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1
SYSTEMS AND METHODS FOR HAND POSE
ESTIMATION FROM VIDEO

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings
demonstrate and explain various principles of the present
disclosure.

FIG. 1 is a diagram of an exemplary system for hand pose
estimation from video.

FIG. 2 is a flow diagram of an exemplary method for hand
pose estimation from video.

FIG. 3 is a diagram of an exemplary system for hand pose
estimation from video.

FIG. 4 is a diagram of an exemplary rigid motion clas-
sifier.

FIG. 5 is a diagram of an exemplary gesture predictor.

FIG. 6 is an illustration of an exemplary pair of sequential
video frames showing a rigid hand moving.

FIG. 7 is an illustration of an exemplary pair of sequential
video frames showing a rigid hand rotating.

FIG. 8 is an illustration of an exemplary pair of sequential
video frames showing a hand articulating to a different pose.

FIG. 9 is an illustration of exemplary augmented-reality
glasses that may be used in connection with embodiments of
this disclosure.

FIG. 10 is an illustration of an exemplary virtual-reality
headset that may be used in connection with embodiments of
this disclosure.

Throughout the drawings, identical reference characters
and descriptions indicate similar, but not necessarily iden-
tical, elements. While the exemplary embodiments
described herein are susceptible to various modifications and
alternative forms, specific embodiments have been shown
by way of example in the drawings and will be described in
detail herein. However, the exemplary embodiments
described herein are not intended to be limited to the
particular forms disclosed. Rather, the present disclosure
covers all modifications, equivalents, and alternatives falling
within the scope of the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Computer vision systems may translate images and/or
video streams into models of the world. For example, a
computer vision system may map two-dimensional images
of objects (including, e.g., the human body) onto a three-
dimensional space. One example of this is to extract hand
pose information from video images of a human hand.

Accurately estimating hand poses from video is compu-
tationally expensive due to the complex dynamics of hand
poses and structural dependencies between hand joints. This
may create an undesired tradeoff between the accuracy,
speed, reliability, and/or computational complexity of esti-
mating hand poses. However, a precise and accurate under-
standing of hand poses may be valuable or even crucial for
various applications.

The present disclosure is generally directed to systems
and methods for estimating poses of articulated portions of
the human body (e.g., hands) from video. In some cases,
hands may maintain rigid from one moment to the next (e.g.,
due to holding an object, such as a bottle), meaning that the
relative positions and orientations of the hand joints remain
the same. Systems and methods described herein may
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exploit this fact to more efficiently estimate a rigid hand pose
by estimating only a translation and rotation of the entire
hand. Fortunately, the computational cost of detecting a rigid
hand from video may be very small compared to the
computational cost of dynamically estimating a hand pose
from video. Furthermore, hands may be expected to be rigid
a significant proportion of the time. Thus, by first detecting
whether a hand has remained rigid before determining
whether to perform an expensive hand pose estimation
computation or a relatively inexpensive gesture prediction
computation that assumes hand rigidity, the systems and
methods described herein may significantly reduce the
expected computational costs of accurately estimating hand
poses from video.

As will be explained in greater detail below, embodiments
of the present disclosure may improve the functioning of a
computer by improving the computational efficiency and/or
accuracy with which the computer determines hand poses
from video. In addition, in some examples these embodi-
ments may improve the functioning of a computer by
improving the performance of tasks for which the computer
relies upon quick and/or accurate hand pose information
(e.g., tasks that take hand pose information and/or hand
gesture information as input, such as a user interface sys-
tem). Furthermore, embodiments of the present disclosure
may improve the field of computer vision by improving the
accuracy and/or reducing the computational resources
required for extracting hand pose information from video.
The various embodiments mentioned above and additional
embodiments will be described in greater detail below with
regard to computing environment 100 of FIG. 1, computer-
implemented method 200 of FIG. 2, and the embodiments
depicted in FIGS. 3-8.

Features from any of the embodiments described herein
may be used in combination with one another in accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description
in conjunction with the accompanying drawings and claims.

FIG. 1 illustrates a computing environment 100 that
includes a computer system 101. The computer system 101
includes software modules, embedded hardware compo-
nents such as processors, or a combination of hardware and
software. The computer system 101 is substantially any type
of computing system including a local computing system or
a distributed (e.g., cloud) computing system. In some cases,
the computer system 101 includes at least one processor 130
and at least some system memory 140. The computer system
101 includes program modules 102 for performing a variety
of different functions. The program modules are hardware-
based, software-based, or include a combination of hardware
and software. Each program module uses computing hard-
ware and/or software to perform specified functions, includ-
ing those described herein below.

System 101 may include an intake module 104 that is
configured to access a frame of a video stream (e.g., a
current frame for which to determine hand pose information)
that depicts a hand. The frame may be input to intake module
104 in any suitable form including as an isolated image (raw
or pre-processed) and/or as a video stream from which
intake module 104 extracts the frame. By way of example,
intake module 104 may receive a frame 152 of a video
stream 150. As pictured, frame 152 may be the latest frame
of a video stream being received (and, in some examples,
generated) in real-time. Additionally or alternatively, sys-
tems described herein may sequentially analyze a pre-
existing video (e.g., from a file and/or database) for hand
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pose information and frame 152 may represent the current
frame being analyzed, even if frame 152 is not the latest
available frame in video stream 150.

System 101 may also include a retrieval module 106 that
identifies a previous frame of the video stream that depicts
the hand at an earlier point in time. For example, retrieval
module 106 may access the frame of the video stream
immediately prior to the frame accessed by intake module
104 (e.g., retrieval module 106 may access the second most
recent frame of the video stream). The previous frame
accessed by retrieval module 106 may be input to retrieval
module 106 in any suitable form including as an isolated
image (raw or pre-processed) and/or as a video stream from
which retrieval module 106 extracts the frame. In some
examples, retrieval module 106 may retrieve the frame from
a cache and/or buffer, as the frame may have been previously
extracted and/or accessed by intake module 104 in a previ-
ous iteration of analysis (e.g., when the previous frame,
rather than the current frame, was being analyzed for hand
pose information as the then-current frame). By way of
example, retrieval module 106 may receive a frame 154 of
a video stream 150. As pictured, frame 154 may be the
second-to-latest frame of a video stream being received
(and, in some examples, generated) in real-time. Addition-
ally or alternatively, systems described herein may sequen-
tially analyze a pre-existing video (e.g., from a file and/or
database) for hand pose information and frame 154 may
represent the frame previous to the current frame being
analyzed (and, e.g., the frame that was most recently ana-
lyzed for hand pose information).

System 101 may additionally include an analysis module
108 that analyzes the present frame and the previous frame
together to determine whether the hand remained substan-
tially rigid between the present and previous frames. Thus,
for example, intake module 104 and retrieval module 106
may provide the present and previous frames (e.g., frames
152 and 154), respectively, to analysis module 108. In some
examples, the present and previous frames may be trans-
formed, normalized, and/or otherwise pre-processed before
being provided to analysis module 108 and/or by analysis
module 108 itself. As will be explained in greater detail
below, in some examples analysis module 108 may use a
machine learning classifier to analyze the present and pre-
vious frames.

System 101 may further include a pose module 110 that
estimates a pose of the hand (e.g., describes the hand in
terms of three-dimensional spatial information) using a
computation that treats the hand as rigid. Pose module 110
may select the computation that treats the hand as rigid
instead of selecting, e.g., an alternate available computation
that does not treat the hand as rigid (and is, e.g., computa-
tionally more expensive) based on results from analysis
module 108 indicating that the hand was rigid between
frames 152 and 154. Pose module 110 may thereby generate
an estimated pose 156 of the hand as depicted in frame 152.

FIG. 2 is a flow diagram of an exemplary computer-
implemented method 200 for estimating hand poses from
video. The steps shown in FIG. 2 may be performed by any
suitable computer-executable code and/or computing sys-
tem, including the system(s) illustrated in FIGS. 1 and 3-5.
In one example, each of the steps shown in FIG. 2 may
represent an algorithm whose structure includes and/or is
represented by multiple sub-steps, examples of which will
be provided in greater detail below.

