57124546 A1 | IV 00 O 0O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

29 December 2005 (29.12.2005)

PCT

(10) International Publication Number

WO 2005/124546 A1l

(51) International Patent Classification’: GO6F 9/46, 9/455

(21) International Application Number:
PCT/IL.2005/000642

(22) International Filing Date: 16 June 2005 (16.06.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/871,954 18 June 2004 (18.06.2004) US

(71) Applicant (for all designated States except US): TELMAP
LTD. [IL/IL]; 11 Bareket Street, 46511 Herzeliya (IL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DOTAN, Emanuel
[TL/IL]; 5 Haalon Street, Kfar Vradim (IL). KUPFER-
MAN, Michael, Menachem [IL/IL]; 25 Wingate Street,
30900 Zichron Ya’akov (IL). AVRAM, Adi [IL/IL]; 18
Ra’anan Street, 34384 Haifa (IL).

(74) Agents: SANFORD T. COLB & CO. et al.; P.O. Box
2273, 76122 Rehovot (IL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: MOBILE DEVICE WITH LOCAL SERVER

r— = - - - - - - 1
| l
| JAVA | 30 |
[APP ,f | 22
| ~/
| |
[38 I
|]
| |

SERVER
R |
| KM |32 [
| |
PN e
| 36> \ !'_ —=
| | |
I los | l
: HTTP { (24,25,26 :
| 42 | PERIPHERAL | PERIPHERAL |
i 40 V| INTFC i DEVICE |
| | |
! | |
| ! |
Lo A I

& (57) Abstract: A method for operating a mobile computing device includes running a platform-independent application program
& using a virtual machine operating on the mobile computing device. A server program runs on the mobile computing device so as to
access a native function of the mobile computing device that is not supported by the virtual machine. The native function is invoked
from the application program by opening a communication connection to the server program using a communication application
programming interface (API) of the virtual machine, and sending a message to the server program via the communication connection,

=

so as to cause the server program to access the native function.

WO 2005/124546 A1 IIN110 08000 00000 A0 A

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 2005/124546 PCT/IL2005/000642

MOBILE DEVICE WITH LOCAL SERVER

COPYRIGHT NOTICE
A portion of the disclosure of this patent document
contains material that is subject to copyright
protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document
or the patent disclosure, as it appears in the Patent and
Trademark Office patent file. or records, but otherwise

reserves all copyright rights whatsoever.

FIELD OF THE INVENTION
The present invention relates generally to software
applications for mobile computing devices, and
specifically to enhancing the functionality of

applications that run in a virtual machine environment.

BACKGROUND OF THE INVENTION

Java™ is a platform-independent programming
language, developed by Sun Microsystems. An integral
component of the Java architecture is the Java Virtual
Machine (JVM), which is available on numerous computing
platforms in order to provide Java with a high level of
platform-independence. The Java 2 Platform, Micro
Edition (J2ME™), specifies a scaled-down version of the
JVM, known as the K Virtual Machine (KVM), which is
designed for mobile wireless information devices such as
cellular telephones and personal digital assistants

(PDAs) .

J2ME currently provides two configurations:
Connected Limited Device Configuration (CLDC) and
Connected Device Configuration (CDC). CDC was developed

for more powerful devices, and therefore supports a full

WO 2005/124546 PCT/IL2005/000642

Java 2 Virtual Machine. CLDC is targeted at devices with
limited memory and/or processing power, and does not
support the full set of standard Java 2 Standard Edition
(J2SE) Application Programming Interfaces (APIs). CLDC
includes a core development library and specifies the
KVM. A Mobile Information Device Profile (MIDP) 1is
layered on top of CLDC and defines a limited set of Java
APIs that provide an application runtime environment for
mobile information devices, such as mobile telephones and
personal digital assistants (PDAs). These APIs, which
have the form of classes grouped in <class libraries,
include the wuser interface, networking and messaging.
MIDP applications that use the MIDP and CLDC APIs are
known as MIDlets.

