSA Coreco; Advanced Design System, VEE Pro, and SystemVue from Agilent
Technologies, Inc.; Vision Program Manager from PPT Vision, Inc.; Khoros from
Khoral Research, Inc.; VisiQuest from Pegasus Imaging Corporation; Gedae from
Gedae, Inc.; Virtuoso from Cadence Design Systems, Inc.; Rational Rose, Rhapsody,
and Tau from International Business Machines (IBM), Inc.; SCADE from Esterel

Technologies; and Ptolemy from the University of California at Berkeley.

-11-

WO 2011/068971 PCT/US2010/058736

[0048] Interface 240 may be a textual and/or graphical interface that may allow,
for example, a user, to specify, edit, annotate, save, publish, and/or print information that
may be used and/or provided by framework 250. As will be described further below, the
information may include a description of a problem (problem description) that may be
provided to framework 250. Moreover, interface 240 may contain provisions for
generating elements (e.g., objects) of framework 250 and controlling (e.g., establishing
settings, starting, stopping) the operation of framework 250. Interface 240 may include
a command line interface that may enable one or more commands, which may be used to
invoke some or all of the functionality associated with these provisions, to be entered
into TCE 200. In addition, interface 240 may contain provisions for outputting
information that may be provided by framework 250, such as one or more solutions to a
problem that may be found by framework 250. The information may be outputted by
interface 240 in the form of, for example, text, graphics, or some combination thereof,
Examples of information that may be provided by framework 250 and may be output by
interface 240 will be described further below with respect to FIGs. 20A-B.

[0049] Framework 250 may be used to, for example, find one or more solutions
to a problem. The problem may be related to various disciplines, such as mathematics,
science, engineering, mechanics, physics, medicine, business, biology, and/or finance.
The framework 250 may contain provisions for: (1) identifying one or more solvers for
use in finding one or more solutions to a problem, (2) identifying one or more points
(e.g., starting points) that may be used by one or more of the identified solvers, (3)
transferring the identified points to the one or more of the identified solvers, (4)
acquiring one or more outputs from one or more of the identified solvers, and (5)
identifying one or more solutions to the problem based on, for example, the acquired

outputs. Framework 250 may include a solver framework 300 and a point framework

-12-

WO 2011/068971 PCT/US2010/058736

700. Note that framework 250 may include other components associated with finding
one or more solutions to a problem.

[0050] FIG. 3 illustrates a block diagram of an example embodiment of solver
framework 300. Referring to FIG. 3, solver framework 300 may include one or more
meta-solvers 320, one or more sub-solvers 330, and one or more problems 340. The one
or more problems 340 may be passed to the framework 300, for example, from a user
via an interface, such as interface 240. The problems 340 may be passed in information
that may be supplied by the user. Note that one or more of the problems 340 may
include, for example, one or more sub-problems.

[0051] The meta-solvers 320 may include, for example, a global search meta-
solver 320a, a multi-start meta-solver 320b, and/or one or more other meta-solvers 320c.
The sub-solvers 330 may include a numeric solver, a symbolic solver, or some other
type of solver. Note that framework 300 may include two or more sub-solvers 330 that
may be of different types. For example, framework 300 may include a first sub-solver
330 that may be a numeric solver and a second sub-solver 330 that may be a symbolic
solver.

[0052] A meta-solver 320 may have one or more meta-solver settings. The
settings may be used to control a behavior of the meta-solver 320. The settings may
include, for example, one or more settings that may (1) control information that may be
output from the meta-solver, (2) control a number of attempts made to find one or more
solutions to one or more problems 340, (3) specify an amount of time for finding one or
more solutions to one or more problems 340, (4) specify one or more tolerances for
information (e.g., points) that may be used to find one or more solutions to one or more
problems 340, and/or other settings.

[0053] Likewise, a sub-solver 330 may have one or more sub-solver settings.

- 13-

WO 2011/068971 PCT/US2010/058736

These settings may be used to control a behavior of the sub-solver 330.

[0054] The solver framework 300 may be implemented using one or more
objects. FIG. 4 illustrates a class diagram 400 of objects that may be included in solver
framework 300. Referring to FIG. 4, the class diagram 400 includes a meta-solver
(MetaSolver) class 420, a multi-start (MultiStart) class 430, and a global search
(GlobalSearch) class 440. The solver framework 300 may include an object that is of
the MultiStart class 430 (MultiStart object), and/or an object that is of the GlobalSearch
class 440 (GlobalSearch object). Note that classes illustrated in FIG. 4 are an example
of classes for objects that may be contained in framework 300. Other embodiments of
framework 300 may include other objects that may, for example, implement various
functionality associated with framework 300. Some or all of other objects may be based
on other class definitions.

[0055] The MetaSolver class 420 may define member functions 424 and data
members 422 that may be associated with meta-solvers 320 in general. The MetaSolver
class 420 may be a parent class of the MultiStart class 430 and the GlobalSearch class
440. Thus, a MultiStart object and a GlobalSearch object may include member
functions 424 and data members 422. Note that the MetaSolver class 420 may be a
parent class to other meta-solvers 320.

[0056] The MetaSolver class 420 may define various data members 422 and
member functions 424 that may implement functionality associated with a meta-solver
320. The data members 422 may include a display flag (Display), function tolerance
(TolFun), X tolerance (TolX), time limit (MaxTime), and points to run (PointsToRun).
The member functions 424 may include a run member function. Note that MetaSolver
class 420 may define other data members and/or other member functions.

[0057] The Display data member may hold a value that may indicate which

- 14-

WO 2011/068971 PCT/US2010/058736

information may be outputted by an object derived from the MetaSolver class 420, such
as a MultiStart object and a GlobalSearch object. For example, the Display data
member may hold a value that may indicate one or more of the following information
may be outputted by the object: a global optimum solution to a problem, one or more
intermediate results, one or more partial results, status, or other information.

[0058] The TolFun data member may hold a value that may be used to determine
whether two points are identical in terms of a function value. The MaxTime data
member may hold a value that may indicate a maximum amount of time that may be
allowed for finding one or more solutions to a problem. The run member function may
be used to run (e.g., execute) an object derived from the MetaSolver class 420.

[0059] The PointsToRun data member may hold a value that may be used to
determine which points in a point set are to be used by one or more sub-solvers that may
be called by a MultiStart object or a GlobalSearch object. For example, the
PointsToRun data member may indicate that all the points in the point set are to be used,
certain points that fall within certain constraints (e.g., bounds, linear inequality
constraints, non-linear inequality constraints) are to be used, or some other indication,.
Note that the point set may include one or more start points that may be used by the one
or more sub-solvers. The point set may be part of a point framework, such as point
framework 700. Examples of point frameworks will be discussed further below.

[0060] The MultiStart class 430 may be a child class of the MetaSolver class
420. The MultiStart class 430 may define data members 432 and member functions 434
that may be specific to the MultiStart class 430. The data members 432 may include, for
example, a parallelization flag data member (UseParallel). The member functions 434
may include, for example, a constructor function (MultiStart) and a run function (run).

Note that the MultiStart class 430 may define other data members and/or member

- 15-

WO 2011/068971 PCT/US2010/058736

functions.

[0061] The UseParallel data member may hold a value that may indicate
whether, for example, sub-solvers, called by a MultiStart object, may execute in parallel.
For example, execution of the sub-solvers may be distributed among a plurality of
processors. The flag may indicate, for example, that the sub-solvers (1) may always
execute in parallel, (2) may never execute in parallel, or some other indication.

[0062] The MultiStart function may be used as a constructor function for a
MultiStart object. The MultiStart function may initialize one or more values of one or
more data members associated with the MultiStart object.

[0063] The run member function may be used to run a MultiStart object.
Running the MultiStart object may include invoking (calling) one or more sub-solvers to
attempt to find one or more solutions to a problem. The run member function may take
various inputs. The inputs may include, for example, a problem description, a value that
indicates a number of points in a point set, and/or the point set. One or more points in
the point set may be used by the sub-solver as starting points. The run member function
may return an output. The output may be represented as an array. An example of an
output that may be returned by the run member function will be described below with
respect to FIG. 17.

[0064] The GlobalSearch class 440 may also be a child class of the MetaSolver
class 420. The GlobalSearch class 440 may define data members 442 and member
functions 444 that may be specific to the GlobalSearch class 440. The data members
442 may include, for example, a basin radius factor (BasinRadiusFactor), distance
threshold factor (DistanceThresholdFactor), maximum wait cycle (MaxWaitCycle),
number of stage one points (NumStageOnePoints), number of trial points

(NumTrialPoints), and a penalty threshold factor (PenaltyThresholdFactor). The

- 16-

WO 2011/068971 PCT/US2010/058736

member functions 444 may include, for example, a constructor function (GlobalSearch)
and a run function (run). Note that the GlobalSearch class 440 may contain other data
members and/or member functions.

[0065] The BasinRadiusFactor data member may hold a value that may indicate
an amount that a given basin of attraction radius may be decreased when a certain
number of consecutive trial points lie within a basin. The DistanceThresholdFactor data
member may hold a value that may be used to tune an effect of a distance filter. During
a run of a GlobalSearch object, a trial point may have to pass various tests before the
GlobalSearch object starts a sub-solver from that point. The tests may include a distance
test. The DistanceThresholdFactor data member may be used to determine if the trial
point passes the the distance test. For example, the test may include determining if the

following holds given a trial point T and a solution already located L:

Distance between T and L(i) <= DistanceThresholdFactor * maxdist(i)

where maxdist(i) is an estimate of a basin radius for an i-th local solution. If the above
holds, then trial point T may be said to lie in a basin of attraction to solution L.

[0066] The MaxWaitCycle data member may hold a value that may be used to
determine a maximum number of consecutive trial points for various tests. These tests
may include a test that determines whether a threshold value, that may be used to
determine whether a trial point is rejected, is adjusted. For example, the trial point may
be rejected if a penalty function value at this point is greater than the threshold value.
The threshold value may be adjusted if MaxWaitCycle consecutive trial points have
been rejected because a penalty function value is greater than a threshold. Another test

may include determining whether a radius of a basin of attraction of a located minimum

-17-

WO 2011/068971 PCT/US2010/058736

is adjusted. For example, if MaxWaitCycle consecutive trial points lie within a basin,
then the radius of the basin may be adjusted (e.g., reduced).

[0067] The NumStageOnePoints data member may hold a value that may
indicate, for example, a number of points that may be analyzed during a first stage of
running a GlobalSearch object. After analyzing the number of points, the GlobalSearch
object may choose a best quality point from points that have been analyzed. The best
quality point may be passed to a sub-solver that may be called by the GlobalSearch
object.

[0068] The NumTrialPoints data member may be used to hold a value that may
represent a number of trial points that are generated from, for example, a scatter search
algorithm. The PenaltyThresholdFactor data member may hold a value that may
represent an amount by which the above-described threshold value is adjusted.

[0069] The GlobalSearch function may be used as a constructor function for a
GlobalSearch object. The GlobalSearch function may initialize one or more values of
one or more data members associated with the GlobalSearch object.