As illustrated in FIG. 2, at step 210, method 200 may
include receiving a present frame of a video stream, the
present frame including a present depiction of a multi-
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segment articulated body system. As used herein, the term
“video stream” may refer to any time-sequenced collection
of'images. In some examples, the video stream be processed
by the systems and methods described herein in real-time—
e.g., as it is captured (e.g., by a camera used in an augmented
reality system) and/or received via a transmission.

Additionally, as used herein, the term “multi-segment
articulated body system” may refer to any portion of a body
(e.g., a human body) that can be modeled in terms of one or
more joints and one or more substantially rigid segments
connected by the joints. For example, the human musculo-
skeletal system can be modeled as a multi-segment articu-
lated body system, with joints forming the interfaces
between the different segments and joint angles defining the
spatial relationships between connected segments in the
model. Constraints on the movement at the joints may be
governed by the type of joint connecting the segments and
the biological structures (e.g., muscles, tendons, ligaments,
etc.) that restrict the range of movement at the joint. Thus,
for example, the shoulder joint connecting the upper arm to
the torso and the hip joint connecting the upper leg to the
torso are ball and socket joints that permit extension and
flexion movements as well as rotational movements. By
contrast, the elbow joint connecting the upper arm and the
forearm and the knee joint connecting the upper leg and the
lower leg allow for a more limited range of motion. One
example of a multi-segment articulated body system may
include a person’s arm (including, e.g., the hand at the end
of the arm). Other examples of a multi-segment articulated
body system may include the person’s forearm (including,
e.g., the hand); only the hand; or the person’s entire body.
Thus, as may be appreciated, a portion of a multi-segment
articulated body system may itself represent a multi-segment
articulated body system.

As will be discussed in greater detail below, in some cases
a multi-segment articulated body system may remain sub-
stantially rigid over time; that is, the relative positions and
angles of the segments and/or joints of the multi-segment
articulated body system may remain substantially the same
over time—even when the multi-segment articulated body
system as a whole moves (e.g., via translation and/or rota-
tion) through space over time (e.g., due to extension, flexion,
and/or rotation at one or more joints to which the multi-
segment articulated body system is ultimately anchored).

Receiving the present frame may happen in any of a
variety of contexts. For example, systems described herein
may receive a video stream and extract the present frame
from the video stream (e.g., by extracting the latest frame in
the video stream and/or by extracting a current frame for
analysis in the video stream). Additionally or alternatively,
systems described herein may receive the present frame
having already been extracted from the video stream. In
some examples, the video stream may originate from a
camera used in an augmented reality system (e.g., that tracks
movements of the user of the augmented reality system). In
other examples, the video stream may originate from a
camera used as a user interface system (e.g., for gesture-
based input to a computing system). In further examples, the
video stream may originate from a video chat session. In
addition to the foregoing, various other types of applications
may provide the video stream in real time. In some
examples, the video stream may come from a stored file
(e.g., not in real-time), and the systems described herein may
analyze the video from the stored file to determine poses
and/or gestures outside of real time.

In some examples, receiving the present frame of the
video stream may entail receiving a pre-processed frame



US 11,823,498 Bl

5

(e.g., normalized to a preconfigured size, contrast level,
etc.). In other examples, receiving the present frame of the
video stream may entail receiving a raw frame from the
video stream. In these examples, the systems described
herein may pre-process and/or normalize the present frame.
For example, the frame may be cropped to the body system
of interest (e.g., a hand). Additionally or alternatively, the
frame may be resized to a predetermined resolution (e.g.,
128x128). As will be described in greater detail below,
systems described herein may use one or more machine
learning models to analyze the frames discussed herein.
Accordingly, the frame may be pre-processed and normal-
ized to match the format of images used as training data for
the machine learning models.

As mentioned earlier, the present frame may include a
present depiction of a multi-segment articulated body sys-
tem. As will be discussed in greater detail below, the systems
described herein may determine (e.g., by estimation) a pose
of the multi-segment articulated body system. The pose may
include spatial information such as the position and/or
orientation of one or more of the joints and/or segments of
the multi-segment articulated body system. The spatial
information may be absolute (within a frame of reference—
e.g., mapping positions and/or orientations to the environ-
ment shown in the video stream) and/or relative (e.g.,
describing positions and orientations relative to another part
of the body to which the multi-segment articulated body
system is attached).

Method 200, at step 220, next includes identifying a
previous frame of the video stream that includes a previous
depiction of the multi-segment articulated body system. In
some examples, the previous frame may be the frame in the
video stream that is immediately previous to the present
frame received at step 210. In some examples, the previous
frame may be a recent (but not immediately previous)
frame—e.g., two, three, or four frames prior. In some
examples, the previous frame may be a composite of one or
more previous frames.

Identifying the previous frame may happen in a variety of
contexts. For example, systems described herein may
receive the video stream and extract the previous frame from
the video stream. Additionally or alternatively, these systems
may identify the previous frame having already been
extracted from the video stream. In some examples, systems
described herein may iterate through a video stream, frame-
by-frame, to determine pose information in each frame. In
these examples, the previous frame may have previously
been received as the then-present frame. Thus, these systems
may have cached, buffered, and/or otherwise saved the
then-present frame and, at step 220, may identify it as the
previous frame to the now-present frame.

In some examples, identifying the previous frame of the
video stream may entail identifying a pre-processed frame.
In some examples, the systems described herein may pre-
process and/or normalize the previous frame. For example,
these systems may pre-process the previous frame to match
the format of images used as training data for the machine
learning models discussed earlier. Additionally or alterna-
tively, these systems may pre-process the present and pre-
vious frames to match each other’s formats and attributes.

In various examples, the previous frame may represent an
image captured a fraction of a second before the present
frame. Accordingly, the previous depiction of the multi-
segment articulated body system provided in the previous
frame may represent a relatively small difference from the
present depiction of the multi-segment articulated body
system in the present frame. As will be explained in greater
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6

detail below, systems described herein may classify this
difference to determine whether the difference nevertheless
demonstrates rigidity across the previous and present
frames.

Method 200, at step 230, next includes analyzing the
present frame and the previous frame to determine whether
a portion of the multi-segment articulated body system
remained substantially rigid between the previous frame and
the present frame. The systems described herein may ana-
lyze the present frame and the previous frame to determine
whether the portion of the multi-segment articulated body
system remained substantially rigid in any suitable manner.
In some examples, these systems may use a machine learn-
ing classifier that is trained to classify pairs of body system
images (e.g., temporally sequenced hand images) as rigid or
not rigid. An example of a classifier to detect hand rigidity
will be discussed in greater detail below in connection with
FIG. 4.

In some examples, the portion of the multi-segment
articulated body system may include a hand (where the
multi-segment articulated body system may include, e.g., the
forearm with the hand). In some examples, the “portion” of
the multi-segment articulated body system may refer to the
whole of the multi-segment articulated body system present
in the present and previous frames discussed earlier. Thus,
for example, a hand alone may appear in the frames and the
systems described herein may determine whether the hand
remained rigid between the frames.

Herein, a multi-segment articulated body system may be
termed “substantially” rigid where changes to the internal
articulation of the system are minimal and/or negligible
according to a pre-defined criterion. What degree of changes
to or internal movement within a body system is negligible
may vary depending on the application to which the systems
described herein are applied. Any suitable factors, including
user perception, motor control, feedback regarding gestural
intention, etc., may contribute to determining substantial or
effective rigidity. Accordingly, the systems described herein
may be configured with a difference threshold, below which
differences between two poses (e.g., two hand poses in close
temporal sequence) are considered negligible and the two
poses are considered to represent substantial rigidity of the
body system. As mentioned earlier, in some examples a
machine learning classifier may determine rigidity between
two images of temporally sequential poses. Accordingly, in
some examples, the threshold for substantial rigidity may be
determined via the training data provided (e.g., image pairs
that meet the threshold may be labeled as “rigid” and those
that do not may be labeled as “not rigid”). By way of
example, the threshold for substantial rigidity may be set at
0.1 mm, where average joint location deviations greater than
0.1 mm disqualify temporally sequential poses as rigid.