J2SE provides a Java Native Interface (JNI), which
is a standard programming interface for writing Java
native methods. “Native” in this sense refers to
functions of the operating system (0S) that are not
accessed via the standard Java APIs. The JNI permits
programmers to take advantage of platform-specific
functionality outside of the JVM by integrating native
code with programs written in Java. Programmers can use
the JUNI to write native methods to handle situations in
which an application cannot be written entirely in the
Java programming language. It is wuseful particularly
when the standard Java class library does not support
platform-dependent features needed by the application.
J2ME, however, does not provide JNI support.

WO 2005/124546 PCT/IL2005/000642

SUMMARY OF THE INVENTION

Because of the lack of JNI support in J2ME, a
programmer working in J2ZME is not able to access directly
native OS functionality. As a result, given the limited
set of APIs that are available 1in J2ME, some mobile
device functions are inaccessible to the programmer.

In response to these shortcomings, some embodiments
of the present invention provide a native interface
server, which &runs 1in software on a mobile device
alongside a virtual machine, such as the KVM. Platform-
independent application programs, such as programs
written in J2ME, communicate with the server wusing
communication APIs that are provided by the wvirtual
machine. These APIs invoke standard communication
protocols that are also supported by the native O0S. For
example, the application program may use an API of the
virtual machine to communicate with the server over a TCP
connection, possibly using HTTP requests and responses.
Alternatively, the application program may communicate
with the server by sending and receiving User Datagram
Protocol (UDP) packets, 1if supported by the KVM. Using
the communication protocol, the application program may
send a message to the server to call a certain native
function. The server runs the function and then returns
the results in a similar message to the application
program.

Although the embodiments described herein make
reference specifically to J2ME and the Java KVM, the
principles of the present invention may similarly be
applied to platform-independent applications that run on

virtual machines of other sorts.

WO 2005/124546 PCT/IL2005/000642

There 1s therefore provided, in accordance with an
embodiment of the ©present invention, a method for
operating a mobile computing device, including:

running a platform-independent application program
using a virtual machine operating on the mobile computing
device;

running a server program on the mobile computing
device so as to access a native function of the mobile
computing device that is not supported by the wvirtual
machine; and

invoking the native function from the application
program by:

opening a communication connection to the
server program using a communication application
programming interface (API) of the virtual machine;
and

sending a message to the server program via the
communication connection, so as to cause the server
program to access the native function.

In a disclosed embodiment, running the platform-
independent application program includes running a Java
program using a K Virtual Machine (KVM).

Typically, invoking the native function includes
invoking an input/output (I/0) function of the mobile
computing device that i1s not supported by the virtual
machine. The I/0 function may include one or more of
receiving data via a communication port of the mobile
computing device, playing a sound, driving a display of
the mobile computing device, and operating a backlight of
a display of the mobile computing device.

Typically, invoking the native function includes

interacting with a peripheral device.

WO 2005/124546 PCT/IL2005/000642

In disclosed embodiments, opening the communication
connection includes opening the connection using a
network communication protocol. In one embodiment, using
the network communication protocol includes opening a
Transmission Control Protocol/Internet Protocol (TCP/IP)
connection, and sending the message includes sending a
Hypertext Transfer Protocol (HTTP) request to a Uniform
Resource Identifier (URI) that is associated with the
server program. In another embodiment, sending the
message includes sending a User Datagram Protocol (UDP)
packet.

Typically, the method includes sending a reply to
the message from the server program to the application
program returning a result of the native function.

There 1is also provided, in accordance with an
embodiment of the present invention, a mobile computing
device, including a microprocessor, which is programmed
to run a platform-independent application program using a
virtual machine operating, and to run a server program so
as to access a native function of the mobile device that
is not supported by the virtual machine, and which is
programmed to invoke the native function from the
application program by opening a communication connection
Lo the server program using a communication application
programming interface (API) of the virtual machine, and
sending a message to the server program via the
communication connection, so as to cause the server
program to access the native function. The present
invention will be more fully understood from the
following detailed description of the embodiments

thereof, taken together with the drawings in which:

WO 2005/124546 PCT/IL2005/000642

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a schematic, pictorial illustration of a
navigation system using a mobile computing device, in
accordance with an embodiment of the present invention;
and
Fig. 2 is a block diagram that schematically
illustrates software components running on a computing

device, in accordance with an embodiment of the present

invention.