[0070] The run member function may be used to run a GlobalSearch object.
Running the GlobalSearch object may include invoking one or more sub-solvers
associated with the GlobalSearch object. A sub-solver may be a gradient-based non-
linear programming (NLP) solver. The GlobalSearch object may attempt to find a
“global” solution to general (smooth) NLP problems. The global solution may be found,
for example, using a combination of a domain searching heuristic and the sub-solver.
The domain searching heuristic may employ, for example, a scatter search technique that
may involve generating candidate points using scatter search. The points may be
analyzed and the sub-solver may be started from a point if the point meets certain

criteria (e.g., passes certain tests, such as one or more of the tests described above). The

- 18-

WO 2011/068971 PCT/US2010/058736

run member function may return an output that represents one or more solutions found
by the sub-solver. The output may be represented as an array. An example of an output
that may be returned by the run member function will be described below with respect to
FIG. 17.

[0071] FIG. 5 illustrates a flow chart of example acts that may be performed by a
meta-solver. Referring to FIG. 5, at block 520, information used by the meta-solver may
be acquired. The information may be acquired via an interface, such as interface 240,
from a database, a file, via a communications network, or some other source. The
information may include, for example, a problem description that may describe a
problem to be solved by the meta-solver.

[0072] The problem description may include, for example, an identifier,
objective function, default start point, linear inequality constraint, linear inequality
constraint bounds, linear equality constraint, linear equality constraint bounds, lower
bounds, upper bounds, constraint function, solver options, partial differential equations,
differential equations, descriptions of one or more events that may be used for an event-
based simulation, variable types, and/or other information that may be relevant to the
problem. The problem description may be represented in a data structure that may be
contained in the information.

[0073] The identifier may be used to identify a sub-solver that may be called by
the meta-solver. For example, the identifier may be a data string that holds a name
associated with the sub-solver. Note that the identifier may identify the sub-solver in
other ways.

[0074] The objective function may be a function that may be called by a sub-
solver. The sub-solver may be called by the meta-solver. The objective function may

be represented in the information as a handle of (e.g., pointer to, identifier of) the

- 19-

WO 2011/068971 PCT/US2010/058736

function.

[0075] The default start point that may be a start point that may be used by a
sub-solver, for example, if a start point is not provided to the sub-solver.

[0076] The linear inequality constraint and linear equality constraint may be
constraints that may be applied to the start point used by a sub-solver that may be called
by the meta-solver. The linear inequality constraint and linear equality constraint may
be represented in the information as arrays.

[0077] The linear inequality constraint bounds and linear equality constraint
bounds may be bounds that may be applied to the linear inequality constraint and linear
equality constraint, respectively. The linear inequality constraint and linear equality
constraint may be represented in the structure as arrays. The linear inequality bounds
and linear equality bounds may be represented in the structure as vectors.

[0078] The lower bounds may include a set of lower bounds on one or more
variables (X), used by a sub-solver, such that a solution that satisfies X may be greater
than or equal to a corresponding lower bound in the set of lower bounds. The sub-solver
may be called by the meta-solver. The upper bounds may be a set of upper bounds on
the variables X such that a solution that satisfies X may be less than or equal to a
corresponding upper bound in the set of upper bounds. The lower and upper bounds
may be represented in the structure as arrays.

[0079] The constraint function may be a function that returns one or more values
that represent one or more nonlinear inequality and/or equality constraints. The function
may be represented in the structure as a handle.

[0080] The solver options may include one or more options that may be passed
to a sub-solver that may be called by the meta-solver. The options may be used to

control certain behaviors of the sub-solver. The solver options may be represented in the

- 20-

WO 2011/068971 PCT/US2010/058736

structure as data that may hold one or more settings of the various options.

[0081] At block 530, a sub-solver may be identified by the meta-solver. The
sub-solver may be identified, for example, by analyzing the problem description and
identifying the sub-solver based on information contained in the problem description.
Note that other ways of identifying the sub-solver may be used.

[0082] At block 540, the identified sub-solver may be called by the meta-solver,
in an attempt to find a solution to the problem. The sub-solver may be called with a
point from a point set that may specify a starting point for the sub-solver.

[0083] At block 550, an output of the sub-solver may be used, for example, by
the meta-solver, to identify one or more points for the sub-solver. The sub-solver may
be called by the meta-solver to perform an attempt at finding a solution to the problem
using the identified points.

[0084] At block 560, an output of the sub-solver may be used, for example, by
the meta-solver to alter the problem and/or one or more sub-solver settings. The sub-
solver may likewise be called by the meta-solver after these alterations. The acts at
blocks 540 through 560 may be repeated until (1) one or more solutions are found, (2) a
certain time has elapsed, (3) a number of iterations have been performed, or some other
condition. At block 570, one or more results (e.g., solutions) returned by the sub-solver
may be analyzed, for example, by the meta-solver to identify an optimal solution to the
problem. The identified optimal solution may be returned by the meta-solver.

[0085] FIG. 6A illustrates a flow chart of example acts that may be performed by
a MultiStart meta-solver 320b. Referring to FIG. 6A, at block 620, a problem to be
solved by the MultiStart meta-solver 320b may be acquired. The problem may be in the
form of, for example, a problem description, such as described above. The problem

description may be represented as a structure, also as described above.

-21-

WO 2011/068971 PCT/US2010/058736

[0086] At block 622, a sub-solver is identified. For example, the sub-solver may
be identified from the acquired problem. Here, the acquired problem may contain an
identifier that may be used to identify the sub-solver. Note that other ways of
identifying the sub-solver may be used.

[0087] At block 624, a point set is acquired. The point set may include one or
more points that may be used as starting points by the sub-solver to find one or more
solutions to the problem. The point set may be acquired from a point framework, such
as point framework 700, which will be described further below.

[0088] At block 626, a point is identified for the identified sub-solver. The point
may be identified from the acquired point set. The point may be a start point that may
be used by the sub-solver.

[0089] At block 628, the identified sub-solver is called. The sub-solver may be
an object and may be called by invoking a run function associated with the object. The
point identified at block 626 may be passed to the sub-solver in the call to the sub-
solver. Moreover, some or all of the acquired problem may be passed to the sub-solver.
The sub-solver may return a result to the MultiStart meta-solver 320b. The result may
include (1) a status, which may indicate whether the sub-solver was able to find a
solution to the problem, and (2) one or more solutions to the problem that may have
been found by the sub-solver.

[0090] At block 630, a result returned by the sub-solver may be analyzed by, for
example, the meta-solver. The MultiStart meta-solver 320b may adjust the sub-solver
(e.g., change one or more of the sub-solver’s options) and/or the problem based on a
result of the analysis. At block 632, a check may be performed to determine whether all
of the points in the acquired point set to be used by the sub-solver have indeed been used

by the sub-solver. If not, acts at blocks 626 through 632 are repeated in a next attempt

-22-

WO 2011/068971 PCT/US2010/058736

to find another solution. At block 626, the result returned by the sub-solver may be
used, in part, to identify another point in the point set to be used by the sub-solver in the
next attempt.

[0091] If at block 632, all of the points in the point set to be analyzed have
indeed been analyzed, at block 636, one or more results returned by the sub-solver may
be analyzed to identify one or more solutions to the problem. The identified one or more
solutions may be returned by the MultiStart meta-solver 320b. As will be described
below, the one or more solutions may be returned in an array of objects.

[0092] FIG. 6B illustrates a flow chart of example acts that may be performed by
a GlobalSearch meta-solver 320a. Referring to FIG. 6B, at block 670, a problem to be
solved by the GlobalSearch meta-solver 320a may be acquired. The problem may
include, for example, a problem description that may describe the problem, as described
above. The problem description may be represented as a structure, also as described
above.

[0093] At block 672, a sub-solver is identified. The sub-solver may be identified
by, for example, from the acquired problem, such as described above. Note that other
ways of identifying the sub-solver may be used.

[0094] At block 674, a point set is acquired for a first stage (stage 1 point set) of
finding one or more solutions to the problem by the GlobalSearch meta-solver 320a.

The stage 1 point set may include one or more points that may be used as starting points
by the sub-solver to find one or more solutions to the problem during the first stage. The
stage 1 point set may be acquired from a point framework, such as point framework 700.
[0095] At block 676, the stage 1 point set may be analyzed to identify a stage 1
point that may have a best objective value. The best objective value may relate to a

point in the stage 1 point set that is likely to produce a solution to the problem. Note

- 23-

WO 2011/068971 PCT/US2010/058736

that other criteria may be used to identify the stage 1 point. The GlobalSearch meta-
solver 320a may call the identified sub-solver and pass the identified stage 1 point to the
sub-solver.

[0096] At block 678, a point set is acquired for a second stage (stage 2 point set)
of finding one or more solutions to the problem by the GlobalSearch meta-solver 320a.
The stage 2 point set may include one or more points that may be used as starting points
by the sub-solver to find one or more solutions to the problem during the second stage.
The stage 2 point set may be acquired from a point framework, such as point framework
700.

[0097] At block 680 (FIG. 6C), a stage 2 point may be identified from the
acquired stage 2 point set. Identifying the point may include analyzing the stage 2 point
set to identify a point that may have a best objective value. Note that other criteria may
be used to identify the stage 2 point. At block 682, the GlobalSearch meta-solver 320a
may call the identified sub-solver and pass the identified stage 2 point to the sub-solver.
[0098] At block 684, the GlobalSearch meta-solver 320a may receive a result
from the sub-solver and adjust the sub-solver (e.g., change one or more of the sub-
solver’s options) and/or the problem based on the result. For example, the result may
include a solution found by the sub-solver and/or a status (e.g., whether the sub-solver
found a solution). The GlobalSearch meta-solver 320a may adjust the sub-solver and/or
problem based on the solution and/or status.

[0099] At block 686, a check may be performed to determine whether the sub-
solver should be called with another stage 2 point in the stage 2 point set. If so, acts at
blocks 680 through 686 may be repeated in a next attempt to find another solution using
a different stage 2 point in the stage 2 point set. At block 680, the result returned by the

sub-solver may be used, for example, to identify the other stage 2 point in the stage 2

-24-

WO 2011/068971 PCT/US2010/058736

point set.

[00100] If at block 686, it is determined the sub-solver should not be called with
another stage 2 point, at block 690, one or more results returned by the sub-solver may
be analyzed to identify one or more solutions to the problem. The identified one or more
solutions may be returned by the GlobalSearch meta-solver 320a. As will be described
below, the one or more solutions may be returned in an array of objects.

[00101] A behavior of a meta-solver may be described by one or more member
functions associated with the meta-solver. One or more settings associated with the
meta-solver may be used to tune the meta-solver and/or define the meta-solver’s
interaction with, for example, a user.

[00102] A problem description and a sub-solver, that may be called by the meta-
solver, may be wrapped in a container. The container may be passed to an instance of
the meta-solver to attempt to solve a problem defined by the problem description.
[00103] A meta-solver may attempt to find a solution to a problem in a particular
search space defined by the problem. The search space may be defined by information
that may be included in a problem description of the problem. For example, the problem
description may include bounds that may be used to define the search space. The meta-
solver may pass these bounds to a point framework, such as point framework 700. The
point framework may use the bounds to identify one or more points for the meta-solver.
The meta-solver may transfer one or more of the identified points to one or more sub-
solvers that may be called by the meta-solver. The sub-solvers may use the transferred
points as start points for one or more attempts to find one or more solutions to the
problem.

