
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3 
60

8 
77

3
A

9
*EP003608773A9*

(11) EP 3 608 773 A9
(12) CORRECTED EUROPEAN PATENT APPLICATION

(15) Correction information: 
Corrected version no   1     (W1 A1)
Corrections, see
Claims

(48) Corrigendum issued on: 
25.03.2020 Bulletin 2020/13

(43) Date of publication: 
12.02.2020 Bulletin 2020/07

(21) Application number: 18188120.2

(22) Date of filing: 09.08.2018

(51) Int Cl.:
G06F 8/35 (2018.01) G06F 8/10 (2018.01)

G06F 8/65 (2018.01) G06F 9/445 (2018.01)

H04L 29/08 (2006.01)

(84) Designated Contracting States: 
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 
PL PT RO RS SE SI SK SM TR
Designated Extension States: 
BA ME
Designated Validation States: 
KH MA MD TN

(71) Applicant: AUDI AG
85045 Ingolstadt (DE)

(72) Inventor: THURIMELLA, Anil
80995 München (DE)

Remarks: 
Claims filed after the date of filing of the application 
(Rule 68(4) EPC).

(54) METHOD FOR PROVIDING AN AUTOMATIC SOFTWARE DEVELOPMENT/GENERATION AND 
DEPLOYMENT FUNCTIONALITY IN AT LEAST ONE VEHICLE AND CORRESPONDING 
BACKEND SERVER SYSTEM

(57) The invention is concerned with a method (19)
for providing a new software-based functionality (F) in at
least one vehicle (12). The method (19) comprises the
following steps: a digital model generation engine (23)
generates a functionality model (24) of the functionality
(F) on the basis of requirement data (20) that describe
at least one requirement (21) that is to be fulfilled by the
new functionality (F); a digital model transformation en-
gine (25) transforms the functionality model (24) into a
software code (18); a digital testing engine (26) gener-
ates at least one virtual testing scenario (27) on the basis
of the functionality model (24) and verifies correct fulfill-
ment of the at least one requirement (21) by the software
code (18); and an update system (28) and/or func-
tion-on-demand system installs the software code (18)
in the at least one vehicle (12) using a remote update
connection (14).



EP 3 608 773 A9

2

5

10

15

20

25

30

35

40

45

50

55

Description

[0001] The invention is concerned with a method for
providing a an automatic software development and/or
generation functionality in at least one vehicle. The soft-
ware code implementing the functionality is generated
outside the at least one vehicle and transferred into the
at least one vehicle by means of an update system or
function-on-demand system. The invention also compris-
es a backend server system that is designed to perform
the inventive method.
[0002] A backend server system for vehicles may be
used for online services, like e.g. route planning for nav-
igation and/or providing real time traffic data.
[0003] In connection with the removal of errors or bugs
in a software-based functionality of a vehicle, DE 10 2016
225 425 A1 discloses a method for observing an a-typical
behavior of a functionality of a vehicle by means of a
backend server system. If such an a-typical behavior is
observed, the vehicle component that is running the cor-
responding software is put into a secure mode and pa-
rameters of the vehicle components may be adapted on
the basis of a problem solution database. Implementing
a new functionality is not possible with this method.
[0004] Document DE 10 2016 210 994 A1 describes
a method for configuring a vehicle component by means
of a backend server system. This backend server system
may configure at least one vehicle component in order
to influence the functionality of the vehicle component.
However, the necessary data need to be provided by an
operator. In other words, an automatization of adaptation
of the functionality of a vehicle component is not possible.
[0005] In a publication written by M. Voelter et al. (Voel-
ter M., Salzmann C., Kircher M. (2005) Model Driven Soft-
ware Development in the Context of Embedded Compo-
nent Infrastructures. In: Atkinson C., Bunse C., Gross
HG., Peper C. (eds) Component-Based Software Devel-
opment for Embedded Systems. Lecture Notes in Com-
puter Science, vol 3778. Springer, Berlin, Heidelberg), a
method is described for automatically generating soft-
ware codes on the basis of a functionality model. This
method may help generating software code automatical-
ly. However, which functionality this software code shall
provide, must still be determined by an operator.
[0006] It is an object of the present invention to provide
a new software-based functionality in at least one vehicle.
[0007] The object is achieved by the subject matter of
the independent claims. Advantageous embodiments of
the invention are described in the dependent claims, the
following description and the figure.
[0008] The invention provides a method for providing
a new software-based functionality in at least one vehicle.
The functionality is "new" in the sense that the function-
ality does not exist in this form in the at least one vehicle
at the beginning or when the method is started. The meth-
od may be performed by a backend server system, i.e.
a server system that is located outside the at least one
vehicle.

