wO 2024/072588 A1 |0 0000 KO0 A 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
04 April 2024 (04.04.2024)

‘O 00 00 000 0 0 A
(10) International Publication Number

WO 2024/072588 Al

WIPO I PCT

1)

@n

22)

@5
(26)
30)

(71)

(72)

International Patent Classification:
GO6N 3/096 (2023.01) GO6N 3/045 (2023.01)

International Application Number:
PCT/US2023/031094

International Filing Date:
24 August 2023 (24.08.2023)

Filing Language: English
Publication Language: English
Priority Data:

17/958,261 30 September 2022 (30.09.2022) US
Applicant: MICROSOFT TECHNOLOGY LI-

CENSING, LLC [US/US]; One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Inventors: RAMA, Kiran; MICROSOFT TECHNOLO-
GY LICENSING, LLC, One Microsoft Way, Redmond,
Washington 98052-6399 (US). LI, Ke; MICROSOFT
TECHNOLOGY LICENSING, LLC, One Microsoft
Way, Redmond, Washington 98052-6399 (US). RAN-
GAPPA, Sharath Kumar, MICROSOFT TECHNOL-
OGY LICENSING, LLC, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). AHMAD, Shariq;
MICROSOFT TECHNOLOGY LICENSING, LLC, One

(74)

@81)

84

Microsoft Way, Redmond, Washington 98052-6399 (US).
KODIBAIL, Akash; MICROSOFT TECHNOLOGY LI-
CENSING, LLC, One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

Agent: CHATTERJEE, Aaron C. et al.; MICROSOFT
TECHNOLOGY LICENSING, LLC, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ,DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG,
KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,
MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM,KE, LR,LS, MW, MZ, NA, RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,

(54) Title: TRANSFER-LEARNING FOR STRUCTURED DATA WITH REGARD TO JOURNEYS DEFINED BY SETS OF AC-
TIONS

(57) Abstract: Techniques are described herein that are capable of performing
transfer-learning for structured data with regard to journeys defined by sets of

- 100

actions. A first deep neural network (DNN) for a first journey is trained using

structured data. Weights of nodes in the first DNN are transferred to nodes in

- 102A - 1028 o 102M

First User Device Second User Device Mth User Device

N kS X
N, \ g
N\ i Vs
N P e L
Ny N -~
u h ¥
N
4 i
o J
> £
/ Network <
\‘\;, //
; <
A A .
7 *—‘» ,,,,, \
/,/ .
e | AN
s N
o 106A 1068 ~ 106N
First Server(s) !
108
lourney-Based
Transfer-Learning ‘
Logic
] S Second Server(s) Nth Server(s)
¥ ¥. ‘
First Second
DNN DNN ‘
1o =" 1137 ‘

a second DNN for a second journey using transfer-learning. An embedding
layer replaces a final layer of the first DNN in the second DNN to provide
an output with a same number of nodes as a pre-final layer of the first DNN.
‘Weights of the nodes in the embedding layer are initialized based at least on a
probability that a new feature of the second journey cooccurs with each feature
/ in the structured data. A softmax function is applied on a final layer of the
second DNN to indicate possible next actions of the second journey.

[Continued on next page]

WO 2024/072588 A |10} 00 00000 00 0 0O

DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
S, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
TRANSFER-LEARNING FOR STRUCTURED DATA WITH REGARD TO JOURNEYS

DEFINED BY SETS OF ACTIONS

BACKGROUND

A journey 1s a set of actions that are performed to achieve a goal (e.g., resolve an issue) with
regard to an entity. For instance, the actions of a journey often are performed in a business
context to achieve a business objective. A deep neural network often is used to determine a next
action (e.g., next best action) to be performed in a journey. For instance, the next action may be
the action that the deep neural network deems most likely to facilitate achieving the goal of the
journey. A deep neural network is an artificial neural network that includes multiple lavers
between an input layer and an output laver. An artificial neural network is a system that is
inspired by a biological neural network of an animal brain. For instance, an artificial neural
network may increase accuracy, precision, and/or efficiency with which the artificial neural
network achieves a goal by considering examples. Each example may include sample inputs and
sample output(s) that result from the sample inputs. A configuration of a deep neural network
typically 1s specific to the journey with which the deep neural network is associated.
Accordingly, a new deep neural network often 1s constructed from scratch for each new journey.
Generating a new deep neural network from scratch for each new journey typically consumes a
substantial amount of time and resources, especially if an amount of data regarding the new
journey is limited (e.g., non-existent).
SUMMARY

A first deep neural network associated with a first journey can be used to construct a second
deep neural network associated with a second journey based at least on a similarity between the
first and second journeys. Examples of a journey include but are not limited to a digital buyer
journey, an engineering support journey, a journey of a compute system (e.g., virtualized storage
or virtualized network) over time, and a journey of a software product over time. In an example
digital buyer journey, a user visits a website to make a purchase, and a deep neural network
determines the next content to be provided to the user to facilitate the purchase. In an example
engineering support journey, a user submits an engineering support ticket that identifies an issue,
and a deep neural network determines the next document (e.g., article) to be provided to the user
to facilitate resolving the issue. In an example journey of a compute system or a software
product, a deep neural network determines a next action (e.g., maintenance action, upgrade
action, or re-configuration) to be performed with regard to the compute system or the software
product. For instance, in the example journey of the compute system, the next action may

include replacing a failing hard drive or upgrading or updating a software system or a RAID

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
configuration.
Transfer-learning can be used to construct the second deep neural network based at least on the
first deep neural network, even though one or more features associated with the second journey
are not included in structured data that are used to train the first deep neural network. Transfer-
learning is a process of applying knowledge, which is learned with regard to solving a first
problem, to solve a second problem that is different from but related to the first problem. For
instance, information regarding a first journey that pertains to a first entity may be used to
perform a second journey that pertains to a second entity based at least on a similarity between
the first and second journeys. Examples of an entity include but are not limited to a compute
system, a software product, and a website. Structured data is data that has a defined structure.
For example, the structured data may be organized into rows and columns. In accordance with
this example, the rows and columns constitute the defined structure.
For example, nodes and corresponding weights in each layer of the first deep neural network
that precedes the final layer (a.k.a. last layer or last used layer) may be incorporated into the
second deep neural network using a transfer-leaming technique. An embedding layer having the
same number of nodes as the pre-final layer of the first deep neural network may be
incorporated into the second deep neural network in lieu of the final layer of the first deep neural
network. A pre-final layer (a.k.a. next-to-last layer) of a deep neural network is the layer that
immediately precedes the final layer of the deep neural network. Weights of the nodes in the
embedding layer may be established by taking into consideration the feature(s) not included in
the structured data. A softmax function may be applied on a final layer of the second deep neural
network based at least on the weights of nodes in the embedding layer and the pre-final layer.
By using the first deep neural network to construct the second deep neural network in
accordance with any one or more of the example techniques described herein, an amount of time
and/or resources associated with constructing the second deep neural network is reduced.
Various approaches are described herein for, among other things, performing transfer-learning
for structured data with regard to journeys defined by sets of actions. In an example approach, a
first deep neural network, which is associated with a first set of actions that defines a first
journey, is trained by learning weights of nodes among layers of the first deep neural network
that precede a final layer of the first deep neural network using structured data. The weights are
transferred from the first deep neural network to corresponding nodes in a second deep neural
network, which is associated with a second set of actions that defines a second journey, in
accordance with a transfer-learning technique based at least on a similarity between the first set
of actions and the second set of actions satisfying a similarity criterion. An embedding layer is

added in lieu of the final layer of the first deep neural network in the second deep neural

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094

network such that an output of the embedding layer results in a same number of nodes as a pre-
final layer of the first deep neural network. Weights of the respective nodes in the embedding
layer are initialized based at least on a probability that a new feature co-occurs with each of the
features in the structured data. The new feature is associated with the second journey and is not
included among the features in the structured data that are used to leam the weights in the first
deep neural network. A softmax function is applied on a final layer of the second deep neural
network. The softmax function is configured to generate a probability distribution regarding
possible next actions to be performed in the second journey based at least on the weights of the
respective nodes in the embedding layer and further based at least on the weights of the
respective nodes in the pre-final layer. The weights of the respective nodes in the pre-final layer
result from sequenced updating using a stochastic gradient descent technique.
This Summary is provided to introduce a selection of concepts in a simplified form that are
further described below in the Detailed Description. This Summary is not intended to identify
key features or essential features of the claimed subject matter, nor is it intended to be used to
limit the scope of the claimed subject matter. Moreover, it is noted that the invention is not
limited to the specific embodiments described in the Detailed Description and/or other sections
of this document. Such embodiments are presented herein for illustrative purposes only.
Additional embodiments will be apparent to persons skilled in the relevant art(s) based on the
teachings contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated herein and form part of the specification,
illustrate embodiments of the present invention and, together with the description, further serve
to explain the principles involved and to enable a person skilled in the relevant art(s) to make
and use the disclosed technologies.

FIG. 1 is a block diagram of an example journey-based transfer-learning system in accordance
with an embodiment.

FIGS. 2-3 depict flowcharts of example methods for performing transfer-learning for structured
data with regard to journeys defined by sets of actions in accordance with embodiments.

FIG. 4 1s a block diagram of an example computing system in accordance with an embodiment.
FIG. 5 is a block diagram of an example deep neural network in accordance with an
embodiment.

FIG. 6 depicts an example computer in which embodiments may be implemented.

The features and advantages of the disclosed technologies will become more apparent from the
detailed description set forth below when taken in conjunction with the drawings, in which like

reference characters identify corresponding elements throughout. In the drawings, like reference

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
numbers generally indicate identical, functionally similar, and/or structurally similar elements.
The drawing in which an element first appears is indicated by the leftmost digit(s) in the
corresponding reference number.