[00104] FIG. 7 illustrates a block diagram of an example embodiment of point

framework 700. Point framework 700 may be used to identify one or more points (e.g.,

- 25-

WO 2011/068971 PCT/US2010/058736

start points) for one or more sub-solvers, such as sub-solvers 330. Referring to FIG. 7,
point framework 700 may contain a point set 720. Points in the point set 720 may be
derived from some combination of points contained in a random point set 730, a custom
point set 740, or some other point set 750. Settings 732, 742, and 752 may be used to
define a behavior of point sets 730, 740, and 750, respectively. For example, one or
more settings in the random point set settings 732 may be used to specify a random point
generator that may be used to generate points for the random point set 730. Moreover,
settings 732 may specify one or more settings (€.g., a seed value) for the random point
generator. Similarly, one or more settings in the custom point set settings 742 may be
used to define bounds (e.g., an upper bound, lower bound) for points contained in the
custom point set 740.

[00105] An embodiment of point framework 700 may be implemented using one
or more objects that may contain data members and member functions. FIG. §
illustrates a class diagram 800 of example objects that may be included in point
framework 700. Referring to FIG. 8, class diagram 800 includes a point set (PointSet)
class 820, a generated point set (GeneratedPointSet) class 8§30, a random point set
(RandomPointSet) class 840, and a custom point set (CustomPointSet) class 850.
[00106] An object of the RandomPointSet class 840 (RandomPointSet object) or
an object of the CustomPointSet class 850 (CustomPointSet object) may include
member functions 824 defined by the PointSet class 820. The member functions §24
may include a constructor (PointSet) member function, and a list member function (list).
Note that the PointSet class 820 may define various data members and/or other member
functions for a RandomPointSet object and/or a CustomPointSet object.

[00107] The PointSet member function may be a constructor function. The

PointSet member function may be called during a construction of a RandomPointSet

- 26-

WO 2011/068971 PCT/US2010/058736

object or a CustomPointSet object. The PointSet member function may initialize one or
more values of one or more data members associated with these objects. The list
member function may output one or more points.

[00108] A RandomPointSet object may include data members 832 and member
functions 834 that may be defined by the GeneratedPointSet class 830. The data
members 832 may include a number of points (NumPoints) data member and an
artificial bound (ArtificialBound) data member. The member functions 834 may include
a constructor (GeneratedPointSet) member function and a generate (generate) member
function. The NumPoints data member may be used to specify a number of points to be
generated for a point set. The points may be generated when the generate member
function is called. The ArtificialBound data member may be used to specify, for
example, one or more bounds for the generated points.

[00109] The GeneratedPointSet member function may initialize one or more
values of one or more data members associated with the RandomPointSet object. The
data members may include data members 832. The generate member function may be
called to generate one or more points for point framework, such as point framework 700.
Note other data members and/or member functions may be defined for class §30.
[00110] A RandomPointSet object may include member functions 8§44 that may
be defined by the RandomPointSet class 840. The member functions 844 may include a
constructor (RandomPointSet) member function, a list (list) member function, and a
generate (generate) member function. The RandomPointSet member function may be
called during a construction of the RandomPointSet object. The RandomPointSet
member function may initialize one or more values of one or more data members
associated with the RandomPointSet object. The generate member function may

generate one or more points for a point framework, such as point framework 700. The

-27-

WO 2011/068971 PCT/US2010/058736

generated points may be random. The list member function may output one or more
generated points.

[00111] As indicated in the CustomPointSet class 850, a CustomPointSet object
may include various data members 852 and member functions 854. The data members
852 may include a points (Points) data member, a number of points (NumPoints) data
member, and a dimension of points (DimPoints) data member. The member functions
854 may include a constructor (CustomPointSet) member function and a list (list)
member function. Note that the CustomPointSet object may include other data members
and/or member functions.

[00112] The Points data member may hold one or more points associated with the
CustomPointSet object. The one or more points may be held in an array. The one or
more points may be, for example, specified by a user, generated by a function, or
otherwise defined. The NumPoints data member may hold a value that may represent a
number of points held by the Points data member. The DimPoints data member may
hold a value that may be associated with a dimensionality of the Points data member.
For example, the Points data member may be an array and the DimPoints data member
may hold a vector that may hold the dimensions of the array.

[00113] The CustomPointSet member function may be a constructor function that
may be called when the CustomPointSet object is constructed. The CustomPointSet
member function may be used to initialize one or more values of one or more data
members associated with the CustomPointSet object. The list member function may be
used to output one or more points that may be contained in the Points data member.
[00114] FIG. 9 illustrates a block diagram of an example embodiment of point
framework 700. Referring to FIG. 9, the point framework 700 may include a point set

920 and a point cache 930.

- 28-

WO 2011/068971 PCT/US2010/058736

[00115] The point set 920 may include one or more points that may be used by the
solver framework 300. The points may be used as starting points for one or more sub-
solvers that may be called by meta-solvers in the framework 300. The points may be,
for example, (1) generated using a generator function (e.g., a random number generator
function), (2) specified by a user, (3) generated based on previously generated points, or
otherwise defined. Moreover, the points may be generated using various objects, such
as objects described above with respect to FIG. 8. As will be described further below,
the point set may be implemented as an object that may include a member function that
may output one or more points in the point set 920.

[00116] The point set 920 may have one or more settings. Examples of settings
may include, but are not limited to, a dimension of an array that holds points in the point
set 920, a number of points output by the point set 920, a lower and/or upper bounds for
points generated by the point set 920, a set of one or more generator functions that may
be used to generate the points, and/or other settings. The point set 920 may output one
or more of the points to the solver framework 300. Moreover, one or more of the points
may be output to the point cache 930.

[00117] The points may be stored by point set 920 in a variety of ways. For
example, the points may be stored as raw data, text files, spreadsheet files, a database,
and/or some other way. One or more of the points may be output by the point set 920.
For example, the point set 920 may be implemented as an object that may include a
member function that may be called from outside the object. The member function may
output (return) one or more of the points to the caller.

[00118] The point cache 930 may store one or more of points that may be output
and/or used by the point set 920. One or more of the points in the cache 930 may be

generated by the point set 920. Moreover, one or more of the points in the point cache

- 20-

WO 2011/068971 PCT/US2010/058736

930 may be generated/specified externally from the point framework 700. For example,
one or more of the points in the point cache may be specified by a user via an interface,
such as interface 240. Likewise, for example, one or more points in the point cache 930
may be acquired from a database, file, a communications network, or some other source
that may be external from the point framework 700.

[00119] The point cache 930 may be used to store a history of points. For
example, the point cache 930 may be used to store a history of points that have been
output from the point set 920 to solver framework 300. Moreover, the point cache 930
may be used to store a history of points that have been generated by the point set 920.
Note that other histories associated with the points may be stored by the point cache 930.
The point set 920 may utilize this history to, for example, generate future points that
may be output by the point set 920. For example, the point set 920 may utilize this
history to generate points that are not duplicates of points that have already been
generated and/or generate points that may maximize a distance between points.

[00120] The solver framework 300 may request points from the point set 920. In
response to the request, the point set 920 may output one or more points to the solver
framework 300. The one or more points that may be output may be generated based on,
for example, one or more settings associated with the point set 920 and/or information
passed to the point set 920 from the solver framework 300. This information may
include, for example, an optimization problem, sub-solver/meta-solver information (e.g.,
settings), one or more generator functions, a subset of previous points, previous
solutions from a meta-solver, and/or other information.

[00121] Other information may be passed to the point set 920. This information
may include a problem description. The problem description may include, for example,

an upper and/or lower bounds, an objective function, a non-linear constraint function, a

- 30-

WO 2011/068971 PCT/US2010/058736

default start point, one or more linear constraints, one or more bounds, an identity of a
sub-solver, one or more options (e.g., sub-solver options) and/or other information. This
other information that may be passed to the point set 920 may be used by the point set
920 to generate one or more points that may be output by the point set 920.

[00122] In addition, one or more domains may be input into the point set 920. A
domain may be a subset of an entire search space in which a meta-solver may use in an
attempt to find one or more solutions to a problem. The domains may be unrestricted.
For example, the domains may overlap and/or more than one domain may exist.
Furthermore, a one-to-one correspondence between a domain and a problem may not
necessarily exist. Moreover, a domain may or may not include a solution space for a
problem. An example of a domain space that includes a solution space will be described
further below with respect to FIG. 16.

[00123] FIG. 10 illustrates an example embodiment of a storage 1000 that may be
used to hold a point set. Referring to FIG. 10, the storage 1000 may be organized as an
array. As an example, the array may include eight points where each point may be 3-
dimensional. The points may include one or more start points that may used, for
example, by one or more sub-solvers 330 in solver framework 300.

[00124] FIG. 11 illustrates a class diagram 1100 of an object (PointCache object)
that may implement a point cache, such as point cache 930. Referring to FIG. 11, the
PointCache object may include one or more data members 1132 and one or more
member functions 1134 that may implement functionality associated with the point
cache. The data members 1132 may include a points data member (Points) which may
hold points in the cache. The member functions 1134 may include a plot member
function (plot), a display member function (display), an analyze member function

(analyze), and a get points member function (getPoints). Note that a PointCache object

-31-

WO 2011/068971 PCT/US2010/058736

may contain other data members and/or functions than those illustrated in FIG. 11.
[00125] The plot member function may present a graphical display of one or more
points held by the Points data member. The graphical display may include one or more
graphical plots of the points. The one or more of the plots may be built into a TCE, such
as TCE 200. Likewise, one or one more of the plots may be custom plots that may be
specified, for example, by a user. The display member function may present, for
example, a textual display of one or more points held by the Points data member. The
one or more points may be displayed in response to a command provided, for example,
by a user. The analyze member function may analyze one or more points held by the
Points data member. One or more functions used to analyze the points may be built into
the TCE and/or externally specified (e.g., by a user). The getPoints member function
may retrieve one or more points from the Points data member. The points may be output
from the PointCache object to a caller. For example, the PointSet object may call the
getPoints member function to retrieve one or more points from the Points data member
in the PointCache object.

[00126] The PointCache object may be created by a meta-solver, such as meta-
solver 320. FIG. 12 illustrates a class diagram 1200 that shows a use dependency
between a MetaSolver object and a pointCache object. Referring to FIG. 12, the
MetaSolver object may include a run member function (run) which may be used to run
the MetaSolver object. When invoked, the run member function may create the
PointCache object. Note that the MetaSolver object’s run member function may also be
used to access one or more points in the PointCache object.

[00127] FIG. 13 illustrates a block diagram of another example embodiment of
point framework 700. Referring to FIG. 13, point framework 700 may include a point

data source 1320, communication layer 1330, and one or more point sets 1340.