By way of an example for defining rigidity, systems
described herein may first perform a rigid motion compu-
tation between two hand poses and then, with the rigid
motion between the two poses being solved, calculate the
average distance between the joints of one hand pose from
the respective joints of the other hand pose to determine the
average error. Table 1 shows an example rigid motion
computation.

TABLE 1

Example Rigid Motion Computation

Input: 3D position of n hand joints captured by two consecutive frames
Result: Rotation & translation matrices: R, t
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TABLE 1-continued

Example Rigid Motion Computation

_ lgow 1w
Lp =2 ) P P = 7 2 i

2. P = Pri =P Pr1; = Pl D i= 1,2, 0,
3. lpr = [pr,l’ pr,Z’ o pr,n]’ lpr = [pr,l’ pr,Z’ o pr,n];

4, UZ vl = svd(lﬁ,lﬁil);

6.t=Dp. —Rp,

where the frame with hand pose at timestamp t denoted as
f,» and the corresponding hand joint positions are denoted as
V,. The notation of keypoint positions may be decomposed
to the 3D locations of n keypoints (p, ;, P,o, - - - » P, ,,)- With
the rigid motion being solved, systems described herein may
calculate the averaged distance between the transformed
hand joints from the previous frame and the hand joints of
the present frame as shown in Equation (2) below:

£= g3 (R +0) - pios ) @

As mentioned earlier, computations for analyzing the
previous frame and the present frame to determine the
presence or absence of substantial rigidity may be relatively
inexpensive (e.g., in terms of CPU cycles, memory usage,
computation time, etc.) in comparison with computations
used to estimate a pose directly from an image. Therefore,
as will be discussed in greater detail below, the computa-
tional cost of checking for rigidity may be small relative to
the savings possible due to sometimes avoiding estimating a
pose directly from an image.

Method 200, at step 240, next includes estimating a pose
of the multi-segment articulated body system in the present
frame using a first pose estimation computation that treats
the portion of the multi-segment articulated body system as
rigid and that is selected in contrast to a second pose
estimation computation based on determining that the por-
tion of the multi-segment articulated body system remained
substantially rigid between the previous frame and the
present frame.

The first pose estimation computation and the second pose
estimation computation may include any suitable computer-
executed computations. For example, the first pose estima-
tion computation and/or the second pose estimation com-
putation may include applying machine learning models. In
some examples, the first pose estimation computation may
consume fewer computing resources than the second pose
estimation computation. For example, the first pose estima-
tion computation may consume fewer CPU cycles, less
memory, and/or take less time. In some examples, the first
pose estimation computation may be simpler than the second
pose computation at least because the second pose estima-
tion computation operates with more degrees of freedom
(e.g., joint angle changes) than does the first pose estimation
computation. In some examples, the first pose estimation
computation operates with simpler and/or smaller input. For
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example, the first pose estimation computation may operate
based on previous hand pose information (e.g., describing
spatial information of joints) whereas the second pose
estimation computation may analyze the present frame to
estimate the pose of the depicted body system (e.g., a hand).

As will be described in greater detail below, the systems
described herein may select between at least two pose
estimation computations (e.g., the first post estimation com-
putation and the second pose estimation computation), the
logic of the selection being driven at least in part by a
determination of whether the multi-segment articulated
body system depicted in the previous and present frames
was rigid across the previous and present frames.

FIG. 3 illustrates an example system 300 for efficiently
estimating hand poses from video. As shown in FIG. 3,
system 300 may include a rigid motion classifier 320, a
gesture predictor 330, and a hand pose estimation network
340. Hand pose estimation network 340 may represent any
module, process, and/or computation for estimating a hand
pose from an image. In some examples, hand pose estima-
tion network 340 may represent the “second pose estimation
computation” discussed herein. For example, hand pose
estimation network 340 may represent a machine learning
model that takes an image of a hand as input and produces
a hand pose (e.g., spatial information describing the position
and/or orientation of one or more joints and/or segments of
the hand) as output. Such a machine learning model may be
trained to estimate the hand pose based on a training corpus
of hand images that demonstrate hands in various possible
configurations and that collectively demonstrates the free-
dom of movement provided by the various joints of the
human hand. The machine learning model may also be
complex enough (including, e.g., involving enough compu-
tations) to reliably and accurately estimate hand poses from
images.

Rigid motion classifier 320 may represent any module,
process, and/or computation for determining whether a hand
remained substantially rigid between two temporally
sequenced images. For example, rigid motion classifier 320
may represent a machine learning classifier that takes two
temporally sequenced images as input and produces a binary
classification (indicating substantial rigidity or not) as out-
put.

Gesture predictor 330 may represent any module, process,
and/or computation for estimating a hand pose. In some
examples, gesture predictor 330 may represent the “first
pose estimation computation” discussed herein. In some
examples, gesture predictor 330 may not estimate a hand
pose from an image, but rather estimate the hand pose from
previous hand poses. For example, gesture predictor 330
may use a buffer 332 of previous hand poses (e.g., a
sequence of three most recently determined hand poses) to
estimate the current hand pose. (While the hand pose from
the most recently determined frame to the present frame may
be rigid, in some examples the hand pose across the three
most recently determined hand poses may not be rigid;
nevertheless, the non-rigid hand poses may serve as condi-
tions and provide sequential hand motion cues.) Further-
more, gesture predictor 330 may operate on the assumption
of rigidity of the hand between the most recently determined
hand pose and the current hand pose (based, e.g., on the
classification from rigid motion classifier 320). Thus, for
example, gesture predictor may represent a machine learn-
ing classifier trained on temporally sequenced hand pose
information as input and producing rigid body movement
(e.g., translation and/or rotation of the rigid hand as a whole)
as output.
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In some examples, the systems described herein (such as
system 300) may iteratively estimate a hand pose for each
frame of a video stream (e.g., in real time, as each frame is
generated and/or made available). As may be appreciated,
although hand pose estimation network 340 could estimate
the hand pose for each individual frame, this may be a
computationally expensive task. However, gesture predictor
330 may estimate hand poses much more efficiently (when,
e.g., rigidity can be assumed). In addition, the relative
computational expense of rigid motion classifier 320 may be
negligible compared to the computational expense of hand
pose estimation network 340 as well as to the average
computational savings of substituting the operation of hand
pose estimation network 340 with the operation of gesture
predictor 330 (accounting for, e.g., the expected frequency
with which a hand may be expected to be observed rigid
across two sequential frames). Accordingly, by prepending
rigid motion classifier 320 with gesture predictor 330 to an
independently functional hand pose estimation network 340,
the systems described herein may improve system 300 in
comparison with a version of system 300 that uses only hand
pose estimation network 340 for hand pose estimation.

By way of example of the operation of system 300, FIG.
3 shows frames 302 and 304. In some examples, frames 302
and 304 may be sequential frames in a video stream. Frame
302 may be the most recent frame in the video stream and
frame 304 may be the second most recent frame in the video
stream. In some examples, hand pose information from
frame 304 may have previously been estimated by system
300 (when frame 304 was the most recent frame in the video
stream). For example, frame 304 may have been provided to
hand pose estimation network 340, which may have pro-
duced hand pose information 346 to describe the hand pose
in frame 304. In some examples, before being provided to
hand pose estimation network 340, frame 304 and the frame
previous to frame 304 in the video stream may have been
provided to rigid motion classifier 320, which may have
determined that there was not substantial rigidity in the hand
across frame 304 and the frame previous to frame 304.