[0009] According to the method, a digital model gen-
eration engine generates a functionality model of the
functionality on the basis of requirement data that de-
scribes at least one requirement that is to be fulfilled by
the new functionality. In other words, what is to be pro-
vided for performing the method is at least one require-
ment that describes how the new functionality shall be-
have or operate. The at least one requirement is sum-
marized by the requirement data. Starting from the re-
quirement data the digital model generation engine gen-
erates a functionality model that may be used as a basis
for generating software code.
[0010] In a second step a digital model transformation
engine transforms the functionality model into a software
code. Such a digital model transformation engine can be
taken from the prior art as has been described in the
introduction of this specification. In a further step, a digital
testing engine generates at least one virtual testing sce-
nario on the basis of the functionality model and verifies
correct fulfillment of the at least one requirement by the
software code. In other words, the functionality model is
used not only for generating the software code itself, but
also for generating at least one virtual testing scenario
for the software code, that is testing data that may be
applied to or processed by the software code in order to
generate a processing result. This processing result can
be compared with the at least one requirement in order
to detect or verify correct fulfilment of the at least one
requirement. For this comparison, the testing data may
also comprise reference output data that represent the
correct output result. The digital testing engine may be
derived from a digital model transformation engine in the
sense that instead of generating software code, testing
data may be generated that provides both input data for
the software code and reference output data that de-
scribes what the software code should generate, if the
software code correctly fulfils the at least one require-
ment.
[0011] In a further step, a update system and/or func-
tion-on-demand system installs the software code in the
at least one vehicle using a remote update connection.
Such an update and/or function-on-demand system may
be taken from the prior art where techniques of software
updates for existing functions and/or software extensions
are known. By using such an update and/or function-on-
demand system, the generated and verified software
code may be transferred into the at least one vehicle and
may be installed and/or started in the at least one vehicle
automatically. Thus, the user may store the software
code in a configuration management system in the back-
end server system so that it can be installed in more than
one vehicle that the user uses.
[0012] The invention provides the advantage that after
providing a list of requirements, that is the at least one
requirement in the form of requirement data, the corre-
sponding software code may be generated and automat-
ically tested and installed in the at least one vehicle. If
the at least one requirement, that is the requirement data,