- 30-

WO 2011/068971 PCT/US2010/058736

[00128] The point data source 1320 may be a source for point data. The point
data may be stored in, for example, a database, a file, or some other storage. Moreover,
the point data may be, for example, generated on-the-fly using a point generator
function. The point data source 1320 may be local, in that it may reside in a computing
device that runs TCE 200, and/or may be remote in that the point data source 1320 may
reside in one or more remote computing devices. The computing devices may be
connected to a communications network, such as the Internet. Moreover, the computing
devices may be part of a network cloud. One or more requests for point data may
originate at a computing device and sent to one or more other computing devices which
may respond to the requests with some or all of the point data.

[00129] The communication layer 1330 may contain provisions for gaining access
to one or more points contained in the point data source 1320. For example, the
communication layer 1330 may implement an application programming interface (API)
that may be used to acquire one or more points from the point data source 1320. Here,
the points may be acquired by calling one or more functions provided by the API. In
addition to or alternatively, the communication layer 1330 may incorporate a messaging
scheme that may be used to acquire one or more points from the point data source 1320.
Moreover, the communication layer 1330 may utilize one or more communication
protocols (e.g., the Transmission Control Protocol/Internet Protocol (TCP/IP), User
Datagram Protocol (UDP)) to transfer requests and/or point data between the point data
source 1320 and one or more point sets 1340.

[00130] A point set 1340 may include a set of one or more points that may be
used by a worker (e.g., a sub-solver, a computing device). The point set 1340 may also
include logic that may be used to acquire one or more of the points for the points set

1340 from the point data source 1320 via the communication layer 1330.

-33-

WO 2011/068971 PCT/US2010/058736

[00131] Operationally, a point set 1340 may issue a request 1342 to the
communication layer 1330 for one or more points from the point data source. The
request 1342 may include a function call (e.g., a remote procedure call, a local procedure
call), message, or other request. The communication layer 1330 may make a request
1322 to the point data source 1320 to acquire the one or more points. The request 1322
may include a function call, message, or other request. The point data source 1320 may
respond 1324 to the request 1322 with one or more data points. The communication
layer 1330 may respond 1344 to the point set’s request 1342 with one or more of the
points returned to the communication layer 1330 by response 1324.

[00132] One or more points in a point set may be distributed among one or more
workers (e.g., sub-solvers, meta-solvers). Here, a particular worker may be assigned a
particular subset of points in the point set. The worker may use the assigned subset of
points as start points that may be used in one or more attempts to find one or more
solutions to a problem.

[00133] FIG. 14 illustrates a block diagram of an example embodiment of a
worker 1410 accessing a subset of points 1430 in a point set 1420. Referring to FIG. 14,
the worker 1410 may be provided with a start index 1440 and an end index 1450, which
may indicate a start and end, respectively, of the subset of points 1430. The start index
1440 and/or end index 1450 may be provided to the worker 1410 via, for example, an
APIL. The worker 1410 may access one or more points within the subset and utilize these
points to, for example, attempt to identify one or more solution to the problem.

[00134] Framework 250 may be arranged a number of different ways to solve
various problems. FIGs. 15A-C illustrate block diagrams of example arrangements of
framework 250 that may be used to solve various problems.

[00135] FIG. 15A illustrates an example arrangement of framework 250 that may

- 34-

WO 2011/068971 PCT/US2010/058736

be used to solve, for example, problems that may include simulation models. Referring
to FIG. 15A, a sub-solver 330 may be an optimization solver. A different sub-solver
330 may be an ordinary differential equation (ODE) solver. The meta-solver 320 may
acquire various points for the sub-solvers 330 from the point set 720 based on
information 1550. Information 1550 may include a problem description of a problem
for which one or more solutions may be found by the meta-solver 320. The point set
720 may use information 1550 to identify points for the meta-solver 320. The meta-
solver may transfer the points to the sub-solvers 330. The sub-solvers 330 may attempt
to find one or more solutions to the problem based on the points. The sub-solvers 330
may generate one or more results based on the attempt to solve the problem. The meta-
solver 320 may acquire the results from the sub-solvers 330 and process the results
accordingly. Processing may include adjusting the sub-solvers and/or point set in
successive attempts to find one or more solutions to the problem.

[00136] FIG. 15B illustrates an example arrangement of framework 250 that may
be used to solve one or more problems that may involve different sets of solvers that
may utilize points in different domains. Referring to FIG. 15B, in addition to one or
more points that may be acquired from the point set 720, the meta-solver 320 may
acquire information about one or more domains 1560. The domains 1560 may or may
not include the acquired points. A problem for which an attempt to find one or more
solutions may be made by the framework 250 may be identified by a problem
description contained in information 1550. The problem description along with
information about the domains 1560 may be used by the point set 720 to identify one or
more points for the meta-solver 420. These points may be transferred by the meta-solver
320 to the sub-solvers 330 to attempt to find an optimal solution to the problem. Note

that the domains 1560 may partition a particular search space where a partition may be

- 35-

WO 2011/068971 PCT/US2010/058736

assigned to a particular sub-solver 330. The sub-solver 330 may utilize one or more
points from that partition as, for example, starting points. Also note that a particular
sub-solver 330 may be assigned to multiple domains, which may or may not overlap. In
addition, note that one or more points (e.g., starting points) utilized by the sub-solver
330 may be from the multiple domains.

[00137] FIG. 15C illustrates an example arrangement of framework 250 where
multiple problems may be solved by multiple sub-solvers 330. In this arrangement, a
sub-solver 330 may be paired with a particular problem contained in information 1550.
For example, sub-solver 330a may be paired with one or more problems that may be
described in information 1550a. Likewise, sub-solver 330b may be paired with one or
more problems that may be described in information 1550b and so on. Information 1550
associated with a sub-solver 330 may be used by the point set 720 to identify one or
more points for the sub-solver 330. Likewise, domain information may be used in
conjunction with information 1550 to identify the one or more points. Note that in other
arrangements, domains may be paired with the sub-solvers 330 along with the
information 1550.

[00138] FIG. 16 illustrates an example embodiment of a domain space 1600 that
includes a solution space 1640. Referring to FIG. 16, the domain space 1600 may be
partitioned into a number of partitions 1620a-d. The domain space 1600 may be
defined, for example, by various parameters, such as a lower bounds and an upper
bounds. The lower and upper bounds may be specified in a problem description. Some
of the points in the domain space 1600 may be infeasible with regards to being a
solution to a problem and thus may not be in the solution space 1640.

[00139] The domain space 1600 illustrated in FIG. 16 is partitioned into four

partitions 1620a-d. A partition 1620 may be processed by one or more sub-solvers. The

- 36-

WO 2011/068971 PCT/US2010/058736

sub-solvers may operate in parallel on a particular partition 1620 in an attempt to find
one or more solutions to a problem that may lie within the partition 1620.

[00140] The solution space 1640 may be a region in the domain space 1600 where
one or more solutions to the problem may lie. The solution space 1640 may be said to
include a set of feasible points, where a feasible point may be a point that may satisfy
the problem’s constraints. The solution space 1640 illustrated in FIG. 16 contains four
partitions 1640a-d. One or more points in a partition 1640 may be found by one or more
sub-solvers that may operate, for example, in parallel.

[00141] A solver may output progress information that provides an indication of
progress towards finding one or more solutions to a problem. For example, one or more
sub-solvers 330 may display information about whether the one or more of the sub-
solvers 330 have found one or more solutions to a problem and if so, how many
solutions they have found. Likewise, for example, one or more sub-solvers 330 may
display other information, such as how many attempts the sub-solvers 330 had made
towards finding a solution, how much time may be left for the sub-solvers 330 to find
one or more solutions, and so on.

[00142] A solver may also output other information, such as a best solution and/or
all solutions that have been found. Here, for example, a meta-solver may query one or
more sub-solvers for one or more solutions that the sub-solvers have found and report a
best solution and/or all of the solutions returned by the sub-solvers. FIG. 17 illustrates a
class diagram 1700 of a Solution class 1720. An object of the Solution class 1720
(Solution object) may be used by a meta-solver to report one or more solutions that may
be found by one or more sub-solvers.

[00143] Referring to FIG. 17, a Solution object may include one or more data

members 1730 and one or more member functions 1740. The data members 1730 may

-37-

WO 2011/068971 PCT/US2010/058736

include, for example, free variable values of local minima (X), an objective function
value at the local minima (FVAL), a sub-solver exit flag (Exitflag), stores of algorithm
state (Output), and one or more points (e.g., start points) that may be used by a sub-
solver to find the same solution defined by X and FVAL to a problem (X0) within some
specified tolerance. The member functions 1740 may include a constructor member
function (Solution), which may initialize one or more data members associated with
Solution object. Note that a Solution object may include other data members and other
member functions. Also note that a multiplicity of solutions may be realized by a
multitude of Solution objects. The multitude of Solution objects may be organized into
a collection of Solution objects. For example, the multitude of Solution objects may be
organized as an array of Solution objects, a database of Solution objects, or some other
structure capable of handling a collection of Solution objects.

[00144] The meta-solver may call one or more of the sub-solvers one or more
times to find one or more solutions to the problem. The meta-solver may organize the
one or more solutions into a collection of Solution objects, as described above. The
Exitflag data member in a Solution object may include an exit condition that may be
returned by a particular sub-solver. The exit condition that may indicate whether the
sub-solver has indeed found a solution to the problem. The Output data member in a
Solution object may include one or more algorithmic performance indicators that may be
provided by a sub-solver. These algorithmic performance indicators may include, for
example, a number of iterations that the sub-solver took before exiting, a number of
function evaluations an algorithm (e.g., used by the sub-solver) performed, and/or an
optimality measure the algorithm achieved. Note that a Solution object is an example of
an object that may be output by a solver, such as a meta-solver.

[00145] FIGs. 18A-B illustrate a flow chart of example acts that may be used in a

- 38-

WO 2011/068971 PCT/US2010/058736

workflow that may involve attempting to find one or more solutions to a problem. The
workflow may be implemented by a TCE, such as TCE 200. Referring to FIG. 18A, at
block 1820, a problem description may be prepared, for example, by a user. The
problem description may include, for example, an identifier, objective function, a
default start point, linear inequality constraint, linear inequality constraint bounds, linear
equality constraint, linear equality constraint bounds, lower bounds, upper bounds,
constraint function, solver options, and/or other information that may be relevant to
describing a problem. The problem description may be contained in information
specified, for example, by a user. The problem description may be represented as a
structure in the information, as described above. The information may be input into a
TCE, such as TCE 200, via an interface, such as interface 240.

[00146] At block 1830, a sub-solver may be selected. The sub-solver may be
selected based on the problem description. For example, the problem description may
explicitly identify the sub-solver. The sub-solver may be selected by, for example, a
user, a meta-solver, a TCE, or some other entity.

[00147] At block 1840, a meta-solver may be set-up. The meta-solver may be set-
up, for example, by creating an instance of an object that represents the meta-solver.
Setting up the meta-solver may also include, for example, establishing (e.g., specifying,
setting, initializing) one or more settings associated with the meta-solver. One or more
of the settings may be included in one or more data members that may be associated
with the meta-solver.