To begin the process of estimating hand pose information
for frame 302, rigid motion classifier 320 may take frames
302 and 304 as input. Rigid motion classifier may determine
rigidity in the hand pose between frames 302 and 304.
Accordingly, rigid motion classifier may select gesture pre-
dictor 330 instead of hand pose estimation network for
estimating the hand pose of frame 302. Gesture predictor
may take the previously estimated hand pose information
from previous frames (e.g., frame 304 and the two frames
prior to frame 304 in the video stream) as input (using, e.g.,
an input sequence buffer 332) and produce spatial transfor-
mation information that describes the translation and rota-
tion to apply to the rigid hand pose of frame 304 (e.g., hand
pose 346) to predict the hand pose of frame 302. At 334,
system 300 may apply the spatial transformation informa-
tion to hand pose 346 to produce estimated hand pose 336
for frame 302. Hand pose 336 may then be added to buffer
332 for use in future iterations (i.e., to enable gesture
predictor 330 to predict the hand pose of a future frame).

FIG. 4 illustrates an example rigid motion classifier 400.
As shown in FIG. 4, rigid motion classifier 400 may take an
input 402. In one example, input 402 may be two 128x128
RGB images concatenated (e.g., cropped hands from two
sequential frames). Input 402 may be to a convolutional
layer 404. In one example, convolutional layer 404 may be
a 3x3 convolutional layer with 32 filters. Intermediate
processing module 406 may then perform one or more
processing steps to improve the performance of classifier
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400. For example, intermediate processing 406 may include
one or more normalization, activation, and/or pooling steps.
As an example, intermediate processing module 406 may
perform a batch normalization procedure, apply rectified
linear unit activation function, and a maximum pooling
operation (in any suitable order including, e.g., in that order)
on the output from convolutional layer 404. Convolutional
layers 408, 412, 416, and 420 may be followed by similar
intermediate processing modules 410, 414, 418, and 422,
which may perform the same and/or similar steps. Succes-
sive convolutional layers may include the same or increasing
numbers of filters. For example, convolutional layer 408
may be a 3x3 convolutional layer with 64 filters. Convolu-
tional layer 412 may be a 3x3 convolutional layer with 128
filters. Convolutional layer 416 may be a 3x3 convolutional
layer with 256 filters. Convolutional layer 420 may be a 3x3
convolutional layer with 256 filters. Following the operation
of intermediate processing module 422, a processing module
424 may perform an average pooling operation. A process-
ing module 426 may perform a flattening function. A fully
connected layer 426 of size 1024 may take the flattened data
as input. A fully connected layer 428 of size 128 may take
the output of fully connected layer 426 as input. Classifier
300 may then output 0 or 1, representing the classification of
rigidity (absent or present).

FIG. 5 illustrates an example system 500 for estimating
hand poses. In some examples, system 500 may provide an
example of gesture predictor 330 of FIG. 3. As shown in
FIG. 5, an input 516 may be provided to system 500. In some
examples, input 516 may represent the joint positions of a
hand (or another suitable multi-segment articulated body
system) in three-dimensional space. Input 516 may be
provided to a convolutional layer 518. In one example,
convolutional filter 518 may be a 6x2 convolutional layer
with 64 filters. An intermediate processing module 520 may
then perform one or more intermediate processing steps. For
example, intermediate processing layer 520 may perform a
batch normalization and then apply a rectified linear unit
activation function. A convolutional layer 522 may be a 1x2
convolutional layer with 128 filters. An intermediate pro-
cessing module 524 may then perform a batch normalization
and then apply a rectified linear unit activation function. A
processing module 526 may then flatten the data and provide
it as input to two fully connected network layers (e.g., the
first being of size 128). The output of the fully connected
network may produce output 528. Output 528 may include
transformation information that predicts the transformation
of a rigid hand. Output 528 may include rotation and
transformation information in three-dimensional space.

During training of system 500, the ground truth next-
frame joint positions may be provided to the network. In
each forward pass, the rotation angles from three dimensions
and the 3D translations of the rigid body may be inferred,
which may define the rotation and translation matrices. The
predicted joint locations at time t+1 may be acquired by
projecting the joint locations at timestamp t as shown in
Equation (3) below:
®

The loss may be defined as the 3D Euclidean distance
between the predicted next-frame keypoint positions and the
ground truth to regularize the prediction. During training,
the objective function may regularize the network to predict
for rotation and translation parameters of the hand pose from
the present to the next frame. An example of the computa-
tion of the loss is shown in Equation (4) below:

L:d(’lbnla P, )=8qrt (E"ileﬁul,i—Pm,in)

ﬁt+l :Rpt+2
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where d(-) is the 3D distance between the predicted hand
joint locations and the ground truth.

FIG. 6 illustrates an example sequence of frames that
demonstrates hand poses. Frame 602 may show a hand pose
610. The next frame, frame 604, may show a hand pose 612.
The hand may be substantially rigid between frames 602 and
604, such that, e.g., the relative joint positions of the hand
did not change, even though the hand as a whole moved a
small distance within the frame. For example, the change in
the position of the hand may be described as a translation
through three-dimensional space. Accordingly, using FIG. 3
as an example, rigid motion classifier 320 may determine
that the motion of the hand from frames 602 and 604 was the
motion of a substantially rigid hand. Accordingly, rigid
motion classifier 320, when taking frames 602 and 604 as
input, may select gesture predictor 330 instead of hand pose
estimation network 340 for estimating the hand pose of
frame 604.

FIG. 7 illustrates an example sequence of frames that
demonstrates hand poses. Frame 702 may show a hand pose
710. The next frame, frame 704, may show a hand pose 712.
The hand may be substantially rigid between frames 702 and
704, such that, e.g., the relative joint positions of the hand
did not change, even though the hand as a whole moved a
small amount within the frame. For example, the change in
the position of the hand may be described as a rotation
through three-dimensional space. Accordingly, using FIG. 3
as an example, rigid motion classifier 320 may determine
that the motion of the hand from frames 702 and 704 was the
motion of a substantially rigid hand. Accordingly, rigid
motion classifier 320, when taking frames 702 and 704 as
input, may select gesture predictor 330 instead of hand pose
estimation network 340 for estimating the hand pose of
frame 704.

FIG. 8 illustrates an example sequence of frames that
demonstrates hand poses. Frame 802 may show a hand pose
810. The next frame, frame 804, may show a hand pose 812.
The hand may not be substantially rigid between frames 802
and 804—that is, e.g., the relative joint positions of the hand
changed. For example, hand pose 812 may show the hand a
small amount more closed than in hand pose 810. Accord-
ingly, using FIG. 3 as an example, rigid motion classifier 320
may determine that the motion of the hand from frames 802
to 804 was not the motion of a substantially rigid hand.
Accordingly, rigid motion classifier 320, when taking frames
802 and 804 as input, may select hand pose estimation
network 340 instead of gesture predictor 330 for estimating
the hand pose of frame 804.

As explained above, a rigid hand motion classifier and a
gesture predictor may augment a hand pose estimation
network (that, e.g., takes monocular RGB images as input).
The hand pose prediction is an optimization problem con-
strained by the parameterization of 3D rigid motion, because
only hand patches being classified as following 3D rotations
and/or translations may be predicted; otherwise, hand pose
estimation may be handled by the full backend network.
Compared with random hand movements embodied by
stochastic and nonlinear dynamics, the constrained rigid
motions have many fewer degrees of freedom, which may
dramatically reduce the prediction space and make efficient
and robust predictions possible. The systems and methods
described herein may be versatile and applied to accelerate
various types of hand pose estimation networks to provide
accurate pose estimation performance with significantly less
computational cost and overall faster inference speed.

Example Embodiments

Example 1: A computer-implemented method for estimat-
ing hand poses from video may include (1) receiving a
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present frame of a video stream, the present frame compris-
ing a present depiction of a multi-segment articulated body
system, (2) identifying a previous frame of the video stream
that comprises a previous depiction of the multi-segment
articulated body system, (3) analyzing the present frame and
the previous frame to determine whether a portion of the
multi-segment articulated body system remained substan-
tially rigid between the previous frame and the present
frame, and (4) estimating a pose of the multi-segment
articulated body system in the present frame using a first
pose estimation computation that treats the portion of the
multi-segment articulated body system as rigid and that is
selected in contrast to a second pose estimation computation
based on determining that the portion of the multi-segment
articulated body system remained substantially rigid
between the previous frame and the present frame.