DETAILED DESCRIPTION

L Example Embodiments

A first deep neural network associated with a first journey can be used to construct a second
deep neural network associated with a second journey based at least on a similarity between the
first and second journeys. Examples of a journey include but are not limited to a digital buyer
journey, an engineering support journey, a journey of a compute system (e.g., virtualized storage
or virtualized network) over time, and a journey of a software product over time. In an example
digital buyer journey, a user visits a website to make a purchase, and a deep neural network
determines the next content to be provided to the user to facilitate the purchase. In an example
engineering support journey, a user submits an engineering support ticket that identifies an issue,
and a deep neural network determines the next document (e.g., article) to be provided to the user
to facilitate resolving the issue. In an example journey of a compute system or a software
product, a deep neural network determines a next action (e.g., maintenance action, upgrade
action, or re-configuration) to be performed with regard to the compute system or the software
product. For instance, in the example journey of the compute system, the next action may
include replacing a failing hard drive or upgrading or updating a software system or a RAID
configuration.

Transfer-learning can be used to construct the second deep neural network based at least on the
first deep neural network, even though one or more features associated with the second journey
are not included in structured data that are used to train the first deep neural network. Transfer-
learning is a process of applying knowledge, which is learned with regard to solving a first
problem, to solve a second problem that is different from but related to the first problem. For
instance, information regarding a first journey that pertains to a first entity may be used to
perform a second journey that pertains to a second entity based at least on a similarity between
the first and second journeys. Examples of an entity include but are not limited to a compute
system, a software product, and a website. Structured data is data that has a defined structure.
For example, the structured data may be organized into rows and columns. In accordance with
this example, the rows and columns constitute the defined structure.

Transfer-learning works relatively well for unstructured datasets (e.g., images) because the
unstructured datasets typically have a standard representation. For instance, images typically
have an input size of X*Y. When utilizing transfer-learning, the same architecture is used for the

reference deep neural network and the deriving deep neural network for most of the consecutive

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
initial input layers. For instance, language models (e.g., natural language processing (NLP)
models) can be trained to predict the next word in a given language, and the last couple of lavers
can be modified to address the specific problem. A challenge in applying transfer-learning to
structured datasets is that the input format can be quite different with even one additional
feature. This challenge can be addressed by having a deep neural network for the additional
feature(s) connecting to an additional node on the pre-final layer of the original deep neural
network.

Example embodiments described herein are capable of performing transfer-learning for
structured data with regard to journeys defined by sets of actions. For example, nodes and
corresponding weights in each layer of the first deep neural network that precedes the final layer
(ak.a. last layer or last used layer) may be incorporated into the second deep neural network
using a transfer-learning technique. An embedding layer having the same number of nodes as
the pre-final layer of the first deep neural network may be incorporated into the second deep
neural network in lieu of the final layer of the first deep neural network. A pre-final layer (ak.a.
next-to-last layer) of a deep neural network is the layer that immediately precedes the final layer
of the deep neural network. Weights of the nodes in the embedding layer may be established by
taking into consideration the feature(s) not included in the structured data. A softmax function
may be applied on a final layer of the second deep neural network based at least on the weights
of nodes in the embedding layer and the pre-final layer.

Example techniques described herein have a variety of benefits as compared to conventional
techniques for constructing a deep neural network. For instance, the example techniques enable
transfer-learning at scale for similar journeys. For example, once a deep neural network
associated with a digital buyer journey for a particular product, such as Power BI®, the deep
neural network can be used to initialize the parameters of another similar deep neural network
associated with a digital buyer journey for another product, such as Microsoft Dynamics®,
Office 365®, or PowerApps®. In another example, if a deep neural network associated with an
engineering support journey for a specific enterprise product X is constructed, the deep neural
network can be leveraged to construct another deep neural network that predicts the next best
action for another enterprise product Y.

The example techniques enable transfer-learning for structured datasets. The transfer-learning on
the structured datasets may be enabled by adding an embedding layer to the deep neural network
such that the embedding layer has the same number of nodes as a pre-final layer of a reference
deep neural network on which the deep neural network is based. For example, the embedding
layer may incorporate new feature(s), which are not present in structured data that is used to

train the reference deep neural network, into the features of the structured data.

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
The example techniques may initialize weights of the nodes in the embedding layer based on a
probability that the new feature(s) co-occur with each of the features in the structured data. The
example techniques may increase accuracy and/or precision of characteristics of an entity with
regard to which a journey is performed, which may result in an outcome having a relatively
higher value. The example techniques may optimize assignment of cohort groups among
treatment and control groups. For example, each cohort group may receive a personalized design
variant that optimizes the outcome a priori. In accordance with this example, a first cohort group
1s assigned to a control group for which the reference deep neural network is utilized, and a
second cohort group is assigned to a treatment group for which the deep neural network, which
is based on the reference deep neural network, 1s utilized.

The example techniques may be capable of increasing accuracy, precision, and/or reliability of
predictions of possible next actions of a journey that are provided by a deep neural network, for
example, by basing the deep neural network on another deep neural network that is associated
with a similar journey. The example techniques may automate construction of a deep neural
network for which sample data is relatively sparce by using transfer-leaming on structured data.
Accordingly, the amount of time that is consumed to construct the deep neural network may be
reduced. For instance, the example techniques may automatically construct the deep neural
network based on nodes and corresponding weights in layers of another deep neural network
that is trained on the structured data based at least on journeys that are associated with the
respective deep neural networks being similar. By automating the construction of the deep
neural network, an efficiency of an information technology (IT) professional who would
otherwise be tasked with constructing the deep neural network is increased. By eliminating a
need for the IT professional to construct the deep neural network manually, a cost of
constructing the deep neural network may be reduced. For instance, time spent by the IT
professional to manually construct the deep neural network has an associated cost. By
eliminating the manual construction, the cost of constructing the deep neural network can be
reduced by the labor cost associated with the IT professional performing the manual
construction.

The example techniques may reduce an amount of time and/or resources (e.g., processor cycles,
memory, network bandwidth) that is consumed to construct a deep neural network. For instance,
by using a reference deep neural network to construct the deep neural network in accordance
with any one or more of the example techniques described herein, an amount of time and/or
resources associated with constructing the deep neural network may be reduced. By
automatically constructing the deep neural network, the time and/or resources that would have

been consumed to manually construct the deep neural network is reduced. By reducing the

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
amount of time and/or resources that is consumed by a computing system to facilitate manual
construction of the deep neural network, the efficiency of the computing system may be
increased.

FIG. 1 is a block diagram of an example journey-based transfer-learning system 100 in
accordance with an embodiment. Generally speaking, the journey-based transfer-learning system
100 operates to provide information to users in response to requests (e.g., hypertext transfer
protocol (HTTP) requests) that are received from the users. The information may include
documents (Web pages, images, audio files, video files, etc.), output of executables, and/or any
other suitable type of information. In accordance with example embodiments described herein,
the journey-based transfer-learning system 100 performs transfer-learning for structured data
with regard to journeys defined by sets of actions. Detail regarding techniques for performing
transfer-learning for structured data with regard to journeys defined by sets of actions is
provided in the following discussion.

As shown in FIG. 1, the journey-based transfer-learning system 100 includes a plurality of user
devices 102A-102M, a network 104, and a plurality of servers 106A-106N. Communication
among the user devices 102A-102M and the servers 106A-106N is carried out over the network
104 using well-known network communication protocols. The network 104 may be a wide-area
network (e.g., the Internet), a local area network (LAN), another type of network, or a
combination thereof.

The user devices 102A-102M are computing systems that are capable of communicating with
servers 106A-106N. A computing system is a system that includes a processing system
comprising at least one processor that is capable of manipulating data in accordance with a set of
instructions. For instance, a computing system may be a computer, a personal digital assistant,
etc. The user devices 102A-102M are configured to provide requests to the servers 106A-106N
for requesting information stored on (or otherwise accessible via) the servers 106A-106N. For
instance, a user may initiate a request for executing a computer program (e.g., an application)
using a client (e.g., a Web browser, Web crawler, or other type of client) deployed on a user
device 102 that 1s owned by or otherwise accessible to the user. In accordance with some
example embodiments, the user devices 102A-102M are capable of accessing domains (e.g.,
Web sites) hosted by the servers 104A-104N, so that the user devices 102A-102M may access
information that is available via the domains. Such domain may include Web pages, which may
be provided as hypertext markup language (HTML) documents and objects (e.g., files) that are
linked therein, for example.

Each of the user devices 102A-102M may include any client-enabled system or device,

including but not limited to a desktop computer, a laptop computer, a tablet computer, a

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
wearable computer such as a smart watch or a head-mounted computer, a personal digital
assistant, a cellular telephone, an Internet of things (IoT) device, or the like. It will be
recognized that any one or more of the user devices 102A-102M may communicate with any
one or more of the servers 106A-106N.

The servers 106A-106N are computing systems that are capable of communicating with the user
devices 102A-102M. The servers 106A-106N are configured to execute computer programs that
provide information to users in response to receiving requests from the users. For example, the
information may include documents (Web pages, images, audio files, video files, etc.), output of
executables, or any other suitable type of information. In accordance with some example
embodiments, the servers 106A-106N are configured to host respective Web sites, so that the
Web sites are accessible to users of the journey-based transfer-learning system 100.

The first server(s) 106A are shown to include journey-based transfer-learning logic 108, a first
deep neural network (DNN) 110, and a second DNN 112 for illustrative purposes. The journey-
based transfer-learning logic 108 is configured to perform transfer-learning for structured data
with regard to journeys defined by sets of actions. For instance, the journey-based transfer-
learning logic 108 may use the first DNN 110, which is associated with a first journey and
which is trained using structured data, to construct the second DNN 112, which is associated
with a second journey that is similar to the first journey, in accordance with a transfer-learning
technique.