1 2 



EP 3 608 773 A9

3

5

10

15

20

25

30

35

40

45

50

55

is provided by a respective user of the at least one vehicle,
this method makes it even possible that the at least one
user may program the own vehicle without the need of
writing the software code and testing the software code
or ordering the software code from a programmer or a
company.
[0013] The said digital model generation may be based
on a software module. Likewise, the digital model trans-
formation engine may be based on a software module.
The digital testing engine may be based on a software
module. The update and/or function-on-demand system
may comprise a communication unit for transferring the
software code to the at least one vehicle via the internet
and/or a radio connection, e.g. a cellular phone network
connection and/or a WIFI connection.
[0014] The invention also comprises additional em-
bodiments, that provide for additional technical advan-
tages.
[0015] In one embodiment, the requirement data de-
scribe the at least one requirement on the basis of at
least one WHEN-THEN-statement. In other words, a re-
quirement may comprise the statement "WHEN at least
one predefined condition is fulfilled" "THEN at least one
predefined output shall be generated". The at least one
condition may describe a respective input signal that may
be available in the at least one vehicle. The at least one
output may comprise a respective control signal for ac-
tivating at least one actuator available in the vehicle. For
example, a requirement may state "when the rain sensor
indicates presence of rain then music from a specific play-
list shall be played". Using WHEN-THEN-statements
provides the advantage that a user who provides the at
least one requirement is forced to provide an advanta-
geous structure for stating the at least one requirement,
such that the generation of the functionality model may
be automatized by means of a digital model generation
engine with less effort and/or more reliably.
[0016] In one embodiment, the functionality model is
based on a so called formal notation or formal logic. For
example, the so-called z-notation and/or a first order logic
may be used. However, Z-notation and first order logic
are examples only. The advantage is that these models
may be transformed into a unique mathematical model
without ambiguity. The consistency and correctness of
the requirements may be checked automatically, i.e.
without the presence of a human operator. An operation
may specify in formal logic or natural language text may
be transformed into formal model by using a natural lan-
guage processing unit and a machine learning engine as
commented below. Notifying the at least one requirement
in a functionality model on the basis of at least one of
these notification techniques thus allows for automating
the transformation of the functionality model in a software
code (automatic programming).
[0017] In one embodiment, the said digital model trans-
formation engine is based on a machine learning engine.
A machine learning/deep learning engine may have an
artificial neural network (ANN) as a possible item in the

machine learning engine. A machine learning engine in
addition to a natural language processing unit can re-
solve a possible ambiguity in the specifications (e.g. nat-
ural language specifications) and transform a natural lan-
guage requirement from text/speech/video to a formal
model (e.g. z-notation, first order logic). This has proven
advantageous as the model transformation engine may
adapt its transformation behavior or its transformation
rules as a function or in reaction to at least one error that
may be comprised in the software code. For example,
such an error may be discovered by the digital testing
engine and may be fed back into the model transforma-
tion engine for feedback learning. In other words, the
machine learning engine may adapt the way of trans-
forming the functionality model into software code in de-
pendence on error data describing an erroneous trans-
formation.
[0018] In one embodiment, an editor is provided which
is designed to receive the at least one requirement at
least partially from an operator. In other words, a human
operator may provide input for describing the at least one
requirement. The editor may support requirement pat-
terns and/or templates so that the formulation may be
done quickly. By means of such an editor a template may
be provided for entering a WHEN-THEN-statement for
each requirement. An editor provides the advantage that
a human machine interface is available for entering the
at least one requirement.
[0019] In one embodiment, the at least one require-
ment is derived at least partially from at least one user
message that a respective user provides and that de-
scribes the at least one requirement on the basis of a
natural language text. In other words, the user is not re-
quired to provide the at least one requirement in a special
form, e.g. as a WHEN-THEN-statement. The user may
rather use natural language, i.e. language like it may be
used when talking to other persons. This simplifies the
entering of the at least one requirement.
[0020] In one embodiment, the at least one require-
ment for the new functionality is extracted from the natural
language text by a speech recognizer and/or a language
translator and/or a machine learning engine. If a speech
recognizer is used, the natural language text may even
be entered verbally by the user, i.e. the user may speak
the natural language text and thus state the at least one
requirement. A language translator may be adapted in
such a way that the natural language text may be trans-
lated into at least one WHEN-THEN-statement. Thus,
transferring the natural language text into WHEN-THEN-
statement may be automated. A machine learning engine
may extract the at least one requirement from the natural
language text on the basis of training material. A machine
learning engine provides the additional advantage that
interpretation of the natural language text may be per-
sonalized in that user-specific ways of expressing at least
one requirement may be learned or recognized by the
machine learning engine. In other words, this enables
the adaptation of the machine learning engine to user-