[00148] At block 1850, one or more points and/or domains may be described.
The points and/or domain may be described, for example, by a user. One or more points
may be described by explicitly specifying the points. Alternatively or in addition to, one

or more points may be described using a function that may be used to generate the points

-30-

WO 2011/068971 PCT/US2010/058736

or using a point framework, such as point framework 700. Note that other ways of
describing one or more of the points may be used. One or more of the domains may be
described by various parameters such as, for example, bounds that may define the
domain, a function that may define the domain, or other parametric information. Note
that other ways of describing one or more of the domains may be used.

[00149] At block 1860 (FIG. 18B), the meta-solver may be run. The meta-solver
may be run by calling a function (e.g., a run function) associated with the meta-solver.
Running the meta-solver may involve calling a function (e.g., a run function) associated
with the sub-solver and transferring one or more of the points to the sub-solver. The
points may be transferred to the sub-solver as one or more parameters in the call to the
sub-solver function, via a message, or via some other mechanism. Moreover, the sub-
solver may be implemented as a function and the points may be transferred to the sub-
solver on an invocation of the function. The sub-solver may attempt to find one or more
solutions to the problem based on points transferred to the sub-solver.

[00150] At block 1870, the meta-solver may acquire and analyze one or more
results from the sub-solver. The results may include (1) a status that indicates whether
the sub-solver has found one or more solutions to the problem and (2) one or more
solution that have been found by the sub-solver. Based on the analysis, the meta-solver
may return one or more of the solutions. The returned solutions may include an optimal
solution that was found by the sub-solver. One or more of the returned solutions may be
presented, for example, to a user via an interface, such as interface 240,

[00151] At block 1880, a determination may be made as to whether the results are
satisfactory. The meta-solver may determine whether the results are satisfactory. If the
results are determined to not be satisfactory, the workflow may return to block 1830,

1840, or 1850 and acts from that block through block 1880 may be repeated in another

- 40-

WO 2011/068971 PCT/US2010/058736

attempt to find one or more solutions to the problem. If the results are determined to be
satisfactory, additional attempts to find one or more solutions to the problem may not be
performed.

[00152] FIGs. 19A-B illustrate a flow chart of example acts that may be used to
attempt to find one or more solutions to a problem with a framework that employs a
meta-solver/sub-solver arrangement. Referring to FIG. 19A, at block 1920, information
for use in identifying one or more sub-solvers may be acquired (e.g., read). The
information may include one or more identifiers (e.g., names) that may be used to
identify the one or more sub-solvers. The identified sub-solvers may be used in a first
attempt to find at least one solution to a problem. Moreover, the information may
include, for example, a constraint associated with the problem, a limit of a solution space
for the problem, a set of one or more equations that may be used by one or more sub-
solvers, a specification of a sub-solver/problem pair, and/or a constraint function that
may be used to identify a constraint for one or more sub-solvers. The information may
be acquired, for example, by reading the information from a file or database, acquiring
the information from a user interface, such as interface 240, acquiring the information
via a communications network (e.g., the Internet), or from some other source.

[00153] At block 1925, the one or more sub-solvers may be identified based on
the acquired information. For example, the information may include a problem
description that includes one or more identifiers that may be used to identify one or more
of the sub-solvers. Here, identification may involve, for example, determining if the one
or more identifiers in the information match one or more identifiers associated with one
or more of the sub-solvers.

[00154] Likewise, for example, one or more of the sub-solvers may be identified

based on other acquired information. For example, the problem description may include

- 41-

WO 2011/068971 PCT/US2010/058736

other information about the problem (e.g., a formula). One or more of the sub-solvers
may be identified based on this other information. Moreover, one or more of the sub-
solvers may be identified via a search and/or service request. For example, a service
request may be made to one or more sites (e.g., Internet web-sites) that may provide sub-
solver services. These services may include use of a sub-solver, use of resources to
execute a sub-solver, or other services. A site may provide a list of one or more sub-
solver services provided by that site. The site may also provide various criteria
associated with the sub-solver services, such as cost of using a particular sub-solver
service in the list. The sub-solver may be identified, for example, based on the criteria.
[00155] Note that two or more of the identified sub-solvers may be of different
types. For example, one of the identified sub-solvers may be a symbolic sub-solver and
another identified sub-solver may be a numeric sub-solver.

[00156] At block 1930, one or more points, for the identified sub-solvers, may be
identified. The one or more points may be starting points for the identified sub-solvers.
The one or more points may be identified based on the acquired information. For
example, the acquired information may include one or more of the following that may be
used to identify one or more of the points: one or more of the points, a function that may
be used to generate one or more of the points, a description of one or more of the points
and/or domains the points may lie in, or other information.

[00157] One or more of the points may be identified from a domain space that
may be associated with the problem. For example, a problem description may contain
information that may define a domain space for the problem. One or more of the points
may be selected by this domain space.

[00158] One or more of the identified points may be acquired. For example, one

or more of the points may be acquired from an interface, such as interface 240, a

_42-

WO 2011/068971 PCT/US2010/058736

database, a simulation of a model, a file, a communications network, and/or a generator
function.

[00159] One or more of the identified points may be generated based on one or
more settings (e.g., sub-solver settings, meta-solver settings, other settings) and/or one
or more domain definitions of a domain space for the problem. The one or more settings
may include a number of points to generate, a lower bound for the points, and/or an
upper bound for the points.

[00160] A cache, such as point cache 930, may be used to identify one or more of
the points. For example, one or more of the points may be read from the cache. One or
more of the points may have already been used by a sub-solver in a previous attempt to
find one or more solutions to the problem. Likewise, for example, a point may be
identified based on a predefined distance from a point that exists in the cache. The point
that exists in the cache may have been used as a starting point by a sub-solver in a
previous attempt to find one or more solutions to the problem. Moreover, the cache may
be used to place a limit on a total number of points that may be identified.

[00161] At block 1935, one or more of the identified points may be transferred to
one or more of the identified sub-solvers. The points may be transferred, for example,
(1) as one or more arguments in one or more calls to one or more of the identified sub-
solvers, (2) via a message sent to one or more of the identified sub-solvers, or (3) via
some other mechanism for transferring the points to one or more of the identified sub-
solvers.

[00162] At block 1940 the identified sub-solvers may make a first attempt to find
one or more solutions to the problems using one or more of the transferred points.
[00163] At block 1945 (FIG. 19B) one or more outputs from one or more of the

identified sub-solvers may be acquired. The one or more outputs may indicate one or

- 43-

WO 2011/068971 PCT/US2010/058736

more results associated with the first attempt to find at least one solution to the problem
by one or more of the identified sub-solvers. The one or more outputs may be acquired,
for example, by calling a function, from data returned by one or more calls to one or
more of the identified sub-solvers, via messaging, etc. The results may include, for
example, one or more solutions to the problem that were found by one or more of the
identified sub-solvers.

[00164] At block 1950, a check may be performed to determine if an end
condition has occurred. An end condition may be a condition that, after it occurs, may
lead to ending further attempts to find one or more solutions to the problem. An end
condition may include, though is not limited to, one or more of (1) a certain time has
elapsed, (2) a certain number of attempts have been made, (3) a certain number of
solutions have been found, (4) an optimal solution has been found, or (5) a number of
starting points have been tried.

[00165] If an end condition has not occurred, at block 1955, one or more sub-
solvers for use in a next attempt to find at least one solution to the problem may be
identified based on, for example, one or more of the acquired outputs. For example,
based on one or more of the acquired outputs a meta-solver may determine that a sub-
solver used in the first attempt (current sub-solver) should not be used in the next
attempt to find one or more solutions to the problem. Here, the meta-solver may identify
a different sub-solver and include the newly identified sub-solver in the identified one or
more sub-solvers for the next attempt instead of the current sub-solver.

[00166] Likewise, for example, based on one or more of the acquired outputs a
meta-solver may determine that the current sub-solver should be used in the next attempt
to find one or more solutions to the problem. Here, the meta-solver may include the

current sub-solver in the identified one or more solvers for use in the next attempt. Note

- 44-

WO 2011/068971 PCT/US2010/058736

that the current sub-solver may be adjusted. The current sub-solver may be adjusted
based on one or more of the acquired outputs.

[00167] One or more of the sub-solvers for use in a next attempt to find at least
one solution to the problem may be identified based on information acquired at block
1920. For example, the information may include one or more identifiers that may
identify one or more of the sub-solvers for use in the next attempt.

[00168] Note that after a sub-solver is identified, either for the first attempt or the
next attempt, one or more settings for the identified sub-solvers may be established. For
example, a setting that may be established is an identifier (e.g., name, handle) of a
function that the sub-solver may call while the sub-solver is executing.

[00169] Acts at blocks 1930, 1935, 1940, 1945 and 1950 may be repeated for the
sub-solvers that were identified at block 1955.

[00170] If at block 1950, an end condition has occurred, at block 1960 a check
may be performed to determine whether one or more solutions have been found by one
or more of the sub-solvers. If one or more solutions have been found by one or more of
the sub-solvers, at block 1965, one or more of the found solutions may be provided. The
solutions may be provided by, for example, displaying the solutions on an output device
(e.g., output device 170), returning the solutions to a caller, or provided in some other
manner.

[00171] Referring to FIGs. 1, 12, and 19A-B, suppose, for example, that a user at
computing device 100 wants to find one or more solutions to a problem using TCE 200
(FIG. 2). The user may input information into TCE 200 via interface 240 using an input
device 160. The information may include, for example, (1) a problem description that
describes the problem, and (2) identity information (e.g., names) that may be used to

identify one or more sub-solvers 330 for use in attempting to find one or more solutions

- 45-

WO 2011/068971 PCT/US2010/058736

to the problem. TCE 200 may acquire the information (block 1920) via interface 240
and use the identity information to identify one or more sub-solvers 330 (block 1925).
[00172] TCE 200 may determine that one or more of the identified sub-solvers
330 are missing from the TCE 200 (e.g., the sub-solvers 330 are not contained in the
solver framework 300). In this situation, the TCE 200 may attempt to locate the missing
sub-solvers 330. Here, the TCE 200 may query various nodes (e.g., computing devices)
that are attached to a communications network, such as the Internet, to locate and/or
acquire the missing sub-solvers 330. As part of the query, the TCE 200 may provide the
problem description to the other nodes and the other nodes may identify, locate, and/or
provide one or more of the missing sub-solvers 330 based on the provided problem
description.

[00173] After one or more sub-solvers are identified, TCE 200 may create one or
more instances of the one or more sub-solvers 330 (FIG. 3) in framework 300. TCE 200
may also create an instance of a meta-solver 320 in framework 300. The instance of
meta-solver 320 may be used to call one or more instances of the sub-solvers 330 to
attempt to find one or more solutions to the problem. Alternatively, TCE 200 may
create an instance of the meta-solver 320 and pass (transfer) the problem description to
meta-solver instance. The meta-solver instance may identify one or more of the sub-
solvers 330, based on the problem description, and create instances of the identified sub-
solvers 330. Note that the instance of the meta-solver 320 and/or instances of one or
more sub-solvers 330 may be created on one or more computing devices that are remote
from computing device 100. Further, one or more of the created instances may execute
on one or more remote computing devices.