WO 2005/124546 PCT/IL2005/000642

DETAILED DESCRIPTION OF EMBODIMENTS

Fig. 1 is a schematic, pictorial illustration of a
navigation system 20, based on a mobile computing device
22, in accordance with an embodiment of the present
invention. System 20 1is shown as an example of an
application in which the principles of the present
invention may be used in the programming and operation of
mobile device 22, so as to access native functions that
are not available via the standard APIs of the J2ME KVM.
These functions include, for instance, interaction with
peripheral devices and input/output (I/0) ports, playing
sounds, generating vibration, direct writing to a display
screen 25 of device 22, and controlling the backlight of
the display screen. Other examples of native functions
that may be accessed in the manner described hereinbelow,
as well as other applications in which these functions
may be used, will be apparent to those skilled in the art
and are considered to be within the scope of the present
invention.

In the exemplary application shown in Fig. 1, mobile
device 22 typically comprises a cellular telephone or a
personal digital assistant (PDA) with cellular
communication capabilities. Device 22 comprises a
microprocessor, which is programmed in software to carry
out the functions described hereinbelow. The mobile
device communicates over a wireless link with a server
28, 1in order to download maps and instructions for use by
a driver of a wvehicle. Device 22 comprises a serial
port, which is coupled to receive position readings from
a position sensor 24, such as a Global Positioning System-
(GPS) device. These position readings are used in

determining the location of the vehicle relative to the

WO 2005/124546 PCT/IL2005/000642

map provided by server 28 and in generating instructions
to the driver as the vehicle proceeds along its course.
Device 22 renders the appropriate map segments to display
25, and may also provide verbal instructions to the
driver via an audio speaker 26. Further details of this
navigation method and system are described in U.S. Patent
Application 10/426,947, filed April 30, 2003 (published
as US 2003/0229441 Al), whose disclosure is incorporated
herein by reference.

Fig. 2 1s a block diagram that schematically
illustrates software components running on device 22, in
accordance with an embodiment of the present invention.
The map download and navigation functions of device 22
are performed by an application 30, such as a MIDlet,
which is written in the Java language in accordance with
the J2ME specification. Application 30 runs on a KVM
virtual machine 32, with which the application interacts
by means of APIs 34, as described in the Background of
the Invention. Machine 32 1is supported by an operating
system (0OS) 36 of device 22, such as the Symbian 08
(supplied by Symbian Ltd., London, UK).

OS 36 includes peripheral device drivers 42 for
interfacing with peripheral devices (such as display 25
and speaker 26 within device 22, and I/0 interfaces to
external devices such as sensor 24). APIs 34 of virtual
machine 32, however, do not enable application 30 to
access these drivers. To overcome this limitation, a
native interface server 38 runs in software on device 22.
Server 38 typically runs as an application process on 0S
36, alongside virtual machine 32. Software code for
server 38 may be written in any suitable programming

language, such as C or C++, using APIs provided by 0S 36

WO 2005/124546 PCT/IL2005/000642

to access peripheral devices 24, 25, 26 via drivers 42.
Thus, in the present example, server 38 may be capable of
receiving GPS data through a serial port of device 22,
rendering map images to display 25, and playing sounds
via speaker 26.

OS 36 also provides a communication API 40 (or a set
of communication APIs), which is used by both wvirtual
machine 32 and server 38. Java application 30 is able to
access the communication functions of API 40 via

appropriate calls to Java APIs 34. Communication APT 40

generally includes both transport- and session-layer
support. At the transport layer, the communication API
provides a Transmission Control Protocol/Internet

Protocol (TCP/IP) stack, which is typically used in
establishing TCP/IP connections between applications
running on mobile device 22 and external servers. Other
protocols may also be supported. At the session layer,
communication API 40 provides a Hypertext Transfer
Protocol (HTTP) interface, which may be used by device 22
to communicate (over a TCP/IP connection) with HTTP
servers on the Internet.