3 4 



EP 3 608 773 A9

4

5

10

15

20

25

30

35

40

45

50

55

specific ways of expressing at least on requirement. This
reduces the error probability.
[0021] In one embodiment, the at least one require-
ment is derived at least partially from at least one fog
computing network to which the at least one vehicle is
connected. In other words, the at least one vehicle is a
member or a note or component in the at least one fog
computing network. The at least one fog computing net-
work detects at least one software bug in the at least one
vehicle. In other words, the at least one vehicle is ob-
served by the at least one fog computing network. Par-
ticularly, not several, but only one common fog computing
network is used for the at least one vehicle. The at one
requirement is derived from the at least one detected
bug. In other words the at least one requirement de-
scribes a condition or state of the at least one vehicle
that would be present, if the at least one software bug
was absent. This can be achieved by describing the in-
verse of the observed state of the at least one vehicle.
By generating the at least one requirement as a reaction
to at least one software bug that is observed by the at
least one fog computing network, the at least one soft-
ware bug may be removed from the at least one vehicle
in an automated fashion by providing corrected software
code.
[0022] In one embodiment, the software code, that is
generated from the functionality model, is designed to
implement the new functionality on the basis of independ-
ent function modules that are installed in the at least one
vehicle independently. In other words, the software code
is not monolithic in the sense that the whole software
code is to be present in the at least one vehicle before
any software function may be run in the respective vehi-
cle. Instead, the functionality is split into a plurality of
independent function modules that may be installed and
operated in the respective vehicle independently from
each other. This allows for stepwise implementation of
the functionality and module-wise exchange of function
modules, for example for the purpose of removing or up-
dating an erroneous function module without the need to
exchange the complete software code of the whole func-
tionality. Such a process is called continuous deployment
that is the functions are deployed one after the other con-
tinuously.
[0023] For performing the inventive method, the inven-
tion also provides a backend server system comprising
at least one processing unit which is designed to perform
an embodiment of the inventive method. The backend
server system may be based on a central computer serv-
er, e.g. an internet server, or a network of several of such
computers and/or a cloud computing system and/or a
distributed fog computing system. The at least one
processing unit may comprise at least one microproces-
sor. Such a backend may provide computational power
to transform the requirements into code and test it auto-
matically. Later, the generated core/deployment packets
may be stored in a configuration management system
within a user account of the user. The value is to have a

baseline copy and to be able to install in other vehicles
that the user uses.
[0024] One main advantage is that the development
and delivery process is quick. For example, an operator
or user may get his functions within few minutes/hours
while the current development takes few years to add
main changes in the vehicle software. Another benefit is
it is that the development and operational costs would
be reduced as very little human resources are involved.
In addition to this, the quality of functionality improves
because of little possibility for human errors. Further-
more, this will provide a paradigm change that an oper-
ator or user may program his own vehicle based on his
needs instead of buying a vehicle that is meant for gen-
eral purpose.
[0025] The invention also comprises the combinations
of the features of the describes embodiments.
[0026] In the following, an implementation example of
the invention is described. The single figure illustrates:

Fig. a schematic illustration of a backend server sys-
tem according to the invention performing an em-
bodiment of the inventive method.

[0027] The embodiment explained in the following is a
preferred embodiment of the invention. However, in the
embodiment, the described components of the embodi-
ment each represent individual features of the invention
which are to be considered independently of each other
and which each develop the invention also independently
of each other and thereby are also to be regarded as a
component of the invention in individual manner or in
another than the shown combination. Furthermore, the
described embodiment can also be supplemented by fur-
ther features of the invention already described.
[0028] In the figure identical reference signs indicate
elements that provide the same function.
[0029] The figure (Fig.) shows a backend server sys-
tem 10, that may be implemented as an internet server
of the internet 11 or a cloud server system or an edge
computing system. At least one vehicle 12 may be con-
nected to the backend server system 10 over a respective
communication path 13. The communication path 13 may
comprise a respective radio connection 14 between a
communication unit 15 of the respective vehicle 12 and
a communication network 16 that may be connected to
the internet 11. A communication unit 15 and the com-
munication network 16 may be based on a mobile com-
munication technology, e.g. GSM, UMTS, 5G, or on the
basis of a WIFI technology. Each vehicle 12 may com-
prise an electronic control unit 17 that may be designed
to execute software code 18 which may provide a func-
tionality F in vehicle 12 when executed by the control unit
17. As an example for a functionality, an infotainment
system may be controlled as a function or in dependence
on a sensor signal of the vehicle. For example, a prede-
fined playlist may be used for playing music when a sen-
sor, e.g. a rain sensor signals a predefined condition, e.g.