In an example implementation, the journey-based transfer-learning logic 108 trains the first
DNN 110, which is associated with a first set of actions that defines a first journey, by learning
weights of nodes among layers of the first DNN 110 that precede a final layer of the first DNN
110 using structured data. The journey-based transfer-learning logic 108 transfers the weights
from the first DNN 110 to corresponding nodes in the second DNN 112, which is associated
with a second set of actions that defines a second journey, in accordance with a transfer-learning
technique based at least on a similarity between the first set of actions and the second set of
actions satisfying a similarity criterion. The journey-based transfer-learning logic 108 adds an
embedding layer in lieu of the final layer of the first DNN 110 in the second DNN 112 such that
an output of the embedding layer results in a same number of nodes as a pre-final laver of the
first DNN 110. The journey-based transfer-learning logic 108 initializes weights of the
respective nodes in the embedding layer based at least on a probability that a new feature co-
occurs with each of the features in the structured data. The new feature is associated with the
second journey and is not included among the features in the structured data, which are used to
learn the weights in the first DNN 110. The journey-based transfer-learning logic 108 applies a

softmax function on a final layer of the second DNN 112, The softmax function is configured to

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
generate a probability distribution regarding possible next actions to be performed in the second
journey based at least on the weights of the respective nodes in the embedding layer and further
based at least on the weights of the respective nodes in the pre-final layer, which result from
sequenced updating using a stochastic gradient descent technique.

In an example implementation, the first DNN 110 pertains to a first digital buyer journey
regarding a first software product, and the second DNN 112 pertains to a second digital buyer
journey regarding a second software product. In another example implementation, the first DNN
110 pertains to a first engineering support journey regarding a first software product, and the
second DNN 112 pertains to a second engineering support journey regarding a second software
product. In yet another example implementation, the first journey pertains to a lifecycle of a first
compute system, and the second journey pertains to a lifecycle of a second compute system. In
still another example implementation, the first journey pertains to a lifecycle of a first software
product, and the second journey pertains to a lifecycle of a second software product.

The journey-based transfer-learning logic 108 may be implemented in various ways to perform
transfer-learning for structured data with regard to journeys defined by sets of actions, including
being implemented in hardware, software, firmware, or any combination thereof. For example,
the journey-based transfer-learning logic 108 may be implemented as computer program code
configured to be executed in one or more processors. In another example, at least a portion of
the journey-based transfer-learning logic 108 may be implemented as hardware logic/electrical
circuitry. For instance, at least a portion of the journey-based transfer-learning logic 108 may be
implemented in a field-programmable gate array (FPGA), an application-specific integrated
circuit (ASIC), an application-specific standard product (ASSP), a system-on-a-chip system
(SoC), a complex programmable logic device (CPLD), etc. Each SoC may include an integrated
circuit chip that includes one or more of a processor (a microcontroller, microprocessor, digital
signal processor (DSP), etc.), memory, one or more communication interfaces, and/or further
circuits and/or embedded firmware to perform its functions.

The journey-based transfer-learning logic 108, the first DNN 110, and the second DNN 112 are
shown to be incorporated in the first server(s) 106A for illustrative purposes and are not
intended to be limiting. It will be recognized that the journey-based transfer-learning logic 108
(or any portion(s) thereof) may be incorporated in any one or more of the servers 106A-106N,
any one or more of the user devices 102A-102M, or any combination thereof. For example,
client-side aspects of the journey-based transfer-learning logic 108 may be incorporated in one
or more of the user devices 102A-102M, and server-side aspects of journey-based transfer-
learning logic 108 may be incorporated in one or more of the servers 106A-106N. It will be

further recognized that each of the first and second DNNs 110 and 112 (or any portion(s)

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
thereof) may be incorporated in any one or more of the servers 106A-106N, any one or more of
the user devices 102A-102M, or any combination thereof.

FIGS. 2-3 depict flowcharts 200 and 300 of example methods for performing transfer-learning
for structured data with regard to journeys defined by sets of actions in accordance with
embodiments. Flowcharts 200 and 300 may be performed by the first server(s) 106A shown in
FIG. 1, for example. For illustrative purposes, flowcharts 200 and 300 are described with respect
to computing system 400 shown in FIG. 4, which is an example implementation of the first
server(s) 106A. As shown in FIG. 4, the computing system 400 includes journey-based transfer-
learning logic 408. The journey-based transfer-learning logic 408 includes a first deep neural
network (DNN) 410, a second DNN 412, training logic 422, weight transfer logic 424, layer
embedding logic 426, weight initialization logic 428, function application logic 430, action logic
432, entity changing logic 434, and presentation logic 436. Further structural and operational
embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion
regarding flowcharts 200 and 300.

As shown in FIG. 2, the method of flowchart 200 begins at step 202. In step 202, a first deep
neural network, which is associated with a first set of actions that defines a first journey, is
trained by learning weights of nodes among layers of the first deep neural network that precede
a final layer of the first deep neural network using structured data. In an example
implementation, training logic 422 trains the first DNN 410, which is associated with a first set
of actions that defines a first journey, by learning weights of nodes among layers of the first
deep neural network 410 that precede a final layer of the first deep neural network 410 using
structured data.

In an example embodiment, the structured data includes device features, entity features, and
interaction features. Each device feature represents a respective attribute of a device (e.g.,
computing system) that interacts with an entity associated with the first journey. Examples of an
entity include but are not limited to a website and a software program (e.g., software product).
Each entity feature represents a respective attribute of the entity. Each interaction feature
represents a respective attribute of an interaction between a device and the entity.

In the context of a digital buyer journey, examples of a device feature include but are not limited
to hardware and/or software (e.g, operating system, browser) used by the device, a
configuration of screen resolution, a type of the device (e.g., mobile device, desktop device, or
laptop device), and a type of search channel used to search for results. Examples of an entity
feature include but are not limited to a web page, information accessible via the web page, an
action button on the web page (e.g., Free Trial, Buy Now, Add to Cart), a navigational element

(e.g., internal search, left assisted navigation, top assisted navigation, or scroll element), and a

10

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
backend commerce component of the web page that enables transactions to occur. Examples of
an interaction feature include but are not limited to a previously visited web page, a behavioral
element regarding the previously visited web page (e.g., time spent performing operations on the
web page, time spent on the visit to the web page, a number of clicks performed on the web
page, a depth of a website that was visited, a navigational path through the web site, an
interaction with a navigational element (e.g., keyword used in an internal search), a commerce
action, and an interaction with a scroll bar.

In the context of an engineering support journey, examples of a device feature include but are
not limited to the age of the device and the type and/or configuration of the compute, storage,
memory, and/or networking employed by the device. Examples of an entity feature include but
are not limited to a Knowledge Base (KB) article describing steps to troubleshoot an issue with
which the journey pertains and an online lab, user manual, and/or whitepaper describing steps to
resolve an issue with which the journey pertains. Examples of an interaction feature include but
are not limited to a transcript of interactions between the device (or a user thereof) and the entity
(or a representative thereof). Examples of such an interaction include but are not limited to a
website visit, a mobile application visit, an email interaction, a chat with a technical support
representative, a call to a technical support representative over the phone, arranging a site visit,
and posting a question on a forum.

In the context of a journey of a compute system over time, examples of a device feature include
but are not limited to a number of hard drives in the device, a performance metric from the hard
drive(s) (e.g., latency, bandwidth, or throughput), wear and tear of the hard drive(s), and a
specific configuration used. Examples of an entity feature include but are not limited to a
temperature of the hard drive(s), a pressure experienced by the hard drive(s), and an external
load of the hard drive(s). Examples of an interaction feature include but are not limited to a
number of requests serviced during a period of time and an outage error.

In an example embodiment, input of the deep neural network is a series of touchpoints between
device(s) and the entity. For instance, each touchpoint may be represented by a feature vector
that includes the device features, the entity features, and the interaction features.

At step 204, the weights from the first deep neural network are transferred to corresponding
nodes in a second deep neural network, which is associated with a second set of actions that
defines a second journey, in accordance with a transfer-learning technique based at least on a
similarity between the first set of actions and the second set of actions satisfying a similarity
criterion. In an example implementation, the weight transfer logic 424 transfers the weights from
the first DNN 410 to corresponding nodes in the second DNN 412, which is associated with a

second set of actions that defines a second journey, in accordance with a transfer-learning

11

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
technique based at least on a similarity between the first set of actions and the second set of
actions satisfying a similarity criterion. For instance, the weight transfer logic 424 may analyze
weight information 450, which indicates the weights from the first DNN 410, to determine the
weights that are to be assigned to the corresponding nodes in the second DNN 412. Accordingly,
the weight transfer logic 424 assigns transferred weights 460, which are transferred from the
first DNN 410, to the corresponding nodes in initial layers 454 of the second DNN 412. The
initial layers 454 are the layers of the second DNN 412 that correspond to the layers of the first
DNN 410 that precede the final layer of the first DNN 410.

In an example embodiment, the weight transfer logic 424 receives journey information 444,
which indicates the first set of actions that defines the first journey and the second set of actions
that defines the second journey. In accordance with this embodiment, the weight transfer logic
424 analyzes the journey information 444 to determine the similarity between the first set of
actions and the second set of actions. In an aspect of this embodiment, the weight transfer logic
424 compares each action in the second set of actions to each action in the second set of actions
to determine whether the respective action in the first set is similar to any one or more of the
actions in the second set. An action in the first set may be deemed to be similar to an action in
the second set based on the action in the first set being the same as the action in the second set,
the action in the first set being categorized into the same category in which the action in the
second set 1s categorized, a result of the action in the first set having a result that 1s substantially
the same as the action in the second set, a probability of the action in the first set corresponding
to the action in the second set being greater than or equal to a probability threshold, and/or a
confidence in the aforementioned probability being greater than or equal to a confidence
threshold. In another aspect of this embodiment, the weight transfer logic 424 transfers the
weights from the first DNN 110 to the corresponding nodes in the second DNN 112 based at
least on cumulative similarities between the first set of actions and the second set of actions
being greater than or equal to a cumulative similarity threshold.