Example 2: The computer-implemented method of
Example 1, where the portion of the multi-segment articu-
lated body system is a hand.

Example 3: The computer-implemented method of any of
Examples 1 and 2, where estimating the pose of the multi-
segment articulated body system comprises estimating a
spatial configuration of the multi-segment articulated body
system, the spatial configuration comprising at least one of:
(1) a spatial position of one or more segments of the
multi-segment articulated body system, (2) a spatial position
of one or more joints connecting one or more segments of
the multi-segment articulated body system, or (3) an angle
between one or more joint-connected segments of the multi-
segment articulated body system.

Example 4: The computer-implemented method of any of
Examples 1-3, also including (1) receiving a different pres-
ent frame of the video stream comprising a different present
depiction of the multi-segment articulated body system, (2)
identifying a different previous frame of the video stream
that comprises a different previous depiction of the multi-
segment articulated body system, (3) analyzing the different
present frame and the different previous frame to determine
whether the portion of the multi-segment articulated body
system remained substantially rigid between the different
previous frame and the different present frame, and (4)
estimating a different pose of the multi-segment articulated
body system in the different present frame using the second
pose estimation computation that does not treat the portion
of the multi-segment articulated body system as rigid and
that is selected in contrast to the first pose estimation
computation based on determining that the portion of the
multi-segment articulated body system did not remain sub-
stantially rigid between the different previous frame and the
different present frame.

Example 5: The computer-implemented method of any of
Examples 1-4, where determining that the portion of the
multi-segment articulated body system remained substan-
tially rigid includes determining at least one of (1) relative
positions of segments within the portion of the multi-
segment articulated body system remained unchanged, or
(2) angles between segments within the portion of the
multi-segmented articulated body system remained
unchanged.

Example 6: The computer-implemented method of any of
Examples 1-5, where determining that the portion of the
multi-segment articulated body system remained substan-
tially rigid comprises determining a change in pose of the
portion of the multi-segment articulated body system can be
substantially described by one or more of: (1) a translation
of the portion of the multi-segment articulated body system
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as a whole, or (2) a rotation of the portion of the multi-
segment articulated body system as a whole.

Example 7: The computer-implemented method of any of
Examples 1-6, where the first pose estimation computation,
when performed, consumes fewer computing resources that
does the second pose estimation computation when per-
formed.

Example 8: The computer-implemented method of any of
Examples 1-7, where the first pose estimation computation
produces one or more of: (1) an estimated translation of the
portion of the multi-segment articulated body system as a
rigid system, or (2) an estimated rotation of the portion of the
multi-segment articulated body system as a rigid system.

Example 9: The computer-implemented method of any of
Examples 1-8, where the first pose estimation computation
takes as input information previously processed from one or
more previous frames of the video stream but not informa-
tion from the present frame of the video stream.

Example 10: The computer-implemented method of any
of Examples 1-9, where the second pose estimation com-
putation takes as input the present frame of the video stream.

Embodiments of the present disclosure may include or be
implemented in conjunction with various types of artificial-
reality systems. Artificial reality is a form of reality that has
been adjusted in some manner before presentation to a user,
which may include, for example, a virtual reality, an aug-
mented reality, a mixed reality, a hybrid reality, or some
combination and/or derivative thereof. Artificial-reality con-
tent may include completely computer-generated content or
computer-generated content combined with captured (e.g.,
real-world) content. The artificial-reality content may
include video, audio, haptic feedback, or some combination
thereof, any of which may be presented in a single channel
or in multiple channels (such as stereo video that produces
a three-dimensional (3D) effect to the viewer). Additionally,
in some embodiments, artificial reality may also be associ-
ated with applications, products, accessories, services, or
some combination thereof, that are used to, for example,
create content in an artificial reality and/or are otherwise
used in (e.g., to perform activities in) an artificial reality.

Artificial-reality systems may be implemented in a variety
of different form factors and configurations. Some artificial-
reality systems may be designed to work without near-eye
displays (NEDs). Other artificial-reality systems may
include an NED that also provides visibility into the real
world (such as, e.g., augmented-reality system 900 in FIG.
9) or that visually immerses a user in an artificial reality
(such as, e.g., virtual-reality system 1000 in FIG. 10). While
some artificial-reality devices may be self-contained sys-
tems, other artificial-reality devices may communicate and/
or coordinate with external devices to provide an artificial-
reality experience to a user. Examples of such external
devices include handheld controllers, mobile devices, desk-
top computers, devices worn by a user, devices worn by one
or more other users, and/or any other suitable external
system.

Turning to FIG. 9, augmented-reality system 900 may
include an eyewear device 902 with a frame 910 configured
to hold a left display device 915(A) and a right display
device 915(B) in front of a user’s eyes. Display devices
915(A) and 915(B) may act together or independently to
present an image or series of images to a user. While
augmented-reality system 900 includes two displays,
embodiments of this disclosure may be implemented in
augmented-reality systems with a single NED or more than
two NEDs.
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In some embodiments, augmented-reality system 900
may include one or more sensors, such as sensor 940. Sensor
940 may generate measurement signals in response to
motion of augmented-reality system 900 and may be located
on substantially any portion of frame 910. Sensor 940 may
represent one or more of a variety of different sensing
mechanisms, such as a position sensor, an inertial measure-
ment unit (IMU), a depth camera assembly, a structured light
emitter and/or detector, or any combination thereof. In some
embodiments, augmented-reality system 900 may or may
not include sensor 940 or may include more than one sensor.
In embodiments in which sensor 940 includes an IMU, the
IMU may generate calibration data based on measurement
signals from sensor 940. Examples of sensor 940 may
include, without limitation, accelerometers, gyroscopes,
magnetometers, other suitable types of sensors that detect
motion, sensors used for error correction of the IMU, or
some combination thereof.

In some examples, augmented-reality system 900 may
also include a microphone array with a plurality of acoustic
transducers 920(A)-920(J), referred to collectively as acous-
tic transducers 920. Acoustic transducers 920 may represent
transducers that detect air pressure variations induced by
sound waves. Each acoustic transducer 920 may be config-
ured to detect sound and convert the detected sound into an
electronic format (e.g., an analog or digital format). The
microphone array in FIG. 9 may include, for example, ten
acoustic transducers: 920(A) and 920(B), which may be
designed to be placed inside a corresponding ear of the user,
acoustic transducers 920(C), 920(D), 920(E), 920(F), 920
(G), and 920(H), which may be positioned at various loca-
tions on frame 910, and/or acoustic transducers 920(1) and
920(J), which may be positioned on a corresponding neck-
band 905.

In some embodiments, one or more of acoustic transduc-
ers 920(A)-(J) may be used as output transducers (e.g.,
speakers). For example, acoustic transducers 920(A) and/or
920(B) may be earbuds or any other suitable type of head-
phone or speaker.

The configuration of acoustic transducers 920 of the
microphone array may vary. While augmented-reality sys-
tem 900 is shown in FIG. 9 as having ten acoustic trans-
ducers 920, the number of acoustic transducers 920 may be
greater or less than ten. In some embodiments, using higher
numbers of acoustic transducers 920 may increase the
amount of audio information collected and/or the sensitivity
and accuracy of the audio information. In contrast, using a
lower number of acoustic transducers 920 may decrease the
computing power required by an associated controller 950 to
process the collected audio information. In addition, the
position of each acoustic transducer 920 of the microphone
array may vary. For example, the position of an acoustic
transducer 920 may include a defined position on the user,
a defined coordinate on frame 910, an orientation associated
with each acoustic transducer 920, or some combination
thereof.