5 6 



EP 3 608 773 A9

5

5

10

15

20

25

30

35

40

45

50

55

the presence of rain. In general, a functionality may be
a link between at least one input signal (e.g. rain sensor
signal, vehicle speed signal) on one side and at least one
control signal (e.g. a respective control signal for at least
one actuator) on the other side. The logic for this link is
provided by the functionality stating at least one condition
(WHEN-condition) when the at least one control signal
shall be output.
[0030] For implementing the software code, a method
19 may be performed by the backend server system 10
which allows for automatically generating the software
code 18 in reaction to requirement data 20 that describes
at least one requirement 21 that the functionality F shall
fulfil in the at least one vehicle 12. For example, the re-
quirements 21 may be listed by a respective user of the
at least one vehicle 12, e.g. in a natural language text 22
that a user may provide as a spoken message or as a
written message with the backend server system 10. In
a step S10 a digital module generation engine 23 may
generate a functionality model 24 of the functionality F
on the basis of the requirement data 20 that describes
that at least one requirement 21 that is to be fulfilled by
the new functionality F. In a step S11, a digital model
generation engine 25 may transform the functionality
model 24 into the software code 18. In a step S12, a
digital testing engine 26 may generate at least one virtual
testing scenario 27 on the basis of the functionality model
24 and may verify correct fulfilment of the at least one
requirement 21 on by the software code 18. The at least
one virtual testing scenario may comprise input data and
reference output data, wherein for correct fulfilment of
the at least one requirement 21 the software code should
when processing the input data provide output data cor-
responding to the reference output data. In a step S13,
a digital update system 28 may install the software code
18 in the at least one vehicle 12 using a remote update
connection that may be based on the communication
paths 13.
[0031] The implementation of a new functionality F is
based on the following points:

- Specify the software requirement 21 for the vehicle
12 directly in the backend server system 10 based
on requirement data that provides a data set with the
requirements. The requirements may be formulated
in a requirement language (e.g. formal method).

- Automatically develop and test the software code 18
within the backend server system 10 based on deep
learn and/or model based software engineering
technique. The deep learning technique may be im-
plemented as a deep learning engine which may
transform the functionality model into software code
and/or virtual scenario testing data.

- The new software code for the new functionality F
may be updated and/or installed to the vehicle 12
based on online updates.