At step 206, an embedding layer is added in lieu of the final layer of the first deep neural
network in the second deep neural network such that an output of the embedding layer results in
a same number of nodes as a pre-final layer of the first deep neural network. It will be
recognized that the pre-final layer of the first deep neural network is the layer of the first deep
neural network that immediately precedes the final layer of the first deep neural network. In an
example implementation, the layer embedding logic 426 adds an embedding layer 456 in lieu of
the final layer of the first DNN 410 in the second DNN 412 such that an output of the
embedding layer 456 results in a same number of nodes as a pre-final layer of the first DNN

410. For instance, the layer embedding logic 426 may analyze node information 442, which

12

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
indicates the number of nodes in the pre-final layer of the first DNN 410, to determine the
number of nodes to be included in the embedding layer 456.

In an example embodiment, adding the embedding layer in the second deep neural network at
step 206 includes concatenating the new feature from the second deep neural network with the
features in the structured data that are used to learn the weights in the first deep neural network.
For instance, the layer embedding logic 426 may establish nodes in the embedding layer 456
such that the nodes represent a concatenation of the new feature and the features in the
structured data 440.

At step 208, weights of the respective nodes in the embedding layer are initialized based at least
on a probability that a new feature, which is associated with the second journey and which 1s not
included among features in the structured data that are used to learn the weights in the first deep
neural network, co-occurs with each of the features in the structured data (e.g., in a common
user session), In an example implementation, the weight initialization logic 428 initializes the
weights of the respective nodes in the embedding layer 456 to provide respective initialized
weights 462 based at least on the probability that the new feature, which is not included among
features in the structured data 440, co-occurs with each of the features in the structured data 440.
In an example embodiment, the weight initialization logic 428 analyzes feature information 446,
which indicates the features that are associated with the first journey and the features that are
associated with the second journey. It will be recognized that the features in the structured data
440 are associated with the first journey. The weight initialization logic 428 may analyze the
feature information 446 by comparing the features that are associated with the first journey and
the features that are associated with the second journey to determine that the features that are
associated with the second journey include the new feature and that the features that are
associated with the first journey do not include the new feature. Based on a determination of the
new feature, the weight initialization logic 428 calculates the probability of co-occurrence of the
new feature with each of the features that are associated with the first journey.

In an example implementation, assume that the first DNN 410 has two click actions: “Buy Now”
and “Free Trial.” In this implementation, the second journev has an additional click action
“Renew.” The value of “Renew” in the embedding layer 456 can be learned from the second
DNN 412 based at least on the probability of co-occurrence of “Renew” with the existing
features in the first journey in the same visiting session.

At step 210, a softmax function is applied on a final layer of the second deep neural network.
The softmax function is configured to generate a probability distribution regarding possible next
actions to be performed in the second journey based at least on the weights of the respective

nodes in the embedding layer and further based at least on the weights of the respective nodes in

13

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
the pre-final layer, which result from sequenced updating using a stochastic gradient descent
technique. In an example implementation, the function application logic 430 applies a softmax
function 438 on the final layer 458 of the second DNN 412. The softmax function 438 is
configured to generate a probability distribution 464 based at least on the initialized weights 456
of the respective nodes in the embedding laver 456 and further based at least on the weights of
the respective nodes in the pre-final layer, which are included among the transferred weights
460.

In an example embodiment, the set of actions that defines the first journey is associated with a
first software program, and the set of actions that defines the second journey is associated with a
second software program that is different from the first software program. For instance, the set
of actions that defines the first journey may be performed with regard to (e.g., on) the first
software program, and the set of actions that defines the second journey may be performed with
regard to (e.g., on) the second software program. In a first aspect of this embodiment, the
possible next actions include respective remedial actions regarding a technical issue associated
with the second software program. In a second aspect of this embodiment, the possible next
actions include offering respective sets of terms regarding a purchase of the second software
program. For instance, offering the sets of terms may include applying respective discounts to a
purchase price of the second software program. In a third aspect of this embodiment, the
possible next actions include presenting respective documents regarding the second software
program via a user interface (e.g., web interface).

In another example embodiment, transferring the weights from the first deep neural network to
the corresponding nodes in the second deep neural network at step 204 is performed as a result
of a number of features that are associated with the second journey being different from a
number of features that are associated with the first journey. In accordance with this
embodiment, the embedding layer maps the number of features that are associated with the
second journey into the number of features that are associated with the first journey. In an aspect
of this embodiment, the embedding layer maps the number of features that are associated with
the second journey into a number of features represented by the nodes in the second deep neural
network that precede the embedding layer.

In some example embodiments, one or more steps 202, 204, 206, 208, and/or 210 of flowchart
200 may not be performed. Moreover, steps in addition to or in lieu of steps 202, 204, 206, 208,
and/or 210 may be performed. For instance, in an example embodiment, the method of flowchart
200 further includes identifying a next action to be performed in the second journey based at
least on the next action having a probability in the probability distribution that is greater than a

probability of each of the other possible next actions in the probability distribution. For example,

14

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
the next action may be identified based on the probabilities in the probability distribution at a
specified time instance in the second journey. In another example, the next action may be
predicted as a multi-class problem. In an example implementation, the action logic 432 identifies
a next action 466 to be performed in the second journey based at least on the next action 466
having a probability in the probability distribution 464 that is greater than a probability of each
of the other possible next actions in the probability distribution 464.

In another example embodiment, the method of flowchart 200 further includes one or more of
the steps shown in flowchart 300 of FIG. 3. As shown in FIG. 3, the method of flowchart 300
begins at step 302. In step 302, an initial version of an entity that is associated with the second
journey is changed to provide a changed version of the entity. In an example implementation,
the entity change logic 434 changes the initial version of the entity that is associated with the
second journey to provide the changed version of the entity. For example, the entity change
logic 434 may receive initial entity information 448, which indicates (e.g., describes) the initial
version of the entity. The initial entity information 448 may identify attributes of the initial
version of the entity. In accordance with this example, the entity change logic 434 may analyze
the initial entity information 448 to determine the initial version of the entity. The entity change
logic 434 may change one or more of the attributes of the initial version of the entity to provide
the changed version of the entity. In accordance with this implementation, the entity change
logic 434 generates changed entity information 452, which indicates the changed version of the
entity. The changed entity information 452 may identify attributes of the changed version of the
entity.

At step 304, the changed version of the entity is caused to be presented in lieu of the initial
version of the entity to a first subset of users who are associated with the second journey based
at least on a prediction that presentation of the changed version to the users in the first subset is
more likely than presentation of the initial version to the users in the first subset to cause the
second journey for the users in the first subset to have a designated result. In an example
implementation, the presentation logic 436 causes the changed version of the entity to be
presented in lieu of the initial version of the entity to the first subset of the users. For instance,
the presentation logic 452 may generate a first presentation instruction 468, which indicates that
the changed version of the entity is to be presented to the first subset of the users. The
presentation logic 452 may specify the attributes of the changed version of the entity, as
indicated by the changed entity information 452.

At step 306, the initial version of the entity is caused to be presented to a second subset of the
users who are associated with the second journey. For instance, causing the initial version of the

entity to be presented to the second subset of the users at step 306 may be performed based at

15

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094

least on a prediction that presentation of the changed version to the users in the second subset is
not more likely than presentation of the initial version to the users in the second subset to cause
the second journey for the users in the second subset to have the designated result. The first
subset of the users and the second subset of the users are mutually exclusive. In an example
implementation, the presentation logic 436 causes the initial version of the entity to be presented
to the second subset of the users. For instance, the presentation logic 452 may generate a second
presentation instruction 470, which indicates that the initial version of the entity i1s to be
presented to the second subset of the users. The presentation logic 452 may specify the attributes
of the initial version of the entity, as indicated by the initial entity information 448.
In an example digital buyer journey implementation of this embodiment, the journey-based
transfer-learning logic 408 predicts which web visitors will purchase a product based on visitor
and website characteristics and a series of visitor-website interactions. The owner of the product
is to optimize the website or tech support portal with a personalized experience that can increase
the success rate of purchase conversion on each individual visitor. It is often difficult to design
an A/B/N test with various treatments and match each design variant to a different cohort or
journey. The journey-based transfer-learning logic 408 provides auto-matching to optimize the
assignment of each user to either a treatment group or a control group based on the cohort group
in which the user 1s classified by the journey-based transfer-learning logic 408. Accordingly,
each cohort group receives a personalized design variant that optimizes the outcome a priori, and
two random samples of the entities are taken from the cohort. A first random sample receives the
design variant (i.e., the second DNN 412), and the second random sample receives the original
design (i.e., the first DNN 410). For example, a treatment in which the purchase button is moved
to the top of the site may lead to fewer mouse-scrolling events (i.e., a lower mouse-scrolling
event count). In accordance with this example, the treatment may be paired to the cohort whose
feature value on mouse-scrolling event count negatively correlates with the purchase conversion.
It will be recognized that the computing system 400 may not include one or more of the journey-
based transfer-learning logic 408, the first DNN 410, the second DNN 412, the training logic
422, the weight transfer logic 424, the layer embedding logic 426, the weight initialization logic
428, the function application logic 430, the action logic 432, the entity changing logic 434,
and/or the presentation logic 436. Furthermore, the computing system 400 may include
components in addition to or in lieu of the journey-based transfer-learning logic 408, the first
DNN 410, the second DNN 412, the training logic 422, the weight transfer logic 424, the layer
embedding logic 426, the weight initialization logic 428, the function application logic 430, the
action logic 432, the entity changing logic 434, and/or the presentation logic 436.

FIG. 5 is a block diagram of an example deep neural network (DNN) 500 in accordance with an

16

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
embodiment. Any one or more aspect of the DNN 500 may be incorporated into the first DNN
110 and/or the second DNN 112 shown in FIG. 1 and/or the first DNN 410 and/or the second
DNN 412 shown in FIG. 4. It will be recognized that the DNN 500 can be modified to include
an embedding layer (e.g., embedding layer 456 of FIG. 4) to incorporate functionality of any one
or more of the embodiments described herein. For instance, incorporating an embedding layer
into the DNN 500 may enable any organization to map its features to generic features on the
input side.