Acoustic transducers 920(A) and 920(B) may be posi-
tioned on different parts of the user’s ear, such as behind the
pinna, behind the tragus, and/or within the auricle or fossa.
Or, there may be additional acoustic transducers 920 on or
surrounding the ear in addition to acoustic transducers 920
inside the ear canal. Having an acoustic transducer 920
positioned next to an ear canal of a user may enable the
microphone array to collect information on how sounds
arrive at the ear canal. By positioning at least two of acoustic
transducers 920 on either side of a user’s head (e.g., as
binaural microphones), augmented-reality device 900 may
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simulate binaural hearing and capture a 3D stereo sound
field around about a user’s head. In some embodiments,
acoustic transducers 920(A) and 920(B) may be connected
to augmented-reality system 900 via a wired connection
930, and in other embodiments acoustic transducers 920(A)
and 920(B) may be connected to augmented-reality system
900 via a wireless connection (e.g., a BLUETOOTH con-
nection). In still other embodiments, acoustic transducers
920(A) and 920(B) may not be used at all in conjunction
with augmented-reality system 900.

Acoustic transducers 920 on frame 910 may be positioned
in a variety of different ways, including along the length of
the temples, across the bridge, above or below display
devices 915(A) and 915(B), or some combination thereof.
Acoustic transducers 920 may also be oriented such that the
microphone array is able to detect sounds in a wide range of
directions surrounding the user wearing the augmented-
reality system 900. In some embodiments, an optimization
process may be performed during manufacturing of aug-
mented-reality system 900 to determine relative positioning
of each acoustic transducer 920 in the microphone array.

In some examples, augmented-reality system 900 may
include or be connected to an external device (e.g., a paired
device), such as neckband 905. Neckband 905 generally
represents any type or form of paired device. Thus, the
following discussion of neckband 905 may also apply to
various other paired devices, such as charging cases, smart
watches, smart phones, wrist bands, other wearable devices,
hand-held controllers, tablet computers, laptop computers,
other external compute devices, etc.

As shown, neckband 905 may be coupled to eyewear
device 902 via one or more connectors. The connectors may
be wired or wireless and may include electrical and/or
non-electrical (e.g., structural) components. In some cases,
eyewear device 902 and neckband 905 may operate inde-
pendently without any wired or wireless connection between
them. While FIG. 9 illustrates the components of eyewear
device 902 and neckband 905 in example locations on
eyewear device 902 and neckband 905, the components may
be located elsewhere and/or distributed differently on eye-
wear device 902 and/or neckband 905. In some embodi-
ments, the components of eyewear device 902 and neckband
905 may be located on one or more additional peripheral
devices paired with eyewear device 902, neckband 905, or
some combination thereof.

Pairing external devices, such as neckband 905, with
augmented-reality eyewear devices may enable the eyewear
devices to achieve the form factor of a pair of glasses while
still providing sufficient battery and computation power for
expanded capabilities. Some or all of the battery power,
computational resources, and/or additional features of aug-
mented-reality system 900 may be provided by a paired
device or shared between a paired device and an eyewear
device, thus reducing the weight, heat profile, and form
factor of the eyewear device overall while still retaining
desired functionality. For example, neckband 905 may allow
components that would otherwise be included on an eyewear
device to be included in neckband 905 since users may
tolerate a heavier weight load on their shoulders than they
would tolerate on their heads. Neckband 905 may also have
a larger surface area over which to diffuse and disperse heat
to the ambient environment. Thus, neckband 905 may allow
for greater battery and computation capacity than might
otherwise have been possible on a stand-alone eyewear
device. Since weight carried in neckband 905 may be less
invasive to a user than weight carried in eyewear device 902,
a user may tolerate wearing a lighter eyewear device and
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carrying or wearing the paired device for greater lengths of
time than a user would tolerate wearing a heavy standalone
eyewear device, thereby enabling users to more fully incor-
porate artificial-reality environments into their day-to-day
activities.

Neckband 905 may be communicatively coupled with
eyewear device 902 and/or to other devices. These other
devices may provide certain functions (e.g., tracking, local-
izing, depth mapping, processing, storage, etc.) to aug-
mented-reality system 900. In the embodiment of FIG. 9,
neckband 905 may include two acoustic transducers (e.g.,
920(I) and 920(J)) that are part of the microphone array (or
potentially form their own microphone subarray). Neckband
905 may also include a controller 925 and a power source
935.

Acoustic transducers 920(1) and 920(J) of neckband 905
may be configured to detect sound and convert the detected
sound into an electronic format (analog or digital). In the
embodiment of FIG. 9, acoustic transducers 920(I) and
920(J) may be positioned on neckband 905, thereby increas-
ing the distance between the neckband acoustic transducers
920(I) and 920(J) and other acoustic transducers 920 posi-
tioned on eyewear device 902. In some cases, increasing the
distance between acoustic transducers 920 of the micro-
phone array may improve the accuracy of beamforming
performed via the microphone array. For example, if a sound
is detected by acoustic transducers 920(C) and 920(D) and
the distance between acoustic transducers 920(C) and 920
(D) is greater than, e.g., the distance between acoustic
transducers 920(D) and 920(E), the determined source loca-
tion of the detected sound may be more accurate than if the
sound had been detected by acoustic transducers 920(D) and
920(E).

Controller 925 of neckband 905 may process information
generated by the sensors on neckband 905 and/or aug-
mented-reality system 900. For example, controller 925 may
process information from the microphone array that
describes sounds detected by the microphone array. For each
detected sound, controller 925 may perform a direction-of-
arrival (DOA) estimation to estimate a direction from which
the detected sound arrived at the microphone array. As the
microphone array detects sounds, controller 925 may popu-
late an audio data set with the information. In embodiments
in which augmented-reality system 900 includes an inertial
measurement unit, controller 925 may compute all inertial
and spatial calculations from the IMU located on eyewear
device 902. A connector may convey information between
augmented-reality system 900 and neckband 905 and
between augmented-reality system 900 and controller 925.
The information may be in the form of optical data, elec-
trical data, wireless data, or any other transmittable data
form. Moving the processing of information generated by
augmented-reality system 900 to neckband 905 may reduce
weight and heat in eyewear device 902, making it more
comfortable to the user.

Power source 935 in neckband 905 may provide power to
eyewear device 902 and/or to neckband 905. Power source
935 may include, without limitation, lithium ion batteries,
lithium-polymer batteries, primary lithium batteries, alka-
line batteries, or any other form of power storage. In some
cases, power source 935 may be a wired power source.
Including power source 935 on neckband 905 instead of on
eyewear device 902 may help better distribute the weight
and heat generated by power source 935.

As noted, some artificial-reality systems may, instead of
blending an artificial reality with actual reality, substantially
replace one or more of a user’s sensory perceptions of the



US 11,823,498 Bl

17

real world with a virtual experience. One example of this
type of system is a head-worn display system, such as
virtual-reality system 1000 in FIG. 10, that mostly or
completely covers a user’s field of view. Virtual-reality
system 1000 may include a front rigid body 1002 and a band
1004 shaped to fit around a user’s head. Virtual-reality
system 1000 may also include output audio transducers
1006(A) and 1006(B). Furthermore, while not shown in
FIG. 10, front rigid body 1002 may include one or more
electronic elements, including one or more electronic dis-
plays, one or more inertial measurement units (IMUS), one
or more tracking emitters or detectors, and/or any other
suitable device or system for creating an artificial-reality
experience.

Artificial-reality systems may include a variety of types of
visual feedback mechanisms. For example, display devices
in augmented-reality system 900 and/or virtual-reality sys-
tem 1000 may include one or more liquid crystal displays
(LCDs), light emitting diode (LED) displays, microLED
displays, organic LED (OLED) displays, digital light project
(DLP) micro-displays, liquid crystal on silicon (LCoS)
micro-displays, and/or any other suitable type of display
screen. These artificial-reality systems may include a single
display screen for both eyes or may provide a display screen
for each eye, which may allow for additional flexibility for
varifocal adjustments or for correcting a user’s refractive
error. Some of these artificial-reality systems may also
include optical subsystems having one or more lenses (e.g.,
conventional concave or convex lenses, Fresnel lenses,
adjustable liquid lenses, etc.) through which a user may view
a display screen. These optical subsystems may serve a
variety of purposes, including to collimate (e.g., make an
object appear at a greater distance than its physical distance),
to magnify (e.g., make an object appear larger than its actual
size), and/or to relay (to, e.g., the viewer’s eyes) light. These
optical subsystems may be used in a non-pupil-forming
architecture (such as a single lens configuration that directly
collimates light but results in so-called pincushion distor-
tion) and/or a pupil-forming architecture (such as a multi-
lens configuration that produces so-called barrel distortion to
nullify pincushion distortion).