In the present embodiment, on the other hand,
communication API 40 is used internally, within device
22, to support communication between application 30 and
server 38. This novel use of the communication APT
permits application 30 to access the native functions of
0S 36 via the server. For example, in order to receive
location data from GPS 24, application 30 may invoke a
socket API (among APIs 34 of KVM 32) in order to open a
TCP/IP connection. This API is normally intended for
network communications, but in this case is invoked by

application 30 in order to open an internal TCP/IP

WO 2005/124546 PCT/IL2005/000642

connection to server 38. For this purpose, application
30 and server 38 typically have their own, separate
ports. In response to the API call by application 30,
KVM 32 invokes communication API 40 of 0OS 36 in order to
open the desired connection.

Once the connection is opened, application 30 sends
a message over the connection to server 38, indicating
the name of the native function that application 30 would
like server 38 to execute and the parameters of the
function. A function “GPS(),” for example, might cause
the server to read data from GPS 24 via the serial port
of device 22, and then return a message to application 30
giving the current reading. Other functions might cause
the server to render a specified object to display 25 or
play certain sounds via speaker 26.

Optionally, the message sent by application 30 may
have the form of a HTTP request, using the HTTP
functionality of APIs 34 and 40. The HTTP request in
this case 1is directed to a known uniform resource
identifier (URI) of server 38. A different URI may be
defined for each of the native functions that the server
is capable of performing. Server 38 then returns a
message to application 30 in the form of a HTTP response.
TCP/IP and HTTP are generally convenient choices of
protocols to use, since they are standardized, widely
supported by different operating systems, and familiar to
most programmers. Alternatively or additionally, other
suitable protocols may be used for communication between
virtual machine 32 and server 38.

Appendix A below provides an example of source code
used for controlling the backlight of display 25 on

device 22, 1in accordance with the methods described

10

WO 2005/124546 PCT/IL2005/000642

above. In this example, Java application 30 sends one
byte to turn the backlight on, and another to turn it
off. Server 38, based on the above-mentioned Symbian O0OS,
listens for messages from the application (on port 6789)
and performs the specified actions.

Although the embodiments described herein make
reference specifically to J2ME and the Java KVM, the
principles of the present invention may similarly be
applied to platform-independent applications that run on
virtual machines of other sorts. Furthermore, although
the specific embodiment described above uses TCP to for
communication between application 30 and server 38, other
communication protocols, such as UDP, may alternatively
be used for this purpose if supported by KVM 32 and OS
36. It will thus be appreciated that the embodiments
described above are cited by way of example, and that the
present invention is not limited to what has been
particularly shown and described hereinabove. Rather,
the scope of the present invention includes Dboth
combinations and subcombinations of the various features
described hereinabove, as well as variations and
modifications thereof which would occur to persons
skilled in the art upon reading the foregoing description

and which are not disclosed in the prior art.

11

WO 2005/124546 PCT/IL2005/000642

APPENDIX A - SAMPLE SOURCE CODE
public class BacklightManager ({

private static BacklightManager backLight = null;
private final byte BACKLIGHT ON = 100;
private final byte BACKLIGHT OFF = 101;

// the default port for the communication
private final int PORT = 6789;
private final String URL = "socket://127.0.0.1:";

// flag to tell us if we are connected or not.

private Boolean connected = false;

// flag to tell us the state of the backlight
private Boolean backLightOn = false;

// those variables are for the connection

// and communication with the server.

private StreamConnection conn = null;
private DatalnputStream din = null;
private DataOutputStream dout = null;
/**

* This function will connect us to the Symbian.
* We will open a connection and then write the on/off

* byte for backlight option.

*
* @return status of connection
*/

private synchronized boolean connect () {

12

WO 2005/124546 PCT/IL2005/000642

// we check to see if the flag is true

// in case that some thread was waiting for this
// function and meanwhile another thread already
// opened a connection.