[0032] Thus, only requirements need to be managed,

e.g. manually, while all the remaining steps S10 to S13
such as development, testing deployment and vehicle
delivery may be automated. Based on this concept, sig-
nificant costs would be reduced. The vehicles 12 may be
provided cheaper and/or an increased profit margin for
the producer of vehicles 12 is available.
[0033] Starting from requirements 21 to delivering the
software code 18 to the at least one vehicle 12 may be
performed in less than 24 hours, i.e. less than one day.
Also, edge and/or fog computing may be used, such that
vehicles 12 themselves may provide data sets with re-
quirements 21 which can maybe directly taken as a basis
to fix software bugs and/or provide a specific new func-
tionality F. In addition to an online service, backend tech-
nologies may also be used for software development it-
self as its shown on the example of method 19. Hu-
man/environment critical bug fixes and/or features may
thus be brought to a vehicle 12 in a shorter time than on
the basis of manual programming. This can be essential
in the case of automatically driving vehicles 12. The func-
tional development for the vehicle 12 may also be per-
sonalized as well. An end-user of vehicle 12 may specify
and/or order a new functionality F for the own vehicle 12
directly by means of the natural language text 22.
[0034] The described backend server system 10 may
work based on the following additions to a traditional ve-
hicle 12 and a traditional backend environment: An editor
E may be provided to specify requirements 21 in the back-
end server system 10 based on data sets and/or software
specification methods, such as formal methods. A model
transformation engine 25 may be enhanced by a deep
learning engine 25’ within the backend server system 10
in order to develop and test features automatically. The
model transformation engine 25 may use software code
templates that represent a WHEN-condition or a THEN-
condition. For example, in a requirement 21, a WHEN-
THEN-statement may be recognized. For the WHEN-
condition, an association connecting the text of the
WHEN-condition to a predefined software code template
may be searched in a data base or data set. Accordingly,
for the THEN-output the text of the THEN-output may be
associated with a corresponding software code template
stored in the data base or data set. Then, by combining
the two software code templates, the software code for
implementing the requirement 21 is available.
[0035] The automated software development function-
ality as implemented by method 19 may be integrated
with an online update or functionality-on-demand sys-
tem.
[0036] The example shows how a backend-based em-
bedded software development may be provided. The end
user is able to program the own car. The backend server
system provides the computational resources to auto-
matically generate software from specifications / require-
ments given by the user.

7 8 



EP 3 608 773 A9

6

5

10

15

20

25

30

35

40

45

50

55

Claims

1. Method (19) for providing a new software-based
functionality (F) in at least one vehicle (12), charac-
terized in that

- a digital model generation engine (23) gener-
ates a functionality model (24) of the functional-
ity (F) on the basis of requirement data (20) that
describe at least one requirement (21) that is to
be fulfilled by the new functionality (F);
- a digital model transformation engine (25)
transforms the functionality model (24) into a
software code (18);
- a digital testing engine (26) generates at least
one virtual testing scenario (27) on the basis of
the functionality model (24) and verifies correct
fulfillment of the at least one requirement (21)
by the software code (18); and
- an update system (28) and/or function-on-de-
mand system installs the software code (18) in
the at least one vehicle (12) using a remote up-
date connection (14).

2. Method according to claim 1, wherein the require-
ment data (20) describe the at least one requirement
(21) on the basis of at least one WHEN-TH EN-state-
ment.

3. Method (19) according to any of the preceding
claims, wherein the functionality model (24) is based
on automatic programming and/or a formal notation,
in particular a first order logic and/or a z-notation.

4. Method (19) according to any of the preceding
claims, wherein the digital model transformation en-
gine (25) is based on a machine learning engine
(25’).

5. Method (19) according to any of the preceding
claims, wherein an editor (E) is provided which is
designed to receive the at least one requirement (21)
at least partially from an operator.

6. Method (19) according to any of the preceding
claims, wherein the at least one requirement (21) is
derived at least partially from at least one user mes-
sage that a respective user provides and that de-
scribes the at least one requirement (21) on the basis
of a natural language text (22).

7. Method (19) according to claim 6, wherein the at least
one requirement (21) is extracted from the natural
language text (22) by an automatic speech recog-
nizer and/or a language translator and/or a machine
learning engine.

8. Method (19) according to any of the preceding

claims, wherein the at least one requirement (21) is
derived at least partially from at least one fog com-
puting network to which the at least one vehicle (12)
is connected and that detects at least one software
bug in the at least one vehicle (12), wherein the at
least one requirement (21) is derived from the at least
one detected software bug.

9. Method (19) according to any of the preceding
claims, wherein the software code (18) is designed
to implement the functionality (F) on the basis of in-
dependent function modules that are installed in the
at least one vehicle (12) independently from each
other.