[00174] The TCE 200 may identify one or more points (e.g., starting points) for

the identified plurality of sub-solvers 330 (block 1930). The one or more points may be

- 46-

WO 2011/068971 PCT/US2010/058736

identified by the point framework 700, as described above. After the points are
identified, the TCE 200 may transfer one or more of the starting points to one or more of
the identified sub-solvers 330 (block 1935). One or more points may be transferred to a
particular sub-solver 330, for example, via a call to a member function associated with
an instance of a meta-solver 320. Alternatively, various messaging techniques may be
used to transfer one or more of the points to one or more of the sub-solvers 330.
[00175] The meta-solver 320 may direct one or more of the sub-solvers 330 to
attempt to find one or more solutions to the problem given the transferred points by
calling, for example, run member functions associated with the sub-solvers 330. The
sub-solvers 330 may attempt to find one or more solutions (block 1940). The meta-
solver 320 may acquire one or more results that may be returned by one or more of the
sub-solvers 330 (block 1945). A result from a particular sub-solver 330 may be, for
example, an object that may be returned to the meta-solver 320 in response to a call to
the sub-solver 330 by the meta-solver 320. The object may contain an exit flag data
member that may indicate whether the sub-solver 330 has found one or more solutions
to the problem. If the sub-solver 330 has found at least one solution to the problem, the
solution may be provided in the result returned by the sub-solver 330.

[00176] The meta-solver 320 may determine if an end condition has occurred
(block 1950). An end condition may include, for example, whether a certain time has
elapsed, a certain number of attempts have been made, a certain number of solutions
have been found, an optimal solution has been found, or some other end condition.
[00177] If an end condition has not occurred, the meta-solver 320 may identify
one or more sub-solvers 330 that may be used in a next attempt to find one or more
solutions to the problem (block 1955). The sub-solvers 330 may be identified using one

or more of the acquired results. For example, one or more of the results may be used to

- 47-

WO 2011/068971 PCT/US2010/058736

determine if a different sub-solver 330 should be used in place of a current sub-solver
330 in the next attempt. The above may be repeated in a next attempt to find one or
more solutions to the problem.

[00178] If an end condition has occurred, the meta-solver 320 may check the
results to determine if one or more solutions have been found by one or more of the sub-
solvers 330 (1960). If so, the meta-solver 320 may identify a global optimal solution
from one or more solutions that have been found and provide the global optimal solution
to the TCE 200 (block 1965) via, for example, an object, such as a Solution object.
[00179] The TCE 200 may present (e.g., display) the global optimal solution
using interface 240. The global optimal solution may be presented, for example,
textually, graphically, or some other way. Moreover, intermediate solutions may be
presented. FIG. 20A illustrates an example textual presentation of one or more
intermediate solutions. FIG. 20B illustrates an example graphical presentation of one or
more global optimal solutions and/or intermediate solutions. The example presentations
in FIGs. 20A-B may be generated by TCE 200 based on information that may be
provided by framework 250. The example presentations may be output on an output
device 170 via interface 240.

[00180] One or more embodiments of the invention may be implemented in a
distributed environment. FIG. 21 illustrates an example of a distributed environment
2100 that may implement one or more embodiments of the invention. Referring to FIG.
21, environment 2100 may contain various components including computing device
100, target environment 2110, service provider 2120, cluster 2130, and communications
network 2140. Note that the distributed environment 2100 is just one example of a
distributed environment that may be used with one or more embodiments of the

invention. Other distributed environments that may be used with one or more

- 48-

WO 2011/068971 PCT/US2010/058736

embodiments of the invention may contain more components or fewer components than
illustrated in FIG. 21. Moreover, the components in the distributed environments may
be arranged differently than the arrangement shown in FIG. 21. In addition, the
distributed environments may implement various “cloud computing” frameworks.
[00181] Details of computing device 100 were described above with respect to
FIG. 1. In distributed environment 2100, computing device 100 may, among other
things, exchange information (e.g., data) with other components in the communications
network 2140 (e.g., target environment 2110, service provider 2120, and cluster 2130).
Computing device 100 may interface with the communications network 2140 via a
communication interface 180.

[00182] Target environment 2110 may be configured to interpret and/or execute,
for example, one or more embodiments of the invention, which may be generated in or
otherwise made available to the distributed environment 2100. The communications
network 2140 may include digital and/or analog aspects. Information exchanged in
communications network 2140 may include machine-readable information having a
format that may be adapted for use, for example, in the communications network 2140
and/or with one or more components in the communications network 2140.

[00183] For example, the information may be encapsulated in one or more
packets that may be used to transfer the information through the communications
network 2140. Information may be exchanged between components in the
communications network 2140 using various communication protocols, such as, but not
limited to, Asynchronous Transfer Mode (ATM), Synchronous Optical Network
(SONET), UDP, IP, TCP, TCP/IP, Institute of Electrical and Electronics Engineers
(IEEE) 802.11, or some other communication protocol.

[00184] The communications network 2140 may comprise various network

- 49-

WO 2011/068971 PCT/US2010/058736

devices, such as gateways, routers, switches, firewalls, servers, repeaters, address
translators, etc. Some or all of the communications network 2140 may be wired (e.g.,
using wired conductors, optical fibers) and/or wireless (e.g., using free-space optical
(FSO), radio frequency (RF), acoustic transmission paths). Some or all of the
communications network 2140 may include a substantially open public network, such as
the Internet. Some or all of the communications network 2140 may include a more
restricted network, such as a private corporate network or virtual private network (VPN).
It should be noted that implementations of communications networks and/or devices
operating on communications networks described herein are not limited with regards to,
for example, information carried by the communications networks, protocols used in the
communications networks, and/or the architecture/configuration of the communications
networks.

[00185] Cluster 2130 may include a number of units of execution (UEs) 2132 that
may execute or interpret one or more embodiments of the invention or portions thereof
on behalf of computing device 100 and/or another component, such as service provider
2120. The UEs 2132 may reside on a single device or chip or on multiple devices or
chips. For example, the UEs 2132 may be implemented in a single ASIC or in multiple
ASICs. Likewise, the UEs 2132 may be implemented in a single computer system or
multiple computer systems. Other examples of UEs 2132 may include, for example,
some combination of FPGAs, CPLDs, ASIPs, processors, multiprocessor systems-on-
chip (MPSoCs), graphic processing units, and/or microprocessors. The UEs 2132 may
be configured to perform operations on behalf of another component in the distributed
environment 2100. For example, in an embodiment, the UEs 2132 are configured to
execute portions of code associated with the programming environment 200. Here, the

programming environment 200 may dispatch certain activities pertaining to one or more

- 50-

WO 2011/068971 PCT/US2010/058736

embodiments of the invention to the UEs 2132 for execution. The service provider 2120
may configure cluster 2130 to provide, for example, the above-described services to
computing device 100 on a subscription basis (e.g., via a web service).

[00186] The foregoing description of embodiments is intended to provide
illustration and description, but is not intended to be exhaustive or to limit the invention
to the precise form disclosed. Modifications and variations are possible in light of the
above teachings or may be acquired from a practice of the invention. For example,
while a series of acts has been described above with respect to FIGs. 5, 6A-C, 18A-B,
and 19A-B, the order of the acts may be modified in other implementations. Further,
non-dependent acts may be performed in parallel. Also, the term “user”, as used herein,
is intended to be broadly interpreted to include, for example, a computing device (e.g., a
workstation) or a user of a computing device, unless otherwise stated.

[00187] It will be apparent that one or more embodiments, described herein, may
be implemented in many different forms of software and hardware. Software code
and/or specialized hardware used to implement embodiments described herein is not
limiting of the invention. Thus, the operation and behavior of embodiments were
described without reference to the specific software code and/or specialized hardware --
it being understood that one would be able to design software and/or hardware to
implement the embodiments based on the description herein.

[00188] Further, certain embodiments of the invention may be implemented as
logic that performs one or more functions. This logic may be hardware-based, software-
based, or a combination of hardware-based and software-based. Some or all of the logic
may be stored on one or more tangible computer-readable storage media and may
include one or more computer-executable instructions that may be executed by

processing logic, such as processing logic 120. The computer-executable instructions

-51-

WO 2011/068971 PCT/US2010/058736

may include instructions that implement one or more embodiments of the invention.
The tangible computer-readable storage media may be volatile or non-volatile and may
include, for example, flash memories, dynamic memories, removable disks, and non-
removable disks.

[00189] No element, act, or instruction used herein should be construed as critical
or essential to the invention unless explicitly described as such. Also, as used herein, the
article "a" is intended to include one or more items. Where only one item is intended,
the term "one" or similar language is used. Further, the phrase "based on" is intended to
mean "based, at least in part, on" unless explicitly stated otherwise.

[00190] It is intended that the invention not be limited to the particular
embodiments disclosed above, but that the invention will include any and all particular

embodiments and equivalents falling within the scope of the following appended claims.

- 50-

WO 2011/068971 PCT/US2010/058736

CLAIMS

What is claimed is:
1. A method comprising:

acquiring information for use in identifying a first plurality of sub-solvers, the
first plurality of sub-solvers being used in a first attempt to find at least one solution to a
problem;

identifying the first plurality of sub-solvers based on the acquired information;

identifying one or more starting points for the identified first plurality of sub-
solvers;

transferring one or more of the identified starting points to one or more sub-
solvers in the identified first plurality of sub-solvers;

acquiring one or more outputs from the identified first plurality of sub-solvers,
the one or more outputs indicating one or more results associated with the first attempt
to find at least one solution to the problem by the identified first plurality of sub-solvers;
and

identifying a second plurality of sub-solvers for use in a second attempt to find at
least one solution to the problem, the second plurality of sub-solvers being identified

based on the acquired one or more outputs.

2. The method of claim 1, wherein the second plurality of sub-solvers includes one

or more sub-solvers in the first plurality of sub-solvers.

3. The method of claim 1, further comprising:
identifying one or more starting points for one or more of sub-solvers in the

second plurality of sub-solvers;

-53-

WO 2011/068971 PCT/US2010/058736

transferring one or more of the starting points, identified for one or more of sub-
solvers in the second plurality of sub-solvers, to one or more sub-solvers in the second
plurality of sub-solvers; and

acquiring one or more outputs from the identified second plurality of sub-solvers,
the one or more outputs indicating one or more results associated with the second
attempt to find one or more solutions to the problem by the identified second plurality of

sub-solvers.

4. The method of claim 3, further comprising:
identifying a solution to the problem, the solution to the problem being identified
based on at least one of:
one or more acquired outputs associated with the first attempt to find a
solution to the problem, or
one or more acquired outputs associated with the second attempt to find a

solution to the problem.

5. The method of claim 1, wherein one or more of the identified starting points are

identified from a domain in a domain space associated with the problem.

6. The method of claim 1, further comprising:

saving one or more of the identified starting points in a cache.

7. The method of claim 6, wherein identifying the one or more starting points

further comprises:

identifying one or more of the starting points from the cache.

- 54-

WO 2011/068971 PCT/US2010/058736

8. The method of claim 1, wherein identifying the one or more starting points
further comprises:

generating at least one of the starting points using a function.

9. The method of claim 1, wherein identifying the one or more starting points
further comprises:

acquiring one or more of the starting points.

10. The method of claim 9, wherein one or more of the acquired starting points are
acquired from at least one of:

a user interface,

a database,

a simulation,

a file,

a communications network, or

a generator function.