In addition to or instead of using display screens, some of
the artificial-reality systems described herein may include
one or more projection systems. For example, display
devices in augmented-reality system 900 and/or virtual-
reality system 1000 may include micro-LED projectors that
project light (using, e.g., a waveguide) into display devices,
such as clear combiner lenses that allow ambient light to
pass through. The display devices may refract the projected
light toward a user’s pupil and may enable a user to
simultaneously view both artificial-reality content and the
real world. The display devices may accomplish this using
any of a variety of different optical components, including
waveguide components (e.g., holographic, planar, diffrac-
tive, polarized, and/or reflective waveguide elements), light-
manipulation surfaces and elements (such as diffractive,
reflective, and refractive elements and gratings), coupling
elements, etc. Artificial-reality systems may also be config-
ured with any other suitable type or form of image projection
system, such as retinal projectors used in virtual retina
displays.

The artificial-reality systems described herein may also
include various types of computer vision components and
subsystems. For example, augmented-reality system 900
and/or virtual-reality system 1000 may include one or more
optical sensors, such as two-dimensional (2D) or 3D cam-
eras, structured light transmitters and detectors, time-of-
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flight depth sensors, single-beam or sweeping laser
rangefinders, 3D LiDAR sensors, and/or any other suitable
type or form of optical sensor. An artificial-reality system
may process data from one or more of these sensors to
identify a location of a user, to map the real world, to provide
a user with context about real-world surroundings, and/or to
perform a variety of other functions.

The artificial-reality systems described herein may also
include one or more input and/or output audio transducers.
Output audio transducers may include voice coil speakers,
ribbon speakers, electrostatic speakers, piezoelectric speak-
ers, bone conduction transducers, cartilage conduction trans-
ducers, tragus-vibration transducers, and/or any other suit-
able type or form of audio transducer. Similarly, input audio
transducers may include condenser microphones, dynamic
microphones, ribbon microphones, and/or any other type or
form of input transducer. In some embodiments, a single
transducer may be used for both audio input and audio
output.

In some embodiments, the artificial-reality systems
described herein may also include tactile (i.e., haptic) feed-
back systems, which may be incorporated into headwear,
gloves, body suits, handheld controllers, environmental
devices (e.g., chairs, floormats, etc.), and/or any other type
of device or system. Haptic feedback systems may provide
various types of cutaneous feedback, including vibration,
force, traction, texture, and/or temperature. Haptic feedback
systems may also provide various types of kinesthetic feed-
back, such as motion and compliance. Haptic feedback may
be implemented using motors, piezoelectric actuators, flu-
idic systems, and/or a variety of other types of feedback
mechanisms. Haptic feedback systems may be implemented
independent of other artificial-reality devices, within other
artificial-reality devices, and/or in conjunction with other
artificial-reality devices.

By providing haptic sensations, audible content, and/or
visual content, artificial-reality systems may create an entire
virtual experience or enhance a user’s real-world experience
in a variety of contexts and environments. For instance,
artificial-reality systems may assist or extend a user’s per-
ception, memory, or cognition within a particular environ-
ment. Some systems may enhance a user’s interactions with
other people in the real world or may enable more immersive
interactions with other people in a virtual world. Artificial-
reality systems may also be used for educational purposes
(e.g., for teaching or training in schools, hospitals, govern-
ment organizations, military organizations, business enter-
prises, etc.), entertainment purposes (e.g., for playing video
games, listening to music, watching video content, etc.),
and/or for accessibility purposes (e.g., as hearing aids, visual
aids, etc.). The embodiments disclosed herein may enable or
enhance a user’s artificial-reality experience in one or more
of these contexts and environments and/or in other contexts
and environments.

As detailed above, the computing devices and systems
described and/or illustrated herein broadly represent any
type or form of computing device or system capable of
executing computer-readable instructions, such as those
contained within the modules described herein. In their most
basic configuration, these computing device(s) may each
include at least one memory device and at least one physical
processor.

In some examples, the term “memory device” generally
refers to any type or form of volatile or non-volatile storage
device or medium capable of storing data and/or computer-
readable instructions. In one example, a memory device may
store, load, and/or maintain one or more of the modules



US 11,823,498 Bl

19

described herein. Examples of memory devices include,
without limitation, Random Access Memory (RAM), Read
Only Memory (ROM), flash memory, Hard Disk Drives
(HDDs), Solid-State Drives (SSDs), optical disk drives,
caches, variations or combinations of one or more of the
same, or any other suitable storage memory.

In some examples, the term “physical processor” gener-
ally refers to any type or form of hardware-implemented
processing unit capable of interpreting and/or executing
computer-readable instructions. In one example, a physical
processor may access and/or modify one or more modules
stored in the above-described memory device. Examples of
physical processors include, without limitation, micropro-
cessors, microcontrollers, Central Processing Units (CPUs),
Field-Programmable Gate Arrays (FPGAs) that implement
softcore processors, Application-Specific Integrated Circuits
(ASICs), portions of one or more of the same, variations or
combinations of one or more of the same, or any other
suitable physical processor.

Although illustrated as separate elements, the modules
described and/or illustrated herein may represent portions of
a single module or application. In addition, in certain
embodiments one or more of these modules may represent
one or more software applications or programs that, when
executed by a computing device, may cause the computing
device to perform one or more tasks. For example, one or
more of the modules described and/or illustrated herein may
represent modules stored and configured to run on one or
more of the computing devices or systems described and/or
illustrated herein. One or more of these modules may also
represent all or portions of one or more special-purpose
computers configured to perform one or more tasks.

In addition, one or more of the modules described herein
may transform data, physical devices, and/or representations
of physical devices from one form to another. For example,
one or more of the modules recited herein may receive a
video stream to be transformed, transform the video stream
into hand pose estimation data, output a result of the
transformation to control a user interface, and store the result
of the transformation to a storage device. Additionally or
alternatively, one or more of the modules recited herein may
transform a processor, volatile memory, non-volatile
memory, and/or any other portion of a physical computing
device from one form to another by executing on the
computing device, storing data on the computing device,
and/or otherwise interacting with the computing device.

In some embodiments, the term “computer-readable
medium” generally refers to any form of device, carrier, or
medium capable of storing or carrying computer-readable
instructions. Examples of computer-readable media include,
without limitation, transmission-type media, such as carrier
waves, and non-transitory-type media, such as magnetic-
storage media (e.g., hard disk drives, tape drives, and floppy
disks), optical-storage media (e.g., Compact Disks (CDs),
Digital Video Disks (DVDs), and BLU-RAY disks), elec-
tronic-storage media (e.g., solid-state drives and flash
media), and other distribution systems.

The process parameters and sequence of the steps
described and/or illustrated herein are given by way of
example only and can be varied as desired. For example,
while the steps illustrated and/or described herein may be
shown or discussed in a particular order, these steps do not
necessarily need to be performed in the order illustrated or
discussed. The various exemplary methods described and/or
illustrated herein may also omit one or more of the steps
described or illustrated herein or include additional steps in
addition to those disclosed.
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The preceding description has been provided to enable
others skilled in the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description is not intended to be exhaustive or to be limited
to any precise form disclosed. Many modifications and
variations are possible without departing from the spirit and
scope of the present disclosure. The embodiments disclosed
herein should be considered in all respects illustrative and
not restrictive. Reference should be made to the appended
claims and their equivalents in determining the scope of the
present disclosure.