// we also check to see 1f the connection was

// closed for some reason.

if {(connected && conn != null)

return connected;

try {
// open connection

conn = (StreamConnection) Connector.open(URL +

PORT, Connector.READ_WRITE, true);

// open the data input stream
din = new

DataInputStream(conn.openInputStream()):;

// open the data output stream
dout = new

DataOutputStream(conn.openOutputStream());

// set the connectivity flag

connected = true;

} catch (Exception e) {
connected = false;

e.printStackTrace()

}

return connected;

13

WO 2005/124546 PCT/IL2005/000642

public synchronized void start() {

// first check to see that the light is off
if (backLightOn)

return;

// try to connect.

// if we are already connected the function will
// do nothing

// since we check it in the connect method.

if (connect{())

try |
dout.writeByte (BACKLIGHT ON) ;
dout.flush ()
backLightOn = true;

} catch (IOException e) {
}

Jx%
* Stop the backlight
* The stop simply turn on the flag by sending
* byte to the symbian

*

* @return
*/
public synchronized void stop() {

14

WO 2005/124546 PCT/IL2005/000642

// first check to see that the light is off
if (!backLightOn)

return;

// try to connect.

// if we are already connected the function will

// do nothing

// since we check it in the connect method.

if (connect ())

try {
dout.writeByte (BACKLIGHT OFF) ;
dout.flush();
backLightOn = false;

} catch (IOException e) {
}

Jx*
* This function will clean the flags we use
* and will close all opened connections.
*k)

public void destroy() {

!/ stop the backlight if its turn on
stop () ;

// set the flags to the initial state

connected = false;

15

WO 2005/124546

backLightOn = false;

try {
if (conn != null)
conn.close();
if (din != null)
din.close();
if (dout != null)
dout.close();
} catch (Exception e) {
// do nothing
} finally {

conn = null;

din

= null;

dout = null;

16

PCT/IL2005/000642

WO 2005/124546 PCT/IL2005/000642

CLAIMS

1. A method for operating a mobile computing device,
comprising:
running a platform-independent application program
using a virtual machine operating on the mobile computing
device;
running a server program on the mobile computing
device so as to access a native function of the mobile
computing device that is not supported by the wvirtual
machine; and
invoking the native function from the application
program by:
opening a communication connection to the
server program using a communication application
programming interface (API) of the virtual maéhine;
and
sending a message to the server program via the
communication connection, so as to cause the server

program to access the native function.

2. The method according to claim 1, wherein running the
platform~independent application program comprises

running a Java program using a K Virtual Machine (KVM).

3. The method according to claim 1, wherein invoking
the native function comprises invoking an input/output
(I/0) function of the mobile computing device that is not

supported by the virtual machine.

4. The method according to claim 3, wherein the I/O
function comprises receiving data wvia a communication

port of the mobile computing device.

17

WO 2005/124546 PCT/IL2005/000642

5. The method according to claim 3, wherein the I/0

function comprises playing a sound.

6. The method according to claim 3, wherein the TI/0
function comprises driving a display of the mobile

computing device.

7. The method according to claim 3, wherein the I/O
function comprises operating a backlight of a display of

the mobile computing device.

8. The method according to claim 1, wherein invoking
the native function <comprises interacting with a

peripheral device.

9. The method according to claim 1, wherein opening the
communication connection comprises opening the connection

using a network communication protocol.

10. The method according to claim 9, wherein using the
network communication protocol comprises opening a
Transmission Control Protocol/Internet Protocol (TCP/IP)

connection.

11. The method according to claim 10, wherein sending
the message comprises sending a Hypertext Transfer
Protocol (HTTP) request to a Uniform Resource Identifier

(URI) that is associated with the server program.

12. The method according to claim 1, wherein sending the
message comprises sending a User Datagram Protocol (UDP)

packet.

13. The method according to claim 1, and comprising
sending a reply to the message from the server program to
the application program returning a result of the native

function.