11. The method of claim 1, wherein identifying the one or more starting points
further comprises:
generating the one or more starting points based on at least one of:
one or more settings, or

one or more domain definitions of a domain space for the problem.

12. The method of claim 11, wherein the one or more settings include at least one of:

a number of starting points to generate,

- 55-

WO 2011/068971 PCT/US2010/058736

a lower bound for the one or more starting points, or

an upper bound for the one or more starting points.

13. The method of claim 1, further comprising:
providing an indication of progress towards attempting to find the solution to the

problem.

14. The method of claim 1, further comprising:

adjusting one or more sub-solvers in the identified first plurality of sub-solvers;

and

including one or more of the adjusted sub-solvers in the second plurality of sub-
solvers.
15. The method of claim 14, wherein one or more of the adjusted sub-solvers are

adjusted based on one or more outputs acquired from the first plurality of sub-solvers.

16. The method of claim 1, wherein the information includes an identifier used to
identify one or more of the sub-solvers in at least one of:
the first plurality of sub-solvers, or

the second plurality of sub-solvers.

17. The method of claim 1, further comprising:
establishing one or more settings associated with at least one of:
one or more of sub-solvers in the first plurality of sub-solvers, or

one or more of sub-solvers in the second plurality of sub-solvers.

- 56-

WO 2011/068971 PCT/US2010/058736

18. The method of claim 17, wherein one or more of the established settings includes
an identifier of a function that is called by at least one of:
one or more of sub-solvers in the first plurality of sub-solvers, or

one or more of sub-solvers in the second plurality of sub-solvers.

19, The method of claim 1, wherein the information includes at least one of:
a constraint associated with the problem,
a limit of a solution space for the problem, or
a set of one or more equations used by at least one of:
one or more sub-solvers in the first plurality of sub-solvers, or

one or more sub-solvers in the second plurality of sub-solvers.

20. The method of claim 1, wherein the information includes at least one of:
a specification of a sub-solver/problem pair, or

a constraint function that is used to identify a constraint for at least one

of:
one or more sub-solvers in the first plurality of sub-solvers, or
one or more sub-solvers in the second plurality of sub-solvers.
21. The method of claim 1, wherein a result indicated by an output is whether a sub-

solver, in the first plurality of sub-solvers, has found a solution to the problem.

22. The method of claim 1, wherein a result indicated by an output is a solution to

the problem.

-57-

WO 2011/068971 PCT/US2010/058736

23. The method of claim 1, wherein at least one of’

a first sub-solver in the first plurality of sub-solvers is a numeric solver and a
second sub-solver in the first plurality of sub-solvers is a symbolic solver, or

a first sub-solver in the second plurality of sub-solvers is a numeric solver and a

second sub-solver in the second plurality of sub-solvers is a symbolic solver.

24, One or more tangible computer-readable storage media for storing computer-
executable instructions executable by processing logic, the media storing one or more
instructions for:
acquiring information for use in identifying a plurality of sub-solvers, the plurality of
sub-solvers being used in a first attempt to find at least one solution to a problem;
identifying the plurality of sub-solvers based on the acquired information;
identifying one or more starting points for the identified plurality of sub-solvers;
transferring one or more of the identified starting points to one or more sub-
solvers in the identified plurality of sub-solvers;
acquiring one or more outputs from the identified plurality of sub-solvers, the
one or more outputs indicating one or more results associated with the first attempt to
find at least one solution to the problem by the identified plurality of sub-solvers; and
identifying one or more sub-solvers for use in a second attempt to find at least
one solution to the problem, the one or more sub-solvers for use in the second attempt

being identified based on the acquired one or more outputs.

- 58-

WO 2011/068971 PCT/US2010/058736

25. The computer-readable storage media of claim 24, wherein the description of the
problem contains one or more identifiers that is used to identify one or more sub-solvers

in the plurality of sub-solvers.

26. The computer-readable storage media of claim 24, wherein the description

includes information that is used to identify one or more of the starting points.

27. The computer-readable storage media of claim 24, wherein one or more of the
starting points are identified based on one or more criteria, the one or more criteria
including at least one of:

a number of starting points to generate,

a lower bound for the one or more starting points, or

an upper bound for the one or more starting points.

28. The computer-readable storage media of claim 24, further comprising one or
more instructions for:

storing one or more of the starting points in a cache.

29. The computer-readable storage media of claim 28, wherein one or more of the

starting points are identified from the cache.

30. The computer-readable storage media of claim 28, wherein the cache is used to
at least one of:
identify a starting point that has already been used by one or more of sub-solvers,

in the plurality of sub-solvers, in an attempt to find a solution to the problem,

- 50-

WO 2011/068971 PCT/US2010/058736

identify a starting point that is a predefined distance from the starting point that

has already been used by the one or more sub-solvers in the attempt to find a solution to

the problem, or

31.

place a limit on a total number of starting points that are identified.

The computer-readable storage media of claim 24, wherein at least one of:

a first sub-solver in the first plurality of sub-solvers is a numeric solver and a

second sub-solver in the first plurality of sub-solvers is a symbolic solver, or

a first sub-solver in the second plurality of sub-solvers is a numeric solver and a

second sub-solver in the second plurality of sub-solvers is a symbolic solver.

32.

A system comprising:
a processor for:

acquiring information for use in identifying a plurality of sub-solvers, the
plurality of sub-solvers being used in a first attempt to find at least one solution
to a problem,

identifying the plurality of sub-solvers based on the acquired information,

identifying one or more starting points for the identified plurality of sub-
solvers,

transferring one or more of the identified starting points to one or more
sub-solvers in the identified plurality of sub-solvers,

acquiring one or more outputs from the identified plurality of sub-solvers,
the one or more outputs indicating one or more results associated with the first
attempt to find at least one solution to the problem by the identified plurality of

sub-solvers, and

- 60-

WO 2011/068971 PCT/US2010/058736

identifying one or more sub-solvers for use in a second attempt to find at
least one solution to the problem, the one or more sub-solvers for use in the

second attempt being identified based on the acquired one or more outputs.

33. The system of claim 32, wherein the information includes information that

describes at least a portion of the problem.

34, The system of claim 32, wherein at least one of:

a first sub-solver in the first plurality of sub-solvers is a numeric solver and a
second sub-solver in the first plurality of sub-solvers is a symbolic solver, or

a first sub-solver in the second plurality of sub-solvers is a numeric solver and a

second sub-solver in the second plurality of sub-solvers is a symbolic solver.

-61-

WO 2011/068971 PCT/US2010/058736
1/28

PRIMARY STORAGE
100 ~ 130
TCE APP
200 136
0S WM
132 134
INPUT DEVICE(S) 190
160
PROCESSING
LOGIC
120
OUTPUT = 110
DEVICE(S) /
170
COMMUNICATION SECONDARY
INTERFACE(S) STORAGE
180 150
FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
2/28

200

~

TECHNICAL COMPUTING ENVIRONMENT

INTERFACE
240

FRAMEWORK
250

SOLVER FRAMEWORK
300

POINT FRAMEWORK
700

FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/058736

WO 2011/068971

3/28

ovE (%3
(SIna1804d (S)d3IATOS-8Ns
30ec 9028 B0z2¢
H3HLO IEYIS-ILINN HOMVYES VL0
HIATOS-VLAW

00e

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/058736

WO 2011/068971

4/28

v Old

> 0EY

. {uni+
¥ (Juoreasieqoio+
Jojoe4piousaly | Aluad+
SIUIOGIBL L WNN+ . (urus
SIHOgeUOabRISINN+ Ovy 125 2y EICNIN
Chy SOASIEMXEN (ueismnp+
I0J0RPIOUSBIY | SOUBISI(+
o 4snipeyuIseg+ ZEY i [ajeiedesn+
Yolesgieqelo) HRISHIN
—
Y “
LA A {uni+
LNYO | SO+
S XeN+
Z2Y XjoL+ > 0ZY
undjo| +
Aeydsig+
IBAOSRIBH
—

00y

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
5/28

520 — ACQUIRE PROBLEM
530 — IDENTIFY SUB-SOLVER
CALL SUB-SOLVER -
I
CHANGE PROBLEM
SPECIFY POINTS AND/OR SUB-SOLVER
PROPERTIES
550 560
— ANALYZE SUB-SOLVER RESULTS "~ 570

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736

6/28
620 ~— ACQUIRE PROBLEM
!
622 IDENTIFY SUB-SOLVER
!
624 ~— ACQUIRE POINT SET
!
626~ IDENTIFY POINT -
'
628 ~ CALL SUB-SOLVER
!
630 ~— ADJUST PROBLEM/SUB-SOLVER OPTIONS

632 ALL POINTS ANALYZED? ~ S

| IDENTIFY ONE OR MORE SOLUTIONS TO
634 — PROBLEM

FIG. 6A

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
7/28

670 ~— ACQUIRE PROBLEM

'

B72 ~ IDENTIFY SUB-SOLVER
674 ACQUIRE STAGE 1 POINT SET

‘ CALL SUB-SOLVER USING STAGE 1 POINT
676 — WITH BEST OBJECTIVE VALUE

!

678 ~— ACQUIRE STAGE 2 POINT SET

FIG. 6B

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
8/28

680 ~—IDENTIFY POINT FROM STAGE 2 POINT SET |-

'

682 ~ CALL SUB-SQOLVER

684 —} ADJUST PROBLEM AND/OR SUB-SOLVER

'

CALL SUB-SOLVER WITH

YES

686 ANOTHER POINT IN STAGE 2

POINT SET?

IDENTIFY ONE OR MORE SCLUTIONS TO

690 — PROBLEM

FIG. 6C

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/058736

WO 2011/068971

9/28

L Old

47
SONILLTS
13S INIOd ¥3H1O

135 INIOd J3H10

47
SONILLTS
138 INIOd WOLSNOD

(73
13S INIOd WOLSND

4
SONILLZS
13S INIOd WOONVYY

0l
135 INIOd WOGNVYA

(44
SONILLES
138 INIOd

0cI
138 INIOd

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/058736

WO 2011/068971

10/28

058 <

8 9Old

PGB~

{(hsy+
{(hegjuIodwolsn)+

€S8

SjuIoguAg-
SIUIOGULNN-
SJUI0d-

1OSIUIDJWOIsNT

{}ere10UBb4
(hsh+
{legiuodwopuey+

jegiuicduiopuey

{}ore10U008
{(1egiuogpsieiauan +

CEY ~r

pUNCGIEIY Y-
SILIOJUINN-

19SII04paIRIaUDS)

(hsii+
{(giuiog+

j9SUI0d

L

)

> 0P8

> 088

> 029

008

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971
11/28

700

QUTPUT FROM
META-SOLVER

|

PCT/US2010/058736

» POINTS

»

SETTINGS —————————
POINT SET
' S—
INFORMATION 920 ®
DOMAINS —————————p
EXTERNAL POINT -~
INPUT OF e CACHE
POINTS 930
FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
12/28

1000

Number of
Variables
-4 o
A
X11 X12 X13
Xo1 X22 Xo3
X31 X32 X33
Number Xa1 Xa X3
of Points
Xs51 Xs2 X53
Xs1 X2 X3
X71 X72 X73
Xs1 Xs2 Xs3
\

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971
13/28

1100

PCT/US2010/058736

PointCache

-Points

~— 1132

+plot()
+display()
+analyze()
+getPoints()

— 1134

FIG. 11

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/058736

WO 2011/068971

14/28

ogly <

¢l Old

{sodieh+
S B o
(hord+
ZELL ~— SIUIO- | — — = Cca+z\\1.vmv
ayoeNuIod
1BAOSEION

> 0Z¥

00cl

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/058736

WO 2011/068971

15/28

upyel
N HIDAHOM
g04 135 INIOd

€l old

AWrel
€ JIHNHOM
d04 13S INIOd

qoyel
£ HIAHOM
H04 13S INIOd

uzrel ocvel
Uyl oppel aprel

.