Unless otherwise noted, the terms “connected to” and
“coupled to” (and their derivatives), as used in the specifi-
cation and claims, are to be construed as permitting both
direct and indirect (i.e., via other elements or components)
connection. In addition, the terms “a” or “an,” as used in the
specification and claims, are to be construed as meaning “at
least one of.” Finally, for ease of use, the terms “including”
and “having” (and their derivatives), as used in the specifi-
cation and claims, are interchangeable with and have the
same meaning as the word “comprising.”

What is claimed is:

1. A computer-implemented method comprising:

receiving a present frame of a video stream, the present
frame comprising a present depiction of a multi-seg-
ment articulated body system;

identifying a previous frame of the video stream that
comprises a previous depiction of the multi-segment
articulated body system;

analyzing the present frame and the previous frame to
determine whether a portion of the multi-segment
articulated body system remained substantially rigid
between the previous frame and the present frame; and

estimating a pose of the multi-segment articulated body
system in the present frame using a first pose estimation
computation that treats the portion of the multi-segment
articulated body system as rigid and that is selected in
contrast to a second pose estimation computation based
on determining that the portion of the multi-segment
articulated body system remained substantially rigid
between the previous frame and the present frame.

2. The computer-implemented method of claim 1,
wherein the portion of the multi-segment articulated body
system comprises a hand.

3. The computer-implemented method of claim 1,
wherein estimating the pose of the multi-segment articulated
body system comprises estimating a spatial configuration of
the multi-segment articulated body system, the spatial con-
figuration comprising at least one of:

a spatial position of one or more segments of the multi-

segment articulated body system;

a spatial position of one or more joints connecting one or
more segments of the multi-segment articulated body
system; or

an angle between one or more joint-connected segments
of the multi-segment articulated body system.

4. The computer-implemented method of claim 1, further

comprising:

receiving a different present frame of the video stream
comprising a different present depiction of the multi-
segment articulated body system;

identifying a different previous frame of the video stream
that comprises a different previous depiction of the
multi-segment articulated body system;

analyzing the different present frame and the different
previous frame to determine whether the portion of the
multi-segment articulated body system remained sub-
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stantially rigid between the different previous frame
and the different present frame; and

estimating a different pose of the multi-segment articu-

lated body system in the different present frame using
the second pose estimation computation that does not
treat the portion of the multi-segment articulated body
system as rigid and that is selected in contrast to the
first pose estimation computation based on determining
that the portion of the multi-segment articulated body
system did not remain substantially rigid between the
different previous frame and the different present
frame.

5. The computer-implemented method of claim 1,
wherein determining that the portion of the multi-segment
articulated body system remained substantially rigid com-
prises determining at least one of:

relative positions of segments within the portion of the

multi-segment articulated body system remained
unchanged; or

angles between segments within the portion of the multi-

segmented articulated body system remained
unchanged.

6. The computer-implemented method of claim 1,
wherein determining that the portion of the multi-segment
articulated body system remained substantially rigid com-
prises determining a change in pose of the portion of the
multi-segment articulated body system can be substantially
described by one or more of:

a translation of the portion of the multi-segment articu-

lated body system as a whole; or

a rotation of the portion of the multi-segment articulated

body system as a whole.

7. The computer-implemented method of claim 1,
wherein the first pose estimation computation, when per-
formed, consumes fewer computing resources that does the
second pose estimation computation when performed.

8. The computer-implemented method of claim 1,
wherein the first pose estimation computation produces one
or more of:

an estimated translation of the portion of the multi-

segment articulated body system as a rigid system; or
an estimated rotation of the portion of the multi-segment
articulated body system as a rigid system.

9. The computer-implemented method of claim 1,
wherein the first pose estimation computation takes as input
information previously processed from one or more previous
frames of the video stream but not information from the
present frame of the video stream.

10. The computer-implemented method of claim 1,
wherein the second pose estimation computation takes as
input the present frame of the video stream.

11. A system comprising:

at least one physical processor;

physical memory comprising computer-executable

instructions that, when executed by the physical pro-

cessor, cause the physical processor to:

receive a present frame of a video stream, the present
frame comprising a present depiction of a multi-
segment articulated body system;

identify a previous frame of the video stream that
comprises a previous depiction of the multi-segment
articulated body system;

analyze the present frame and the previous frame to
determine whether a portion of the multi-segment
articulated body system remained substantially rigid
between the previous frame and the present frame;
and
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estimate a pose of the multi-segment articulated body
system in the present frame using a first pose esti-
mation computation that treats the portion of the
multi-segment articulated body system as rigid and
that is selected in contrast to a second pose estima-
tion computation based on determining that the por-
tion of the multi-segment articulated body system
remained substantially rigid between the previous
frame and the present frame.

12. The system of claim 11, wherein the portion of the
multi-segment articulated body system comprises a hand.

13. The system of claim 11, wherein the estimating the
pose of the multi-segment articulated body system com-
prises estimating a spatial configuration of the multi-seg-
ment articulated body system, the spatial configuration
comprising at least one of:

a spatial position of one or more segments of the multi-

segment articulated body system;

a spatial position of one or more joints connecting one or
more segments of the multi-segment articulated body
system; or

an angle between one or more joint-connected segments
of the multi-segment articulated body system.

14. The system of claim 11, wherein the computer-
executable instructions further cause the physical processor
to:

receive a different present frame of the video stream
comprising a different present depiction of the multi-
segment articulated body system;

identify a different previous frame of the video stream that
comprises a different previous depiction of the multi-
segment articulated body system;

analyze the different present frame and the different
previous frame to determine whether the portion of the
multi-segment articulated body system remained sub-
stantially rigid between the different previous frame
and the different present frame; and

estimate a different pose of the multi-segment articulated
body system in the different present frame using the
second pose estimation computation that does not treat
the portion of the multi-segment articulated body sys-
tem as rigid and that is selected in contrast to the first
pose estimation computation based on determining that
the portion of the multi-segment articulated body sys-
tem did not remain substantially rigid between the
different previous frame and the different present
frame.

15. The system of claim 11, wherein determining that the
portion of the multi-segment articulated body system
remained substantially rigid comprises determining at least
one of:

relative positions of segments within the portion of the
multi-segment articulated body system remained
unchanged; or

angles between segments within the portion of the multi-
segmented articulated body system remained
unchanged.

16. The system of claim 11, wherein determining that the
portion of the multi-segment articulated body system
remained substantially rigid comprises determining a
change in pose of the portion of the multi-segment articu-
lated body system can be substantially described by one or
more of:

a translation of the portion of the multi-segment articu-

lated body system as a whole; or

a rotation of the portion of the multi-segment articulated
body system as a whole.
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17. The system of claim 11, wherein the first pose
estimation computation, when performed, consumes fewer
computing resources that does the second pose estimation
computation when performed.

18. The system of claim 11, wherein the first pose
estimation computation produces one or more of:

an estimated translation of the portion of the multi-

segment articulated body system as a rigid system; or
an estimated rotation of the portion of the multi-segment
articulated body system as a rigid system.

19. The system of claim 11, wherein the first pose
estimation computation takes as input information previ-
ously processed from one or more previous frames of the
video stream but not information from the present frame of
the video stream.

20. A non-transitory computer-readable medium compris-
ing one or more computer-executable instructions that, when
executed by at least one processor of a computing device,
cause the computing device to:
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receive a present frame of a video stream, the present
frame comprising a present depiction of a multi-seg-
ment articulated body system;

identify a previous frame of the video stream that com-
prises a previous depiction of the multi-segment articu-
lated body system;

analyze the present frame and the previous frame to
determine whether a portion of the multi-segment
articulated body system remained substantially rigid
between the previous frame and the present frame; and

estimate a pose of the multi-segment articulated body
system in the present frame using a first pose estimation
computation that treats the portion of the multi-segment
articulated body system as rigid and that is selected in
contrast to a second pose estimation computation based
on determining that the portion of the multi-segment
articulated body system remained substantially rigid
between the previous frame and the present frame.
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