The DNN 500 processes an input dataset 502 to determine a next best action 542. The number of
inputs of the DNN 500 is the same as the number of features that are extracted from the input
dataset 502. As shown in FIG. 5, the DNN 500 includes a first fully connected hidden layer 510,
a second fully connected hidden layer 520, and an output layer 530. The first fully connected
hidden layer 510 includes a linear layer 512, a non-linear activation layer 514, and a dropout
layer 516. The linear layer 512 performs an affine transformation, and the non-linear activation
layer 514 performs a non-linear transformation using a non-linear activation function 518, which
1s referred to herein as “LeakyReLU.” The second fully connected hidden layer 520 includes a
linear layer 522, a non-linear activation layer 524, and a dropout layer 526. The linear layer 522
performs an affine transformation, and the non-linear activation layer 524 performs a non-linear
transformation using the non-linear activation function 518 (i.e., LeakyReLU). Accordingly, the
architectures of the respective first and second connected hidden layers 510 and 520 are the
same. The output layer 530 includes a linear layer 532 and a softmax layer 540. The output layer
530 has the same number of nodes as the set of possible actions.

The loss between the layers 510, 520, and 530 is referred to as the “CrossEntropy loss.” The
weights of the different layers are initialized randomly and then calculated using a classic
stochastic gradient descent technique through multiple passes over the observations (1 full pass
=1 epoch). Each pass involves multiple batches (1 epoch = N batches, where N determines the
size of the dataset and the batch size). If K is the number of observations, K/N + 1 is the number
of batches. The forward pass involves application of the affine and non-linear transformations
from the input layer (i.e., the first fully connected hidden layer 510 in this example) to the output
layer 530. The loss is computed at the output layer 530. The loss 1s then back-propagated back to
the input layer by differentiating the loss with respect to each of the unknowns. The gradients
are then subtracted from the unknowns so that the loss 1s decreases in the next iteration. This
process 1s repeated until the loss on the validation set starts to increase, at which time the
training 1s “early stopped.” The equations utilized by the DNN 500 are listed below.

An API may be configured to enable users to choose an architecture of the DNN 500 from

multiple possible architectures. The DNN 500 is shown to include two hidden layers for

17

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
illustrative purposes and is not intended to be limiting. It will be recognized that the DNN 500
may include any suitable number of hidden layers (e.g., 2, 3, 5, or 10). The architecture of the
DNN 500 in terms of the number of layers, the number of nodes in each hidden layer, the hyper-
parameters to train the DNN 500 (e.g., learning rate, dropout rates, and weight decay) may be
selected based on the performance on the holdout dataset with an objective to learn the unknown
weights in such a way that the overall error of the DNN 500 is minimized. A weight matrix and
an input matrix (i.e., outputs of the previous hidden layer) are received at each of the first and
second fully connected hidden layers 510 and 520. The outputs of the respective linear layers
512 and 522 are represented by the following equation, where bx is the bias of the hidden layer
H:

OutputLinear = WuXu-1+bu (Equation 1)
The non-linear activation function 518 is represented by the following equation:

X =LeakyReLU(x) (Equation 2)
The function LeakyReLU has the following form:

X =LeakyReLU(x) =xi1fx >0, else 0.01x (Equation 3)

Each of the first and second fully connected hidden layers 510 and 520 randomly turns off
activations as defined by the dropout probability set by the respective dropout layers 516 and
526. The size of the last hidden layer (i.e., the second fully connected hidden layer 520 in this
example) is fixed to include the same number of nodes as the number of potential output actions.
The softmax function 540 at the output ensures that the best action (i.e., the possible action with
the highest probability) is chosen from the various possible actions.

Equations 4-7 below represent the transformations through the architecture of the DNN 500:

X1 = dropouti(LeakyReLU(W1*Xo+b1)) (Equation 4)
X2 = dropouti(LeakyReLU(W2*X1+b2)) (Equation 5)
X3=W3*Xz (Equation 6)
output = softmax(X3) (Equation 7)

The example embodiments may provide output instrumentation that can be used by users to
configure the architecture of the DNN 500.

Although the operations of some of the disclosed methods are described in a particular,
sequential order for convenient presentation, it should be understood that this manner of
description encompasses rearrangement, unless a particular ordering is required by specific
language set forth herein. For example, operations described sequentially may in some cases be
rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures
may not show the various ways in which the disclosed methods may be used in conjunction with

other methods.

18

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
Any one or more of the journey-based transfer-learning logic 108, the first DNN 110, the second
DNN 112, the journey-based transfer-learning logic 408, the first DNN 410, the second DNN
412, the training logic 422, the weight transfer logic 424, the layer embedding logic 426, the
weight initialization logic 428, the function application logic 430, the action logic 432, the entity
changing logic 434, the presentation logic 436, the DNN 500, the first fully connected hidden
layer 510, the linear layer 512, the non-linear activation layer 514, the dropout layer 516, the
second fully connected hidden layer 520, the linear layer 522, the non-linear activation layer
524, the dropout layer 526, the output layer 530, the linear layer 532, the softmax layer 540,
flowchart 200, and/or flowchart 300 may be implemented in hardware, software, firmware, or
any combination thereof.

For example, any one or more of the journey-based transfer-learning logic 108, the first DNN
110, the second DNN 112, the journey-based transfer-learning logic 408, the first DNN 410, the
second DNN 412, the training logic 422, the weight transfer logic 424, the layer embedding
logic 426, the weight initialization logic 428, the function application logic 430, the action logic
432, the entity changing logic 434, the presentation logic 436, the DNN 500, the first fully
connected hidden layer 510, the linear layer 512, the non-linear activation layer 514, the dropout
layer 516, the second fully connected hidden layer 520, the linear layer 522, the non-linear
activation layer 524, the dropout layer 526, the output layer 530, the linear layer 532, the
softmax layer 540, flowchart 200, and/or flowchart 300 may be implemented, at least in part, as
computer program code configured to be executed in one or more processors.

In another example, any one or more of the journey-based transfer-learning logic 108, the first
DNN 110, the second DNN 112, the journey-based transfer-learning logic 408, the first DNN
410, the second DNN 412, the training logic 422, the weight transfer logic 424, the layer
embedding logic 426, the weight initialization logic 428, the function application logic 430, the
action logic 432, the entity changing logic 434, the presentation logic 436, the DNN 500, the
first fully connected hidden layer 510, the linear layer 512, the non-linear activation layer 514,
the dropout layer 516, the second fully connected hidden layer 520, the linear layer 522, the non-
linear activation layer 524, the dropout layer 526, the output layer 530, the linear layer 532, the
softmax layer 540, flowchart 200, and/or flowchart 300 may be implemented, at least in part, as
hardware logic/electrical circuitry. Such hardware logic/electrical circuitry may include one or
more hardware logic components. Examples of a hardware logic component include but are not
limited to a field-programmable gate array (FPGA), an application-specific integrated circuit
(ASIC), an application-specific standard product (ASSP), a system-on-a-chip system (SoC), a
complex programmable logic device (CPLD), etc. For instance, a SoC may include an integrated

circuit chip that includes one or more of a processor (e.g., a microcontroller, microprocessor,

19

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
digital signal processor (DSP), etc.), memory, one or more communication interfaces, and/or
further circuits and/or embedded firmware to perform its functions.

I1. Further Discussion of Some Example Embodiments

(Al) An example system (Figure 1, 102A-102M, 106A-106N; Figure 4, 400; Figure 6, 600)
comprises memory (Figure 6, 604, 608, 610) and a processing system (Figure 6, 602) coupled to
the memory. The processing system is configured to train (Figure 2, 202) a first deep neural
network (Figure 1, 110; Figure 4, 410), which is associated with a first set of actions that defines
a first journey, by learning weights of nodes among layers of the first deep neural network that
precede a final layer of the first deep neural network using structured data (Figure 4, 440). The
processing system is further configured to transfer (Figure 2, 204) the weights from the first
deep neural network to corresponding nodes in a second deep neural network (Figure 1, 112;
Figure 4, 412), which is associated with a second set of actions that defines a second journey, in
accordance with a transfer-learning technique based at least on a similarity between the first set
of actions and the second set of actions satisfying a similarity criterion. The processing system is
further configured to add (Figure 2, 206) an embedding layer (Figure 4, 456) in lieu of the final
layer of the first deep neural network in the second deep neural network such that an output of
the embedding layer results in a same number of nodes as a pre-final layer of the first deep
neural network. The processing system is further configured to initialize (Figure 2, 208) weights
of the respective nodes in the embedding layer based at least on a probability that a new feature,
which is associated with the second journey and which is not included among features in the
structured data that are used to leam the weights in the first deep neural network, co-occurs with
each of the features in the structured data. The processing system is further configured to apply
(Figure 2, 210) a softmax function (Figure 4, 438) on a final layer (Figure 4, 458) of the second
deep neural network. The softmax function is configured to generate a probability distribution
regarding possible next actions to be performed in the second journey based at least on the
weights of the respective nodes in the embedding layer and further based at least on the weights
of the respective nodes in the pre-final layer, which result from sequenced updating using a
stochastic gradient descent technique.

(A2) In the example system of Al, wherein the structured data comprises: a plurality of device
features, each device feature representing a respective attribute of a device that interacts with an
entity associated with the first journey; a plurality of entity features, each entity feature
representing a respective attribute of the entity; and a plurality of interaction features, each
interaction feature representing a respective attribute of an interaction between a device and the
entity.

(A3) In the example system of any of A1-A2, wherein the set of actions that defines the first

20

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
journey is associated with a first software program; wherein the set of actions that defines the
second journey is associated with a second software program that is different from the first
software program; and wherein the possible next actions include respective remedial actions
regarding a technical issue associated with the second software program.

(A4) In the example system of any of A1-A3, wherein the set of actions that defines the first
journey is associated with a first software program; wherein the set of actions that defines the
second joumey is associated with a second software program that is different from the first
software program; and wherein the possible next actions include offering respective sets of
terms regarding a purchase of the second software program.