10. Backend server system (10) comprising at least one
processing unit which is designed to perform a meth-
od (19) according to any of the preceding claims.

Amended claims in accordance with Rule 137(2)
EPC.

1. Method (19) for providing a new software-based
functionality (F) in at least one vehicle (12), wherein

- the at least one vehicle (12) is connected to at
least one fog computing network and
- the at least one vehicle (12) is observed by the
at least one fog computing network and
- the at least one fog computing network detects
at least one software bug in the at least one ve-
hicle (12) and
- at least one requirement (21) is derived from
the at least one detected bug, wherein the at
least one requirement describes a state of the
at least one vehicle (12) that would be present,
if the at least one software bug was absent,
wherein the derivation of the at least one require-
ment (21) is achieved by describing the inverse
of the observed state of the at least one vehicle
(12);

characterized in that in a backend server system
(10)

- the at least one requirement (21) is derived
from the at least one fog computing network;
- a digital model generation engine (23) gener-
ates a functionality model (24) of the functional-
ity (F) on the basis of requirement data (20) that
describe the at least one requirement (21) that
is to be fulfilled by the new functionality (F),
wherein the requirement data (20) describe the
at least one requirement (21) on the basis of at
least one WHEN-THEN-statement and the func-
tionality model (24) is based on automatic pro-
gramming and/or a formal notation;

9 10 



EP 3 608 773 A9

7

5

10

15

20

25

30

35

40

45

50

55

- a digital model transformation engine (25)
transforms the functionality model (24) into a
software code (18);
- a digital testing engine (26) generates at least
one virtual testing scenario (27) on the basis of
the functionality model (24) and verifies correct
fulfillment of the at least one requirement (21)
by the software code (18); and
- an update system (28) and/or function-on-de-
mand system installs the software code (18) in
the at least one vehicle (12) using a remote up-
date connection (14), such that
- by generating the at least one requirement (21)
as a reaction to at least one software bug that
is observed by the at least one fog computing
network, the at least one software bug is re-
moved from the at least one vehicle (12) in an
automated fashion by providing the corrected
software code (18).

2. Method according to claim 1, wherein the function-
ality model (24) is based on a first order logic and/or
a z-notation.

3. Method (19) according to any of the preceding
claims, wherein the digital model transformation en-
gine (25) is based on a machine learning engine
(25’).

4. Method (19) according to any of the preceding
claims, wherein an editor (E) is provided which is
designed to receive the at least one requirement (21)
at least partially from an operator.

5. Method (19) according to any of the preceding
claims, wherein the at least one requirement (21) is
derived at least partially from at least one user mes-
sage that a respective user provides and that de-
scribes the at least one requirement (21) on the basis
of a natural language text (22).

6. Method (19) according to claim 6, wherein the at least
one requirement (21) is extracted from the natural
language text (22) by an automatic speech recog-
nizer and/or a language translator and/or a machine
learning engine.

7. Method (19) according to any of the preceding
claims, wherein the software code (18) is designed
to implement the functionality (F) on the basis of in-
dependent function modules that are installed in the
at least one vehicle (12) independently from each
other.

8. Backend server system (10) comprising at least one
processing unit which is designed to perform a meth-
od (19) according to any of the preceding claims.

11 12 



EP 3 608 773 A9

8



EP 3 608 773 A9

9

5

10

15

20

25

30

35

40

45

50

55



EP 3 608 773 A9

10

5

10

15

20

25

30

35

40

45

50

55



EP 3 608 773 A9

11

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• DE 102016225425 A1 [0003] • DE 102016210994 A1 [0004]

Non-patent literature cited in the description

• Model Driven Software Development in the Context
of Embedded Component Infrastructures. VOELTER
M. ; SALZMANN C. ; KIRCHER M. Compo-
nent-Based Software Development for Embedded
Systems. Lecture Notes in Computer Science, 2005,
vol. 3778 [0005]


	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