EQPEL
b IHHOM
404 135 INIOd

4crel
ByPelL

EZVEL

oeet

HIAVT NOLLYOINOWNOD

pcel

¢cel

0cEl

404N0s
V1vQa INIOd

00¢

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/058736

WO 2011/068971

16/28

1420

> 1430

r aaare

i avd

s R

o f‘f -
_{“l

3 ‘._,-

& K

-‘.‘
E
R

“p‘

I A Wl Vil

A - . &

s
al 4

e %
4

LA W4
s

1440

WORKER
1410

1450

FIG. 14

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
17/28

250

POINT SET

720 ¢
SUB-SOLVER
330a
. META-SOLVER
320
* A
SUB-SOLVER
330n
INFORMATION |
1550
FIG. 15A

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
18/28

250 \‘
L
POINT SET
720
SUB-SOLVER »
330a
META-SOLVER INFORMATION
320 15850
SUB-SOLVER
330n
DOMAINS
1580

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736

19/28

250

] |

SUB-SOLVER PO@;fET
330a -

INFORMATION
1550a

SUB-SOLVER

330n META-SOLVER DOMAIN(S)

INFORMATION 320 1560

1550n

SUB-SOLVER
330n

INFORMATION
1550n

FIG. 15C

WO 2011/068971

20/28

" 1620cC
~— 1620d

PCT/US2010/058736

1640d

1640b

FIG. 16

1600
N

16208
1620b

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
21/28

1700

N

Solution

+X

+Fval
+Qutput

+X0

+Solution() 1740

FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
22/28

=)

A 4

1820~ PREPARE A PROBLEM DESCRIPTION

e

1830 ~— SELECT A SUB-SOLVER

o

1840 — SET-UP A META-SOLVER

1850 ——1 DESCRIBE POINTS AND/OR DOMAINS

i
®

FIG. 18A

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
23/28

1860 — RUN META-SOLVER
1870 — ANALYZE RESULTS

!

IF NOT SATISIFIED WITH RESULTS GO TO
ONEOQOFA B, ORC

¢
oo

FIG. 18B

1880 ~—

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
24/28

=)
i

ACQUIRE INFORMATION FOR USE IN
IDENTIFYING ONE OR MORE SUB-
1920 —{ SOLVERS, THE IDENTIFIED SUB-SOLVERS
BEING USED IN A FIRST ATTEMPT TO FIND
AT LEAST ONE SOLUTION TO A PROBLEM

IDENTIFY THE ONE OR MORE SUB-

1925 «——~ SOLVERS BASED ON THE ACQUIRED
INFORMATION

IDENTIFY ONE OR MORE POINTS FOR THE
IDENTIFIED PLURALITY OF SUB-SOLVERS

!

TRANSFER ONE OR MORE OF THE
1935 - IDENTIFIED POINTS TO ONE OR MORE OF
THE IDENTIFIED SUB-SOLVERS

'

THE IDENTIFIED SUB-SOVLERS ATTEMPT
TO FIND ONE OR MORE SOLUTIONS TO
THE PROBLEM USING ONE OR MORE OF
THE TRANSFERRED POINTS

'

FIG. 19A

1930 ~—

1940 —

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
25/28

ACQUIRE ONE OR MORE QUTPUTS FROM
THE IDENTIFIED SUB-SOLVERS, THE ONE
OR MORE OQUTPUTS INDICATING ONE OR
1945 ~—f MORE RESULTS ASSOCIATED WITH THE
FIRST ATTEMPT TO FIND AT LEAST ONE
SOLUTION TO THE PROBLEM BY THE
IDENTIFIED SUB-SOLVERS 1955

S

IDENTIFY ONE OR MORE SUB-
SOLVERS FOR USE IN A NEXT
ATTEMPT TO FIND AT LEAST
ONE SOLUTION TO THE
PROBLEM, THE ONE OR MORE
SUB-SOLVERS BEING
IDENTIFIED BASED ON THE
ACQUIRED ONE OR MORE
QUTPUTS

1950 END CONDITION?

YES

1965

S

PROVIDE FOUND ONE OR
MORE SOLUTIONS

ONE OR MORE SOLUTIONS

1960 FOUND?

FIG. 19B

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/058736

WO 2011/068971

26/28

yoieag ¢ abeig
yoseag g abeig
|[eooT ¢ abeig
[e207 ¢ abeis
jeso7 ¢ abeis
yoiesg ¢ sbeig
|e207 Z 8beis
|20 2 abeig
yoJeasg ¢ obeig
yoieag ¢ obelig
yoieag g abeig
|e207 Z 9beis
je207 Z 9beis
|e207 ¢ 9beis
yoseag g abeig
|[eooT z abeig
[e207 ¢ abeig
jeoo ¢ obeis
je207 ¢ sbeis
|es07 Z 8beis
yoseag g abeig
[eo07 ¢ abeig
jeooT ¢ obeig
[eo07 ¢ abeig
|[e207 | 8beig
juiod feniyj

2InNpadold

0 10 w0

S00-=20'"v
1GG O
1GG 9"

LGS 9-
LGS O-

G00-928¢'G
Go'e-
Go'e-

G00-3¥StE L
G00-34G1L ¥
G00-2€01L ¥
G00-°L.G¢C
1GG 9-

LGS O-
Rl

LGS O-
G0'¢e-
600-8/8/ 9
(X)}

|20

v0Z Ol

9yG'O-
810°G-
68810
cl91°0-
8820000
8820000
¥681°0-
€891°0
Gel ¢
619°¢-
c6eY 0-
98010000
9110

A
G00-®L69¢C-
66610
¢S61°0
8€6¢C0
8C1E0
¢8L1°0-
clyl 0
GGL10-
56 0-
9Gv'€-

Ajjeusd
ploysaiy L

167G~
81L0°G-
81100
L1€C0-
¢l91 0
9.40€0°0
Y¥0C 0-
681 °0-
€0e¢
61L9°¢-
Y1610 0-
G00-828¢c’S
98010000
TAYN A
L0LE0°0
890600
69010
26600
8€6<C°0
GgZel o
42G2°0-
AN
€cl'L-
Lv6 €-

Ajleusd
Ny

LGS O-
1GS'O-
GG 9-
LGS 9-
1GG'9-
GG O-
|GG 9-
GG O-
|GG 9-
1GG9-
GG O-
GG 9-
GG 9~
1 GG 9-
1G5 O
GG 9-
1GS'9-
GG O-
GG 9~
1GG'9-
GG O-
LGS 9-
1GG 9~
GG O-

G0'¢c-
G00-9/8/°9
(X)}

1seg

62G¢E
STARS
gLce
0ci€E
080¢
9c0¢€
¢c6e
168¢
Gllc
SFAST4
GLed
1€€2
8lEc
8.1c¢
G.L0¢
6502
861
44s]
1881
Gosl
6cil
lcll
ol
09G1
8vvl

ic

1UNoo-4

0001
006
€8
608
G08
008
1%
cvl
004
009
00S
18Y
1944
a7
00v
26¢
29¢
eve
[ALS
6l¢
00¢
96¢
L4C
1244
00¢
0
pazAjeuy
Sld WNN

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/058736

WO 2011/068971

27/28

/ AN N
S LFSSTSSTNN
- T, N
SISO

d0¢ 9Old

9
.‘\\\\“\\NW#NMWMWWNMNNQVOM Seoaess

ALK

W K5

N RS eoon
NN\MQQ 00‘“ 00"”"0!556 >

T S SN
A7/ d&ﬂ“——é//ﬁ %MWWWMMWWN&&WMWWA‘ -
e \\ NS 2L A\ & SIS .V
= éo&%:ﬁ”//////wﬁnus&s\\\\&&ow%ﬁ,%m.wm.nmuz

== 7//4
XD “

//? 7 S
NN S
= I

/ﬂ!“@ :
22N
G

N

yaJeagieqo|o Buisn syead jo uoneziwiuip

SUBSTITUTE SHEET (RULE 26)

WO 2011/068971 PCT/US2010/058736
28/28

2100
\

TARGET COMPUTING
ENVIRONMENT COMMUNICATIONS DEVICE
2110 NETWORK 100
2140
SERVICE
PROVIDER
2120
CLUSTER
2130
UE
21322
UE
2132b
UE
2132¢

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/058736

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6N7/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6N GO6Q

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Partitioning"

XP011007447
paragraph [II.B]
paragraph [Introduction]

TEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN
OF INTEGRATED CIRCUITS AND SYSTEMS,
vol. 16, no. 7, 1 July 1997 (1997-07-01),

X LARS W HAGEN ET AL: "Combining Problem 1-34
Reduction and Adaptive Multistart: A New
Technique for Superior Iterative

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
merr:ts, such combination being obvious to a person skilled
inthe art.

"&" document member of the same patent family

Date of the actual completion of the international search

11 February 2011

Date of mailing of the international search report

16/03/2011

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Valencia, Erika

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/058736

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

LYSIAK K ET AL: "A Generalized
MATLAB-based Distributed-computing
Optimization Tool"

IEEE/ACES INTERNATIONAL CONFERENCE ON
WIRELESS COMMUNICATIONS AND APPLIED
COMPUTATIONAL ELECTROMAGNETICS, 2005.
HONOLULU, HI, 3 April 2005 (2005-04-03), -
7 April 2005 (2005-04-07) pages 170-173,
XP010826487

PISCATAWAY, NJ, USA,IEEE DOI:
10.1109/WCACEM.2005. 1469554

ISBN: 978-0-7803-9068-3

abstract

page 3

FOURER R ET AL: "DrAmpl: a meta solver
for optimization problem analysis"
COMPUTATIONAL MANAGEMENT SCIENCE,

vol. 7, no. 4,

12 August 2009 (2009-08-12), pages
437-463, XP019809468

SPRINGER, BERLIN, DE

ISSN: 1619-6988

paragraph [0001]

Kenneth Hotlmstrom: "TOMLAB - Unique
Features for Optimization in

MATLAB" [Online]

29 October 2004 (2004-10-29), page 48PP,
XP002622060

TOMLAB Optimization

Retrieved from the Internet:
URL:http://mechatronics.ece.usu.edu/report
s/seminar04Fall/utah.pdf>

[retrieved on 2011-02-11]

page 12

1-34

1-34

32-34

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - wo-search-report
	Page 92 - wo-search-report