(AS) In the example system of any of Al-A4, wherein the set of actions that defines the first
journey is associated with a first software program; wherein the set of actions that defines the
second joumey is associated with a second software program that is different from the first
software program; and wherein the possible next actions include presenting respective
documents regarding the second software program via a user interface.

(A6) In the example system of any of Al-AS, wherein the processing system is configured to:
transfer the weights from the first deep neural network to the corresponding nodes in the second
deep neural network is performed as a result of a number of features that are associated with the
second journey being different from a number of features that are associated with the first
journey; and wherein the embedding layer maps the number of features that are associated with
the second journey into the number of features that are associated with the first journey.

(A7) In the example system of any of Al1-A6, wherein the processing system is configured to:
add the embedding layer by concatenating the new feature from the second deep neural network
with the features in the structured data that are used to learn the weights in the first deep neural
network.

(A8) In the example system of anv of Al-A7, wherein the processing system is further
configured to: change an initial version of an entity that is associated with the second journey to
provide a changed version of the entity; cause the changed version of the entity to be presented
in lieu of the initial version of the entity to a first subset of users who are associated with the
second journey based at least on a prediction that presentation of the changed version to the
users in the first subset is more likely than presentation of the initial version to the users in the
first subset to cause the second journey for the users in the first subset to have a designated
result; and cause the initial version of the entity to be presented to a second subset of the users
who are associated with the second journey.

(B1) An example method is implemented by a computing system (Figure 1, 102A-102M, 106A-
106N; Figure 4, 400; Figure 6, 600). The method comprises training (Figure 2, 202) a first deep

21

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
neural network (Figure 1, 110; Figure 4, 410), which is associated with a first set of actions that
defines a first joumney, by learning weights of nodes among layers of the first deep neural
network that precede a final layer of the first deep neural network using structured data (Figure
4, 440). The method further comprises transferring (Figure 2, 204) the weights from the first
deep neural network to corresponding nodes in a second deep neural network (Figure 1, 112;
Figure 4, 412), which is associated with a second set of actions that defines a second journey, in
accordance with a transfer-learning technique based at least on a similarity between the first set
of actions and the second set of actions satisfying a similarity criterion. The method further
comprises adding (Figure 2, 206) an embedding layer (Figure 4, 456) in lieu of the final layer of
the first deep neural network in the second deep neural network such that an output of the
embedding layer results in a same number of nodes as a pre-final layer of the first deep neural
network. The method further comprises initializing (Figure 2, 208) weights of the respective
nodes in the embedding layer based at least on a probability that a new feature, which is
associated with the second journey and which is not included among features in the structured
data that are used to learn the weights in the first deep neural network, co-occurs with each of
the features in the structured data. The method further comprises applying (Figure 2, 210) a
softmax function (Figure 4, 438) on a final layer (Figure 4, 458) of the second deep neural
network. The softmax function is configured to generate a probability distribution regarding
possible next actions to be performed in the second journey based at least on the weights of the
respective nodes in the embedding layer and further based at least on the weights of the
respective nodes in the pre-final layer, which result from sequenced updating using a stochastic
gradient descent technique.

(B2) In the method of B1, wherein the structured data comprises: a plurality of device features,
each device feature representing a respective attribute of a device that interacts with an entity
associated with the first journey; a plurality of entity features, each entity feature representing a
respective attribute of the entity; and a plurality of interaction features, each interaction feature
representing a respective attribute of an interaction between a device and the entity.

(B3) In the method of any of B1-B2, wherein the set of actions that defines the first journey is
associated with a first software program; wherein the set of actions that defines the second
journey 1s associated with a second software program that is different from the first software
program; and wherein the possible next actions include respective remedial actions regarding a
technical issue associated with the second software program.

(B4) In the method of any of B1-B3, wherein the set of actions that defines the first journey is
associated with a first software program; wherein the set of actions that defines the second

journey is associated with a second software program that is different from the first software

22

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
program; and wherein the possible next actions include offering respective sets of terms
regarding a purchase of the second software program.

(BS) In the method of any of B1-B4, wherein the set of actions that defines the first journey is
associated with a first software program; wherein the set of actions that defines the second
journey is associated with a second software program that is different from the first software
program; and wherein the possible next actions include presenting respective documents
regarding the second software program via a user interface.

(B6) In the method of any of B1-B5, wherein transferring the weights from the first deep neural
network to the corresponding nodes in the second deep neural network is performed as a result
of a number of features that are associated with the second journey being different from a
number of features that are associated with the first journey; and wherein the embedding layer
maps the number of features that are associated with the second journey into the number of
features that are associated with the first journey.

(B7) In the method of any of B1-B6, wherein adding the embedding layer comprises:
concatenating the new feature from the second deep neural network with the features in the
structured data that are used to learn the weights in the first deep neural network.

(B8) In the method of any of B1-B7, further comprising: changing an initial version of an entity
that 1s associated with the second journey to provide a changed version of the entity; causing the
changed version of the entity to be presented in lieu of the initial version of the entity to a first
subset of users who are associated with the second journey based at least on a prediction that
presentation of the changed version to the users in the first subset is more likely than
presentation of the initial version to the users in the first subset to cause the second journey for
the users in the first subset to have a designated result; and causing the initial version of the
entity to be presented to a second subset of the users who are associated with the second
journey.

(C1) An example computer program product (Figure 6, 618, 622) comprising a computer-
readable storage medium having instructions recorded thereon for enabling a processor-based
system (Figure 1, 102A-102M, 106A-106N; Figure 4, 400; Figure 6, 600) to perform operations.
The operations comprise training (Figure 2, 202) a first deep neural network (Figure 1, 110;
Figure 4, 410), which is associated with a first set of actions that defines a first journey, by
learning weights of nodes among layers of the first deep neural network that precede a final
layer of the first deep neural network using structured data (Figure 4, 440). The operations
further comprise transferring (Figure 2, 204) the weights from the first deep neural network to
corresponding nodes in a second deep neural network (Figure 1, 112; Figure 4, 412), which is

associated with a second set of actions that defines a second journey, in accordance with a

23

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
transfer-learning technique based at least on a similarity between the first set of actions and the
second set of actions satisfying a similarity criterion. The operations further comprise adding
(Figure 2, 206) an embedding layer (Figure 4, 456) in lieu of the final layer of the first deep
neural network in the second deep neural network such that an output of the embedding layer
results in a same number of nodes as a pre-final layer of the first deep neural network. The
operations further comprise initializing (Figure 2, 208) weights of the respective nodes in the
embedding layer based at least on a probability that a new feature, which 1s associated with the
second journey and which is not included among features in the structured data that are used to
learn the weights in the first deep neural network, co-occurs with each of the features in the
structured data. The operations further comprise applying (Figure 2, 210) a softmax function
(Figure 4, 438) on a final layer (Figure 4, 458) of the second deep neural network. The softmax
function is configured to generate a probability distribution regarding possible next actions to be
performed in the second journey based at least on the weights of the respective nodes in the
embedding layer and further based at least on the weights of the respective nodes in the pre-final
layer, which result from sequenced updating using a stochastic gradient descent technique.

III. Example Computer System

FIG. 6 depicts an example computer 600 in which embodiments may be implemented. Any one
or more of the user devices 102A-102M and/or any one or more of the servers 106A-106N
shown in FIG. 1 and/or computing system 400 shown in FIG. 4 may be implemented using
computer 600, including one or more features of computer 600 and/or alternative features.
Computer 600 may be a general-purpose computing device in the form of a conventional
personal computer, a mobile computer, or a workstation, for example, or computer 600 may be a
special purpose computing device. The description of computer 600 provided herein is provided
for purposes of illustration, and is not intended to be limiting. Embodiments may be
implemented in further types of computer systems, as would be known to persons skilled in the
relevant art(s).

As shown in FIG. 6, computer 600 includes a processing unit 602, a system memory 604, and a
bus 606 that couples various system components including system memory 604 to processing
unit 602. Bus 606 represents one or more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus architectures. System memory 604 includes
read only memory (ROM) 608 and random access memory (RAM) 610. A basic input/output
system 612 (BIOS) is stored in ROM 608.

Computer 600 also has one or more of the following drives: a hard disk drive 614 for reading

from and writing to a hard disk, a magnetic disk drive 616 for reading from or writing to a

24

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
removable magnetic disk 618, and an optical disk drive 620 for reading from or writing to a
removable optical disk 622 such as a CD ROM, DVD ROM, or other optical media. Hard disk
drive 614, magnetic disk drive 616, and optical disk drive 620 are connected to bus 606 by a
hard disk drive interface 624, a magnetic disk drive interface 626, and an optical drive interface
628, respectively. The drives and their associated computer-readable storage media provide
nonvolatile storage of computer-readable instructions, data structures, program modules and
other data for the computer. Although a hard disk, a removable magnetic disk and a removable
optical disk are described, other types of computer-readable storage media can be used to store
data, such as flash memory cards, digital video disks, random access memories (RAMs), read
only memories (ROM), and the like.

A number of program modules may be stored on the hard disk, magnetic disk, optical disk,
ROM, or RAM. These programs include an operating system 630, one or more application
programs 632, other program modules 634, and program data 636. Application programs 632 or
program modules 634 may include, for example, computer program logic for implementing any
one or more of (e.g., at least a portion of) the journey-based transfer-learning logic 108, the first
DNN 110, the second DNN 112, the journey-based transfer-learning logic 408, the first DNN
410, the second DNN 412, the training logic 422, the weight transfer logic 424, the layer
embedding logic 426, the weight initialization logic 428, the function application logic 430, the
action logic 432, the entity changing logic 434, the presentation logic 436, the DNN 500, the
first fully connected hidden layer 510, the linear layer 512, the non-linear activation layer 514,
the dropout layer 516, the second fully connected hidden layer 520, the linear layer 522, the non-
linear activation layer 524, the dropout layer 526, the output laver 530, the linear layer 532, the
softmax layer 540, flowchart 200 (including any step of flowchart 200), and/or flowchart 300
(including any step of flowchart 300), as described herein.