18

WO 2005/124546 PCT/IL2005/000642

14, A mobile computing device, comprising a
microprocessor, which is programmed to run a platform-
independent application program using a virtual machine
operating, and to run a server program so as to access a
native function of the mobile device that is not
supported by the virtual machine, and which is programmed
to invoke the mnative function from the application
program by opening a communication connection to the
server program using a communication application
programming interface (API) of the virtual machine, and
sending a message to the server program via the
communication c¢onnection, so as to cause the server

program to access the native function.

15. The device according to «claim 14, wherein the
platform-independent application program comprises a Java
program, and the virtual machine comprises a K Virtual

Machine (KVM).

16. The device according to claim 14, wherein the native
function comprises an input/output (I/0) function of the
mobile computing device that 1s not supported by the

virtual machine.

17. The device according to claim 16, and comprising a
communication port, wherein the I/0 function comprises

receiving data via the communication port.

18. The device according to claim 16, and comprising a
speaker, wherein the I/O function comprises playing a

sound via the speaker.

19. The device according to claim 16, and comprising a
display, wherein the I/0 function comprises driving the

display.

19

WO 2005/124546 PCT/IL2005/000642

20. The device according to claim 16, and comprising a
é
display having a backlight, wherein the 1I/0 function

comprises operating the backlight.

21. The device according to claim 14, wherein the native

function comprises interacting with a peripheral device.

22. The device according to claim 14, wherein the
microprocessor is programmed to open the connection using

a network communication protocol.

23. The device according to claim 22, wherein the
network communication protocol comprises at least one of
a Transmission Control Protocol (TCP), a User Datagram

Protocol (UDP) and an Internet Protocol (IP).

24. The device according to claim 14, wherein the
microprocessor 1s programmed to send the message by
sending a Hypertext Transfer Protocol (HTTP) request to a
Uniform Resource Identifier (URI) that is associated with

the server program.

25. The device according to claim 14, wherein the server
program 1s adapted to send a reply to the message to the
application program returning a result of the native

function.

20

WO 2005/124546

\

({c

1

FIG.

PCT/IL2005/000642

TAKE NEXT EXIT TO ROUTE 2
THERE IS CONGESTION ON ROUTE 1

26

ROUTE 2

CP§

T EEEH

PCT/IL2005/000642

WO 2005/124546

r e
[|
I |
| I
_ A0IAA(_ DAINI
- — 0¥
“ TVIAHdIAd “ TVIHAJIIAL \Wﬁ A
[}
_ wmﬁmm.ﬁmv _ dLIH
_ _ SO
| | N
- I“ / 9g
_
| /1 RAX
Q2
~ | Y “ 14V
_
| TIAES ve/|
I
| m%
_
/™M
22 | ddv
“ %H VAVE
-

INTERNATIONAL SEARCH REPORT

Inte Application No

PCT/IL2005/000642

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO06F9/46 G06F9/455

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the exient that such documents are included in the fields searched

EPO-Internal

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with Indication, where appropriale, of the relevant passages

USING PROXY SERVER"
CORP. NEW YORK, US,

pages 83-84, XP000728276
ISSN: 0018-8689

the whole document
figure 1

IBM TECHNICAL DISCLOSURE BULLETIN, IBM
vol. 40, no. 4, 1 April 1997 (1997-04-01),

X "PLATFORM ABSTRACTION OF INPUT METHOD 1-25

D Further documents are listed in the continuation of box C.

D Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document but published on or after the international
filing date

*L" document which may throw doubts on priotity claim(s) or

which is cited to establish the publication date of another
citation or other special reason (as specified)

'O" document referring to an oral disciosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

'T* Jater document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
]m?;]ns. such combination being obvious to a person skifled
nthe ar.

*&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

16 September 2005 12/10/2005
Name and mailing address of the I1SA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk % 51 651 |
Tel. (+31-70) 3402040, TX. 31 651 epo ni, .
Fax: (+31-70) 340-3016 Dieben, M

Form PCT/ISA/210 (second sheet) (January 2004)

Relevant to claim No.

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