A user may enter commands and information into the computer 600 through input devices such
as keyboard 638 and pointing device 640. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish, scanner, touch screen, camera, accelerometer,
gyroscope, or the like. These and other input devices are often connected to the processing unit
602 through a serial port interface 642 that is coupled to bus 606, but may be connected by other
interfaces, such as a parallel port, game port, or a universal serial bus (USB).

A display device 644 (e.g., a monitor) 1s also connected to bus 606 via an interface, such as a
video adapter 646. In addition to display device 644, computer 600 may include other peripheral
output devices (not shown) such as speakers and printers.

Computer 600 is connected to a network 648 (e.g., the Internet) through a network interface or

adapter 650, a modem 652, or other means for establishing communications over the network.

25

10

15

20

25

30

35

WO 2024/072588 PCT/US2023/031094
Modem 652, which may be internal or external, is connected to bus 606 via serial port interface
642,

As used herein, the terms “computer program medium™ and “computer-readable storage
medium” are used to generally refer to media (e.g., non-transitory media) such as the hard disk
associated with hard disk drive 614, removable magnetic disk 618, removable optical disk 622,
as well as other media such as flash memory cards, digital video disks, random access memories
(RAMs), read only memories (ROM), and the like. A computer-readable storage medium 1s not
a signal, such as a carrier signal or a propagating signal. For instance, a computer-readable
storage medium may not include a signal. Accordingly, a computer-readable storage medium
does not constitute a signal per se. Such computer-readable storage media are distinguished from
and non-overlapping with communication media (do not include communication media).
Communication media embodies computer-readable instructions, data structures, program
modules or other data in a modulated data signal such as a carrier wave, The term “modulated
data signal” means a signal that has one or more of its characteristics set or changed in such a
manner as to encode information in the signal. By way of example, and not limitation,
communication media includes wireless media such as acoustic, RF, infrared and other wireless
media, as well as wired media. Example embodiments are also directed to such communication
media.

As noted above, computer programs and modules (including application programs 632 and other
program modules 634) may be stored on the hard disk, magnetic disk, optical disk, ROM, or
RAM. Such computer programs may also be received via network interface 650 or serial port
interface 642. Such computer programs, when executed or loaded by an application, enable
computer 600 to implement features of embodiments discussed herein. Accordingly, such
computer programs represent controllers of the computer 600.

Example embodiments are also directed to computer program products comprising software
(e.g., computer-readable instructions) stored on any computer-useable medium. Such software,
when executed in one or more data processing devices, causes data processing device(s) to
operate as described herein. Embodiments may employ any computer-useable or computer-
readable medium, known now or in the future. Examples of computer-readable mediums
include, but are not limited to storage devices such as RAM, hard drives, floppy disks, CD
ROMs, DVD ROMs, zip disks, tapes, magnetic storage devices, optical storage devices, MEMS-
based storage devices, nanotechnology-based storage devices, and the like.

It will be recognized that the disclosed technologies are not limited to any particular computer or
type of hardware. Certain details of suitable computers and hardware are well known and need

not be set forth in detail in this disclosure.

26

10

15

20

WO 2024/072588 PCT/US2023/031094
IV. Conclusion
The foregoing detailed description refers to the accompanying drawings that illustrate exemplary
embodiments of the present invention. However, the scope of the present invention is not limited
to these embodiments, but is instead defined by the appended claims. Thus, embodiments
beyond those shown in the accompanying drawings, such as modified versions of the illustrated

embodiments, may nevertheless be encompassed by the present invention.

22 13 22 3

References in the specification to “one embodiment,” “an embodiment,” “an example
embodiment,” or the like, indicate that the embodiment described may include a particular
feature, structure, or characteristic, but every embodiment may not necessarily include the
particular feature, structure, or characteristic. Moreover, such phrases are not necessarily
referring to the same embodiment. Furthermore, when a particular feature, structure, or
characteristic is described in connection with an embodiment, it is submitted that it is within the
knowledge of one skilled in the relevant art(s) to implement such feature, structure, or
characteristic in connection with other embodiments whether or not explicitly described.
Descriptors such as “first”, “second”, “third”, etc. are used to reference some elements discussed
herein. Such descriptors are used to facilitate the discussion of the example embodiments and do
not indicate a required order of the referenced elements, unless an affirmative statement is made
herein that such an order is required.

Although the subject matter has been described in language specific to structural features and/or
acts, it 1s to be understood that the subject matter defined in the appended claims is not
necessarily limited to the specific features or acts described above. Rather, the specific features
and acts described above are disclosed as examples of implementing the claims, and other

equivalent features and acts are intended to be within the scope of the claims.

27

WO 2024/072588 PCT/US2023/031094
CLAIMS
L. A system comprising
memory; and
a processing system coupled to the memory, the processing system configured to:
train a first deep neural network, which is associated with a first set of actions
that defines a first journey, by learning weights of nodes among layers of the first deep
neural network that precede a final layer of the first deep neural network using structured
data;
transfer the weights from the first deep neural network to corresponding nodes in
a second deep neural network, which 1s associated with a second set of actions that
defines a second journey, in accordance with a transfer-learning technique based at least
on a similarity between the first set of actions and the second set of actions satisfying a
similarity criterion;
add an embedding layer in lieu of the final layer of the first deep neural network
in the second deep neural network such that an output of the embedding layer results in a
same number of nodes as a pre-final layer of the first deep neural network;
initialize weights of the respective nodes in the embedding layer based at least on
a probability that a new feature, which is associated with the second journey and which
1s not included among features in the structured data that are used to learn the weights in
the first deep neural network, co-occurs with each of the features in the structured data;
and
apply a softmax function on a final layer of the second deep neural network, the
softmax function configured to generate a probability distribution regarding possible
next actions to be performed in the second journey based at least on the weights of the
respective nodes in the embedding layer and further based at least on the weights of the
respective nodes in the pre-final layer, which result from sequenced updating using a
stochastic gradient descent technique.
2. The system of claim 1, wherein the structured data comprises:
a plurality of device features, each device feature representing a respective attribute of a
device that interacts with an entity associated with the first journey;
a plurality of entity features, each entity feature representing a respective attribute of the
entity; and
a plurality of interaction features, each interaction feature representing a respective
attribute of an interaction between a device and the entity.

3. The system of claim 1, wherein the set of actions that defines the first journey is

28

WO 2024/072588 PCT/US2023/031094

associated with a first software program;

wherein the set of actions that defines the second journey is associated with a second
software program that is different from the first software program; and

wherein the possible next actions include respective remedial actions regarding a
technical issue associated with the second software program.
4 The system of claim 1, wherein the set of actions that defines the first journey is
associated with a first software program;

wherein the set of actions that defines the second journey is associated with a second
software program that is different from the first software program; and

wherein the possible next actions include offering respective sets of terms regarding a
purchase of the second software program.
5. The system of claim 1, wherein the set of actions that defines the first journey is
associated with a first software program;

wherein the set of actions that defines the second journey is associated with a second
software program that is different from the first software program; and

wherein the possible next actions include presenting respective documents regarding the
second software program via a user interface.
6. The system of claim 1, wherein the processing system is configured to:

transfer the weights from the first deep neural network to the corresponding nodes in the
second deep neural network is performed as a result of a number of features that are associated
with the second journey being different from a number of features that are associated with the
first journey; and

wherein the embedding layer maps the number of features that are associated with the
second journey into the number of features that are associated with the first journey.
7. The system of claim 1, wherein the processing system is configured to:

add the embedding laver by concatenating the new feature from the second deep neural
network with the features in the structured data that are used to learn the weights in the first deep
neural network.
8. The system of claim 1, wherein the processing system is further configured to:

change an initial version of an entity that is associated with the second journey to provide
a changed version of the entity;

cause the changed version of the entity to be presented in lieu of the initial version of the
entity to a first subset of users who are associated with the second journey based at least on a
prediction that presentation of the changed version to the users in the first subset is more likely

than presentation of the initial version to the users in the first subset to cause the second journey

29

WO 2024/072588 PCT/US2023/031094

for the users in the first subset to have a designated result; and

cause the initial version of the entity to be presented to a second subset of the users who
are associated with the second journey.
9. A method implemented by a computing system, the method comprising:

training a first deep neural network, which is associated with a first set of actions that
defines a first journey, by learning weights of nodes among layers of the first deep neural
network that precede a final layer of the first deep neural network using structured data;

transferring the weights from the first deep neural network to corresponding nodes in a
second deep neural network, which is associated with a second set of actions that defines a
second journey, in accordance with a transfer-learning technique based at least on a similarity
between the first set of actions and the second set of actions satisfying a similarity criterion;

adding an embedding layer in lieu of the final layer of the first deep neural network in
the second deep neural network such that an output of the embedding layer results in a same
number of nodes as a pre-final layer of the first deep neural network;

initializing weights of the respective nodes in the embedding layer based at least on a
probability that a new feature, which is associated with the second journey and which is not
included among features in the structured data that are used to learn the weights in the first deep
neural network, co-occurs with each of the features in the structured data; and

applying a softmax function on a final layer of the second deep neural network, the
softmax function configured to generate a probability distribution regarding possible next
actions to be performed in the second journey based at least on the weights of the respective
nodes in the embedding layer and further based at least on the weights of the respective nodes in
the pre-final layer, which result from sequenced updating using a stochastic gradient descent
technique.
10. The method of claim 9, wherein the structured data comprises:

a plurality of device features, each device feature representing a respective attribute of a
device that interacts with an entity associated with the first journey;

a plurality of entity features, each entity feature representing a respective attribute of the
entity; and

a plurality of interaction features, each interaction feature representing a respective
attribute of an interaction between a device and the entity.
I1. The method of claim 9, wherein the set of actions that defines the first journey is
associated with a first software program;

wherein the set of actions that defines the second journey is associated with a second

software program that is different from the first software program; and

30

WO 2024/072588 PCT/US2023/031094

wherein the possible next actions include respective remedial actions regarding a
technical issue associated with the second software program.
12. The method of claim 9, wherein the set of actions that defines the first journey is
associated with a first software program;

wherein the set of actions that defines the second journey is associated with a second
software program that is different from the first software program; and

wherein the possible next actions include offering respective sets of terms regarding a
purchase of the second software program.
13. The method of claim 9, wherein the set of actions that defines the first journey is
associated with a first software program;

wherein the set of actions that defines the second journey is associated with a second
software program that is different from the first software program; and

wherein the possible next actions include presenting respective documents regarding the
second software program via a user interface.
14. The method of claim 9, wherein transferring the weights from the first deep neural
network to the corresponding nodes in the second deep neural network is performed as a result
of a number of features that are associated with the second journey being different from a
number of features that are associated with the first journey; and

wherein the embedding layer maps the number of features that are associated with the
second journey into the number of features that are associated with the first journey.
15. A computer program product comprising a computer-readable storage medium having
instructions recorded thereon for enabling a processor-based system to perform operations, the
operations comprising;

training a first deep neural network, which is associated with a first set of actions that
defines a first journey, by learning weights of nodes among layers of the first deep neural
network that precede a final layer of the first deep neural network using structured data;

transferring the weights from the first deep neural network to corresponding nodes in a
second deep neural network, which is associated with a second set of actions that defines a
second journey, in accordance with a transfer-learning technique based at least on a similarity
between the first set of actions and the second set of actions satisfying a similarity criterion,

adding an embedding layer in lieu of the final layer of the first deep neural network in
the second deep neural network such that an output of the embedding layer results in a same
number of nodes as a pre-final layer of the first deep neural network;

initializing weights of the respective nodes in the embedding layer based at least on a

probability that a new feature, which is associated with the second journey and which is not

31

WO 2024/072588 PCT/US2023/031094
included among features in the structured data that are used to learn the weights in the first deep
neural network, co-occurs with each of the features in the structured data; and

applying a softmax function on a final layer of the second deep neural network, the
softmax function configured to generate a probability distribution regarding possible next
actions to be performed in the second journey based at least on the weights of the respective
nodes in the embedding layer and further based at least on the weights of the respective nodes in
the pre-final layer, which result from sequenced updating using a stochastic gradient descent

technique.

32

WO 2024/072588

1/6

o 102A 1028

First User Device Second User Device

PCT/US2023/031094

100

-~ 102M

Mth User Device

X ¥ ol
\ /
\ 4 .
\ B e LI
v N RV
- T
; N
:
:};A /
(f" Network <-\
\\\ “"}
. L
\
/ﬁ\v \""-~.. e /\\\~ e o e f’%
/ f“‘“’ N
7
/ | AN
& - 106A v - 1068 \ -~ 106N
First Server(s)
— 108
Journey-Based
Transfer-Learning
Logic
& i Second Server(s) LI Nth Server(s)
¥
First Second
DNN DNN
110 -~ 112 —

FIG. 1

WO 2024/072588 PCT/US2023/031094

2/6

,/ Transfer-learning for structured data with 3\
\\ regard to journeys defined by sets of actions

g e 202

Train a first deep neural network, which is associated with a
first set of actions that defines a first journey, by learning
weights of nodes among layers of the first deep neural
network that precede a final layer of the first deep neural
network using structured data

g, L 204

Transfer the weights from the first deep neural network to
corresponding nodes in a second deep neural network, which
is associated with a second set of actions that defines a second

journey, in accordance with a transfer-learning technique

g 206

Add an embedding layer in lieu of the final layer of the first
deep neural network in the second deep neural network such
that an output of the embedding layer results in a same
number of nodes as a pre-final layer of the first deep neural
network

g 208

Initialize weights of the respective nodes in the embedding
layer based at least on a probability that a new feature, which
is associated with the second journey and which is not
included among features in the structured data that are used
to learn the weights in the first deep neural network, co-
occurs with each of the features in the structured data

é 210
p

Apply a softmax function on a final layer of the second deep
neural network, the softmax function configured to generate a
probability distribution regarding possible next actions to be
performed in the second journey based at least on the weights
of the respective nodes in the embedding layer and further
based at least on the weights of the respective nodes in the
pre-final layer, which result from sequenced updating using a
stochastic gradient descent technique

WO 2024/072588 PCT/US2023/031094

3/6
= 300

302

Change an initial version of an entity that is associated with
the second journey to provide a changed version of the entity

$ L~ 304

Cause the changed version of the entity to be presented in lieu
of the initial version of the entity to a first subset of users who
are associated with the second journey

é — 306
e

Cause the initial version of the entity to be presented to a
second subset of the users who are associated with the
second journey

End }

e,
",

FIG. 3

PCT/US2023/031094

WO 2024/072588
4/6
_ o 400
Computing System e %
— 408 T
Journey-Based ™. N
Transfer-Learning Logic \\\ \\\
440 — 422 L N
/ . .
—/ Structured Data /3 Training Logic T S
; ; I \\\
~ R
- 442 ¥ 410 S
, / First ™
""" / Node Information / Deep Neural Network
= 412
; i -7 450 Second Deep Neural Network
/ Weight Information /
/£ / 454
-444 % 424 / Initial Layers 7
' 4 . ll
— Journey Information 4| Weight Transfer Logic &;”!f' Transferred //
£ / 7/ Weights ~ //
426 |/ } /
& Layer Embedding Logic 460 %
456
446 -~ 428 / Embedding Layer /
7/ Feature 'nformatior%“% Weight Initialization /7 Initialized
Logic ,%’ Weights i
// ¥ /
430 | 462 —
Function Application }«¢ .
Logic ol 458,
o 438 / _ 7
B e Final Layer /
Softmax Function / /
L~ 432
464
I 8l %7/ Distribution /
o 466
434 -/ Next Action =
@i Entity Changing Logic :
- 448 452
/ Initial Entity / /“Changed Entity »
7 Information / / Information / s t/’; 468,
4 / First Presentation /
% -~ 436 /""",?! Instruction ,!‘l .
@ Presentation Logic 470
.,/ second Presentation /o
Y Instruction ~ /

FIG

.4

PCT/US2023/031094

5/6

WO 2024/072588

S 'Ol

; 5 Ve 5

...... / L g (2pou T)
7/ Uomay 1528 DN / ”/ XEWOS) 19AeT Jeaun
g d 4
s — o Y

0vS - s —" &
JaAkeq 1ndinp

- 81§
uollun4
N13YAxea

JaAeq uoijeaipy
Jeaur]-uon

92§ — 7S — 725 — 4
JaAe7 UappiH paldauuo) Ajjn4 puodas

Jakeq nodouq Jakeq Jeaurn

- 819
uoloung / /
Jakeq nodouq L | NeyAYeaT | | Jakeq Jeaurn ﬁlq\ 19seleq indu| F—
| 1aAe UONEAIDY | 706 - ‘
i i Jeaurl-uoN i
91§ — 1745 el TG
4 J9Ae7 usappiH paldauuo) Ajnd 1sJ14

00§ — 015 —~

PCT/US2023/031094

WO 2024/072588

6/6

9 'Old

| , 9€9 . €9 - TE9 - 0F9 -
| pieogAay NINeQ eleq | S9NPOWN! sweiSold | walsAg
dupuiod weJsgoud Jaylo iuonediddy| Sunesado
A s
/ysia (eondo - visigonausey
| 3jgerowsy a|qeroway !
ze9 819 — M e
| ! .
/ 4 " N v ~
aALIQ , aALQ anLIg
 ysigeondo || ysig onause siq pJe -
Hsaendo DISIQdRRUBEN . HSIAPIEH e
oz9 — | 919 — | ¥I9 e
‘ m W 989
ERIINENN] 92eJJ91U| 928J191u| ERIIBENT]] w>tn_w mwumtwpc_ w>tn_w ‘, ss|npo\ weiSold |
MITISEIN Hod [elas | aAuQ [eondo | ysigonduSen | dAsiapleH | | pE9g
- R 8¢9 ,, - 9¢9 . Y9 — m,mEEmoLn_ cozmu__o_o_(,w
walsAs Sunnesadg
0£9 -~ ___
9099 - .0 LA
solg |
— Vol :
Jordepy Hun 809 WOHY
09pIA ~ SBuwssadong
w0 o Reowanwumshs
Jaindwo) 709 —

009 -

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2023/031094

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6N3/096 GO6N3/045

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category”

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X LI HENG-YI ET AL:
in E-commerce",

ARTIFICIAL INTELLIGENCE,
vol. 36, no. 11,

12387-12395, XP093096437,
ISSN: 2159-5399, DOI:
10.1609/aaai.v36i11.21504
Retrieved from the Internet:

ticle/download/21504/21253>
[retrieved on 2023-10-30]
abstract

page 12388 - page 12394

"Prior—-Guided Transfer
Learning for Enhancing Item Representation

PROCEEDINGS OF THE AAAI CONFERENCE ON
[Online]

22 February 2022 (2022-02-22), pages

URL:https://ojs.aaai.org/index.php/AAAI/ar

|__K| Further documents are listed in the continuation of Box C.

|:| See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

1 November 2023

Date of mailing of the international search report

09/11/2023

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Tsakonas, Athanasios

Form PCT/ASA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2023/031094

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A CHENG-TE LI ET AL: "FairSR:
Fairness—aware Sequential Recommendation
through Multi-Task Learning with
Preference Graph Embeddings",

ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY
14853,

30 April 2022 (2022-04-30), XP0S5121104s6,
DOI: 10.1145/3495163

the whole document

A Ganin Yaroslav ET AL: "Unsupervised
Domain Adaptation by Backpropagation",
arXiv.org,

6 July 2015 (2015-07-06), XP093096692,
Ithaca

DOI: 10.48550/arxiv.1409.7495

Retrieved from the Internet:
URL:https://proceedings.mlr.press/v37/gani
nl5.html

[retrieved on 2023-10-31]

the whole document

1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - wo-search-report
	Page 42 - wo-search-report

